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Abstract— One central issue in practically deploying network cut refers to the sum capacity of edges going frohto U.
coding is the adaptive and economic allocation of network An s— cut with minimum capacity is called ainimums—t

resource. We cast this as an optimization, where thaet-utility ; o
— the difference between a utility derived from the attainable cut Let p.i(c) .den_ote the quaC|ty of a minimuga+ cut for
graph(V, E) with link capacitiesc. Then

multicast throughput and the total cost of resource provisioning
— is maximized. By employing the MAX of flows characterization
of the admissible rate region for multicasting, this paper gives

a novel reformulation of the optimization problem that has . . . : .
a separable structure. The Lagrangian relaxation method is is an upper bound of the multicast capacity since the capacit

applied to decompose the problem into subproblems involving one F’f any s—t cut is an upper bound on the rate at which
destination each. Our specific formulation of the primal problem information can be transferred fromto ¢.

results in two key properties. First, the resulting subproblem afte In today'’s practical networks, end-to-end informationidel
decomposition amounts to the problem of finding a shortest path ery is done byrouting, i.e., having intermediate nodes store

from the source to each destination. Second, assuming the net-p .\ torward packets. For multicasting, Ahlswede et al. sttbw
utility function is strictly concave, our proposed method enables .

a near-optimal primal variable to be uniquely recovered from a N [1] that the upper bound (1) cannot be achieved by routing i
near-optimal dual variable. general, but itan be achieved, via more powerful techniques

A numerical robustness analysis of the primal recovery method called network coding Hence, (1) is the multicast capacity.
is ?'SO COndhL(Ieﬁe?f‘.lch():r(.)Siil-?SrTgtiit(iJ?’lzedal’grolﬁ‘:gg:’s J\t‘:t ?gsg’sgoio Network coding generalizes routing by allowing a node to
:Jnsseart]r?s’ pvrvoximal method, which solves a séquenge IOof well- "X |_nformat_|0n, €., produce_ OUtpl.Jt data by computing
conditioned problems obtained from the original problem by Certain functions of the data it received. Ahlswede et al’s
adding quadratic regularization terms. Furthermore, the sim- result was established via information theoretic argusient
ulation results confirm the numerical robustness of the proposed Subsequently, important progress has been made regarding
Z:gg{itggtiogiZZ'r']yvahenaﬁmﬁﬁ“aéxr{‘eegg‘gg %”drg\‘/?dgll:r'] Sé‘#f%%r&'e the low-complexity construction of network codes. Li et al.
solution for applications with %ultiple multicrfst sessions. [2] _ShOWEd that the_ maximum multlcast_capaCIty can be

achieved by performing linear network coding. Ho et al. [3],

Index Terms—Multicast, network coding, distributed opti-  jaggi et al. [4] and Sanders et al. [5] showed that random

mization, dual, subgradient, shortest path. linear network coding over a sufficiently large finite field
can (asymptotically) achieve the multicast capacity. dvaithg
I. INTRODUCTION these constructive theoretical results about network ngpdi

Consider a network formed by a collection of losslesghou et al. [6] proposed a practical scheme for performing
links, which can naturally be represented by a directed lgrapetwork coding in real packet networks. In the scheme, each
G = (V, E), where the vertex sét and the edge séf denote node maintains a buffer that stores the incoming packets as
the nodes and links, respectively. We examine informatidfey arrive. Whenever the node is allowed to transmit a packet
multicasting in such a network, where a source nadis @ Mmixture packet is formed by combining the packets in the
transmitting common information to a set of destinatione®d buffer using random coefficients. For each packet,global
T. Suppose the bit-rate constraints on the links are specifieefing vector which indicates how this packet relates to the
by a vectorc of length |E|; the capacity for linkvw € E source packets, is recorded as header information, so as to
is denoted byc,,,. GivenV, E, ¢, s, and T, the multicast describe the composition of the packet.
capacityrefers to the maximum multicast throughput. In the practical network coding scheme, encoding amounts

An upper bound of the multicast capacity can be establishié& forming random mixture of packets; this is decentralized
by examining thecuts that separates from any destination and simple to implement. However, another essential elemen
teT.Fort e T, ans—t cut (U,U) refers to a partition of the is a distributed scheme for properly allocating bit-ratsorgce
nodesV = U + U, with s € U, t € U. The capacityof the at each link for each multicast session in a shared network.

Following a popular approach in economics theory, we cast

rtréiqr} ps.i(C) (1)
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Here U(r) represents the (raw) utility when an end-to-endariable f, for each destinatiom amounts to the problem of
throughputr is provided. The cost functiop,,, associated finding a shortest path from to ¢ with the dual variableg;
with link vw maps the consumed bit-ragg,, to the charge. being the path lengths. The shortest path problem has been
The critical constraint of such a maximization is thaivell understood. In particular, the Bellman-Ford algarith
throughputr must be attainable using the resourggs. Letg is a well-known distributed algorithm for the shortestipat
be a length-F| vector collectively representing,,,. For net- problem.
work coding based multicasting, this relation is charaoter ~ Second, assuming the net-utility function is strictly cave,
by r < minier ps.¢(9g)- our proposed method outputs a sequence of primal variables
More formally, we consider the following formulation (r®), g(*)) converging to the optimal solutiofr*, g*), pro-
vided that the dual iterates®) converge to an optimal solution
€*. The primal variablegr(*), g(*)) are determined frona(*)
subject to: r < Igg%lps,t(g)a as the unique maximizers of the Lagrangian £6¢).
3) Proximal regularization for ill-conditioned problems:
r € [ro,T1), ) L .
We show via some examples that when the net-utility function
0<g=c () Jacks sufficient degree of strict concavity, the generatadal
The constraint- € [ro, 1] models that the application maysolution (r*),g(*)) may be far from optimal even if the
have a desired range of throughput. associated dual variabke*) is near optimal. The robustness
The objective of this paper is to design efficient distrilouteof the proposed method is quantified.
algorithms for finding an optimal solutiofr*, g*) of (3). The For ill-conditioned problems, for instance, when the cost
distributed algorithms should, hopefully, incur low extram- functions p,,, are linear, we propose to use the proximal
munication overhead and be adaptive to network dynamicsmethod (see, e.g., the book [8] and the references therein)
The obtained-* and g* will be used as the operating pa-0 regularize the problem. In lieu of the original problemg w
rameters of the practical network coding system. Spedificalsolve a sequence of well-conditioned problems, obtaineah fr
the source node will set the end-to-end multicast rate totlze original problem by adding quadratic terms.
value slightly lower than*. Each linkvw in the network will 4) Generalization to multiple multicast session&ke gen-
generate random mixture packets at a rate araggjpd Then, eralize the proposed approach to the case when there are
since the practical network coding scheme based on randomltiple multicast sessions, and/or when there are flatybil
linear coding can achieve throughput close to the capacity, determining the supply of link bit-rates. In this context
with high probability the destinations will be able to reeov the proximal method is again used in conjunction with the

A
rTet = mnax Unet(rv g)

the source messages. dual subgradient method to decompose the problem, and to
generate a sequence of primal variables converging to an
A. Overview of proposed approach optimal solution.

1) Formulation with a separable structurefhe constraint
r < minger ps,¢(g) imposes that the rate must be attained. B. Related works on dual subgradient methods

Thanks to the well-known Max-Flow-Min-Cut theorem, this Dual subgradient methods have been applied to various

nonlinear constraint can be reduced to a system of Iin%ar . o T
: . o ) . .. formulations of network utility maximization problems. e
inequalities. Specificallyr < min,er ps,.(g) if and only if

. .~ . include for example prior works on Internet flow control [9]
there exists a flow vectof, < g from s to each destination L . o
g : and cross-layer optimizations via dual decomposition 410]

Sf14]. This work differentiates from these prior works in
terms of the unique problem structure associated with mtwo
coding based multicasting.

Li and Li [15] applied the dual subgradient method to the

The separable structure allows the problem to be decompoggc?l linear program for computing the maximum multicasé rat

: : . . . In an undirected graph. This results in a primal subgradient
into a collection of subproblems, each involving only a &ng algorithm that iteratively adjusts the way the total capaof
destination. In optimization theory, a well-establishextam- 9 y adl y ha

position approach to is by relaxing the coupling constsain?aCh undirected edge is partitioned into two parts, onedohe

. . . . . direction.
with Lagrangian multipliers, or dual variables. In lieu diet . .
originalgprot?lem, the F:jual problem is then solved via, sa The work most closely related to this work is by Lun et al.
the subgradient method [7] (see also Appendix.A of théGHlS]' Lun et _al_. p_r(_)posed_ a dual subgra(_j|ent method for
paper). Although the dual subgradient method represent§ g problem of minimizing a linear cost function for network

classical approach (see, e.g., Bertsekas and TsitsiR)isti& C°d"79 based muIticqsting. This problem corresponds 1o a
construction of dual formulations is in general non-unique speC|aI. case of (3). A f'xe.d. mult.|cast rate Is assgmed, thezef
an effective construction is often necessarily problemetic. U(r) d|s§1ppear§. In addition, linear cost functigns, (g..)

Our specific dual subgradient algorithm (Algorithm 1) ha8'® considered in (3).

two key properties. First, the subproblem involving the flovtlls-lir}i:“ svt\alsgiatlj:fweagzrf;;rge::rtf n?;iillysgzg;iisrgf ?hpep:j?ger?f

Lin this papera < b is in the element-wise sense. in formulating the primal and dual problems. First, in [18le

this leads to an optimization formulation with not only lare
constraints but also aeparable structurein which the flow
variables are coupled only through the constrajfits< g.

2) Lagrangian relaxation and dual subgradient method:



subproblem after decomposition amounts to the minimum costLet F; ,(r) denote the set of— flows with valuer. Then
flow problem, whereas the subproblems here amounts to the F, ,(r) if and only if
(simpler) shortest path problefnSecond, in [18], the primal

>
variables{f,} cannot be uniquely determined directly from Fz0 ©)
the dual vectors; to generate a converging primal sequence excess(f) =, )
{#¥}, Lun et al. [18] propose to use the method of Sherali excess(f) =0, YveV —{st} ®)

and Choi [19]. In comparison, for linear cost problems, WRote that the above inequalities are linearfirand; for this

propose to use the proximal method in conjunction Witrbason,}"s_t(r) is called thes—t flow polyhedron A useful
Algorithm 1. Thus Algorithm 1 is applied multiple times, andyroperty of 7, , () is its linearity in, i.e.

each application is to a maximization of a strictly concave A
net-utility function. Third, it is far from being straigtafward For(r) =rFs (1) ={rflf € Fs:(1)}. 9)

to generalize the approach in [18] to cope with the case Ofthe Max-Flow-Min-Cut Theorem says that for gragh E)

flexible rates. This is because each subproblem in [18] is,ap edge capacitieg, the minimums—¢ cut capacityp, ;(g)
minimum cost flow froms to eacht € 7" with rater. Whenr g equal to the maximum—t flow value. It follows then

is a variable, the multiple subproblems become couplecdesinc
they need to operate on the same rate r < psi(g) <= 3f € Fou(r), fr < g (10)
Lun et al. [18] also considered strictly convex link cost Since
functions and proposed a primal—dual algorithm. Since this
primal—dual algorithm is of a different nature than the dual
subgradient approach discussed herein, it is not revieweal h ths is termed théIAX of flowscharacterization for thedmis-
sible rate region of multicastinf0] [21]. The admissible rate
Il. THE BASIC APPROACH region of multicasting refers to set gf such that rate: can

This section makes use of the following assumptions: be supported. Just as a flow is the critical structure forastic
Al: The problem (3) has an optimal solution. communication, a MAX of flows is the critical structure for

A2: U : Ry — R is strictly concave anvw € FE, pyy : network co_dlng bqsed multlcastmg. , L
. : Formulation (3) is equivalent to the following maximizatio
R, — R is strictly convex, wher&®_ denotes the set of . " . o :
) SR . with linear constraints (the optimization variables aratexd
nonnegative real numbers. This implies th&t(r, g) is

strictly concave in(r, g). below the optimization operator, e.gnax).

o ] ) Lemma 1 (Linear constraint primal formulation):
Note that A1 and A2 together implies that there is a unique

< mi ) ) <
r_ggy%¢@)¢=>3ft€f;dﬂ,gggft_g7 (11)

optimal solution of (3), which is denoted ky*, g*). Unet = max Unel(r, 9)
subjectto: f, <g, VteT
A. MAX of flows characterization of < min;cr ps+(g) f€ Four), VteT,
Let us begin by expressing the constrailt < r € [ro, ),

min.er ps,(g) Via a set of linear constraints. This hinges upon
the Max-Flow-Min-Cut Theorem in graph theory.

An s—t flowis a lengthtE'| nonnegative vectof satisfying g pyal subgradient iterations based on shortest paths
the flow conservation constraint

0<g<e (12)

Introduce a vector oflual variablese; for each constraint

excess(f) =0, YveV —{s,t}. (4) f. <g. Then form the Lagrangian as follows
where L(Tagaf7€) éU(T)_ Z pvw(ng)_zsg‘(.ft_g)'
vweE teT
excess(f) 2 Z Juw — Z fow, (5) (13)
u: uwwel w: vweE

Here f (resp.e) denote the vector formed by stacking the
is the flow excess of, viz., the amount of incoming traffic vectors{f,, t € T} (resp.{e;, t € T}) together. In the
less the amount of outgoing traffic for node An s—t flow  following, r, g, f will be referred to as the@rimal variables

f essentially prescribes several parallel paths, along iwhic The dual problemrefers to

information can be routed from to ¢t. The flow excess at
t is called thevalue of the floywwhich corresponds to the

communication rate that can be achieved by routing along fi@ere thedual function valueD(e) is given by the maximiza-

min D(g), subjectto: € >0, (14)
€

paths associated witffi tion of the Lagrangian

2Bellman—Ford’s shortest path algorithm has a serial comgl@tio(|V|- D(e) 2 max L(r,g, f,e)
|E|) where|V| and|E| are respectively the number of nodes and the number r.g.f
of links. Thee-relaxation algorithm for the minimum cost flow problem has a subject to: f, € Fo4(r), VteT
serial complexity oD(|V|3+|V|23/¢) (according to Bertsekas and Tsitsiklis ¢ ” ’ ’
[8], Section 5.4), whereg is a measure of suboptimality of the initial dual re [TO, 7“1],

variables. Hence for sparse networks, finding a shorte$t igagimpler than

finding a minimum cost flow. 0<gc<ec (15)



Since (12) is a convex optimization subject to linear con- Remark: Note thaté;(e;) refers to the minimum cost of an
straints, the strong duality theorem in [22] (page 99) can Bet flow providing unit rate, when the link prices atg Since
applied. Assuming that problem (3) is feasible and its optimthere are no other (bounding) constraints on the flow vector
value is finite, then there is no duality gap and there exists £, one solution of this problem is a flow corresponding to
least one optimal dual vector. In short, assuming the existe a shortests— path where the path lengths are given dyy
of an optimal primal solution, there exist > 0 satisfying  Proof: In (15), the maximization over the primal variables

r,g, f decouples into two sub-problems. The first sub-problem
D(e”) = EE{)ID(E) = Urer (16) in\?oI{/ces onlypg: P P

It is well known that the minimization of dual function (14) A
can be done via a subgradient method; see, e.g., [22]¢ Let Dy(e) = max <Z €t> g > powlgow)
denote the subgradient of the dual function. The subgradien teT VwEE
update ofe is subjectto: 0 <g<e. (25)

k1) _ [E(k) _ aké.(k) + (17) Since eacty,,, is assumed to be strictly convex, there is a
¢ ¢ ¢ ’ unique maximizer of (25). This establishes (i).

where 2]+ — max{z,0}, ax is the step sizeegk) is the The second sub-problem involves onlyand { f, }:

current iterate. According to the Danskin’s Theorem (s&§)[2 D, s(€) EN maX U(r Z el f,
a subgradient of the dual function can be obtained essigntial ’ T
at no cost. More exactly, a subgradient of the dual function a subject to: f, € Foi(r), VteT
the current dual vectar®) can be obtained as the vecf” ¢ ) ’ ’
composed byT'| subvectors r € lro,m). (26)
é(k) _ g f(k) (18) In (26), fo_r each fixed:, the maximizatiqn ovef{f,} fur_ther_
- decouples into|T| sub-problems involving one destination

where( ), £ g(®)) maximizes the Lagrangian associate§ach:

()
with e(*). S _ max —¢/ f,

To implement the subgradient iterations, we need to maxi- £
mize the Lagrangian over the primal variables. This willlgie subject to: f, € Fs+(r), VieT. 27)

(f® g®) required in (17). Due to the separable structure

(12), these computations can be separately carried outeas%\ﬂce Fanlr) = T}—S*t(l)’. the. maximum value .Of (27) is
shall show below. linear in r. Then D, ¢(e) is given by the following scalar

Theorem 1 (Uniqueness of Lagrangian maximizer): optimization.
Let (r®), f®) g(*)) be a maximizer of (15) associated with Dy y(e) = max U(r) -7 DACH!
), Then ' pyre
(i) ¢ is uniquely determined frona(*) as subject to: r € [rg,71]. (28)
g®) = g(e™), (19) SinceU(r) is assumed to be strictly concave, there is a unique
maximizer of (28). This establishes (ii) and (iii). [ |

where

gle)Sarg max (Y er] 9- Y powloww)  C. Algorithm S dE ic | i
0Sy2e ¢ vw\Gow)- . Algorithm Summary and Economic Interpretation

ter vwek (20)  tis well known that dual variables can be interpreted as
prices for violating the relaxed constraints. In this sfieci
(i) r*) is uniquely determined frora*) as context, the dual variables; play the role of prices on the
links. The algorithm can be interpreted as performing marke
rk) — ,.(E(k))’ (21) adaptati - . . .
ptation via pricing. Given the current market price, the
where supplier decides how much bandwidghto produce, trying
A to maximize its profit. This is captured in thgoducer’s op-
r(e) = arg max Ur)—r-Y_Eler), (22) timization(25), where the profit is the total payment from the
e teT |T'| consumers minus the operational cost. Given the current
Ee) = 2 hin el f;, subject to:f} € F.,(1). (23) market price, the consumer decides how much bandwidth to
£ consume, trying to maximize its net utility. This is captlire
in the consumer’s optimizatiof26).

(ii) 7 may not be unique. Itis given by If the demandf, exceeds the supply on an edge, then the

f(’“) = 7A(k’)f;(’“)’ (24) edge price is increased. Loosely speaking, the price iserea
. on a link discourages using the link (i.e., the demafd
wherefg( )is any optimizer of (23). will tend to decrease); at the same time, the price increase

encourages the resource production (i.e., the supphjl tend



to increase). Conversely, if the suppjyexceeds the demandNote that ifU is nondecreasing in, then the optimal multicast
f+, then the edge price drops or remains O if it was 0. A pricate associated with reduces to
decrease will generally encourage consumption and diageur
production. 7#(g) = min {7“17 min /)s,t(g)} : (31)
We now summarize the proposed distributed algorithm. ) o
Algorithm 1 (Dual subgradient method via shortest pathsjyPically, an application does not pose an upper bound on

Given the current dual vectas®), the following steps are 1€ reduired rate, i.e4; = oo. In this case,i(g) equals
performed. miner ps,(g). Evaluatingmin,er ps(g) can be done via a

, ) max-flow algorithm, e.g., Goldberg and Tarjan’s Preflow-+Pus
1. Solve the problem (25) in parallel to obtagt"). Note Algorithm [23]. Alternatively, if the practical network ding
that this decouples |_nt¢E| scalf'ir (])Cptymlzatlons,_on_e forSystem [6] is running withg, then the valuamin.cr ps.(g)
each edge. The optimal solutig/i") is stored distribu- 7 e obtainedlgebraicallywith a minor overhead. We now
tively in the network. o briefly explain this; for more details, see [24]. The praatic
2. For each d_eSt'Pkf")‘t'onj run a distributed shortest path, ey york coding scheme [6] based on random linear network
algorithm withe;™ being the path Ie]?gthes. As a resultgging can achieve throughput close to the capacity. The
s knows the shortest path length(e{"); a binary flow source sends out packets generations packets within each
vectorfé(k) corresponding to a shortest path freno ¢  generation are mixed randomly over the network. Suppose the
is stored distributively in the network. source sends a generationigfpackets every seconds. If the
3. Solve the scalar maximization (28) atto obtainr*). rate ho/7 is less than the capacityin;cr ps+(g) for some
The valuer®) is conveyed to each node involved in anargin, with high probability, each destination will reeei
shortest path, e.g., by passing it along the shortest patfisearly independent (referring to the global coding ves}o
4. (Optional) The source broadcasts the current step sizenixture packets and can solve for the original source
. This may be combined with the broadcasting-df. packets. As the operating parametgrare being gradually
5. Generate a new dual vectdt**1) according to (17), with adapted, the capacity changes gradually as well. The source
x *) sending rateyy /7 should be controlled to be always slightly
e = g™ — ) g, (29) less than the current capacity. In order to discover theahctu
capacity, we use a global coding vector of lengtthat is set
Synchronization of the algorithm may be achieved by hate be slightly larger than an estimate of the true capacity, a
ing the sources broadcast the step sizg, andr(¥). Then for  treat as if there ark source packets with the lalst-f, packets
each node, the receipt of such information serves as a dgckbeing all zero. By doing so, a destinatiorcan use the rank
signal. of the global coding matrix for received packets to compute
From Bootstrapping to Steady PhadRecall that our main an estimate of the current min-cut valpg;(g). Although the
objective is to find a pair(r,g) that approximately solves rank of the global coding matrix may be larger thiag the
(3). The proposed distributed algorithm may be used in twiestination can still decode with high probability becathsze
possible phases. In theootstrapping phasethe algorithm are onlyhy unknown packets. Each destination can report to
computes a near-optimal pdir, g), which are then used to setthe source node the rank of its global coding matrix; the s@ur
up the practical network coding system. In thieady phase node can then estimate the current multicast capacity.
the practical network coding system is already running with
some parameterg, g) and the proposed algorithm is used t@, Recovery of primal optimal solution

fine tune the solution, or to adapt the solution in response toSoIving the dual problem (14) gives the optimal value of the

some changes in problem parameters.' Note' that this requitERective function in the primal problem. However, our main
no changes to the actual network coding, since every co ective is to find an optimal primal solutign*, g*). Indeed,

packet is simply obtained by computing a random mixture of.« /-y is what critically needed in practical applications.

the buffered packer. , ) . Itis well known in Lagrangian duality theory that when the
When the algorithm is used in the steady phase, it j$ima| objective function is strictly concave, then a prima
desirable to update the current solution (in use) into mﬂbptimal solution can be recovered from an optimal dual

feasible solution, which can be put in use immediately. Not&) tion. Particularizing to our context, we have the foflag
that (r(*), g()) obtained in the proposed algorithm may nofag it

be a feasible solution to (3); equivalently*) may not be Lemma 2 (Recovery of optimal primal solution):

able to exactly support rab.é“. o  Let ¢* be an optimal dual vector. Thefr(c*), g(e*)) is the
We now address the issue of determining the optimghique maximizer of (3).

operating rate’(g) for a given feasibleg. This can be done proof: Let (r*, g*, £*) be an optimal solution to (12). From

by optimizing overr in (3) with g fixed, i.e., Lagrangian duality theory, if there is no duality gap, then
max U(r), (r*,g*, f*) optimizes the Lagrangian far*, i.e.,
g L(r*,g", f*.€") = D(e"). (32)

subject to: r < min p, 4(g),
teT SinceU is strictly concave and eagh,,, is strictly convex,
re [7‘(),7'1]. (30) r* = ’I”(E*) a_r]dg’k = g(E*). u



In practice, very often one can only hope for an approximate
optimal dual solution. For example, if a constant step size
(o = h) is used in the subgradient iterations (17), then the
subgradient algorithm converges to within some neighbaiho
of the optimal value (proportional to the step size used; se
Appendix and the references therein for more information.
Thus it is of importance to investigate the robustness of thi@@. 1. Anexample network. This is the classical example oinet coding,

primal recovery method. introduced in [1].
Suppose we have an approximate minimizer of the dual 20,0010, 20,0100, 50.0500, 6-10.0000
probleme > 0 in the sense thaD(e) — D(&*) is small. In BT T T T T T e e

— Primal function value
- = Optimal utility

the following we quantify the distance betweégi(e), r(¢))
and(g*,7") = (g(e),r(e")) via D(e) — D(e").

The subsequent robustness analysis assumes
A3: {p,w} andU(r) are twice continuously differentiable.

Let f(x) and f(x) denote respectively the first and second
order derivatives of a functioff(x).
Theorem 2 (Robustness of primal recovery): R R SN o e
Let * be an optimal dual vector. Consider (an approximate

minimizer of the dual problemg > 0. Define

Net utility

d2 D(e) — D(e*). (33) | I R A R
Assuming Al, A2, and A3, theie > 0,36 > 0, such that o
d < ¢ implies Fig. 2. Primal and dual function values vs. iterations= 0.01, b =
0.05,¢ = 10, h = 0.001.
. 2d(1+¢€)
lg(e) — g*II° < — Y (34)
mlnvweEpvw(Q )
2d(1 E. lllustrative examples
(r(e) — )2 < 2L £ (35) _ ,
—U(r*) Let us now examine some examples. Consider the graph
In the special case where the link cost functigns, are given in Fig. 1, with
guadratic functions, we have U(r) = In(1 +7),
* 2d Povw\Govw) = a92 +bg, Yow € F,
lg(e) — g°|I* < — S (36) (gvw)
. MNywe E Pow (g ) Cyw = G,
Proof: See Appendix. [ |
[ro,r1] = [0, oc].
This theorem implies the convergence of the primal anthus the parameters ateb,c. We use a constant step size
dual sequences if a proper step size rule is used. ay = h in the subgradient update (17).
Corollary 1 (Convergence of primal sequence): 1) A well-conditioned scenario:For a = 0.01, b =
Assuming Al, A2, A3, ifD(e®))— D(e*), then 0.05, ¢ = 10, and step sizé = 0.001, Fig. 2 plots the primal
r®) (37)
g (k) — 9*7 (38) 9: h\:ooow“a:omoov b:_o'ﬁst’:;:?:;;u‘:‘::recuy By the dual af omhm\»
oy AL X ) . . \ _;npl:g:l’:;gr'cmpu(bylhedualagmhm
0 2 i(g®) — #(g") =", (39) g
Therefore, when a proper step size rule is used (e.g.—= 7
a/(k + b)), the dual sequence® will converge to an s
optimal dual vectoe* and thus the feasible primal sequences N
{(#*),g®))} will converge to the unique optimal primal gl
variables. T
Proof: The convergence ofr(*)} and g(*) follows directly T
from Theorem 2. Because the functié(y) is continuous in ST A PR OTE
g andg®) converges tg*, {#(*)} converges ta(g*), which
equals the unigue optimal raté. [ | il
From this Theorem 2, it is seen that, (¢;,,) and—U (r*) et

are critical in determining the robustness of the primabvec Fig. 3. The rates(*) output by the algorithm and the multicast rate supported
ery method. by g*). a = 0.01, b= 0.05,c = 10, h = 0.001.



h=0.0010, a=0.0001, b=0.0500, c=10.0000
T T T T T

supportable rate(¥),

1" = = Dual function value
1
v

¥ T opmatay 2) An ill-conditioned scenario:For a = 0.0001, b =
1T_"‘_\“I“:.‘l‘_“‘_\2‘Il“:""l"z“ﬁizl"_“‘:‘l‘fll‘_"“ik_"\.“’:.‘*Lt\_":“_ﬂ‘&“L“’_ﬁ‘.l"'_“; 0.057 = 10' and Step SIZ@ = 0001’ Flg 4 plOtS the prlmal
and dual function values vs. iterations. In this case, tha du
ost 7 sequence reaches a fairly close neighborhodd:gf However,

the dual sequenc®(e¢*)) oscillates significantly. It can be
far from U}, even when the dual sequence is closeJi.
This ill-conditioning behavior can be attributed to the small
oer used; this is consistent with Theorem 2. Thus when the link
cost functions are almost linear, to ensure the recoveiiethpr
sequence to be close to optimum, the dual problem must be
solved very accurately.
m w0 w0 w0 w0 %o w0 Fig. 5 plotsr(*) and #*) for this ill-conditioned scenario.

It is seen that-(*) is still close tor* when the dual function
Fig. 4. Primal and dual function values vs. iterations= 0.0001, b = values D(g) are near optimal. This is because the utility
0.05,¢ =10, h = 0.001. function U(r) is still well-conditioned. The sequende )},
100010 220000 b00500 e-10.000 however, exhibits a highly oscillatory behavior just @g*)}
¢ T [ e does; indeed, they are determined frggi*)}.
° = opimat e L In summary, the degree of strict concavity of the objective
. 1 function plays a critical role in determining the robusthes

) i of the algorithm in producing a high quality primal sequence
(k)
g .

Net utility
°

Rate
@
I

s . I11. DEALING WITH LACK OF STRICT CONCAVITY

Comparing Fig. 2 with Fig. 4, we see that the numerical
degree of strict concavity dneq(r, g) is critical to the robust
recovery of the primal solutions from the (suboptimal) dual

: 1 vectors. More generally, Theorem 2 shows that(g;,,) and
o L L1811 ITHIBUTAA WLV LU U(r*) are critical in determining the robustness of the primal
teraten recovery method. In this section we focus on the case that
Fig. 5. The rates(*) output by the algorithm and the multicast rate supportel€ given problem does not have sufficient degree of strict
by g(¥). a = 0.0001, b= 0.05,¢ = 10, h = 0.001. concavity. Such scenario is neither rare nor ignorableeddd
linear cost functions — which arise in many useful applmasi
— are not strictly convex at all.
and dual function values vs. iterations. More precisely tifie We propose to apply thproximal methodsee e.g., [22])
k-th iteration, the dual function value shown i%(e*)); the when the problem lacks a sufficient degree of strict con-

primal function value shown is cavity/convexity. This method is well known in optimizatio
k) A . . . theory. (For a historical note, see [8].) The basic idea is to
Unet =U (Igél%lps,t(g( ))) — P(g™), (40) add a quadratic term to “regularize” the optimization of the

objective function; then &equenceof modified problems is
whereP(g(¥)) is the short-hand notation f(EU,weEpvwgyB_ solved in lieu of the (single) original problefn.
The horizontal straight line gives the optimal valtig,. It ~ Specifically, for the maximization of a concave function,
is seen that bothD(¢*)) and Urg(’;t) approached, The mMaXgex F(x), the proximal methoduses the following iter-
sequenceD(¢(*)) appears to have a consistent descent trajedions
tory, whereas the sequenféé? has some oscillations at the
beginning. The fact that the former sequence is more camgist

is not unexpected, since the proposed method works by tryiR@te that with the presence of the quadratic term, the revise
to minimize the dual functiorD(e). function is strictly concave inz. Hence it has a unique
We next examine the optimality of the rate sequef®)}  maximizer. It can be shown that ifa,} is a sequence of
output by the algorithm; recall that®) is obtained as the positive numbers bounded away from 0, then the sequence
optimizer of (28). Fig. 3 plots*) and compare it with(*) = {2(»)} converges to an optimal solution; for a proof, please
minger ps,¢(g'*)) — the multicast rate supported gy, Itis refer to [8]. An extension of the proximal method is the
seen that-(*) is close to7(*) when the algorithm approaches
optimality. This confirms Corollary 1. I£(*) is near optimal,  3A related approach was used by Xiao et al. in [10], where thepgsed

theng(k) is close tog* andr®) is close tor* (see Theorem 2). to add a small quadratic regularization term to recover thgirvariables
Si *) is cl + 2 s gl * Th f in thi when applying the dual decomposition method to problems witaparsble
Inceg'™ Is close tog™, 7"’ Is close tor”. Therefore, IN thiS g cture. The proximal method can be viewed as a systematiofvayding

operating region;(*) can be used as an approximation of theegularization terms.

_ _ _ 2
L(n) = arg lelea)}(( {F(LB) an||w w(n—l)H } . (41)



partial proximal method25] [26], where the quadratic term o
in (41) involves only some of the minimization variables.eTh T brimal ity for ihe requirized problem

7 Optimal net utiity U_ ,,

convergence results can be found in [25] [26]. ossl d

Regarding the selection of the regularization parameter
generally speaking, there is a tradeoff. A larggrmakes the
primal recovery more robust, but it also makes the regiddriz
problem more different from the original problem, espdgial
at the beginning, whem  is far from optimal.

Now we describe the particular application of the proximal
method to our current problem. Given tipeevious solution
(T(n—1)>9(n—1))» Maximize the regularized utility functién K

06F 1 . : . : 4

Net utility

1 = aznllr = ren—n

(42) 1 2 B P
We denote th|§ problem b‘wbpro.bleml' This _maXImlzatl_on Fig. 6. The progression of the proximal method with respechéoproximal
can pe approxmately_ solved using thfe algorithm describedierationn. o = 0.0001, b = 0.05, ¢ = 10, h = 0.001.
Section II. The resulting dual vector is denoted &y, and
the recovered primal vectors are denoted by 00 ‘ #=0.0001, b=0.0500, 6=10.0000

T(n) = 7'(€(n))7 9dn) = g(s(n))' o8t W/

Note that due to the presence of the quadratic term, such a o7t
maximization is expected to be better conditioned than the
original problem. Provided that each maximizationquﬁt) is
sufficiently accurate, the sequen@g,,), g,,)) converges to an
optimal solution of the original problem (3).

n A
U (1,9) 2 Unedr.9) — aullg — o)

1 1 1
5 6 7 8 9 10
# of proximal iterations

0.6

Net utility
°
o

N
S

A. Using previous solution to initialize current problem

For a sufficiently larger, g,,) is close tog(,_,). In other
words, the previous solutio(v(n,l),g(n_l)) approximately
maximizes the current objectivH,SQt)(r,g). Therefore, it is % % W 200 20
desirable to usér(,_1),g(, 1)) to guide the initialization of e
the current subproblem. However, the algorithm descrilmed fig. 7. Original primal function values vs. iterations usitige proximal
Section Il is a dual subgradient approach, which is driven B§ethod. Each ieration is one execution of a dual subgradipdate. =
the dual vectoe. Thus we need an initial dual vecte n) Swe T e A=A
assume that,,_; ~ a,, andaz ,,—1 =~ a2 . Then subproblem
n —1'is similar to subproblemm, and consequently the dualrhe migdie curve plots the original primal utility
of subproblemn — 1 is )S|m|Iar to the dual of subproblem.

i< Lstifi inge® . Nooi .

This justifies settings(,) := €(,_1), the (near-)optimal dual U (rtnljr}ps,t(g(n))> — P(g(n))-
vector for subproblem — 1. €

—— Primal ity Tor the, original problem
01 Optimal net utiity U,

i The difference between these two curves corresponds to
B. lllustrative examples

2
We now apply the proximal method to the ill-conditioned anllg(n) = 9(n-1)llI” = 0.

problem in Section II-E. SincE (r) is well-conditioned, we do Therefore Fig. 6 shows that the sequengg, converges.
not regularize the rates. A constant sequemge= 0.0099 IS The yppermost line plots the maximum utiliéy.. Thus the
used. Thus, the first proximal iteration amounts to the @bl yenerated primal function values converge to the optimum.
discussed in Fig. 2. _ _ _ Fig. 7 plots the original primal function values versus the
Fig. 6 plots the progression of the proximal method witQnqradient iterations. The graph is partitioned into s&ve
respect to the proximal iteration. Specifically, three curves .o by the vertical dashed lines. The first part correspond
are shown. The lowest one is the regularized primal value f% the subgradient iterations for primal iteration = 1,
the solutiong,,) found by the dual subgradient method; inyng g0 on, Note that each part has an unequal number of
other words, it plots iterations. This is because a stopping criterion is used ter
U (min peo(g) ) — Plgo) — an] _ 12 terminatg the subgradient iterations when it alrgady.mch
M Ps,t(9 (n) 9n)) — nll9m) —Gm-1)ll"- near-optimum. For this graph, the subgradient iteratioms a
stopped when the gap between the optimal primal value found
“If U(r) is already sufficiently concave (as quantized by its secatdio 4nq the current dual value is sufficiently small. Since therla
depivative around-), the guadratic term involving may be dropped. proximal iterations start with a good initial solution, équires

5Note that the subscript denotes the proximal iteration nunever the ) i )
superscript denotes the dual subgradient iteration number. a relatively small number of iterations.



Fig. 7 is the counterpart of Fig. 4. It is seen that thgechniques to various formulations of cross-layer optatians
proximal method has successfully made each subproblémwireless networks.
better-conditioned. However, we note that a direct application of the Lagrangian

relaxation would result in subproblems that correspondjo (
IV. EXTENSION TOMULTIPLE MULTICAST SESSIONS AND  With linear cost functions; this can be seen from the deinwet
FLEXIBLE SUPPLIES below. Due to the lack of strict concavity, this would lead to

Consider the scenario where there are multiple multicgdfficulties in recovering the primal solutions. As a remedy
sessions in the network. Label them with indices — fof this issue, we propose to apply the proximal method. The
1,.... M. Denote the source and the destination set ofithe proximal method adds strictly concave terms to regulatiee t
th session bys,, andT,,, respectively. For this muIti-sourceObjeCtive functions without affecting the separable dtrce of

communication problem, a simple communication scheme i problem. , ) .
to partition the available resource infd shares and let each. W€ next describe how to use the proximal method in con-
session communicate using its exclusive share of resourfIction with Lagrangian relaxation. A sequence of regaéat
this will be referred to as theesource-partitioningapproach. subproblems is solved in lieu of the original problem. In
This approach is in general suboptimal, even if the messag&Problem, the regularized net-utility function is
in different sessions are independent, as first pointed out M
by Yeung [27]. The multi-source communication problem Urﬁgg({rm},c) 2 ZUm (rm) — Z Dow (Cow)

m=1

remains an open challenge; for some discussions, see, e.g., vweE

[16], [28], [29]. In the following we consider the distrited —a, Z(rm _ r(n—l))2

resource allocation issues when using the resourceipaitity — "

approach. _ __(n—=1))2

If the resource share for the-th multicast session ig,,,, 9 ; 19 = gl

the maximum multicast rate for this session is —ae||e— c(n_l)HQ’ (46)
min . 43 .
tE€T, Psmt(Gm) (43) wherea, > 0, a, > 0 and a. > 0 are regularization

In some networks, the supply of bit-rate resourcesffers coefficients. Note that the regularization coefficienisand
an additional degree of freedom in the system. A usef@t may not be necessarylf,, andp.,, are well conditioned.
application of this nature is the cross-layer optimization ~ We can then perform the dual decomposition on each
wireless ad hoc networks. Cross-layer optimizations in rggularized subproblem. Introduce dual variableand form
wireless network using network coding have been formulatéde Lagrangian
in [20], [21], [30].

. N . L A
The following optimization models the resource sharing (91,2 91,6, A)

among multiple multicast sessions and the potential fltiibi U ({rm}.0) =N (gy+...+ gy —¢)  (47)
in choosinge. Then the maximization ok(g,, ..., g, ¢, A) over the primal
variables g,,...,g,,,c decouples into a supply-side sub-
M problem andM demand-side sub-problems, one for each
(rogyc 221 Unm (rm) = EE:EPW (Cow) session. The supply-side problem is
m= VW
subject t0: 7 < mmin ps,, 1(g,0), max  ATe— Y puulcon) = aclle — V)2
vweE
Tm € [rmo, Tml; subject to: ¢ ¢ C. (48)
O S gm7 vm
gi+...tgy<ec The demand-side sub-problem for theth session is
ceC. (44) max  Up(rm) — ap(rm — r77D)2

Tms9m

Note that here the cost function is with respecictovhereas
in (3) the cost function is with respect ip
The variables in (44) are the supply-side variabteand
the demand-side variableg,,...,g,,. It can be seen from T € [Fmo, Tmi),
(44) that the supply side interacts with the demand side only
. 0<g,, (49)
through the constraint

T —
- X'g,, —agllg, — g2

subject to: r,, < trél%{ln Psmt(Gm)s

Note that without the quadratic regularization term @y,

the objective function would not be strictly concave. Hence
It is by now well known that problems with such type of crossthe regularization org,,, is critical to the unique recovery of
coupling can be decomposed into subproblems via Lagrangjaimal solution from a dual vector.

relaxation and subgradient iterations. For example, séver For someX andU,,, the problem (49) may diverge since
previous works, e.g., [10]-[12], [14], have applied similathe feasible region is unbounded. This issue can be avoiged b

g, +...+gy <c (45)
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a=0.0000, b=0.0050, c=10.0000

adding an upper-bound aj,, so that the constraint becomes

0<g,, <u. (50)

=
©

=
o

I
IS

The upper bound can be sufficiently large such that it is loose
in the primal formulation. If the se&f is bounded, we can set
w such thatu > ¢, Ve € C.

The dual variables\ can be updated via a subgradient

=
N

-

Net utility

o
©

o
)

method as
0.4
+
k+1) _ k —— - |
A — A ay(gi b gi -] 6D P ssnrr ve oo,
. o - - - -
whereg;, ..., g}, c* solve the respective subproblems. 0 B0 e wpdating weps ° 1000

V. SIMULATIONS Fig. 9. Original primal function values vs. iterations usitige proximal

We tested the algorithms in a large scale scenario. The gré?)eﬁhc’d'

(V, E) is the topology of an ISP (Exodus) backbone obtained

from the Rocketfuel project at the University of Washington VI. CONCLUSION

[31]. There are 79 nodes and 294 links. We arbitrarily placed . . o .

a source node at New York, and 8 destination nodes at O I?’y employlng_ the unique characterlzqnon of the multicast
Brook, Jersey City, Weehawken, Atlanta, Austin, San JosIE'roughplJt attainable via network coding and a problem-

Santa Clara, and Palo Alto. The utility function, the linksto specific dual formulation, we have decomposed the utility
functions and link capacities are set as

maximization problem into subproblems each involving one
destination only. Theoretically, the paper has two key con-

U(r) =1In(1+7r), (52) tributions. First, the resulting subproblem amounts to the
Puw(g) = ag® +0.005g, Yow € E, (53) problem of finding a shortest path from the source to each
. destination, for which there exist well established disttéd
Cow = 10, Yow € E, (54) . . o o
algorithms. Second, assuming the net-utility functiorticty
[ro,71] = [0, 09]. (55)  concave, our approach enables a near-optimal primal vVariab
to be uniquely recovered from a near-optimal dual variable.
A. Test Problem 1z = 0.001 From practical and numerical perspective, we have adopted

Fig. 8(a)(b)(c) plot the primal and dual function valuehe proximal method to reformulate original ill-conditih
vs. iterations for different choices of step sifeBig. 8(a)(b) Problem (e.g., with linear cost functions) into a sequence
are obtained by using constant step sizes,= 0.0001 and Of well-conditioned problems. The simulation results et
o, = 0.00003, respectively. With a constant step size, theonfirm the numerical robustness of the proposed algorithms
subgradient method is guaranteed to eventually reach someally, the proximal method and the dual subgradient metho
neighborhood of the optimum; see Appendix.A. It is observedie naturally extended to solve the generalized problemrevhe
that the primal and dual curves with the larger step siZBultiple multicast sessions are simultaneously transwhitt
converge faster, but the primal curve with the smaller step
size is smoother and the dual curve with the smaller step size APPENDIX
reaches closer to the optimum.

In Fig. 8(c), a diminishing step size, = 0.0005/\k is o ]
used. The curve is smoother than Fig. 8(a) and converges fast Definition 1 (Subgradient):

A. Review: preliminaries on subgradient methods

than Fig. 8(b). Given a convex functionf, a vector§{ is said to be a
subgradientof f atx € dom f if
B. Test Problem 2a =0 (&) > flx)+&" (2’ —x), Vz' e domf. (56)

For the case where the cost function is linear, the prox-
imal method is applied with a quadratic regularization term The subgradient method [7] minimizes a non-differentiable
0.001]lg — g(,—1)lI>. Initially, we setg,, = 0. Thus the convex function in a way similar to gradient methods for
first subproblem amounts to test problem 1. We simulatetifferentiable functions — in each step, the variables are
5 proximal iterations, with 200 subgradient updates in eacipdated in the negative direction of a subgradient. However
proximal iteration. The step sizes used in the 5 subprobuch a direction may not be a descent direction; instead,
lems are0.0005/v/k, 0.0004/v/k, 0.0003/vk, 0.0002/vk, the subgradient method relies on a different property. & th
and 0.0001/vk, respectively. Fig. 9 plots the sequence ofariable moves a sufficiently small step along the directibn
original primal function values obtained. The results aonfi a subgradient, the new point is closer to any optimal sahutio
the convergence of the algorithm. Consider a generic, constrained convex minimization:

SFor ease of visualization and comparison, we have plotteg-dods with minimize f(x)
a range of0, 3]. At the beginning of the iterations, the curves for (a) and (c . .
go out of this range. subject to: x € C, (57)
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h=( 00001 a=( 0001 b=0.005, c=10

h=3e-005, a=0.001, b=0.005, c=10 a=0.001, b=0.005, c=10
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1 - Dua\ function va\ue 1 - Dual function va\ue
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250 Optimal utility 250 2511 Optimal utility
T “h 1
[ 1 1
1 \ 1
2n 2y 2r1
\ \ 1
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1F e
05 05 - = = Dual function value
= Primal function value
Optimal utility
0 i I I I I I I 0 I | I I i i i I I I i
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Iteration # Iteration # Iteration #
@) ay, = 0.0001 (b) ax = 0.00003 (©) aj =0.0005/vk

Fig. 8. Primal and dual function values vs. iterations fot f@eblem 1 witha = 0.001. (&) a, = 0.0001 (b) ap, = 0.00003 (C) = 0.0005/v'k

wheref : R" — R is convex, and’ is a closed and nonempty Then
convex set. The subgradient method uses the iteration

42 D(e) = D(e") > max Ui(g) - Ui(g")
2D =Pl —ag®|, (58) + max Ty =Ua(7). (64)
rE(T0,T1

wherez(®) is the k-th iterate,¢*) is any subgradient of at Remark: This lemma establishes that whers small, then

), ap > 0 is the k-th step size, and is the projection on approximately solvesnaxo<g<. U1(g) and r* approxi-
c: mately solvesmax,cjp,,r, Ua(r).

A Proof: Let (r*,g*, f*) be an optimal primal solution. Since
P[z] = arg min ||z’ — x| (59) X 2 ox
BIeC : e >0 and f; < g*, we have
Lemma 3 (Convergence of subgradient methods [32]): - ZEtT(f: -
Assumex* is a minimizer of (57) and there exists(a such teT

that ||¢¥|| < G, Vk. Then Thus from the form of Lagrangian (13), we have

_ 1 _ G2 2 L(r*,g*, f*,e) > Uk, = D(e").
=Lk 2 Zizl o Next, sinceD(e) is obtained by maximizing the Lagrangian
In particular,

over the primal variables, we have
« if constant step size is used, i.ey; = h, then the right v e pw
hand side of (60) converges &°h/2 ask — oc. D(e) z L(r".g", f" ).

« if the step sizes satisfy Putting these together, we have

Ury+d=D(e) > L(r*,g*, f*,e) > Uly,= D(e*).
hm ap =0, Zak _ (61) net ( )— ( g f ) net ( )
= Thus
then right hand side of (60) converges to Okas- cc. d>D(e)— L(r*,g*, f*,¢)
Step sizes that satisfy this condition are calkiiehinish- > D(e)— max L(™,g", f.€)
ing step size rulesExamples includex, = a/vk and - Fi€Fs,e(r*)
[e7% :a/(k—!—b), wherea, b > 0. :Olgai( Ul( )+ é?ax UQ( ) Ul(g*)*UQ(T*).
For more discussions on the step size selection, see, &34§., [ == ol .
B. Proof of Theorem 2 Lemma 5 (Robustness of approximate maximizer):
. ) Let f : R — R be a twice continuously differentiable and
Lemma 4. Let &* be an optimal dual vector. For f'xedstrictly concave function. Let
>0, let .
T x* ézaurg; max_f(x), (65)
z€[a, ]
thig) = ;Et 9= )ze:Ep”w(g“”)’ (62) where [«, 8] is a nonempty bounded interval. Thafrt >
A o 0,36 > 0, such that if
Us(r) SU(r) =1 > Eler). (63)

teT z € [a, ] and f(z") — f(z) <6, (66)



12

then From (78),

2(1+¢) F
(¢ —2")* < (f(z") = f(z)) ==—. (67) iy o (@)
—f(x) f(@) < 11e (80)
In the special case whergis quadratic, we have Using (69), we have
2
—2*)? < )= —. 68 . 1. _ . z)(z — 2%)?
(@) < (") - f) = 9 ) ) 2 L ey L@@
Proof: Perform Taylor expansion of(x) aroundz* up to the (1+¢)
second order as This establishes (67). [
* fl % * 1 = *\2
fla) = 1) + f@) (@ —27) + S F (@) (@ —27)7, Proof of Theorem 2: With ¢ fixed, U (g) is a sum of
wherez is betweenz and z*. |E| uni-variable functions, where the function corresponding

According to the first order optimality condition for con-t0 vw € E, denoted byU;* (guw ), involves g, only. Define
strained convex optimization [22], A vw vw %
dow = _max Uy (guw) — Ui (9puw); (81)

f(x*)(x —z*) <0, Vzxé€la,/pml] N 0<gow<Cow
. d, = Us(r) — Us(r* 82
The strict concavity off (z) implies thatf(x) < 0, Vz. Hence rerﬁ?,)il] 2(r) 2(r) (82)
F@*) - f@) > 7%}:(1_:)(17 et (69) Thus from Lemma 4, we have
1 . dyw +dp < d. (83)
> §m($ - )2a (70) /Uwze:E
where The claim (35) can be established by applying Lemma 5
. " with z* = r(e) andz = r*.
m= wel[r}jﬁ] {_f(x)} > 0. To establish (34), we apply Lemma 5 witht = g,.,(¢)

andz = g*,, where g,,,(¢) denotes thevw-entry of g(e).

For the special case wherg is quadratic, the claim (68) Then, for anye > 0, 3, (€) > 0, such that

follows from (70).

Next we establish the claim for the general case. By assump- v va 201+ €)dyw
. i . . — < —F.
tion, f(x) is continuous atc*. HenceVe; > 0, 301(e1) > 0 dow < Ovu(€) = (Gou(€) = Guw)” < Pow(GEw) (84)
such that N
.. .. For anye > 0, let § = min,we g dpw(€). Then
|z — 2% < di(er) = |f(2) = fa")| <e. (V1)
Now for anye > 0, let d < § = dpw < dpw(€),Yow € E. (85)
—f'(z*)e Consequentlyd < § implies that
€6 = ——— (72) .12 . 12
%52—*— € HQ(E) -g ” = Z (ng - ng)
5= Moile) (73) el
2 2(1 4 €)dyw
Then ifz € [o, 8] and f(z*) — f(x) < 4, from (70), we have ey Pow (Ghw)
17 — 2*| < |z — 2*| < 81(er). (74) < 2wwep 2(L+ €)dvw
From (71), we have mitywe £ ow (9w)
. 2(1+e€)d
|f(z) = f(a®)] _5 (f e (75) ~ mitvwer Pow(95.)
. This establishes (34).
|f'(f) — f'(x*)\ < ACHL (76) The claim (36) for the special case where the link cost
2+e functions p,,, are quadratic functions can be established
From (75), similarly. n
f'(zp*)€ . ..
— * 77
5 < f@) - fa), (77)
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