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Distributed Utility Maximization
for Network Coding Based Multicasting:

A Shortest Path Approach
Yunnan Wu,Member, IEEE, Sun-Yuan Kung,Fellow, IEEE.

Abstract— One central issue in practically deploying network
coding is the adaptive and economic allocation of network
resource. We cast this as an optimization, where thenet-utility
– the difference between a utility derived from the attainable
multicast throughput and the total cost of resource provisioning
– is maximized. By employing the MAX of flows characterization
of the admissible rate region for multicasting, this paper gives
a novel reformulation of the optimization problem that has
a separable structure. The Lagrangian relaxation method is
applied to decompose the problem into subproblems involving one
destination each. Our specific formulation of the primal problem
results in two key properties. First, the resulting subproblem after
decomposition amounts to the problem of finding a shortest path
from the source to each destination. Second, assuming the net-
utility function is strictly concave, our proposed method enables
a near-optimal primal variable to be uniquely recovered from a
near-optimal dual variable.

A numerical robustness analysis of the primal recovery method
is also conducted. For ill-conditioned problems that arise, for
instance, when the cost functions are linear, we propose to
use the proximal method, which solves a sequence of well-
conditioned problems obtained from the original problem by
adding quadratic regularization terms. Furthermore, the sim-
ulation results confirm the numerical robustness of the proposed
algorithms. Finally, the proximal method and the dual subgra-
dient method can be naturally extended to provide an effective
solution for applications with multiple multicast sessions.

Index Terms— Multicast, network coding, distributed opti-
mization, dual, subgradient, shortest path.

I. I NTRODUCTION

Consider a network formed by a collection of lossless
links, which can naturally be represented by a directed graph
G = (V,E), where the vertex setV and the edge setE denote
the nodes and links, respectively. We examine information
multicasting in such a network, where a source nodes is
transmitting common information to a set of destination nodes
T . Suppose the bit-rate constraints on the links are specified
by a vectorc of length |E|; the capacity for linkvw ∈ E
is denoted bycvw. Given V , E, c, s, and T , the multicast
capacityrefers to the maximum multicast throughput.

An upper bound of the multicast capacity can be established
by examining thecuts that separates from any destination
t ∈ T . For t ∈ T , ans–t cut (U,U) refers to a partition of the
nodesV = U + U , with s ∈ U , t ∈ U . The capacityof the
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cut refers to the sum capacity of edges going fromU to U .
An s–t cut with minimum capacity is called aminimums–t
cut. Let ρs,t(c) denote the capacity of a minimums–t cut for
graph(V,E) with link capacitiesc. Then

min
t∈T

ρs,t(c) (1)

is an upper bound of the multicast capacity since the capacity
of any s–t cut is an upper bound on the rate at which
information can be transferred froms to t.

In today’s practical networks, end-to-end information deliv-
ery is done byrouting, i.e., having intermediate nodes store
and forward packets. For multicasting, Ahlswede et al. showed
in [1] that the upper bound (1) cannot be achieved by routing in
general, but itcan be achieved, via more powerful techniques
called network coding. Hence, (1) is the multicast capacity.
Network coding generalizes routing by allowing a node to
mix information, i.e., produce output data by computing
certain functions of the data it received. Ahlswede et al.’s
result was established via information theoretic arguments.
Subsequently, important progress has been made regarding
the low-complexity construction of network codes. Li et al.
[2] showed that the maximum multicast capacity can be
achieved by performing linear network coding. Ho et al. [3],
Jaggi et al. [4] and Sanders et al. [5] showed that random
linear network coding over a sufficiently large finite field
can (asymptotically) achieve the multicast capacity. Following
these constructive theoretical results about network coding,
Chou et al. [6] proposed a practical scheme for performing
network coding in real packet networks. In the scheme, each
node maintains a buffer that stores the incoming packets as
they arrive. Whenever the node is allowed to transmit a packet,
a mixture packet is formed by combining the packets in the
buffer using random coefficients. For each packet, theglobal
coding vector, which indicates how this packet relates to the
source packets, is recorded as header information, so as to
describe the composition of the packet.

In the practical network coding scheme, encoding amounts
to forming random mixture of packets; this is decentralized
and simple to implement. However, another essential element
is a distributed scheme for properly allocating bit-rate resource
at each link for each multicast session in a shared network.
Following a popular approach in economics theory, we cast
this problem as the maximization of anet-utility function

Unet(r, g)
∆
= U(r) −

∑

vw∈E

pvw(gvw). (2)
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Here U(r) represents the (raw) utility when an end-to-end
throughputr is provided. The cost functionpvw associated
with link vw maps the consumed bit-rategvw to the charge.

The critical constraint of such a maximization is that
throughputr must be attainable using the resourcesgvw. Let g
be a length-|E| vector collectively representinggvw. For net-
work coding based multicasting, this relation is characterized
by r ≤ mint∈T ρs,t(g).

More formally, we consider the following formulation

U∗
net

∆
= max Unet(r, g)

subject to: r ≤ min
t∈T

ρs,t(g),

r ∈ [r0, r1],

0 ≤ g ≤ c, (3)

The constraintr ∈ [r0, r1] models that the application may
have a desired range of throughput.1

The objective of this paper is to design efficient distributed
algorithms for finding an optimal solution(r∗, g∗) of (3). The
distributed algorithms should, hopefully, incur low extracom-
munication overhead and be adaptive to network dynamics.

The obtainedr∗ and g∗ will be used as the operating pa-
rameters of the practical network coding system. Specifically,
the source node will set the end-to-end multicast rate to a
value slightly lower thanr∗. Each linkvw in the network will
generate random mixture packets at a rate aroundg∗vw. Then,
since the practical network coding scheme based on random
linear coding can achieve throughput close to the capacity,
with high probability the destinations will be able to recover
the source messages.

A. Overview of proposed approach

1) Formulation with a separable structure:The constraint
r ≤ mint∈T ρs,t(g) imposes that the rater must be attained.
Thanks to the well-known Max-Flow-Min-Cut theorem, this
nonlinear constraint can be reduced to a system of linear
inequalities. Specifically,r ≤ mint∈T ρs,t(g) if and only if
there exists a flow vectorf t ≤ g from s to each destination
t ∈ T with rater. When expressed in terms of flow variables,
this leads to an optimization formulation with not only linear
constraints but also aseparable structure, in which the flow
variables are coupled only through the constraintsf t ≤ g.

2) Lagrangian relaxation and dual subgradient method:
The separable structure allows the problem to be decomposed
into a collection of subproblems, each involving only a single
destination. In optimization theory, a well-established decom-
position approach to is by relaxing the coupling constraints
with Lagrangian multipliers, or dual variables. In lieu of the
original problem, the dual problem is then solved via, say,
the subgradient method [7] (see also Appendix.A of this
paper). Although the dual subgradient method represents a
classical approach (see, e.g., Bertsekas and Tsitsiklis [8]), the
construction of dual formulations is in general non-uniqueand
an effective construction is often necessarily problem-specific.

Our specific dual subgradient algorithm (Algorithm 1) has
two key properties. First, the subproblem involving the flow

1In this paper,a ≤ b is in the element-wise sense.

variablef t for each destinationt amounts to the problem of
finding a shortest path froms to t with the dual variablesεt

being the path lengths. The shortest path problem has been
well understood. In particular, the Bellman-Ford algorithm
is a well-known distributed algorithm for the shortest-path
problem.

Second, assuming the net-utility function is strictly concave,
our proposed method outputs a sequence of primal variables
(r(k), g(k)) converging to the optimal solution(r∗, g∗), pro-
vided that the dual iteratesε(k) converge to an optimal solution
ε∗. The primal variables(r(k), g(k)) are determined fromε(k)

as the unique maximizers of the Lagrangian forε(k).
3) Proximal regularization for ill-conditioned problems:

We show via some examples that when the net-utility function
lacks sufficient degree of strict concavity, the generated primal
solution (r(k), g(k)) may be far from optimal even if the
associated dual variableε(k) is near optimal. The robustness
of the proposed method is quantified.

For ill-conditioned problems, for instance, when the cost
functions pvw are linear, we propose to use the proximal
method (see, e.g., the book [8] and the references therein)
to regularize the problem. In lieu of the original problem, we
solve a sequence of well-conditioned problems, obtained from
the original problem by adding quadratic terms.

4) Generalization to multiple multicast sessions:We gen-
eralize the proposed approach to the case when there are
multiple multicast sessions, and/or when there are flexibility
in determining the supply of link bit-rates. In this context,
the proximal method is again used in conjunction with the
dual subgradient method to decompose the problem, and to
generate a sequence of primal variables converging to an
optimal solution.

B. Related works on dual subgradient methods

Dual subgradient methods have been applied to various
formulations of network utility maximization problems. These
include for example prior works on Internet flow control [9]
and cross-layer optimizations via dual decomposition [10]–
[14]. This work differentiates from these prior works in
terms of the unique problem structure associated with network
coding based multicasting.

Li and Li [15] applied the dual subgradient method to the
dual linear program for computing the maximum multicast rate
in an undirected graph. This results in a primal subgradient
algorithm that iteratively adjusts the way the total capacity of
each undirected edge is partitioned into two parts, one for each
direction.

The work most closely related to this work is by Lun et al.
[16]–[18]. Lun et al. proposed a dual subgradient method for
the problem of minimizing a linear cost function for network
coding based multicasting. This problem corresponds to a
special case of (3). A fixed multicast rate is assumed, therefore
U(r) disappears. In addition, linear cost functionspvw(gvw)
are considered in (3).

This work differs from the dual subgradient approach of
[18] in several major aspects mainly because of the difference
in formulating the primal and dual problems. First, in [18],the
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subproblem after decomposition amounts to the minimum cost
flow problem, whereas the subproblems here amounts to the
(simpler) shortest path problem.2 Second, in [18], the primal
variables{f t} cannot be uniquely determined directly from
the dual vectors; to generate a converging primal sequence
{f (k)

t }, Lun et al. [18] propose to use the method of Sherali
and Choi [19]. In comparison, for linear cost problems, we
propose to use the proximal method in conjunction with
Algorithm 1. Thus Algorithm 1 is applied multiple times, and
each application is to a maximization of a strictly concave
net-utility function. Third, it is far from being straightforward
to generalize the approach in [18] to cope with the case of
flexible rates. This is because each subproblem in [18] is a
minimum cost flow froms to eacht ∈ T with rater. Whenr
is a variable, the multiple subproblems become coupled since
they need to operate on the same rater.

Lun et al. [18] also considered strictly convex link cost
functions and proposed a primal–dual algorithm. Since this
primal–dual algorithm is of a different nature than the dual
subgradient approach discussed herein, it is not reviewed here.

II. T HE BASIC APPROACH

This section makes use of the following assumptions:

A1: The problem (3) has an optimal solution.
A2: U : R+ → R is strictly concave and∀vw ∈ E, pvw :

R+ → R is strictly convex, whereR+ denotes the set of
nonnegative real numbers. This implies thatUnet(r, g) is
strictly concave in(r, g).

Note that A1 and A2 together implies that there is a unique
optimal solution of (3), which is denoted by(r∗, g∗).

A. MAX of flows characterization ofr ≤ mint∈T ρs,t(g)

Let us begin by expressing the constraintr ≤
mint∈T ρs,t(g) via a set of linear constraints. This hinges upon
the Max-Flow-Min-Cut Theorem in graph theory.

An s–t flow is a length-|E| nonnegative vectorf satisfying
the flow conservation constraint:

excessv(f) = 0, ∀v ∈ V − {s, t}. (4)

where

excessv(f)
∆
=

∑

u: uv∈E

fuv −
∑

w: vw∈E

fvw, (5)

is the flow excess ofv, viz., the amount of incoming traffic
less the amount of outgoing traffic for nodev. An s–t flow
f essentially prescribes several parallel paths, along which
information can be routed froms to t. The flow excess at
t is called thevalue of the flow, which corresponds to the
communication rate that can be achieved by routing along the
paths associated withf .

2Bellman–Ford’s shortest path algorithm has a serial complexity of O(|V | ·
|E|) where|V | and|E| are respectively the number of nodes and the number
of links. Theǫ-relaxation algorithm for the minimum cost flow problem has a
serial complexity ofO(|V |3+|V |2β/ǫ) (according to Bertsekas and Tsitsiklis
[8], Section 5.4), whereβ is a measure of suboptimality of the initial dual
variables. Hence for sparse networks, finding a shortest path is simpler than
finding a minimum cost flow.

Let Fs,t(r) denote the set ofs–t flows with valuer. Then
f ∈ Fs,t(r) if and only if

f ≥ 0, (6)

excesst(f) = r, (7)

excessv(f) = 0, ∀v ∈ V − {s, t} (8)

Note that the above inequalities are linear inf andr; for this
reason,Fs,t(r) is called thes–t flow polyhedron. A useful
property ofFs,t(r) is its linearity inr, i.e.,

Fs,t(r) = rFs,t(1)
∆
= {rf |f ∈ Fs,t(1)}. (9)

The Max-Flow-Min-Cut Theorem says that for graph(V,E)
with edge capacitiesg, the minimums–t cut capacityρs,t(g)
is equal to the maximums–t flow value. It follows then

r ≤ ρs,t(g) ⇐⇒ ∃f t ∈ Fs,t(r), f t ≤ g. (10)

Since

r ≤ min
t∈T

ρs,t(g) ⇐⇒ ∃f t ∈ Fs,t(r), max
t∈T

f t ≤ g, (11)

this is termed theMAX of flowscharacterization for theadmis-
sible rate region of multicasting[20] [21]. The admissible rate
region of multicasting refers to set ofg such that rater can
be supported. Just as a flow is the critical structure for unicast
communication, a MAX of flows is the critical structure for
network coding based multicasting.

Formulation (3) is equivalent to the following maximization
with linear constraints (the optimization variables are stated
below the optimization operator, e.g.,max).

Lemma 1 (Linear constraint primal formulation):

U∗
net = max

r,g,f
Unet(r, g)

subject to: f t ≤ g, ∀t ∈ T

f t ∈ Fs,t(r), ∀t ∈ T,

r ∈ [r0, r1],

0 ≤ g ≤ c. (12)

B. Dual subgradient iterations based on shortest paths

Introduce a vector ofdual variablesεt for each constraint
f t ≤ g. Then form the Lagrangian as follows

L(r, g,f , ε)
∆
= U(r) −

∑

vw∈E

pvw(gvw) −
∑

t∈T

εT
t (f t − g).

(13)

Here f (resp. ε) denote the vector formed by stacking the
vectors{f t, t ∈ T} (resp. {εt, t ∈ T}) together. In the
following, r, g,f will be referred to as theprimal variables.

The dual problemrefers to

min
ε

D(ε), subject to: ε ≥ 0, (14)

where thedual function valueD(ε) is given by the maximiza-
tion of the Lagrangian

D(ε)
∆
= max

r,g,f
L(r, g,f , ε)

subject to: f t ∈ Fs,t(r), ∀t ∈ T,

r ∈ [r0, r1],

0 ≤ g ≤ c. (15)



4

Since (12) is a convex optimization subject to linear con-
straints, the strong duality theorem in [22] (page 99) can be
applied. Assuming that problem (3) is feasible and its optimal
value is finite, then there is no duality gap and there exists at
least one optimal dual vector. In short, assuming the existence
of an optimal primal solution, there existε∗ ≥ 0 satisfying

D(ε∗) = min
ε≥0

D(ε) = U∗
net. (16)

It is well known that the minimization of dual function (14)
can be done via a subgradient method; see, e.g., [22]. Letξ

denote the subgradient of the dual function. The subgradient
update ofε is

ε
(k+1)
t =

[

ε
(k)
t − αkξ

(k)
t

]+

, (17)

where [x]+ = max{x, 0}, αk is the step size,ε(k)
t is the

current iterate. According to the Danskin’s Theorem (see [22]),
a subgradient of the dual function can be obtained essentially
at no cost. More exactly, a subgradient of the dual function at
the current dual vectorε(k) can be obtained as the vectorξ(k)

composed by|T | subvectors

ξ
(k)
t = g(k) − f

(k)
t , (18)

where(r(k),f (k), g(k)) maximizes the Lagrangian associated
with ε(k).

To implement the subgradient iterations, we need to maxi-
mize the Lagrangian over the primal variables. This will yield
(f (k), g(k)) required in (17). Due to the separable structure of
(12), these computations can be separately carried out, as we
shall show below.

Theorem 1 (Uniqueness of Lagrangian maximizer):
Let (r(k),f (k), g(k)) be a maximizer of (15) associated with
ε(k). Then

(i) g(k) is uniquely determined fromε(k) as

g(k) = g(ε(k)), (19)

where

g(ε)
∆
= arg max

0≤g≤c

(

∑

t∈T

εt

)T

g −
∑

vw∈E

pvw(gvw).

(20)

(ii) r(k) is uniquely determined fromε(k) as

r(k) = r(ε(k)), (21)

where

r(ε)
∆
= arg max

r0≤r≤r1

U(r) − r ·
∑

t∈T

Et(εt), (22)

Et(εt)
∆
= min

f ′

t

εT
t f ′

t, subject to:f ′
t ∈ Fs,t(1). (23)

(iii) f (k) may not be unique. It is given by

f (k) = r(k)f ′
t

(k)
, (24)

wheref ′
t

(k)
is any optimizer of (23).

Remark: Note thatEt(εt) refers to the minimum cost of an
s–t flow providing unit rate, when the link prices areεt. Since
there are no other (bounding) constraints on the flow vector
f ′

t, one solution of this problem is a flow corresponding to
a shortests–t path where the path lengths are given byεt.
Proof: In (15), the maximization over the primal variables
r, g,f decouples into two sub-problems. The first sub-problem
involves onlyg:

Dg(ε)
∆
= max

g

(

∑

t∈T

εt

)T

g −
∑

vw∈E

pvw(gvw)

subject to: 0 ≤ g ≤ c. (25)

Since eachpvw is assumed to be strictly convex, there is a
unique maximizer of (25). This establishes (i).

The second sub-problem involves onlyr and{f t}:

Dr,f (ε)
∆
= max

r,f
U(r) −

∑

t∈T

εT
t f t

subject to: f t ∈ Fs,t(r), ∀t ∈ T,

r ∈ [r0, r1]. (26)

In (26), for each fixedr, the maximization over{f t} further
decouples into|T | sub-problems involving one destination
each:

max
ft

− εT
t f t

subject to: f t ∈ Fs,t(r), ∀t ∈ T. (27)

Since Fs,t(r) = rFs,t(1), the maximum value of (27) is
linear in r. Then Dr,f (ε) is given by the following scalar
optimization.

Dr,f (ε) = max
r

U(r) − r ·
∑

t∈T

Et(εt),

subject to: r ∈ [r0, r1]. (28)

SinceU(r) is assumed to be strictly concave, there is a unique
maximizer of (28). This establishes (ii) and (iii).

C. Algorithm Summary and Economic Interpretation

It is well known that dual variables can be interpreted as
prices for violating the relaxed constraints. In this specific
context, the dual variablesεt play the role of prices on the
links. The algorithm can be interpreted as performing market
adaptation via pricing. Given the current market price, the
supplier decides how much bandwidthg to produce, trying
to maximize its profit. This is captured in theproducer’s op-
timization(25), where the profit is the total payment from the
|T | consumers minus the operational cost. Given the current
market price, the consumer decides how much bandwidth to
consume, trying to maximize its net utility. This is captured
in the consumer’s optimization(26).

If the demandf t exceeds the supplyg on an edge, then the
edge price is increased. Loosely speaking, the price increase
on a link discourages using the link (i.e., the demandf t

will tend to decrease); at the same time, the price increase
encourages the resource production (i.e., the supplyg will tend
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to increase). Conversely, if the supplyg exceeds the demand
f t, then the edge price drops or remains 0 if it was 0. A price
decrease will generally encourage consumption and discourage
production.

We now summarize the proposed distributed algorithm.
Algorithm 1 (Dual subgradient method via shortest paths):

Given the current dual vectorε(k), the following steps are
performed.

1. Solve the problem (25) in parallel to obtaing(k). Note
that this decouples into|E| scalar optimizations, one for
each edge. The optimal solutiong(k) is stored distribu-
tively in the network.

2. For each destinationt, run a distributed shortest path
algorithm withε

(k)
t being the path lengthes. As a result,

s knows the shortest path lengthEt(ε
(k)
t ); a binary flow

vectorf ′
t

(k)
corresponding to a shortest path froms to t

is stored distributively in the network.
3. Solve the scalar maximization (28) ats to obtain r(k).

The valuer(k) is conveyed to each node involved in a
shortest path, e.g., by passing it along the shortest paths.

4. (Optional) The sources broadcasts the current step size
αk. This may be combined with the broadcasting ofr(k).

5. Generate a new dual vectorε(k+1) according to (17), with

ξ
(k)
t = g(k) − r(k)f ′

t

(k)
. (29)

Synchronization of the algorithm may be achieved by hav-
ing the sources broadcast the step sizeαk andr(k). Then for
each node, the receipt of such information serves as a clocking
signal.

From Bootstrapping to Steady Phase:Recall that our main
objective is to find a pair(r, g) that approximately solves
(3). The proposed distributed algorithm may be used in two
possible phases. In thebootstrapping phase, the algorithm
computes a near-optimal pair(r, g), which are then used to set
up the practical network coding system. In thesteady phase,
the practical network coding system is already running with
some parameters(r, g) and the proposed algorithm is used to
fine tune the solution, or to adapt the solution in response to
some changes in problem parameters. Note that this requires
no changes to the actual network coding, since every coded
packet is simply obtained by computing a random mixture of
the buffered packets.

When the algorithm is used in the steady phase, it is
desirable to update the current solution (in use) into another
feasible solution, which can be put in use immediately. Note
that (r(k), g(k)) obtained in the proposed algorithm may not
be a feasible solution to (3); equivalently,g(k) may not be
able to exactly support rater(k).

We now address the issue of determining the optimal
operating ratêr(g) for a given feasibleg. This can be done
by optimizing overr in (3) with g fixed, i.e.,

max
r

U(r),

subject to: r ≤ min
t∈T

ρs,t(g),

r ∈ [r0, r1]. (30)

Note that ifU is nondecreasing inr, then the optimal multicast
rate associated withg reduces to

r̂(g) = min

{

r1, min
t∈T

ρs,t(g)

}

. (31)

Typically, an application does not pose an upper bound on
the required rate, i.e.,r1 = ∞. In this case,r̂(g) equals
mint∈T ρs,t(g). Evaluatingmint∈T ρs,t(g) can be done via a
max-flow algorithm, e.g., Goldberg and Tarjan’s Preflow–Push
Algorithm [23]. Alternatively, if the practical network coding
system [6] is running withg, then the valuemint∈T ρs,t(g)
can be obtainedalgebraicallywith a minor overhead. We now
briefly explain this; for more details, see [24]. The practical
network coding scheme [6] based on random linear network
coding can achieve throughput close to the capacity. The
source sends out packets ingenerations; packets within each
generation are mixed randomly over the network. Suppose the
source sends a generation ofh0 packets everyτ seconds. If the
rate h0/τ is less than the capacitymint∈T ρs,t(g) for some
margin, with high probability, each destination will receive h0

linearly independent (referring to the global coding vectors)
mixture packets and can solve for the originalh0 source
packets. As the operating parametersg are being gradually
adapted, the capacity changes gradually as well. The source
sending rateh0/τ should be controlled to be always slightly
less than the current capacity. In order to discover the actual
capacity, we use a global coding vector of lengthh that is set
to be slightly larger than an estimate of the true capacity, and
treat as if there areh source packets with the lasth−h0 packets
being all zero. By doing so, a destinationt can use the rank
of the global coding matrix for received packets to compute
an estimate of the current min-cut valueρs,t(g). Although the
rank of the global coding matrix may be larger thanh0, the
destination can still decode with high probability becausethere
are onlyh0 unknown packets. Each destination can report to
the source node the rank of its global coding matrix; the source
node can then estimate the current multicast capacity.

D. Recovery of primal optimal solution

Solving the dual problem (14) gives the optimal value of the
objective function in the primal problem. However, our main
objective is to find an optimal primal solution(r∗, g∗). Indeed,
(r∗, g∗) is what critically needed in practical applications.

It is well known in Lagrangian duality theory that when the
primal objective function is strictly concave, then a primal
optimal solution can be recovered from an optimal dual
solution. Particularizing to our context, we have the following
result.

Lemma 2 (Recovery of optimal primal solution):
Let ε∗ be an optimal dual vector. Then(r(ε∗), g(ε∗)) is the
unique maximizer of (3).
Proof: Let (r∗, g∗,f∗) be an optimal solution to (12). From
Lagrangian duality theory, if there is no duality gap, then
(r∗, g∗,f∗) optimizes the Lagrangian forε∗, i.e.,

L(r∗, g∗,f∗, ε∗) = D(ε∗). (32)

SinceU is strictly concave and eachpvw is strictly convex,
r∗ = r(ε∗) andg∗ = g(ε∗).
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In practice, very often one can only hope for an approximate
optimal dual solution. For example, if a constant step size
(αk = h) is used in the subgradient iterations (17), then the
subgradient algorithm converges to within some neighborhood
of the optimal value (proportional to the step size used); see
Appendix and the references therein for more information.
Thus it is of importance to investigate the robustness of the
primal recovery method.

Suppose we have an approximate minimizer of the dual
problemε ≥ 0 in the sense thatD(ε) − D(ε∗) is small. In
the following we quantify the distance between(g(ε), r(ε))
and (g∗, r∗) = (g(ε∗), r(ε∗)) via D(ε) − D(ε∗).

The subsequent robustness analysis assumes

A3: {pvw} andU(r) are twice continuously differentiable.

Let ḟ(x) and f̈(x) denote respectively the first and second
order derivatives of a functionf(x).

Theorem 2 (Robustness of primal recovery):
Let ε∗ be an optimal dual vector. Consider (an approximate

minimizer of the dual problem)ε ≥ 0. Define

d
∆
= D(ε) − D(ε∗). (33)

Assuming A1, A2, and A3, then∀ǫ > 0,∃δ > 0, such that
d < δ implies

‖g(ε) − g∗‖2 ≤ 2d(1 + ǫ)

minvw∈E p̈vw(g∗)
, (34)

(r(ε) − r∗)2 ≤ 2d(1 + ǫ)

−Ü(r∗)
. (35)

In the special case where the link cost functionspvw are
quadratic functions, we have

‖g(ε) − g∗‖2 ≤ 2d

minvw∈E p̈vw(g∗)
. (36)

Proof: See Appendix.

This theorem implies the convergence of the primal and
dual sequences if a proper step size rule is used.

Corollary 1 (Convergence of primal sequence):
Assuming A1, A2, A3, ifD(ε(k))−→D(ε∗), then

r(k) −→ r∗, (37)

g(k) −→ g∗, (38)

r̂(k) ∆
= r̂(g(k)) −→ r̂(g∗) = r∗. (39)

Therefore, when a proper step size rule is used (e.g.,αk =
a/(k + b)), the dual sequenceε(k) will converge to an
optimal dual vectorε∗ and thus the feasible primal sequences
{(r̂(k), g(k))} will converge to the unique optimal primal
variables.
Proof: The convergence of{r(k)} and g(k) follows directly
from Theorem 2. Because the functionr̂(g) is continuous in
g andg(k) converges tog∗, {r̂(k)} converges tôr(g∗), which
equals the unique optimal rater∗.

From this Theorem 2, it is seen thatp̈vw(g∗vw) and−Ü(r∗)
are critical in determining the robustness of the primal recov-
ery method.

v2

v1

v3 v4s

t1

t2

Fig. 1. An example network. This is the classical example of network coding,
introduced in [1].
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Fig. 2. Primal and dual function values vs. iterations.a = 0.01, b =
0.05, c = 10, h = 0.001.

E. Illustrative examples

Let us now examine some examples. Consider the graph
given in Fig. 1, with

U(r) = ln(1 + r),

pvw(gvw) = ag2 + bg, ∀vw ∈ E,

cvw = c,

[r0, r1] = [0,∞].

Thus the parameters area, b, c. We use a constant step size
αk = h in the subgradient update (17).

1) A well-conditioned scenario:For a = 0.01, b =
0.05, c = 10, and step sizeh = 0.001, Fig. 2 plots the primal
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Fig. 3. The ratesr(k) output by the algorithm and the multicast rate supported
by g(k). a = 0.01, b = 0.05, c = 10, h = 0.001.
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Fig. 4. Primal and dual function values vs. iterations.a = 0.0001, b =
0.05, c = 10, h = 0.001.
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Fig. 5. The ratesr(k) output by the algorithm and the multicast rate supported
by g(k). a = 0.0001, b = 0.05, c = 10, h = 0.001.

and dual function values vs. iterations. More precisely, for the
k-th iteration, the dual function value shown isD(ε(k)); the
primal function value shown is

U
(k)
net

∆
= U

(

min
t∈T

ρs,t(g
(k))

)

− P (g(k)), (40)

whereP (g(k)) is the short-hand notation for
∑

vw∈E pvwg
(k)
vw .

The horizontal straight line gives the optimal valueU∗
net. It

is seen that bothD(ε(k)) and U
(k)
net approachesU∗

net. The
sequenceD(ε(k)) appears to have a consistent descent trajec-
tory, whereas the sequenceU

(k)
net has some oscillations at the

beginning. The fact that the former sequence is more consistent
is not unexpected, since the proposed method works by trying
to minimize the dual functionD(ε).

We next examine the optimality of the rate sequence{r(k)}
output by the algorithm; recall thatr(k) is obtained as the
optimizer of (28). Fig. 3 plotsr(k) and compare it witĥr(k) =
mint∈T ρs,t(g

(k)) – the multicast rate supported byg(k). It is
seen thatr(k) is close tor̂(k) when the algorithm approaches
optimality. This confirms Corollary 1. Ifε(k) is near optimal,
theng(k) is close tog∗ andr(k) is close tor∗ (see Theorem 2).
Sinceg(k) is close tog∗, r̂(k) is close tor∗. Therefore, in this
operating region,r(k) can be used as an approximation of the

supportable ratêr(k).
2) An ill-conditioned scenario:For a = 0.0001, b =

0.05, c = 10, and step sizeh = 0.001, Fig. 4 plots the primal
and dual function values vs. iterations. In this case, the dual
sequence reaches a fairly close neighborhood ofU∗

net. However,
the dual sequenceD(ε(k)) oscillates significantly. It can be
far from U∗

net even when the dual sequence is close toU∗
net.

This ill-conditioning behavior can be attributed to the smalla
used; this is consistent with Theorem 2. Thus when the link
cost functions are almost linear, to ensure the recovered primal
sequence to be close to optimum, the dual problem must be
solved very accurately.

Fig. 5 plotsr(k) and r̂(k) for this ill-conditioned scenario.
It is seen thatr(k) is still close tor∗ when the dual function
values D(ε) are near optimal. This is because the utility
function U(r) is still well-conditioned. The sequence{r̂(k)},
however, exhibits a highly oscillatory behavior just as{g(k)}
does; indeed, they are determined from{g(k)}.

In summary, the degree of strict concavity of the objective
function plays a critical role in determining the robustness
of the algorithm in producing a high quality primal sequence
g(k).

III. D EALING WITH LACK OF STRICT CONCAVITY

Comparing Fig. 2 with Fig. 4, we see that the numerical
degree of strict concavity ofUnet(r, g) is critical to the robust
recovery of the primal solutions from the (suboptimal) dual
vectors. More generally, Theorem 2 shows thatp̈vw(g∗vw) and
Ü(r∗) are critical in determining the robustness of the primal
recovery method. In this section we focus on the case that
the given problem does not have sufficient degree of strict
concavity. Such scenario is neither rare nor ignorable. Indeed,
linear cost functions – which arise in many useful applications
– are not strictly convex at all.

We propose to apply theproximal method(see e.g., [22])
when the problem lacks a sufficient degree of strict con-
cavity/convexity. This method is well known in optimization
theory. (For a historical note, see [8].) The basic idea is to
add a quadratic term to “regularize” the optimization of the
objective function; then asequenceof modified problems is
solved in lieu of the (single) original problem.3

Specifically, for the maximization of a concave function,
maxx∈X F (x), the proximal methoduses the following iter-
ations

x(n) = arg max
x∈X

{

F (x) − an‖x − x(n−1)‖2
}

. (41)

Note that with the presence of the quadratic term, the revised
function is strictly concave inx. Hence it has a unique
maximizer. It can be shown that if{an} is a sequence of
positive numbers bounded away from 0, then the sequence
{x(n)} converges to an optimal solution; for a proof, please
refer to [8]. An extension of the proximal method is the

3A related approach was used by Xiao et al. in [10], where they proposed
to add a small quadratic regularization term to recover the primal variables
when applying the dual decomposition method to problems with a separable
structure. The proximal method can be viewed as a systematic wayof adding
regularization terms.
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partial proximal method[25] [26], where the quadratic term
in (41) involves only some of the minimization variables. The
convergence results can be found in [25] [26].

Regarding the selection of the regularization parameteran,
generally speaking, there is a tradeoff. A largeran makes the
primal recovery more robust, but it also makes the regularized
problem more different from the original problem, especially
at the beginning, whenx(0) is far from optimal.

Now we describe the particular application of the proximal
method to our current problem. Given theprevious solution
(r(n−1), g(n−1)), maximize the regularized utility function4

U
(n)
net (r, g)

∆
= Unet(r, g) − an‖g − g(n−1)‖2 − a2,n‖r − r(n−1)‖2.

(42)

We denote this problem bysubproblemn. This maximization
can be approximately solved using the algorithm described in
Section II. The resulting dual vector is denoted byε(n) and
the recovered primal vectors are denoted by

r(n) = r(ε(n)), g(n) = g(ε(n)).

Note that due to the presence of the quadratic term, such a
maximization is expected to be better conditioned than the
original problem. Provided that each maximization ofU

(n)
net is

sufficiently accurate, the sequence(r(n), g(n)) converges to an
optimal solution of the original problem (3).

A. Using previous solution to initialize current problem

For a sufficiently largen, g(n) is close tog(n−1). In other
words, the previous solution(r(n−1), g(n−1)) approximately

maximizes the current objectiveU (n)
net (r, g). Therefore, it is

desirable to use(r(n−1), g(n−1)) to guide the initialization of
the current subproblem. However, the algorithm described in
Section II is a dual subgradient approach, which is driven by
the dual vectorε. Thus we need an initial dual vectorε

(0)
(n).

5 We
assume thatan−1 ≈ an anda2,n−1 ≈ a2,n. Then subproblem
n − 1 is similar to subproblemn, and consequently the dual
of subproblemn − 1 is similar to the dual of subproblemn.
This justifies settingε(0)

(n) := ε(n−1), the (near-)optimal dual
vector for subproblemn − 1.

B. Illustrative examples

We now apply the proximal method to the ill-conditioned
problem in Section II-E. SinceU(r) is well-conditioned, we do
not regularize the rates. A constant sequencean = 0.0099 is
used. Thus, the first proximal iteration amounts to the problem
discussed in Fig. 2.

Fig. 6 plots the progression of the proximal method with
respect to the proximal iterationn. Specifically, three curves
are shown. The lowest one is the regularized primal value for
the solutiong(n) found by the dual subgradient method; in
other words, it plots

U

(

min
t∈T

ρs,t(g(n))

)

− P (g(n)) − an‖g(n) − g(n−1)‖2.

4If U(r) is already sufficiently concave (as quantized by its second order
derivative aroundr∗), the quadratic term involvingr may be dropped.

5Note that the subscript denotes the proximal iteration numberand the
superscript denotes the dual subgradient iteration number.
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Fig. 6. The progression of the proximal method with respect to the proximal
iterationn. a = 0.0001, b = 0.05, c = 10, h = 0.001.
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Fig. 7. Original primal function values vs. iterations usingthe proximal
method. Each iteration is one execution of a dual subgradientupdate.a =
0.0001, b = 0.05, c = 10, h = 0.001.

The middle curve plots the original primal utility

U

(

min
t∈T

ρs,t(g(n))

)

− P (g(n)).

The difference between these two curves corresponds to

an‖g(n) − g(n−1)‖2 ≥ 0.

Therefore Fig. 6 shows that the sequenceg(n) converges.
The uppermost line plots the maximum utilityU∗

net. Thus the
generated primal function values converge to the optimum.

Fig. 7 plots the original primal function values versus the
subgradient iterations. The graph is partitioned into several
parts by the vertical dashed lines. The first part corresponds
to the subgradient iterations for primal iterationn = 1,
and so on. Note that each part has an unequal number of
iterations. This is because a stopping criterion is used here to
terminate the subgradient iterations when it already reaches
near-optimum. For this graph, the subgradient iterations are
stopped when the gap between the optimal primal value found
and the current dual value is sufficiently small. Since the later
proximal iterations start with a good initial solution, it requires
a relatively small number of iterations.
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Fig. 7 is the counterpart of Fig. 4. It is seen that the
proximal method has successfully made each subproblem
better-conditioned.

IV. EXTENSION TO MULTIPLE MULTICAST SESSIONS AND

FLEXIBLE SUPPLIES

Consider the scenario where there are multiple multicast
sessions in the network. Label them with indicesm =
1, . . . ,M . Denote the source and the destination set of them-
th session bysm and Tm, respectively. For this multi-source
communication problem, a simple communication scheme is
to partition the available resource intoM shares and let each
session communicate using its exclusive share of resource;
this will be referred to as theresource-partitioningapproach.
This approach is in general suboptimal, even if the messages
in different sessions are independent, as first pointed out
by Yeung [27]. The multi-source communication problem
remains an open challenge; for some discussions, see, e.g.,
[16], [28], [29]. In the following we consider the distributed
resource allocation issues when using the resource-partitioning
approach.

If the resource share for them-th multicast session isgm,
the maximum multicast rate for this session is

min
t∈Tm

ρsm,t(gm). (43)

In some networks, the supply of bit-rate resourcesc offers
an additional degree of freedom in the system. A useful
application of this nature is the cross-layer optimizationin
wireless ad hoc networks. Cross-layer optimizations in a
wireless network using network coding have been formulated
in [20], [21], [30].

The following optimization models the resource sharing
among multiple multicast sessions and the potential flexibility
in choosingc.

max
{rm,gm},c

M
∑

m=1

Um (rm) −
∑

vw∈E

pvw (cvw)

subject to: rm ≤ min
t∈Tm

ρsm,t(gm),

rm ∈ [rm0, rm1],

0 ≤ gm, ∀m

g1 + . . . + gM ≤ c,

c ∈ C. (44)

Note that here the cost function is with respect toc whereas
in (3) the cost function is with respect tog.

The variables in (44) are the supply-side variablesc and
the demand-side variablesg1, . . . , gM . It can be seen from
(44) that the supply side interacts with the demand side only
through the constraint

g1 + . . . + gM ≤ c. (45)

It is by now well known that problems with such type of cross-
coupling can be decomposed into subproblems via Lagrangian
relaxation and subgradient iterations. For example, several
previous works, e.g., [10]–[12], [14], have applied similar

techniques to various formulations of cross-layer optimizations
in wireless networks.

However, we note that a direct application of the Lagrangian
relaxation would result in subproblems that correspond to (3)
with linear cost functions; this can be seen from the derivations
below. Due to the lack of strict concavity, this would lead to
difficulties in recovering the primal solutions. As a remedy
for this issue, we propose to apply the proximal method. The
proximal method adds strictly concave terms to regularize the
objective functions without affecting the separable structure of
the problem.

We next describe how to use the proximal method in con-
junction with Lagrangian relaxation. A sequence of regularized
subproblems is solved in lieu of the original problem. In
subproblemn, the regularized net-utility function is

U
(n)
net ({rm}, c)

∆
=

M
∑

m=1

Um (rm) −
∑

vw∈E

pvw (cvw)

−ar

∑

m

(rm − r(n−1)
m )2

−ag

∑

m

‖gm − g(n−1)
m ‖2

−ac‖c − c(n−1)‖2, (46)

where ag > 0, ar ≥ 0 and ac ≥ 0 are regularization
coefficients. Note that the regularization coefficientsar and
ac may not be necessary ifUm andpvw are well conditioned.

We can then perform the dual decomposition on each
regularized subproblem. Introduce dual variablesλ and form
the Lagrangian

L(g1, . . . , gM , c,λ)

=U
(n)
net ({rm}, c) − λT (g1 + . . . + gM − c) (47)

Then the maximization ofL(g1, . . . , gM , c,λ) over the primal
variables g1, . . . , gM , c decouples into a supply-side sub-
problem andM demand-side sub-problems, one for each
session. The supply-side problem is

max
c

λT c −
∑

vw∈E

pvw(cvw) − ac‖c − c(n−1)‖2

subject to: c ∈ C. (48)

The demand-side sub-problem for them-th session is

max
rm,gm

Um(rm) − ar(rm − r(n−1)
m )2

− λT gm − ag‖gm − g(n−1)
m ‖2

subject to: rm ≤ min
t∈Tm

ρsm,t(gm),

rm ∈ [rm0, rm1],

0 ≤ gm. (49)

Note that without the quadratic regularization term ongm,
the objective function would not be strictly concave. Hence
the regularization ongm is critical to the unique recovery of
primal solution from a dual vector.

For someλ and Um, the problem (49) may diverge since
the feasible region is unbounded. This issue can be avoided by
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adding an upper-bound ongm so that the constraint becomes

0 ≤ gm ≤ u. (50)

The upper bound can be sufficiently large such that it is loose
in the primal formulation. If the setC is bounded, we can set
u such thatu ≥ c, ∀c ∈ C.

The dual variablesλ can be updated via a subgradient
method as

λ(k+1) =
[

λ(k) + αk(g∗
1 + . . . + g∗

M − c∗)
]+

, (51)

whereg∗
1, . . . , g

∗
M , c∗ solve the respective subproblems.

V. SIMULATIONS

We tested the algorithms in a large scale scenario. The graph
(V,E) is the topology of an ISP (Exodus) backbone obtained
from the Rocketfuel project at the University of Washington
[31]. There are 79 nodes and 294 links. We arbitrarily placed
a source node at New York, and 8 destination nodes at Oak
Brook, Jersey City, Weehawken, Atlanta, Austin, San Jose,
Santa Clara, and Palo Alto. The utility function, the link cost
functions and link capacities are set as

U(r) = ln(1 + r), (52)

pvw(g) = ag2 + 0.005g, ∀vw ∈ E, (53)

cvw = 10, ∀vw ∈ E, (54)

[r0, r1] = [0,∞]. (55)

A. Test Problem 1:a = 0.001

Fig. 8(a)(b)(c) plot the primal and dual function values
vs. iterations for different choices of step sizes.6 Fig. 8(a)(b)
are obtained by using constant step sizes,αk = 0.0001 and
αk = 0.00003, respectively. With a constant step size, the
subgradient method is guaranteed to eventually reach some
neighborhood of the optimum; see Appendix.A. It is observed
that the primal and dual curves with the larger step size
converge faster, but the primal curve with the smaller step
size is smoother and the dual curve with the smaller step size
reaches closer to the optimum.

In Fig. 8(c), a diminishing step sizeαk = 0.0005/
√

k is
used. The curve is smoother than Fig. 8(a) and converges faster
than Fig. 8(b).

B. Test Problem 2:a = 0

For the case where the cost function is linear, the prox-
imal method is applied with a quadratic regularization term
0.001‖g − g(n−1)‖2. Initially, we set g(0) = 0. Thus the
first subproblem amounts to test problem 1. We simulated
5 proximal iterations, with 200 subgradient updates in each
proximal iteration. The step sizes used in the 5 subprob-
lems are0.0005/

√
k, 0.0004/

√
k, 0.0003/

√
k, 0.0002/

√
k,

and 0.0001/
√

k, respectively. Fig. 9 plots the sequence of
original primal function values obtained. The results confirm
the convergence of the algorithm.

6For ease of visualization and comparison, we have plotted they-axis with
a range of[0, 3]. At the beginning of the iterations, the curves for (a) and (c)
go out of this range.
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Fig. 9. Original primal function values vs. iterations usingthe proximal
method.

VI. CONCLUSION

By employing the unique characterization of the multicast
throughput attainable via network coding and a problem-
specific dual formulation, we have decomposed the utility
maximization problem into subproblems each involving one
destination only. Theoretically, the paper has two key con-
tributions. First, the resulting subproblem amounts to the
problem of finding a shortest path from the source to each
destination, for which there exist well established distributed
algorithms. Second, assuming the net-utility function is strictly
concave, our approach enables a near-optimal primal variable
to be uniquely recovered from a near-optimal dual variable.
From practical and numerical perspective, we have adopted
the proximal method to reformulate original ill-conditioned
problem (e.g., with linear cost functions) into a sequence
of well-conditioned problems. The simulation results further
confirm the numerical robustness of the proposed algorithms.
Finally, the proximal method and the dual subgradient method
are naturally extended to solve the generalized problem where
multiple multicast sessions are simultaneously transmitted.

APPENDIX

A. Review: preliminaries on subgradient methods

Definition 1 (Subgradient):
Given a convex functionf , a vector ξ is said to be a
subgradientof f at x ∈ dom f if

f(x′) ≥ f(x) + ξT (x′ − x), ∀x′ ∈ dom f. (56)

The subgradient method [7] minimizes a non-differentiable
convex function in a way similar to gradient methods for
differentiable functions – in each step, the variables are
updated in the negative direction of a subgradient. However,
such a direction may not be a descent direction; instead,
the subgradient method relies on a different property. If the
variable moves a sufficiently small step along the directionof
a subgradient, the new point is closer to any optimal solution.

Consider a generic, constrained convex minimization:

minimize f(x)

subject to: x ∈ C, (57)
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(b) αk = 0.00003
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Fig. 8. Primal and dual function values vs. iterations for test problem 1 witha = 0.001. (a) αk = 0.0001 (b) αk = 0.00003 (c) αk = 0.0005/
√

k

wheref : R
n 7→ R is convex, andC is a closed and nonempty

convex set. The subgradient method uses the iteration

x(k+1) = P
[

x(k) − αkξ(k)
]

, (58)

wherex(k) is thek-th iterate,ξ(k) is any subgradient off at
x(k), αk > 0 is thek-th step size, andP is the projection on
C:

P [x]
∆
= arg min

x′∈C
‖x′ − x‖2. (59)

Lemma 3 (Convergence of subgradient methods [32]):
Assumex∗ is a minimizer of (57) and there exists aG such
that ‖ξk‖ ≤ G, ∀k. Then

min
i=1,...,k

f(x(i)) − f∗ ≤ ‖x(1) − x∗‖ + G2
∑k

i=1 α2
i

2
∑k

i=1 αi

. (60)

In particular,

• if constant step size is used, i.e.,αk = h, then the right
hand side of (60) converges toG2h/2 ask → ∞.

• if the step sizes satisfy

lim
k→∞

αk = 0,
∞
∑

k=1

αk = ∞, (61)

then right hand side of (60) converges to 0 ask → ∞.
Step sizes that satisfy this condition are calleddiminish-
ing step size rules. Examples includeαk = a/

√
k and

αk = a/(k + b), wherea, b > 0.

For more discussions on the step size selection, see, e.g., [33].

B. Proof of Theorem 2

Lemma 4: Let ε∗ be an optimal dual vector. For fixed
ε ≥ 0, let

U1(g)
∆
=

(

∑

t∈T

εt

)T

g −
∑

vw∈E

pvw(gvw), (62)

U2(r)
∆
= U(r) − r ·

∑

t∈T

Et(εt). (63)

Then

d
∆
= D(ε) − D(ε∗) ≥ max

0≤g≤c
U1(g) − U1(g

∗)

+ max
r∈[r0,r1]

U2(r) − U2(r
∗). (64)

Remark: This lemma establishes that whend is small, then
g∗ approximately solvesmax0≤g≤c U1(g) and r∗ approxi-
mately solvesmaxr∈[r0,r1] U2(r).
Proof: Let (r∗, g∗,f∗) be an optimal primal solution. Since
ε ≥ 0 andf∗

t ≤ g∗, we have

−
∑

t∈T

εT
t (f∗

t − g∗) ≥ 0.

Thus from the form of Lagrangian (13), we have

L(r∗, g∗,f∗, ε) ≥ U∗
net = D(ε∗).

Next, sinceD(ε) is obtained by maximizing the Lagrangian
over the primal variables, we have

D(ε) ≥ L(r∗, g∗,f∗, ε).

Putting these together, we have

U∗
net + d = D(ε) ≥ L(r∗, g∗,f∗, ε) ≥ U∗

net = D(ε∗).

Thus

d ≥ D(ε) − L(r∗, g∗,f∗, ε),

≥ D(ε) − max
ft∈Fs,t(r∗)

L(r∗, g∗,f , ε),

= max
0≤g≤c

U1(g) + max
r∈[r0,r1]

U2(r) − U1(g
∗) − U2(r

∗).

Lemma 5 (Robustness of approximate maximizer):
Let f : R 7→ R be a twice continuously differentiable and

strictly concave function. Let

x∗ ∆
= arg max

x∈[α,β]
f(x), (65)

where [α, β] is a nonempty bounded interval. Then∀ǫ >
0,∃δ > 0, such that if

x ∈ [α, β] andf(x∗) − f(x) < δ, (66)
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then

(x − x∗)2 ≤ (f(x∗) − f(x))
2(1 + ǫ)

−f̈(x)
. (67)

In the special case wheref is quadratic, we have

(x − x∗)2 ≤ (f(x∗) − f(x))
2

−f̈
. (68)

Proof: Perform Taylor expansion off(x) aroundx∗ up to the
second order as

f(x) = f(x∗) + ḟ(x∗)(x − x∗) +
1

2
f̈(x̄)(x − x∗)2,

wherex̄ is betweenx andx∗.
According to the first order optimality condition for con-

strained convex optimization [22],

ḟ(x∗)(x − x∗) ≤ 0, ∀x ∈ [α, β].

The strict concavity off(x) implies thatf̈(x) < 0, ∀x. Hence

f(x∗) − f(x) ≥ −1

2
f̈(x̄)(x − x∗)2, (69)

≥ 1

2
m(x − x∗)2, (70)

where

m ≡ inf
x∈[α,β]

{

−f̈(x)
}

> 0.

For the special case wheref is quadratic, the claim (68)
follows from (70).

Next we establish the claim for the general case. By assump-
tion, f̈(x) is continuous atx∗. Hence∀ǫ1 > 0, ∃δ1(ǫ1) > 0
such that

|x − x∗| < δ1(ǫ1) =⇒ |f̈(x) − f̈(x∗)| < ǫ1. (71)

Now for any ǫ > 0, let

ǫ1 ≡ −f̈(x∗)ǫ

2 + ǫ
(72)

δ ≡ mδ2
1(ǫ1)

2
. (73)

Then if x ∈ [α, β] andf(x∗)− f(x) < δ, from (70), we have

|x̄ − x∗| ≤ |x − x∗| < δ1(ǫ1). (74)

From (71), we have

|f̈(x) − f̈(x∗)| <
−f̈(x∗)ǫ

2 + ǫ
, (75)

|f̈(x̄) − f̈(x∗)| <
−f̈(x∗)ǫ

2 + ǫ
(76)

From (75),

f̈(x∗)ǫ

2 + ǫ
< f̈(x) − f̈(x∗), (77)

and hence

2f̈(x∗)

2 + ǫ
<

f̈(x)

1 + ǫ
. (78)

From (76),

f̈(x̄) < f̈(x∗) − f̈(x∗)ǫ

2 + ǫ
=

2f̈(x∗)

2 + ǫ
. (79)

From (78),

f̈(x̄) <
f̈(x)

1 + ǫ
. (80)

Using (69), we have

f(x∗) − f(x) ≥ −1

2
f̈(x̄)(x − x∗)2 ≥ − f̈(x)(x − x∗)2

2(1 + ǫ)
.

This establishes (67).

Proof of Theorem 2: With ε fixed, U1(g) is a sum of
|E| uni-variable functions, where the function corresponding
to vw ∈ E, denoted byUvw

1 (gvw), involvesgvw only. Define

dvw
∆
= max

0≤gvw≤cvw

Uvw
1 (gvw) − Uvw

1 (g∗vw), (81)

dr
∆
= max

r∈[r0,r1]
U2(r) − U2(r

∗) (82)

Thus from Lemma 4, we have
∑

vw∈E

dvw + dr ≤ d. (83)

The claim (35) can be established by applying Lemma 5
with x∗ = r(ε) andx = r∗.

To establish (34), we apply Lemma 5 withx∗ = gvw(ε)
and x = g∗vw, wheregvw(ε) denotes thevw-entry of g(ε).
Then, for anyǫ > 0, ∃δvw(ǫ) > 0, such that

dvw < δvw(ǫ) =⇒ (gvw(ε) − g∗vw)2 ≤ 2(1 + ǫ)dvw

p̈vw(g∗vw)
. (84)

For anyǫ > 0, let δ
∆
= minvw∈E δvw(ǫ). Then

d < δ =⇒ dvw < δvw(ǫ),∀vw ∈ E. (85)

Consequently,d < δ implies that

‖g(ε) − g∗‖2 =
∑

vw∈E

(gvw − g∗vw)2

≤
∑

vw∈E

2(1 + ǫ)dvw

p̈vw(g∗vw)

≤
∑

vw∈E 2(1 + ǫ)dvw

minvw∈E p̈vw(g∗vw)

≤ 2(1 + ǫ)d

minvw∈E p̈vw(g∗vw)

This establishes (34).
The claim (36) for the special case where the link cost

functions pvw are quadratic functions can be established
similarly.
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