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The type of the workload on a database management system (DBMS) is a key 

consideration in tuning its performance. Allocations for resources such as main memory 

can be very different depending on whether the workload type is Online Transaction 

Processing (OLTP) or Decision Support System (DSS). A DBMS also typically 

experiences changes in the type of workload it handles during its normal processing 

cycle. Database administrators must, therefore, recognize the significant shifts of 

workload type that demand reconfiguring the system in order to maintain acceptable 

levels of performance. We envision autonomous, self-tuning DBMSs that have the 

capability to manage their own performance by automatically recognizing the workload 

type and predicting its change over time.  

In this thesis, we make two main contributions to the development of autonomic 

DBMSs. The first contribution is a methodology for automatically identifying a DBMS 

workload as either OLTP or DSS by building various classification models. We 

demonstrate the methodology with both industry standard workloads and with real 

workloads of global financial firms. The second contribution is a prediction architecture 

to forecast when the type of a workload may change. The DBMS can therefore 

proactively adjust its parameters, without incurring the overhead associated with the 

constant monitoring. We present experiments to show that the performance of the DBMS 

using our prediction mode outperforms other possible operation modes. They also show 

that the prediction architecture can adapt to changes in the workload pattern. The 

architecture does not demand human intervention and is potentially a generic solution for 

other similar prediction problems. 
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CHAPTER 1 INTRODUCTION 

1.1 MOTIVATION: THE NEED FOR AUTONOMIC SYSTEMS 

The increasing power of computing systems and the desire to  

automate more tasks and processes means that systems are becoming too 

complex to manage and tune. A proposed approach, called autonomic computing, 

calls for systems that can manage and tune themselves automatically in order 

to reduce the total cost of their ownership.  IBM is using the phrase “autonomic 

computing” to represent the vision of how IBM, the rest of the IT industry, academia, and 

the national laboratories can address this new challenge [43]. By choosing the word 

“autonomic,” IBM makes an analogy with the autonomic nervous system. The autonomic 

nervous system frees our conscious brain from the burden of having to deal with vital but 

lower-level functions. Autonomic computing will free system administrators from many 

of today’s routine management and operational tasks. Corporations will be able to devote 

more of their IT skills toward fulfilling the needs of their core businesses, instead of 

having to spend an increasing amount of time dealing with the complexity of computing 

systems. 

The spiraling cost of managing complex computing systems is becoming a significant 

inhibitor that threatens to undermine the future growth and societal benefits of 

information technology. Simply stated, managing complex systems has grown too costly 

and prone to error. Administering a myriad of system management details is too labor-

intensive. People under such pressure make mistakes, increasing the potential of system 
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outages with a concurrent impact on business. Testing and tuning complex systems is 

becoming more difficult. Consider the following: 

� It is now estimated that one-third to one-half of a company’s total IT budget is spent 

preventing or recovering from crashes [72][73]. 

� Nick Tabellion, CTO of Fujitsu Softek, said: “For every dollar to purchase storage, 

you spend $9 to have someone manage it.” [29]. 

� Aberdeen Group studies show that administrative cost can account for 60 to 75 

percent of the overall cost of database ownership (this includes administrative tools, 

installation, upgrade and deployment, training, administrator salaries, and service and 

support from database suppliers). [2] 

� When you examine data on the root cause of computer system outages, you find that 

about 40 percent are caused by operator error [72], and the reason is not because 

operators are not well-trained or do not have the right capabilities. Rather, it is because 

the complexities of today’s computer systems are too difficult to understand, and IT 

operators and managers are under pressure to make decisions about problems in 

seconds [9]. 

To respond, system design objectives must shift from the “pure” price/performance 

requirements to issues of robustness and manageability in the total cost of ownership 

equation. As a profession, we must strive to simplify and automate the management of 

systems. Today’s systems must evolve to become much more self-managing, that is: self-

configuring, self-healing, self-optimizing, and self-protecting. 
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1.2 AUTONOMIC COMPUTING 

Automating the management of computing resources is not a new problem for computer 

scientists. For decades, system components and software have been evolving to deal with 

the increased complexity of system control, resource sharing, and operational 

management. Autonomic computing is just the next logical evolution of these past trends 

to address the increasingly complex and distributed computing environments of today. So 

why then is this something new? Why a call to arms to the industry for heightened focus 

and new approaches? The answer lies in the radical changes in the information 

technology environment in the few short years since the mid-1990s, with the use of the 

Internet and e-business extending environments to a dramatically larger scale, broader 

reach, and a more mission-critical fundamental requirement for business. In that time the 

norm for a large on-line system has escalated from applications such as networks 

consisting of tens of thousands of fixed-function automated teller machines connected 

over private networks to rich suites of financial services applications that can be accessed 

via a wide range of devices (personal computer, notebook, handheld device, smart phone, 

smart card, etc.) by tens of millions of people worldwide over the Internet. IBM’s 

autonomic computing initiative has been outlined broadly. Paul Horn [43] described this 

“grand challenge” and called for collaboration toward developing autonomic computing 

systems that have characteristics as follows: 

� To be autonomic, a system needs to “know itself”— and consist of components that 

also possess a system identity. 

� An autonomic system never settles for the status quo—it always looks for ways to 

optimize its workings. 
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� An autonomic system must perform something akin to healing—it must be able to 

recover from routine and extraordinary events that might cause some parts to 

malfunction. 

� A virtual world is no less dangerous than the physical one, so an autonomic 

computing system must be an expert in self-protection. 

� An autonomic system cannot exist in a hermetic environment (and must adhere to 

open standards). 

� An autonomic system must configure and reconfigure itself under varying and 

unpredictable conditions.  

� An autonomic computing system knows its environment and the context surrounding 

its activity, and acts accordingly. 

� Perhaps most critical for the user, an autonomic computing system must anticipate 

the optimized resources needed to meet a user’s information needs while keeping its 

complexity hidden. 

 This thesis focuses on the last three characteristics. We believe that for a system to be 

autonomic, it should be aware of the properties of its workload, be able to anticipate their 

changes over time, and reconfigure itself accordingly. We apply these principles on one 

of the well-known complex computing systems, the Database Management System 

(DBMS), which is increasingly becoming part of almost every computing system. 

Realizing that expert Database Administrators (DBAs) are scarce and that they are a 

major part of the Total Cost of Ownership (TCO) makes an urgent call for an Autonomic 

DBMS (ADBMS). 
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1.3 THESIS HYPOTHESIS 

We argue that for a complex system, such as a DBMS, to be autonomic it must know the 

important characteristics of its workload and how they change over time in order to be 

able to tune and reconfigure itself accordingly. The type of the workload presented to a 

database management system (DBMS) is a key consideration in tuning the system. 

Allocations for resources such as main memory can be very different depending on 

whether the workload type is Online Transaction Processing (OLTP) or Decision Support 

System (DSS). A DBMS also typically experiences changes in the type of workload it 

handles during its normal processing cycle. Database administrators must, therefore, 

recognize the significant shifts of workload type that demand reconfiguration in order to 

maintain acceptable levels of performance. We envision autonomous, self-tuning DBMSs 

that have the capability to manage their own performance by automatically recognizing 

the workload type and then reconfiguring their resources accordingly. In this thesis, we 

present an approach to automatically identifying a DBMS workload as either OLTP or 

DSS. We build a classification model based on the most significant workload 

characteristics that differentiate OLTP from DSS and then use the model to identify any 

change in the workload type.  

Unfortunately, this methodology is still associated with run-time overhead primarily 

caused by the constant, on-line monitoring. Therefore, in this research, we 

present a prediction architecture that helps the DBMS forecast when the 

workload may change its type so the DBMS can proactively adjust its 

configuration parameters and resource allocations. Initially, the prediction system 

analyzes the historical data of a few days in order to construct a prediction model that 
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encompasses workload trends. Then it validates these trends using on-line models. The 

architecture is efficient as it outperforms other options that a DBMS could use to tap 

workload classifiers. Most importantly, it exhibits a high degree of adaptability as it can 

capture and learn any new pattern in the workload automatically.  

1.4 RELATED WORK  

To the best of our knowledge, there is no previous published work examining the 

problem of automatically identifying and predicting the type of a DBMS workload. There 

are, however, numerous studies characterizing database workloads based on different 

properties that can be exploited in tuning DBMSs [25]. Some studies use clustering to 

obtain classes of transactions grouped according to their consumption of system resources 

or according to the reference patterns in order to tune the system [94] or to balance the 

workload [67]. Some studies focus on characterizing the database access patterns to 

predict the buffer pool hit ratio  [21] and the user access behavior [81]. Recent studies 

characterize DBMS workloads on different computer architectures in order to diagnose 

performance degradation problems [6] and to characterize the memory system behavior 

of the OLTP and DSS workloads [7]. Hsu et al. [44] systematically analyze the workload 

characteristics of TPC-C [89] and TPC-D [86] workloads, especially in relation to 

those of real production database workloads. This study shows that the production 

workloads exhibit a wide range of behavior, and in general, the two benchmarks 

complement each other in reflecting the characteristics of the production workloads. 

1.5 CONTRIBUTIONS 

The following points constitute the contributions spawned from this thesis:  
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• An Automatic Workload Identification Methodology. The methodology uses 

supervised machine learning techniques that analyze resource-oriented, low level 

characteristics of the workload. We note the following:  

o The methodology depends solely on the analysis of the system resource 

demands, which are easily obtainable from the typical system monitoring 

tools.  

o The methodology does not depend on any assumptions about the high 

level description of the SQL statements nor on any prior knowledge about 

the business or application domain.  

o The methodology does not merely identify the type of workload but also 

quantifies the intensity (e.g., DSSness and OLTPness percentages) of each 

type in the workload mix. Any subsequent performance tuning and 

modeling for the system control parameters should be a function of this 

intensity. 

o If there are more than two types of workloads, the same approach could be 

applied by increasing the number of class labels considered. Our 

experiments with the GHC classifier support this claim. 

o We believe that this independent approach (as it requires minimal human 

intervention and counts primarily on data obtained from the system itself) 

can be generally useful to other computing systems that need to automate 

the task of recognizing the type of the workload. 
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o This methodology has a high potential of being incorporated into today's 

commercial DBMSs1. One approach is to provide a set of prefabricated, 

ready-to-use workload classifiers for different popular workload types. A 

second approach is to adopt one of the hybrid classifiers that is trained on a 

wide variety of workloads. 

 

• Workload Prediction Architecture. The Psychic-Skeptic architecture takes 

advantage of the low volatility and the cyclic patterns in the workload in order to 

allow the DBMS to follow proactive tuning strategies. The architecture has the 

following advantages: 

o It is efficient as it obviates the overhead caused by the expensive use of 

on-line prediction techniques that demand continuous monitoring for the 

system.  

o It can give an estimate of the best and worst performance under different 

modes of operations and, therefore, it can recommend the best mode 

suitable for a particular computing environment. Having prior knowledge 

about the expected performance helps in detecting performance violations. 

(e.g., a DBMS can alert DBAs by paging or emailing them if performance 

drops). 

o It is generic as we speculate that this approach can be effective in other 

systems where their workloads exhibit some trend that makes them 

relatively predictable. Our methodology could be used to automate many 

                                                 

1 Due to its practical impact, this work yielded an IBM US/Canada patent pending. 
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other DBMS tasks such as determining when to make incremental 

backups, re-build indexes and refresh materialized views, update statistics, 

or reorganize data on the disk.  

o The architecture itself exhibits two important autonomic features, namely, 

self-optimizing, as almost all of its internal parameters are determined 

automatically, and self-healing, as it adapts to new trends that may occur 

in the workload in order to retain the good performance.  

• Feasibility and Practicality of our Methods. Interestingly, our solutions do not 

impose radical change to the DBMS infrastructure [18], promising a high degree 

of their practicality and applicability to today’s large commercial DBMSs. 

• Progressing towards Autonomic Computing. The workload identification and 

prediction methodologies presented in this thesis demonstrate how the DBMS can 

be workload-aware and more autonomic.  In fact, our work fits in the predictive 

and adaptive levels of the revolutionary path towards having autonomous systems. 

• Surveying Workload Characterization Techniques and Methods. As part of our 

research background, we surveyed a large number of case studies, across various 

computer disciplines, in order to identify the workload modeling techniques. In 

this study [25], we:  

o summarize the commonly used techniques for workload modeling, 

o describe the challenges that researchers typically face in characterizing 

workloads, and  

o propose a framework for workload characterization that serves as a 

guideline for constructing a workload model. In this framework we 
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suggest using data mining and data warehousing technologies in addition 

to the traditional analysis methods. 

• Implementing TPC-W Benchmark. The TPC-W benchmark is among the other 

TPC benchmarks we used in this research due its interesting features. However, 

due to the lack of a suitable implementation, it was necessary for us to implement 

a TPC-W driver [88]. We trust that the implementation of this kit will be a useful 

addition to the research community2. 

1.6 ROAD MAP 

The rest of this thesis is organized as follows. In �Chapter 2, we explain the need for 

Autonomic DBMSs (ADBMSs) that are capable of managing and maintaining 

themselves. In this chapter, we examine the characteristics that a DBMS should possess 

in order to be considered autonomic. We assess the position of today’s DBMSs by 

outlining example features from popular, commercial database products, such as DB2 

UDB, SQL Server, and Oracle. We argue that today's DBMSs are still far from being 

autonomic. We highlight the source of difficulties towards achieving that goal, and sketch 

the most important research terrains that require investigation in order to have ADBMSs 

one day. 

 In �Chapter 3, we present a survey of workload characterization techniques. Workload 

characterization is the process by which we produce models that are capable of describing 

and reproducing the behavior of a workload. Such models are imperative to any 

performance related studies such as capacity planning, workload balancing, performance 

                                                 

2 A number of database research groups have experimented with our kit. 



 11 

prediction and system tuning.  In this chapter, we survey workload characterization 

techniques used for several types of computer systems. We identify significant issues and 

concerns encountered during the characterization process and propose an augmented 

methodology for workload characterization as a framework. We believe that the surveyed 

case studies, the described characterization techniques, and the proposed framework 

provide a good introduction to the topic, assist in exploring the different options of 

characterization tools that can be adopted, and provide general guidelines for deriving a 

good workload model suitable as an input to performance studies. 

�Chapter 4 discusses the workload identification problem. We start by stressing the role 

of the workload type with respect to tuning a DBMS by demonstrating how a number of 

configuration parameters can be differently set under OLTP and DSS workloads. Then 

we present our approach to automatically identifying a DBMS workload. We build a 

classification model based on the most significant workload characteristics that 

differentiate OLTP from DSS and use the model to identify any change in the workload 

type. We construct and compare classifiers built from two different sets of workloads, 

namely the TPC-C and TPC-H benchmarks and the Browsing and Ordering profiles from 

the TPC-W benchmark. We demonstrate the feasibility and success of these classifiers 

with TPC-generated workloads and with industry-supplied workloads. 

In �Chapter 5, we present a prediction architecture that helps the DBMS forecast when 

the type of workload may change so that DBMS can proactively adjust its configuration 

parameters and resource allocations. In this chapter, we present this architecture and 

describe the functionality of its components. We show that the performance of the DBMS 

using our prediction mode outperforms other possible operation modes. We also show 

that it is adaptable to changes in the workload pattern, if any. Best of all, our prediction 
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methodology does not demand human intervention as almost all of its parameters are 

automatically estimated. 

Finally, �Chapter 6 summarizes our work and sketches possible future research 

directions. 
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CHAPTER 2 AUTONOMIC DBMSS3 

Database management systems (DBMSs) are a vital component of many mission-critical 

information systems and, as such, must provide high performance, high availability, 

excellent reliability and strong security.  These DBMSs are managed by expert Database 

Administrators (DBAs) who must be knowledgeable in areas such as capacity planning, 

physical database design, systems tuning and systems management. 

DBAs face increasingly more difficult challenges brought about by the growing 

complexity of DBMSs, which stems from several sources: 

• Increased emphasis on Quality of Service (QoS). DBMSs are components of 

larger systems, such as electronic commerce applications, that support different 

levels of QoS depending on users’ needs. A DBMS must provide service 

guarantees in order that the overall system can satisfy the end-to-end QoS 

requirements. 

• Advances in database functionality, connectivity, availability, and 

heterogeneity. DBAs must grapple with complex decisions about hardware 

platforms, schema design, constraints and referential integrity, primary keys, 

indexes, materialized views, the allocation of tables to disks, and shared-nothing, 

shared-everything, or SMP-cluster topology.  

• Ongoing maintenance. Once designed, databases require substantial human input 

to build, configure, test, tune, and operate. DBAs handle table reorganization, data 

statistics collection, backup control, security modeling and administration, disaster 

                                                 

3 The work presented in this chapter is published [27] and co-authored by Powley, Benoit, and Martin. 
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recovery planning, configuration and performance tuning, problem analysis, and 

more. 

• Burgeoning database size. Data warehouses containing tens of terabytes of data 

are not uncommon. Popular applications such as SAP typically create more than 

20,000 tables and support thousands of users simultaneously [66]. 

• E-Service era. The problems described above become more apparent where the 

internet presents to the DBMSs a broad diversity of workloads with high 

variability under sophisticated multi-tier architectures.  

DBMS customers and vendors, because of the spiraling complexity, have recently begun 

to place an increased emphasis on reducing the Total Cost of Ownership (TCO) of 

systems. Despite the dramatic recent growth in database sizes, TCO is increasingly 

dominated by human costs, specifically the DBAs. A 1998 study by the Aberdeen Group 

[1] showed an implementation of a leading industrial RDBMS incurred 81 percent of its 

TCO from the human costs of training, maintenance, and implementation. Similarly, a 

TCO report from D.H. Brown Associates [22] that compared two leading database 

products for both data warehouse and online transaction processing (OLTP) applications 

found that human costs represented a large component of TCO in all cases. Moreover, 

skilled DBAs and application developers are scarce. 

Autonomic computing systems are a proposed approach to mitigate management 

complexity. In general, an autonomic computing system has the following properties [33]: 

• The system is “aware of itself” and able to act accordingly. 

• The system is able to configure and reconfigure itself under varying and 

unpredictable conditions. 
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• The system is able to recover from events that cause it to malfunction. 

• The system is able to anticipate optimized resources needed to perform a task. 

• The system is able to protect itself. 

We believe that Autonomic Database Management Systems (ADBMS) are a desirable 

long-term research goal. In pursuing this goal it is useful to evaluate current DBMSs in 

light of the properties of autonomic computing systems in order to judge what has been 

accomplished to date and what problems remain to be solved. 

This chapter has three goals. The first goal is to specifically define a set of features that 

a DBMS should have in order to be autonomic [27]. The second goal is to examine 

current DBMSs with respect to their embodiment of the concepts of autonomic 

computing systems [28]. We focus on three popular DBMS products, namely IBM DB2 

Universal Database Version 8.1 [46], Oracle 9i [68] and Microsoft SQL Server 2000 [64]. 

Our objective is to report on the current state of practice with respect to autonomic 

DBMSs based on a review of generally available materials such as research papers, white 

papers and system documentation. We provide examples, not an exhaustive list, of 

autonomic features.  We do not attempt to draw comparisons between the DBMSs. The 

third goal of this chapter is to highlight the present shortcomings and obstacles that hinder 

DBMSs from being autonomic. 

In examining the DBMSs, we believe that the autonomic features available in the 

systems can be identified as belonging to one of the following general categories, which 

correspond to the kinds of tasks that are typically performed by DBAs: 
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• Plug-n-Play DBMSs. These features support system set-up and initialization. 

They include initial capacity planning, DBMS installation, configuration, and 

deployment, and data migration.   

• Physical and Logical Design. These features include support for tasks related to 

laying out the data on the storage devices and structuring them properly. 

Examples of such tasks are the selection of the most efficient indexes and 

materialized views, and partitioning tables [79]. 

• Ongoing Preventive Maintenance. This category encompasses features that aim 

to keep the system stable and performing satisfactorily. They support the phase in 

which the DBMS monitors itself in order to perform ongoing tasks such as self-

tuning and self-reorganizing. Examples include support for defragmenting data 

and re-structuring indexes, creating backups, updating statistics, space 

management, user management, and table and object maintenance.   

• Problem Diagnosis and Correction. These features help with identifying any 

anomalies in the system and determining their root cause, notifying the 

administrators, taking corrective actions and tuning. 

• Availability and Disaster Recovery. These features help the DBMS get back to 

its stable state or recover from a disaster. For example, the DBMS should be able 

to analyze its log carefully and identify the correct set of backup assets it retains in 

order to get the system operational. They also support multiple server 

synchronization and maintenance.  

The remainder of the chapter is organized as follows. Section �2.1 presents our survey of 

the autonomic features of three popular commercial DBMSs. Section �2.2 summarizes the 
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survey and points out further functionality required in DBMSs to achieve the goal of 

autonomic DBMSs.  

2.1 HOW AUTONOMIC ARE CURRENT DBMSs? 

Ganek and Corbi identify important, general properties of an autonomic computing 

system [33]. In this section, we discuss DBMS-specific autonomic characteristics. We 

first detail what kind of automation a characteristic implies in the realm of DBMSs and 

then list some concrete examples drawn from commercial DBMSs that best match the 

description of the particular autonomic characteristic.  We should note again that this is 

not meant to be an exhaustive list of features provided by the various DBMSs but instead 

we wish to outline where DBMSs are today in terms of autonomic capabilities. 

2.1.1 Self-optimizing 

Self-optimization is one of the most challenging features to include in a DBMS. It allows 

a DBMS to perform any task and execute any service utility in the most efficient manner 

given the present workload parameters, available resources, and environment settings.  

Obviously, the most important task in need of optimization is the execution of a query. In 

fact, optimizing queries is one of the most apparent autonomic features of today’s 

DBMSs. In general, query optimization involves query translation, the generation of a 

cost-efficient execution plan and dynamic runtime optimizations [34].    

    Producing accurate query plans depends heavily on statistics and column distributions. 

Oracle [71] and SQL Server [17] provide facilities that automatically determine which 

columns require histograms and also which tables require new statistics.  Oracle also 

supports a dynamic sampling feature that gathers statistics on the fly.   
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   In some cases, query optimization can be infeasible.  Therefore, the DB2 optimizer 

allows the user to adjust the amount of optimization. More sophisticated models, such as 

those found in Oracle [71] and SQL Server [64], automatically determine the appropriate 

amount of optimization on a per-query basis. During query execution, cost models will be 

able to benefit from the self-validation of the cardinality model proposed by DB2’s 

Learning Optimizer (LEO) [85]. 

   Dynamic adjustment to the query execution strategy is one of the good features of 

present DBMSs.  Oracle   provides automatic memory allocation [71] so that each query 

has the appropriate amount of memory.   DB2 and Oracle both provide an automatic 

query parallelism selection mechanism.    

     In addition to query optimization, a DBMS must also optimize the various utilities 

such as backup, restore, statistics collection and data load utilities. DB2’s Load utility, for 

example, performs mass insertions of data into a target table by exploiting a series of 

parallel I/O sub-agents for pre-fetching, SMP parallelism degree, and the amount of 

memory available for buffering and sorting.   

2.1.2 Self-configuring  

The performance of a DBMS depends on the configuration of the hardware and software 

components.  An autonomic DBMS should provide users with reasonable “out of the 

box” performance and dynamically adapt its configuration to provide acceptable, if not 

optimal, performance in light of constantly changing conditions. An ADBMS should 

recognize changes in its environment that warrant re-configuration.  It should also be able 

to reconfigure itself without severely disrupting online operations.  A DBMS 

configuration includes performance parameters, resource consumption thresholds, and the 
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existence of auxiliary data structures such as indexes and materialized views in the 

database schema. 

Typically, DBMSs provide configuration wizards such as DB2’s Configuration 

Advisor. Configuration advisors are tools to assist with initial configuration but the 

settings are, in most cases, static.  The goal of an autonomic DBMS is to provide dynamic 

adjustment of these settings.  Little support is provided for this type of self-configuration.  

SQL Server and Oracle both provide some degree of automatic memory management.  

These systems allocate memory as needed by the database, limiting memory allocation 

when either a user-imposed limit is reached or the system’s physical resources run low.  

   Self-configuring features of an ADBMS should include support for determining the 

optimal set of indexes and materialized views to be used by the query optimizer.  All the 

DBMSs provide an index advisor (DB2’s Design Advisor [59], SQL Server’s Index 

Wizard [64], and Oracle’s Index Tuning Wizard [68]) that recommends a suitable set of 

indexes. Similar to the index advisor, SQL Server [4] and Oracle [69] also recommend 

materialized views that can be beneficial to the system. 

2.1.3 Self-healing 

A fundamental requirement of a DBMS is that the database remains in, or can be restored 

to, a consistent state at all times.   A DBMS must reliably log all operations, periodically 

archive the database and be able to use the logs and backups to recover from failure. 

Ideally an ADBMS should recognize when a full or incremental backup is necessary and 

perform these operations with minimal system disruption.  In the event of catastrophic 

failure, an ADBMS should be able to retrieve the most recent backup, restore to the 

consistent point just before the failure, then resume its halted operations after handling the 
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exceptions. Oracle, for example,  provides the ability to resume operations (such as a 

batch load) following corrective action (such as the addition of more disk space) [68]. 

   All DBMSs support logging, backup and recovery mechanisms.   DB2 has a recovery 

tool, the Recovery Expert, which analyzes the recovery assets available and recommends 

a technique to be selected. DB2’s Automatic Incremental Restore mechanism uses the 

backup history for automatically searching for the correct backup images. SQL Server 

and Oracle allow the DBA to set a recovery interval parameter that specifies a target for 

recovery time in seconds.  

2.1.4 Self-protecting 

Database protection implies at least the following aspects: database security [5], 

analytical auditing mechanisms, data encryption, and admission control strategies. These 

features shield the DBMS from potential, errant requests that may deteriorate its 

performance or bring the DBMS down.     

    All multi-user DBMSs provide authentication mechanisms that prevent unauthorized 

users from accessing the database.  Database privacy ensures that users are granted access 

only to the portions of the database that are required. Current DBMSs differ in the level 

of access granularity; DB2 and SQL Server provide security on a per table basis whereas 

Oracle provides row-level security.    

      Admission and application control is essential for ADBMSs to protect the system 

from database requests that may deteriorate performance and/or undesirably consume 

system resources. The DB2 Query Patroller [46] and the Oracle Resource Manager [68] 

are examples of admission control tools used today.  
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2.1.5 Self-organizing 

An ADBMS should be capable of dynamically re-organizing and re-structuring the layout 

of data stored in databases (e.g., tables), associated auxiliary data structures (e.g., 

indexes), and any system-related data (e.g., system catalog) in order to optimize 

performance.  An ADBMS should assist in the initial layout of data on disks and should 

be able to shift data from one disk to another to even out disk demands.  This ability is not 

present in current DBMSs, however Oracle does provide the ability to move tables while 

on-line [68]. 

   To make efficient use of system resources, DB2, Oracle and SQL Server permit 

dynamic online index reorganization to reclaim leaf level storage. SQL Server has also 

the Partition Wizard and the Storage Design Wizard that help manage the layout of data 

cubes on disks.    

2.1.6 Self-inspecting 

Bowing to the principle if you don’t measure it then you don’t know it, an ADBMS 

should “know itself” in order to make intelligent decisions pertaining to all autonomic 

features discussed in the previous sections.  The DBMS must collect, store and analyze 

relevant information about its components, performance, and workload.    This 

information should be utilized in optimizing the performance, detecting any potential 

problems, updating statistics about the stored data, ensuring integrity of data read from 

disk, scheduling maintenance utilities, and in identifying interesting trends in the 

workload. The results of this constant inspection should be effectively presented to DBAs 

(using a GUI interface, for example) and be available as input for other autonomic 

components and operations.  
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Using the DB2 Health Center or the Oracle Manager Console, a DBA can examine the 

system for signs of unhealthiness and store performance data in a data warehouse.    Such 

performance data can be further analyzed by analysis tools such as The DB2 Performance 

Expert.  

The Maintenance Advisor is a tool that DBAs can use to examine DB2 statistics and 

make recommendations on what maintenance utilities should be run. Another example of 

automated inspection is DB2’s ability to perform Sector Consistency Checking for page 

I/Os that ensures the integrity of read data by detecting any corruptions caused, for 

example, by incomplete I/Os.  

2.2 ANALYSIS—WHAT IS MISSING? 

Despite the many advances that have been made towards autonomic database 

management systems, much work remains to reduce the amount of human intervention 

required by these systems.   We can summarize the most significant shortcomings in the 

following points: 

• High need for human input and intelligence. Current DBMSs provide many 

tools and utilities to assist the DBA in tasks such as initial configuration, system 

monitoring and problem analysis, but in most cases these tasks still require a 

significant amount of input, intelligence and decision making on the part of the 

DBA.  

• Lack of Dynamic Adaptation. Tuning advisors, for example, have proven useful 

in the initial setup of the database system, however, the settings, in most cases, do 

not automatically adapt to changes in the system environment or workload.     
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• Lack of ability to reset DBMS parameters on-line. Although close, DBMSs do 

not yet provide this capability. Note that being able to reset DBMS parameters 

dynamically is a mere prerequisite to enable autonomic features but it does not 

offer any kind of intelligent strategies. 

• Lack of analytical capabilities. Many of the advisors and tools currently 

available are based on “rules of thumb” or heuristics that capture the human 

expertise programmatically.  Robust analytical models and accurate prediction 

mechanisms are required for the more difficult tuning and configuration tasks.    

• No smart maintenance strategies. Database utilities such as rebinding, statistics 

gathering, table and index reorganization and backup are currently provided by the 

DBMSs.  However, an autonomic DBMS must have the ability to predict the best 

time to schedule the execution of these utilities.  

• Inability to run some operations on-line. Some of the vital database operations 

such as deframenting data, updating statistics, and pruning important data 

structures like indexes can not be performed without bringing the DBMS down.  

• Lack of on-line schema evolution. This feature should allow changing schema 

aspects without incurring an outage.  

• Lack of standard interfaces with other systems.  Current DBMSs do not show 

adequate enablement of autonomic features that allow smooth integration and 

synergy between the DBMS, as a middleware, and others components such as 

Web Servers.   

• No exploitation of characteristics of the workload. Most of the current DBMSs 

overlook analyzing the characteristics of the workload and its behavior over time.  
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• Trivial security and privacy strategies. Current security and privacy features do 

not offer any kind of clever strategies that help the DBMS develop or change its 

protective plans. For example, ADBMSs should provide auditing mechanisms 

where logs are used to track all DBMS activity.  The DBMS can use this 

information to track trends, analyze potential threats, support future security 

planning, and assess the effectiveness of countermeasures. Agrawal et al. propose 

more interesting ideas to improve DBMSs’ privacy [5]. 

Despite the efforts undertaken by industry-led projects such as IBM’s SMART and 

Microsoft’s AutoAdmin, we have not witnessed a real change to the DBMS infrastructure 

that is necessary, as a rigorous but flexible architecture, for making the transition to a 

fully autonomic system.    

    

2.3 SUMMARY 

Autonomic DBMSs, that is DBMSs that can manage themselves, are an attractive 

solution to complexity and total cost of ownership problems associated with DBMSs. We 

examine three popular database products, namely DB2, Oracle and SQL Server, with 

respect to their autonomic computing features. We find that, while all three products now 

contain features of an ADBMS, there is still a long way to go before we can claim that 

DBMSs are autonomic computing systems.  

We conclude that ADBMS research should focus in four main areas. The first area is 

the development of a proper infrastructure to allow the clean introduction of autonomic 

computing system features. Current research literature proposes two very different paths 

to ADBMSs. One is a revolutionary approach that argues for a complete redesign of 
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DBMSs with fine-grained components [61][37] or components that provide a RISC-like 

interface [93]. This RISC-style facilitates individual management of the components and 

controlled interactions between them. The second approach is evolutionary [33] and 

identifies a set of phases that existing systems can be taken through in order to become 

autonomic systems. We feel the evolutionary approach is more realistic for existing 

DBMS products.  

The second main area of research for ADBMSs is intelligent decision-making tools. It 

is important that DBMSs become able to independently analyze and act upon the 

information they collect about their performance. A key component of this progress will 

be the development of effective mathematical models and feedback control loops that can 

be used to make more accurate performance prediction and reach better tuning decisions.  

The third main area of research is the development of a useful model of the system 

itself. A model must exist in order for DBMSs to know themselves. The model will have 

to represent the resources used by the ADBMS efficiently, the relationships between 

these resources, the workload of the ADBMS and the current state of the ADBMS. 

The fourth main area of research is making DBMSs more intelligent by discovering 

knowledge from data surrounding them, especially from their workloads. An ADBMS 

will require workload characterization techniques [25] to automatically extract the 

necessary information from this data. Statistical models and data mining techniques 

[24][26] can help tap  interesting properties in the DBMS’s workload. This research 

direction is the ultimate motivation of our thesis as we present methodologies that allow a 

DBMS to automatically recognize the workload type and efficiently predict its variation 

over time. 
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Finally, we do not think that progressing towards ADBMSs will mean the demise of 

DBAs. It will mean the end of repetitive administrative tasks, freeing DBAs to spend 

more time on new applications and on the business policies and strategies. Furthermore, 

DBAs will be needed to evaluate and select recommendations before they are 

implemented. Once comfortable with system recommendations, DBAs can enable a 

DBMS to take actions automatically and simply report on them. 
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CHAPTER 3 WORKLOAD CHARACTERIZATION 

The performance evaluation of computer systems requires understanding of a system’s 

workload. As shown in Figure 1, the workload is a set of requests, or components, that 

place different demands on various system resources. Workload characterization provides 

a model of a system’s workload by means of quantitive parameters and functions. The 

model should be representative, compact, and accurate [10], and should be able to 

describe and reproduce the dynamic behavior of the workload and its most essential static 

features. 

We explore various techniques other researchers use, in different computer fields, in 

order to extract workload characteristics. This study helps us choose the appropriate 

characterization methods to identify important properties of the DBMS workload 

(�Chapter 4) and model its behavioral change over time (�Chapter 5).  

The chapter has three goals4. First, we summarize the most common techniques used 

to characterize workload, such as graph-based techniques, stochastic processes, 

clustering, and numerical fitting. We give a brief description of these techniques and 

classify them according to their ability to extract different aspects of the workload, that is, 

the static properties or the dynamic behavior. Second, we organize these techniques 

within a common framework. To this end, we present a general methodology for 

workload characterization that is used in our research. Our third goal is to point out the 

potential problems and concerns that may be encountered during the characterization 

process.  

                                                 

4 A detailed discussion of the material presented in this chapter can be found in [25]. 
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The rest of the chapter is organized as follows. Section �3.1 gives a brief description of 

the common techniques used in workload characterization. Section �3.2 summarizes 

workload characterization techniques found in different types of computer systems, 

namely batch and interactive systems, client/server systems, databases systems, parallel 

systems, and WWW systems. Section �3.3 explains our workload characterization 

framework and highlights the most significant concerns and potential problems that 

researchers encounter during the characterization process.  

3.1 CHARACTERIZATION TECHNIQUES 

In this section, we briefly describe the techniques most commonly used to analyze system 

workloads. The selection of a particular technique depends mainly on the purpose of the 

performance study, and on the level of detail required. It might be necessary, in some 

cases, to evaluate more than one technique in order to select the best one. 

Functionally, we can classify the characterization techniques into two main categories: 

static and dynamic. Static techniques explore the intrinsic characteristics of the workload, 

such as transaction classes, the correlation between workload parameters and component 

dispersion, which do not change over time. Examples of these techniques are clustering, 

 

 

 

 

 

 

 

 

Figure 1. The workload characterization process 
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principal component analysis, averaging, and correlation coefficients. Dynamic 

techniques, such as Markov models, user behavior graphs, and regression methods, focus 

on describing the behavior of the workload and the way it fluctuates over time. These 

techniques usually analyze the historical data of the workload and, as a result, aid in 

forecasting its behavior in the future. 

Throughout the workload characterization process, adopting one technique is usually 

not sufficient to obtain a complete analysis; several techniques may be used in 

combination in order to come up with an approach that satisfies the research needs. For 

example, clustering techniques might be used to classify the transactions submitted to the 

system. Afterwards, each class may become a node in User Behavior Graphs [15], or a 

transitional state in a Markov model. This example raises another issue, namely the 

importance of obtaining both static and dynamic properties of the workload in order to 

obtain a complete picture.  

Visualization tools, such as graphs, histograms, and fitting curves, are a key means of 

highlighting significant features in the workload under investigation while simple 

techniques, like averages, may smooth out some details such as burstiness. Sections �3.1.1 

and �3.1.2 describe static and dynamic characterization techniques respectively. Table 1 

summarizes the techniques examined in these sections. 
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Technique 
Type 

Technique Advantages Disadvantages 

Descriptive Statistics 
(average, 
variance/standard 
deviation, correlations, 
distributions)  

o Provides preliminary description  
o Easy to calculate 

o May not be sufficient; further 
analysis is needed 
 

Single-parameter 
Histogram 

o Expressive visual means 
o Shows frequencies of each bin 
o Frequency distribution can be used 

in simulation models 

o Incapable of expressing the 
correlation among different 
parameters 
 

Multi-parameter 
Histogram 

o Illustrates the correlation between 
different parameters 

o Expressive visual means 

o Difficult to plot the correlation 
between more than two 
parameters 

Factor Analysis (e.g., 
Principal Component 
Analysis) 

o Simplifies performance data and 
reduces their dimensionality 

o Complex to calculate 
 

St
at

ic
 

Clustering o Identifies homogeneous classes of 
workload components based on 
certain criteria 

o Difficult to choose the 
appropriate number of clusters 

Markov Models 
(Markov chains, Markov 
processes) 

o Predicts the order in which the 
requests are executed 

o Complex to calculate 
 

Prediction Using Neural 
Networks 

o Performs short-term and long-term 
forecasting of workload parameter 
values 
 

o Difficult to design and to 
configure 

Moving Average o Useful for short-term, single value 
prediction 

o Easy to calculate 
 

o Cannot perform long-term 
forecasting 

o Cannot predict more than one 
single value 

o No special consideration for the 
most recent observations 

o Difficult to determine the best 
number of observations 

Exponential Smoothing o Useful for short-term, single-value 
forecasting  

o Places more weight on the most 
recent observations 

o Easy to calculate 

o Cannot perform long-term 
forecasting 

o Cannot predict more than one 
single value 

o Difficult to determine the best 
smoothing weight 

Regression Methods 
(linear and non-linear 
fitting) 

o Predicts the value of a parameter as 
a function of others 

o Identifies trends 

o Can be complex to calculate 
 

User Behavior Graphs o Used mostly in interactive systems  
o Describes the user’s probable 

transition to a particular 
command/transaction type 

o Requires clustering to compose 
the nodes 

D
yn

am
ic

 

Probabilistic Attributed 
Context Free Grammar  

o Used in hierarchical systems (e.g., 
client/server) 

o Translates views of higher layers to 
lower layers 

o Cannot be used to map lower 
layers to higher ones 

Table 1. Static and dynamic workload characterization techniques. 
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3.1.1  Static Techniques 

Static techniques, such as descriptive statistics, single-parameter histogram, multi-

parameter histograms, principal component analysis, and clustering, help explore the 

static characteristics of the workload. In this section we give a brief description of each 

type. 

Descriptive Statistics. Descriptive statistical techniques are used to identify the static 

properties of the workload. Using these techniques helps describe what the workload 

parameters look like: where their center (average) is, how broadly they are spread 

(dispersion or variance), and how they are related to each other (correlation). 

Averaging, or arithmetic mean, is the simplest method to characterize a workload 

parameter such as user think time, number of active users, number of I/O operations 

required to execute a query, or inter-arrival time of transactions. Averaging presents a 

single number that summarizes the parameter values observed. However, it is not always 

appropriate to count on arithmetic mean; the median, mode, geometric mean, or harmonic 

mean should be used in some cases. 

The average alone is not adequate if the performance data has high variability. 

Variability is usually specified by the variance. However, the standard deviation, which 

is the square root of the variance, is more useful in expressing the variability because it 

has the same unit as the mean. The ratio of the standard deviation to the mean is called 

the coefficient of variance (C.O.V). A zero C.O.V. indicates that the measured parameter 

is constant. In this case, the mean gives the same information as the complete set. A high 

C.O.V. indicates high variance, in which case it may be useful to look at the complete 

histogram (discussed below). There are also other alternatives for specifying variability 
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like range (minimum and maximum), 10th- and 90th- percentile, semi-interquartile range, 

and the mean absolute deviation. 

 

Correlation is another useful statistical technique to discover the relationship between 

different workload parameters. It is a decimal fraction, called correlation coefficient, 

which indicates the degree to which the parameters are related. There are numerous ways 

(e.g., Biserial, Point Biserial, Tetrachoric, Spearman rank-order, etc.) to calculate the 

coefficient of correlation. Pearsonian product moment, commonly called Pearsonian r, is 

the most popular one [83].  

Single-parameter Histograms. A histogram is a visual representation of a parameter 

where the range of values is divided into intervals called bins. As shown in Figure 2, the 

histogram displays the frequency of the observations of each bin. This frequency 

distribution is used in simulation models to generate a test workload. However, one of the 
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Figure 2. A simple histogram of disk accesses 
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drawbacks of a histogram is that it is incapable of expressing the correlation among 

different parameters. Therefore, multi-parameter histograms can be used instead. 

Multi-parameter Histograms. Multi-parameter histograms illustrate the correlation 

between different workload parameters. The distribution of n workload parameters can be 

described by an n-dimensional matrix or histogram. Figure 3 shows an example of a two-

parameter histogram that represents the number of read and written pages in a database 

system. Each dot in the figure represents a system node. The number of dots in a cell of 

the grid represents the number of nodes that read and wrote pages in the range 

corresponding to the cell. As can be seen, the nodes reading a large number of pages are 

also the ones that write a large number of pages. Therefore, a significant correlation may 

exist between the two parameters. On the other hand, we should note that it is difficult to 

plot multi-parameter histograms that correlate more than two parameters.  

Factor Analysis. The term factor analysis usually refers to statistical techniques that 

describe multidimensional sets of data by means of geometric representation. Their goal 
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is to help choose a subspace of the variable space such that the projection of the data set 

on that subspace preserves as much information of the original set as possible. 

Consequently, factor analysis is beneficial for simplifying data and reducing their 

dimensionality. 

Principal Component Analysis (PCA) [39] is a factor analysis technique that maps a 

set of parameters, or variables, into another set, called principal components, 

characterized by orthogonality among the components and by linear dependence on the 

parameters in the original set. PCA is an iterative process in which the first component is 

chosen such that it maximizes the variance of the linear function expressing the 

dependence of the transformed parameters on the original ones. The second component is 

chosen such that it maximizes the remaining variance while this component must be 

orthogonal to the first, and so on. 

Clustering. Clustering is one of the most widely adopted techniques in workload 

characterization [15][74][67][23]. Clustering identifies homogeneous groups, or classes, 

of workload components, based on the similarity of resource demands. In general, 

clustering methods can be classified as hierarchical or non-hierarchical. Hierarchical 

techniques, like the Minimal Spanning Tree (MST) [80] method, start by assuming that 

each component of a workload is a cluster. Then, the two clusters with the minimum 

distance are merged to form a single cluster. The process iteratively continues until either 

all the workload components are grouped into a single cluster or the desired number of 

clusters is reached. On the other hand, the non-hierarchical techniques, like the k-means 

algorithm [40], start from an initial partition that consists of the exact desired number of 

clusters. Workload components are reassigned among clusters so that a particular cluster 

criterion, known as distance function, is optimized.  
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Deciding on the number of clusters is a common problem in any cluster analysis study. 

Generally, it depends on the goal of the study and it is desirable to keep this number small 

for practicality. Various clustering algorithms are available in the literature [51]. 

3.1.2 Dynamic Techniques  

Next, we examine techniques commonly used to describe and predict the behavior of the 

dynamic aspects of the workload. 

Markov Models. Knowing the number of requests of each type, or class, is not sufficient. 

It is also important to know the order in which requests are executed in the system. If it is 

assumed that the next request depends only on the current one, then the requests follow a 

Markov model [38]. This model can be represented by a transition matrix, which gives 

the probability of moving to the next state given the current one. A corresponding state 

transition diagram can be easily constructed from the transition matrix. Figure 4 shows 

an example of a transition diagram in which the probability of a job using the disk after 

visiting the CPU is 0.4, the probability of it returning to the CPU from the disk is 0.8, and 

so on. 

 

 

 

 

 

 

 

Figure 4. A state transition diagram representing a Markov model. 

Client  

CPU Disk I/O 

0.5 

0.8 

0.4 

1 
0.2 

0.1 



 36 

Markov models are used to describe the transitions between any system states, not just 

between system resources. For example, in a software development environment that 

provides several types of software tools, we can use a transition matrix to describe the 

probability of transitions between the different types of development tools like editors, 

compilers, linkers, and debuggers. 

Prediction Using Neural Networks. Although getting a perfect prediction is a very hard 

problem, neural networks can be used to obtain reasonably good predictions in some 

cases [62]. Feedforward as well as recurrent networks are commonly used for this 

purpose. The prediction problem can be viewed as a function approximation problem, in 

which the function values are represented as time series, that is, a sequence of values 

measured over time. Based on the knowledge of the most recent d values of a time series, 

the neural network can be trained to predict the d+1 future value. The accuracy of 

predicting the values of a parameter may increase if a multivariate time series and the 

correlations among all workload parameters are taken into account [63]. 

Typically, two types of predictions are considered: short-term, or one-lag, and long-

term, or multi-lag, predictions. In one-lag predictions, the forecasting of the future value 

is based just on the past actual values. Multi-lag prediction also exploits some of the 

predicted values in order to predict future values. An example of multi-lag prediction is 

forecasting the value of a time series a year from today while the values for the next 

eleven months are unknown. 

Moving Average. This is a simple prediction technique in which the next forecasted 

value is the average of the previous ones. This method shows very good results if the data 

are almost stationary, that is, with little variation [56]. However, it is not suitable for 
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long-term prediction as it is not capable of predicting more than a single value at a time. 

The forecasted value can be calculated as follows: 

n
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where 1+tf is the forecast value for period t+1, tx  is the actual value at time t, and n is the 

number of previous observations. It is not always easy to determine the number of 

periods, n, that should be used. Thus, different values of n may be examined in order to 

find the one that achieves the least mean squared error (MSE), which is calculated as 

follows: 
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Exponential Smoothing. Exponential smoothing is similar to the moving average in 

terms of using the average to predict the next value. It is particularly useful for short-term 

forecasting and when the data are stationary. However, it differs from the moving average 

in the way it calculates the forecast value; it puts more weight on the most recent 

historical observations. The idea stems from the hypothesis that the latest observations 

give a better indication of the future. Here, the forecast value 1+tf is calculated as follows: 

)(1 tttt fxff −+=+ α  

where � is the smoothing weight (0<�<1). Again, some values of � are better than others 

in terms of getting the least MSE, and additional tests help to choose a suitable one. 

Regression Methods. The value of a variable, called the dependent variable, can be 

predicted as a function of other variables, called independent variables, using regression 

models. Many mathematical forms exist, which describe the relationship between these 
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variables. A linear relationship is a common assumption used to estimate the values of the 

dependent variable [63]. 

User Behavior Graphs. User Behavior Graphs (UBG) are considered as the basis for 

several workload models [12]. They are similar to the state transition diagrams used in 

Markov models and are commonly used to describe the workload of interactive systems, 

such that each user has her own UBG [30]. A UBG is a probabilistic graph whose nodes 

represent the different command types issued by the user, and whose arcs represent the 

transition from one command type to another throughout a user session.  

Probabilistic Attributed Context Free Grammar. A Probabilistic Attributed Context 

Free Grammar (PACFG) [32] is a central means of constructing generative workload 

models, especially in systems that have a hierarchical nature, like client/server and WWW 

environments [53][78]. A PACFG can translate views between the different layers of the 

system hierarchy. For example, a PACFG can map the client-oriented view of the 

workload, such as commands submitted during user sessions, to a low-level system view 

like TCP/IP protocol requests.  

 A PACFG is a 3-tuple GA = {G, A, Q} where G is the regular grammar defined as G = 

{VN, VT, P, S}. VN and VT are a set of non-terminal and terminal symbols, respectively, P 

represents a set of production rules, S is the start symbol, A is a set of attributes and Q is a 

set of probabilities associated with P.  At each layer in the hierarchy, the system supports 

a set of operations that are represented by non-terminals. The mapping of a particular 

layer’s operations to the operations of the next layer is achieved by expanding each of the 

non-terminals to a sequence of non-terminals or terminals at the next lower level. Such an 

expansion is controlled by the production rules (P) and the associated set of probabilities 

(Q). Each non-terminal has two attributes s and e, which respectively denote the start and 
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end times of an operation, such as a user session, occurring at a particular layer. The 

duration of an operation is the difference between s and e. 

 

3.2 CASE STUDIES 

We now present a summary of case studies5 of different types of computer systems, 

namely batch and interactive systems, client/server systems, database management 

systems, parallel systems, and WWW systems. Throughout these case studies, we focus 

on the workload characterization aspects of each system type, and identify the most 

commonly used techniques. We summarize the features of the commonly used 

techniques, in each computer field, in a table. A row in a table represents a major 

characterization technique (e.g., clustering) used to analyze the workload of that type of 

computer system. The columns of the table describe the technique used, the workload 

properties explored (i.e., static or dynamic), the methods used (e.g., k-means), the 

approach followed (i.e., functional or resource-oriented), the basic workload component 

considered (e.g., transaction, URL, session, etc.), the input parameters analyzed (e.g., # of 

files), the workload type (i.e., interactive, batch, or scientific), the purpose of the study, 

some of the useful results obtained, other techniques used in combination with this 

technique, and some references to case studies that used this technique. 

3.2.1 Batch and Interactive Systems 

A number of characterization techniques appeared in early studies of interactive and 

batch computer systems (e.g., [12] and [14]). Interestingly, these techniques are still the 

                                                 

5 Detailed in a technical report [25]. 
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basis of approaches adopted in recent studies of various computer systems. In general, the 

different clustering and factor analysis techniques are commonly used to describe the 

static aspects of the workload while stochastic processes, numerical fitting techniques and 

graph based approaches are used to capture the dynamic behavior of the workload as it 

changes over time. Table 2 summarizes the commonly used characterization techniques in 

batch and interactive systems. 
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Table 2. Characterization techniques used in batch and interactive systems. 
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3.2.2 Client/Server Systems 

A client/server system consists of clients connected to servers via a network. Distributed 

file systems, distributed database systems, distributed multimedia systems, and WWW 

applications, are examples of client/server systems. They can be seen as a hierarchical 

structure composed of three layers: client, network, and server. Characterization 

techniques and tools may differ depending on the layer in which the characterization is 

taking place (e.g., [19][20]). Table 3 summarizes the commonly used characterization 

techniques in client/server systems. 
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Table 3. Characterization techniques used in client/server systems. 
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3.2.3 Database Management Systems 

As database management systems (DBMS) become increasingly popular and are often 

part of larger systems, they require considerable tuning to get them working at an optimal 

performance level [58]. As in any computing system, identifying the characteristics of the 

workload should aid in tuning and configuring these systems more effectively (see for 

example, [44][81]). Table 4 summarizes the commonly used characterization techniques 

in database systems. 
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Table 4. Characterization techniques used in database systems. 
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3.2.4 Parallel Systems 

Parallel applications are developed to solve problems in a shorter time and/or to solve 

larger problems in the same time. To meet these objectives, we need to tune, debug and 

diagnose the performance, which requires characterizing the parallel applications [13]. 

Essentially, the characterization requires collecting measurements by adding 

instrumentation to the source code of the application, to the operating system scheduler, 

or to the communication libraries [42].  Table 5 summarizes the commonly used 

characterization techniques in parallel systems. 
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Table 5. Characterization techniques used in parallel systems. 
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3.2.5 World Wide Web Systems 

Internet-based systems can be classified as client/server systems described in Section 

�3.2.2, but we opt to discuss them separately because the literature is rich with research 

papers pertaining to workload analysis issues (e.g., [77][95][36]. This should not be a 

surprise as we observe, day after day, the explosive increase of Internet popularity.  Table 

6 summarizes the commonly used characterization techniques in the World Wide Web 

systems. 
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Table 6. Characterization techniques used in World Wide Web systems. 
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3.3 CHARACTERIZATION FRAMEWORK 

In this section, we propose a general framework for the workload characterization 

process. The framework makes the process more systematic, emphasizes some essential 

steps needed to derive a good workload model, and prevents some common problems. A 

correct characterization process does not have to strictly follow all the steps 

recommended by the framework. However, in our research, the framework helps us keep 

the big picture of the whole process in mind so we do not miss any essential requirement. 

The main difficulties that may be encountered throughout the workload 

characterization process are: 

• Difficulty of System Instrumentation. Systems need to be instrumented in order to 

obtain performance measurements. This may require the insertion of some probes, 

like counters, into the system itself or into the operating system. This task is 

challenging due to the complexity of the systems and the typical absence of the source 

code. 

• System Disturbance. Instrumenting the system is an intrusion that adds extra 

overhead. Hence, the degree of intrusion should be minimized to reduce the 

perturbation of the system’s behavior under the investigated workload. 

• Complexity of Analyzing Large Volume of Performance Data. A large amount of 

system measurements are needed to construct a workload model [13], which increases 

the complexity of managing and analyzing the data.  

• Validating Model Representativeness. Assessing the workload model 

representativeness, that is, how accurately the model represents the real workload, is a 

key issue [63]. Normally, modeling tends to hide some details that might be desirable 
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to study. Hence, a careful decision should be made about the model’s abstraction level 

in the requirements analysis phase (explained next). This should help identify how 

much information loss can be tolerated and what important features must be included 

in the model. 

• Model Compactness. The characterization process should result in a compact model. 

It is impractical for the workload model to incorporate all the basic components of the 

real workload. Ideally, a compact workload model should place a much smaller 

demand on the system than the actual workload [63]. 

Ferrari et al.[31] describe a methodology for constructing a workload model. We augment 

their methodology to produce a framework that introduces the following additional 

concepts: 

• Creating a Performance Database. Building a database for the workload parameter 

values provides a robust way of storing and managing large volume of performance 

data. It also provides a solid foundation for the application of any analytical technique 

that might be adopted in the subsequent phases. 

• Distinguishing between the static and dynamic techniques. This distinction is 

sometimes important in the analytical phase in order to choose the appropriate tool, 

and to create an adequately descriptive executable workload model. 

• Using data warehousing and data mining technologies. In addition to the traditional 

analytical and statistical techniques commonly used in workload characterization, we 

suggest in this framework exploiting the capabilities of the data warehouse 

technology [16] and data mining tools.  
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The multi-dimensional data cube in a data warehouse provides operations such as drill-

down, roll-up, and slicing and dicing. These operations offer online analytical processing 

(OLAP) capabilities, including an engine for deriving various statistics, and a highly 

interactive and powerful data retrieval and analysis environment. The data warehouse 

approach also overcomes the complexity problem stemming from processing large data 

sets. 

Besides the OLAP tools, the analytical capacity can be extended further by adopting 

data mining techniques, which can discover implicit knowledge in the performance data 

that can be expressed in terms of rules, charts, tables, graphs, and other visual forms for 

characterizing, classifying, comparing, associating, or predicting the workload.  Data 

mining techniques have been used to discover interesting patterns and features in 

customers’ data that may lead to better marketing strategies. Similarly, in the workload 

characterization framework, we mine for interesting patterns and key characteristics in the 

system’s workload. The integrated use of data warehousing and data mining has proven 

useful in analyzing web logs [95] and we believe that using both technologies as part of 

the workload characterization methodology would be beneficial too. Figure 5 shows the 

framework of the workload characterization process. Deriving a workload model consists 

of three phases: requirements analysis phase, construction phase, and validation phase. 

Next, we describe these phases and explain the tasks involved in each of them.  
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Figure 5. Workload Characterization Methodology. 
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3.3.1 Requirements Analysis Phase 

The reasons for characterizing a system’s workload should be clear from the beginning 

because they help derive the appropriate workload model. Therefore, based on a clear 

identification of the goals of the performance study, analysts must determine the 

following: 

Abstraction Level. Depending on the intended use of the model, the level of abstraction 

at which the characterization will take place should be determined. The system can be 

viewed as a hierarchy; the highest level in this hierarchy is functional and the lowest one 

is physical. At the functional level, for example, the analyst may focus on identifying the 

types of applications executed in the system, identifying the kinds of web objects that are 

requested frequently, or grouping database transactions according to their functionality. 

At the physical level, they may categorize workload components, such as transactions, 

TCP/IP requests, or user interactive commands, according to their resource consumption 

(e.g., CPU, I/O, and memory). The higher the level, the lower the amount of detail with 

which the workload can be described. The selection of the level of detail helps in making 

other decisions like the choice of the basic workload component. 

Basic Workload Component. The smallest unit of work must be determined. As shown 

in Figure 1, a workload component can be an application, a script, a command, a SQL 

statement, a user session, a transaction, a CPU instruction, a request, or a job. For 

example, applications and CPU instructions can be considered as basic workload 

components at the functional and physical levels, respectively. 

Workload Parameters. Depending on the abstraction level and the basic workload 

component, parameters are chosen to give a quantitive description of the workload 
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components. Examples of workload parameters are packet size, arrival time, number of 

I/O instructions, memory space demand, and number of file handles required. It is 

preferable to choose parameters that are dependent on the workload rather than on the 

system. For example, response time and CPU time are not appropriate as workload 

parameters since they are highly dependent on the system currently executing the 

workload. The ratio of the read-only requests to the update requests in a database 

workload is a good candidate parameter as it effectively describes the workload under 

study and has nothing to do with system configuration. In particular, those characteristics 

that have an impact on the system performance should be included in the workload 

parameters. Parameter selection may also be restricted by the capability of the monitoring 

tools currently available in the system. 

Criteria of Evaluating Model Representativeness. The criteria of evaluating the 

accuracy and representativeness of the derived model should be determined. They are 

used to validate the model as explained in Section �3.3.3. 

3.3.2 Model construction Phase 

This phase consists of the following three main tasks: 

Collecting and Preprocessing Performance Data. During the measurement interval, the 

workload parameter values are collected from the system. The raw data may not be ready 

for direct analysis, so, further processing may be needed to put the data in a clean state 

and in an appropriate format. For example, the raw data set usually contains noise and 

outliers that may distort the results of the subsequence analysis. Furthermore, some type 

of transformations might be needed in this step. For example, if one of the parameter’s 

density functions is highly positively skewed, a logarithmic transformation is needed. 
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Creating A Performance Database. After preprocessing and filtering the raw data, a 

relational database is created to store the performance data. The database facilitates 

information extraction and data summarization based on individual attributes. 

Analysis Stage. Analyzing the workload parameter values aims to extract the workload’s 

static and dynamic features. In Section �3.1, we described some of the tools commonly 

used to perform the static and dynamic analyses. The static analysis tools explore the 

intrinsic features of the workload and partition the workload components into 

homogeneous classes or groups. However, in order to make the derived workload model 

executable we need to capture the characteristics of the workload over time in order to 

reproduce the correct workload mixes. Hence, the dynamic properties of some time series 

are considered. Stochastic processes, numerical fitting techniques, and the various 

predictive models are useful in describing the behavior of the workload over time. As 

depicted in Figure 5, the traditional analytical/statistical techniques and the proposed data 

mining and OLAP tools can be used, separately or together, to analyze the performance 

data in order to characterize the workload. 

Analyzing the static characteristics helps to choose representative components (mixes) 

that can reflect the key properties of the real workload. Analyzing the dynamic behavior 

of the workload completes the picture by describing the distribution and the sequence of 

execution of these workload components. Determining the static and dynamic 

characteristics of the workload can be the ultimate goal of the workload characterization 

because such knowledge can be adequate to facilitate tuning and enhancing the system’s 

performance. Hence, the characterization process may stop at this point. However, the 

model can be further processed to generate an executable, runnable model that can be 

practically ported to different systems to assess their performance. A benchmark is an 
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example of an executable workload model. The executable format of the workload model 

is also a means of its validation, as explained next. 

3.3.3 Model Validation Phase 

Validating the workload model is not always straightforward. One way of examining the 

accuracy of the derived workload model is to assess its effect on the system compared 

with the effect of real workload [31]. As can be seen in Figure 6, if the performance 

measurements resulting from the application of the workload model and the real workload 

are the same or proportional, then we have a good model. For example, Keeton and 

Patterson [52] proposed and evaluated simplified microbenchmarks for studying the 

architectural behavior of database workloads. These microbenchmarks pose simple 

queries of the database to generate the same dominant I/O patterns exhibited in more 

complex, fully-scaled workloads like TPC-C and TPC-D. One of the potential benefits 

from this microbenchmark approach is smaller hardware requirements. The 

representativeness of the new models is evaluated by comparing the processor and 

memory system characteristics of the microbenchmarks with that of fully scaled 

workloads running on similar hardware. These metrics were selected because most fully 

scaled database servers are configured with enough disks to be CPU bound; hence 
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processor and memory behavior are important factors in determining database 

performance [7]. 

Other techniques of validation may take into account criteria like arrival time of 

components and the resource usage profile [50]. If the derived workload model does not 

provide sufficient accuracy then some calibration of its parameters (static characteristics) 

or for its component mixes (dynamic characteristics) is required. The calibration process 

is repeated until a satisfactory level of representation is reached. 

3.4 SUMMARY 

Characterizing the system’s workload is an essential early step in any performance study. 

Although workload characterization, like performance evaluation, is still considered more 

of an art than a science, the methodology discussed in this chapter can be deemed a 

general framework for deriving a workload model. A substantial amount of details in this 

framework are highly dependent on the objectives of the performance study as well as on 

the type of system. We propose using data warehousing and data mining technologies as a 

promising analytical approach. It may provide a potential solution for some of the well-

known problems in workload characterization like the difficulty of managing large 

volumes of performance data sets and the complexity of analyzing them. This should lead 

to better scalability, more interactivity, and a variety of different, possible analyses. 

The wide range of analytical techniques discussed in this chapter can be used to extract 

the static and dynamic characteristics of the workload. More than one technique may be 

combined in order to obtain the desired model. In general, we have noticed that 

identifying distinct classes in the workload using the various clustering techniques is the 

main goal of many studies.  
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The notion of multi-layer workload characterization has been adopted by many 

workload characterization studies. It is based on viewing the system as a hierarchical 

structure, which allows the characterization process to take place at any level in this 

hierarchy. For example, in network-based systems, characterization can be accomplished 

at many levels: user level, application level, protocol level, and network level.  

A multi-layer characterization allows insight into how changes at the upper levels can 

affect the lower levels, and enables the prediction of the impact of new applications or 

systems. By analyzing the measures collected from each layer, a model of the overall 

workload of the system can be obtained. Nonetheless, we have found that most of the 

studies characterize the workload of each layer separately. Probabilistic graphs 

techniques, such as User Behavior Graphs, have been commonly used for modeling the 

workload at each layer. 

Workload characterization typically relies on analyzing performance data collected 

from the system. The choice of what to measure depends on the objective of the study, the 

workload features to be evaluated, the level of abstraction (or details) required, and the 

availability of monitoring tools to collect the proper measures. The selection of what to 

measure is critical. Indeed, there is a tradeoff between the amount of detail to be 

measured and the perturbations caused by monitoring. Measurements collected from the 

system are not only important to the analysis phase; they are also useful for 

parameterizing the derived models with empirical data drawn from the real system. In 

some cases, such parameterization is essential to obtaining a successful model. 

 However, and as already pointed out, obtaining the proper measurements from the 

system is sometimes challenging. For example, web logs have been used as the primary 

source of system data to model the workload of WWW applications. While this may 
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reflect the actual use of the resources on a site, it does not record reader behaviors like 

frequent backtracking or frequent reloading of the same resource if the resource is cached 

by the browser or a proxy. Other means of data gathering like client-site log files 

collected by the browser, or a Java Applet have been suggested. However, while these 

techniques solve such problems, they demand the user’s collaboration, which is not 

always available. In some systems, for example networks, special equipment such as 

network cards, bridges, routers, and gateways, constituting the network-based systems 

make the characterization process much harder. As a result, new measuring tools have 

been devised in order to collect parameter values from the system. 

We believe that workload characterization will remain the focus of researchers and 

will constantly keep progressing in order to exploit newly introduced techniques and to 

cope with the requirements of new computer architectures. We also believe that no matter 

what new performance-oriented architectures have to offer toward enhancing 

performance, the notion of characterizing the workload and identifying its features should 

always lead to better improvements. 
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CHAPTER 4 WORKLOAD IDENTIFICATION 

Database administrators (DBAs) tune a database management system (DBMS) based on 

their knowledge of the system and its workload. The type of the workload, specifically 

whether it is Online Transactional Processing (OLTP) or Decision Support System (DSS), 

is a key criterion for tuning [49][70]. For example, in an OLTP environment, which is 

characterized by a high degree of concurrency, it is imperative to have a sufficient 

number of database agents in order to process the workload efficiently. In a DSS 

environment, intra-parallelism is indispensable for processing the very complex, long 

queries, whereas it is undesirable to OLTP workloads. A change in the workload type is a 

reflection of a change of users' tendency of utilizing a particular class of applications over 

others. In addition, a DBMS experiences changes in the type of workload it handles 

during its normal processing cycle. For example, a bank may experience an OLTP-like 

workload by executing the traditional daily transactions for most of the month, while in 

the last few days of the month, the workload becomes more DSS-like due to the 

generation of financial reports and running long executive summaries.  Unless we 

automate the process, DBAs must recognize the significant shifts in the workload and 

reconfigure the system accordingly in order to maintain acceptable levels of performance. 

Experts use rule-of-thumb tuning strategies to handle each workload. We provide a 

limited discussion of such tuning strategies (Section �4.1) as they are beyond the scope of 

this work. 

This chapter is structured as follows. Section �4.1 presents the motivation behind 

identifying the workload type and spells out its significance with respect to configuring a 

DBMS. Section �4.2 introduces the workload identification problem. Section �4.3 explains 
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the approach and the methodology we use to solve this problem. Section �4.4 presents 

several sets of experiments that validate our approach. 

4.1 OLTP VS. DSS: WHAT DIFFERENCE DOES IT MAKE? 

OLTP business applications (such as PeopleSoft, Siebel, and SAP) support multiple 

users who require very rapid response times. Frequently, the database serves thousands of 

concurrent users. Response time may include CPU, sort, locking, and I/O times. The 

majority of SQL statements in an OLTP workload are INSERT, UPDATE, and DELETE 

that require contention management and locking strategies.  Yet, some OLTP applications 

include batch-processing components and probably some concurrent decision-support 

queries. 

In contrast, DSS users ask complex business questions relevant to the available data 

requiring complex SQL queries.  Response times in a DSS environment are typically 

measured in minutes rather than seconds. However, response time requirements vary 

significantly based on business needs. DSS workloads are mostly read-only queries. 

Parallelism (both CPU and I/O) greatly affects response times for these complex queries. 

OLTP jobs, on the other hand, are very small and efficient so parallelism (by which we 

mean intrapartition parallelism on a single SMP server) is neither necessary nor desirable.  

These differences inevitably entail different settings of the configuration parameters in 

order to ensure that the DBMS has sufficient resources to perform the processing 

required. Next, we illustrate how to set some of these parameters in light of a given 

workload type using experts' rule-of-thumb recommendations. These recommendations 

are derived from the technical documentation of DB2 [46] and from our empirical 
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experience. We trust that such recommendations are effective for other major DBMSs 

such as SQL Server and Oracle. 

4.1.1 Different Configuration for Different Workloads 

There are a number of DBMS tuning parameters that are set differently for each workload 

type. Examples of these parameters are:  

MAXAGENTS. This parameter indicates the maximum number of DBMS agents. Having 

sufficient number of agents to process the workload is imperative especially in an OLTP 

workload where multiple concurrent users (or connections) access the database.  

CATALOGCACHE. This parameter indicates the maximum amount of space that the 

catalog cache can use from the database heap. Sufficient memory allocated to this 

parameter helps preparing execution strategies for SQL statements. This cache is used to 

obtain information about the definition of the database, tablespaces, tables, indexes, and 

views. If all the required information is available in the cache, the DBMS can avoid disk 

I/Os and shorten plan preparation times. Having a high cache hit ratio (95 percent or 

better) is key for OLTP applications.  

LOCKTIMEOUT. This parameter specifies the number of seconds that an application will 

wait to obtain a lock. This helps avoid global deadlocks for applications. For an OLTP 

workload, LOCKTIMEOUT should be set to a low value (e.g., 5-10 seconds). If a 

transaction cannot get the locks it needs to complete its work then it should timeout 

quickly and allow other transactions to execute. For a DSS workload, LOCKTIMEOUT 

should be set to larger value (e.g., 60 seconds). 

MINCOMMIT. This parameter allows the DBMS to delay the writing of log records to 

disk until a minimum number of commits have been performed. This delay can help 
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reduce the overhead associated with writing log records and as a result improve 

performance when you have multiple applications running and many commits are 

requested within a very short time frame. MINCOMMIT is a powerful tuning parameter for 

OLTP workloads that process high volumes of transactions per second. When properly 

set, I/Os to logs are grouped together — resulting in fewer log I/Os. In a DSS workload, 

MINCOMMIT can be safely set to 1, whereas it should be set to a higher value in OLTP 

environments.  

LOGBUFSZ. This parameter specifies the amount of the memory to use as a buffer for log 

records before writing these records to disk. This logging buffer should be larger in OLTP 

databases than in DSS. 

INTRA_PARALLEL. This parameter specifies whether the database manager can use 

intra-partition parallelism. This parameter should be set to NO for OLTP workloads and 

YES for DSS workloads.  

MAX_QUERYDEGREE. If INTRA_PARALLEL is enabled, this parameter specifies the 

maximum degree of intra-partition parallelism that is used for any SQL statement. An 

SQL statement will not use more than this number of parallel operations. Since 

parallelism is generally undesirable for OLTP workloads, it is recommended to set 

MAX_QUERYDEGREE to 1. A proactive, cautious DBA would set MAX_QUERYDEGREE 

to a value equal to the number of CPUs on the system in case the DSS workload is 

dominant.  

SHEAPTHRES & SORTHEAP. The SHEAPTHRES parameter works in concert with the 

SORTHEAP parameter to govern sort memory. SHEAPTHRES dictates a soft limit for 

total sort memory used by all databases, and SORTHEAP controls the limit on memory for 

any one sort. OLTP workloads usually perform few sorts, and the sorts are typically 
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small. A small value of SORTHEAP (e.g., 128) is sufficient for OLTP database. That 

value results in double the number of concurrent sorts without increasing the 

SHEAPTHRES memory.  

DSS workloads perform many possibly large sorts. SORTHEAP memory is also used 

for hash joins. For a DSS, at a minimum, the SHEAPTHRES should be doubled or tripled 

(e.g., between 40,000 and 60,000) and the SORTHEAP size should be sufficiently large 

(e.g., between 4,096 and 8,192). 

DFT_QUERYOPT. This parameter is used to direct the optimizer to use different degrees 

of optimization when compiling SQL queries. Since an OLTP transaction is typically 

short, relatively simple, and properly indexed, selecting an access plan should not take 

much DBMS computing power. Therefore DFT_QUERYOPT should be set low so that the 

DBMS spends minimal time preparing its access plan. Spending a few seconds thinking 

about the SQL access strategy when actual execution only takes a quarter of a second is a 

waste.  

On the other hand, SQL in a DSS query is very complex and often consumes large 

quantities of CPU and I/O resources, so a few extra seconds of time spent preparing the 

SQL access plan can be a wise investment, especially if it yields an access strategy that 

trims minutes or hours off of a query's elapsed time. In a DSS environment, 

DFT_QUERYOPT should be set high.  

CHNGPGS_THRESH. Asynchronous page cleaners write changed pages from the buffer 

pool to disk before the space in the buffer pool is required by a database agent. This 

means that the agents do not have to wait for a changed page to be written out, before 

being able to read a page, and an application's transactions should run faster. The 
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CHNGPGS_THRESH parameter specifies the level (percentage) of changed pages at 

which the asynchronous page cleaners will be started, if they are not currently active.  

The default value for CHNGPGS_THRESH is 60 percent, meaning that when 60 

percent of the pages in the buffer pools become dirty, then the asynchronous I/O cleaners 

begin writing the changed pages out to disk. For a DSS workload, the default usually 

delivers good results. For a high-transaction volume OLTP workload, lowering the 

CHNGPGS_THRESH from 60 percent to 50 or 40 percent can be beneficial.  

NUM_IO_CLEANERS. This parameter specifies the number of asynchronous page 

cleaners that write changed pages from the buffer pool to disk before the space in the 

buffer pool is required by a database agent. Performance experience indicates that 

asynchronous write I/Os are usually at least twice as fast as synchronous write I/Os, so it 

is important to try to achieve an asynchronous write percentage (AWP) of 90 or higher. In 

an OLTP environment, it is recommended that the number of NUM_IO_CLEANERS is 

incremented until either 90 percent of writes are performed asynchronously or the number 

of NUM_IO_CLEANERS is equal to the number of CPUs. If the latter limit is reached, we 

consider making gradual reductions in CHNGPGS_THRESH until AWP is greater than 90, 

but set CHNGPGS_THRESH no lower than 30 percent. 

In a DSS environment, DB2 uses NUM_IO_CLEANERS for writing to TEMPSPACE, 

temporary intermediate tables, index creations, and more. Therefore, we recommend 

setting NUM_IO_CLEANERS equal to the number of CPUs. 

NUM_IO_SERVERS. This parameter specifies the number of I/O servers used to 

prefetch data into the DBMS’s buffer pools. To achieve maximum parallelism in a DSS 

workload, it imperative to have enough prefetchers available. However, most OLTP 

applications do not require prefetching.  
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4.2 WORKLOAD IDENTIFICATION PROBLEM: INTRODUCTION 

Workload characterization is important in a world that increasingly deploys "universal" 

database servers that are capable of operating on a variety of structured, semistructured 

and unstructured data and across varied workloads ranging from OLTP through DSS. 

Universal database servers, such as IBM® DB2� Universal Database� [49], allow 

organizations to develop database skills on a single technology base that covers the broad 

needs of their business. Universal databases are increasingly used for varying workloads 

whose characteristics change over time in a cyclical way.  Most of the leading database 

servers today fall into this category of universal database, intended for use across a broad 

set of data and applications. 

The goal of our research is to develop a methodology by which a DBMS can 

automatically identify the workload type. This is an important step towards autonomic 

DBMSs, which know themselves and the context surrounding their activities, and can 

automatically tune themselves to efficiently process the workloads put on them [33]. This 

problem is challenging for a number of reasons: 

• There are no rigorous, formal definitions of what makes a workload DSS or 

OLTP. We currently have only general rules such as: 

6 Complex queries are more prevalent in DSS workloads than in OLTP 

workloads. 

6 A DSS workload has fewer concurrent users accessing the system than 

does an OLTP workload.  
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• An autonomous computing solution requires that the DBMS identify the workload 

type using only information available from the DBMS itself or from the operating 

system (OS); no human intervention is involved.  

• A solution must be online and inexpensive. This entails adopting lightweight 

monitoring and analysis tools to reduce system perturbation and minimize 

performance degradation.  

• A solution must be tolerant of changes in the system settings and in the DBMS 

configuration parameters.  

• A solution should assess the degree to which a workload is DSS or OLTP, that is, 

the concentration of each type in the mix. Any subsequent performance tuning 

procedure should be a function of these degrees. 

                                                                   

Our solution treats workload type identification as a data mining classification problem, 

in which DSS and OLTP are the class labels, and the data objects classified are database 

performance snapshots. We first construct a workload model, or a workload classifier, by 

training the classification algorithm on sample OLTP and DSS workloads. We then use 

the workload classifier to identify snapshot samples drawn from unknown workload 

mixes. The classifier scores the snapshots by tagging them by one of the class labels, DSS 

or OLTP. The number of DSS- and OLTP-tagged snapshots reflects the concentration 

(relative proportions) of each type in the mix.  
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We validate our approach experimentally with workloads generated from Transaction 

Processing Performance Council (TPC) benchmarks6 and with real workloads provided 

by three major global banking firms. These workloads are run on DB2� Universal 

Database� Version 7.2 [49]. We construct and evaluate two classifiers. One classifier, 

which we call Classifier(C, H), is built using OLTP and DSS training data from the TPC-

C [89] and TPC-H [90] benchmarks, respectively. As an OLTP system benchmark, 

TPC-C simulates a complete environment where a population of terminal operators 

executes transactions against a database. The benchmark is centered around the principal 

activities (transactions) of an order-entry environment. These transactions include 

entering and delivering orders, recording payments, checking the status of orders, and 

monitoring the level of stock at the warehouses. While the benchmark portrays the 

activity of a wholesale supplier, TPC-C is not limited to the activity of any particular 

business segment, but, rather, represents any industry that must manage, sell, or distribute 

a product or service. On the other hand, TPC-H is a decision support benchmark. It 

consists of a suite of business oriented ad-hoc queries and concurrent data modifications. 

The queries and the data populating the database have been chosen to have broad 

industry-wide relevance. This benchmark illustrates decision support systems that 

examine large volumes of data, execute queries with a high degree of complexity, and 

give answers to critical business questions. 

The second classifier, which we call Classifier(O, B), is built using OLTP  and DSS 

training data from the Ordering and Browsing profiles of the TPC-W [91] benchmark, 

                                                 

6 Note that since our TPC benchmark setups have not been audited per TPC specifications, our benchmark workloads 
should only be referred to as TPC-like workloads. When the terms TPC-C, TPC-H, and TPC-W are used to refer to our 
benchmark workload, it should be taken to mean TPC-C-, TPC-H-, and TPC-W-like, respectively. 
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respectively. TPC-W comprises a set of basic operations designed to exercise 

transactional web system functionality in a manner representative of internet commerce 

application environments. These basic operations have been given a real-life context, 

portraying the activity of a web site (bookstore) that supports user browsing, searching 

and online ordering activity. Visitor activities are described by three profiles: Browsing, 

Shopping, and Ordering. The Browsing profile is characterized by extensive browsing 

and searching activities. The Shopping profile exhibits some product ordering activities 

but browsing is still dominant. The Ordering profile has a majority of ordering activities. 

Therefore, the ultimate difference between these profiles is the browse-to-order ratio. 

Results obtained from testing the genericness of these classifiers show that every 

workload is a mix of its own set of SQL statements with their own characteristics and 

properties. Therefore, very specialized classifiers such as Classifier(C, H) and 

Classifier(O, B) are not expected to always be successful. Nevertheless, we believe that 

we can construct a generic classifier that is able to recognize a wide range of workloads 

by combining the knowledge derived from the analysis of different flavors of DSS and 

OLTP training sets. Such a generic classifier could be incorporated into a DBMS to assist 

in tuning the system. 

We present two generic classifiers. The first one, the hybrid classifier (HC), is 

constructed by training it on a mix of the TPC-H and the Browsing profile workloads as a 

DSS sample, and a mix of the TPC-C and the Ordering profile workloads as an OLTP 

sample. The second generic classifier, the graduated-hybrid classifier (GHC), considers 

the TPC-H (Heavy DSS or HD) and the Browsing profile (Light DSS or LH) as different 

intensities or shades of DSS workloads, and the TPC-C (Heavy OLTP, or HO) and the 
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Ordering profile (Light OLTP, or LO) as different shades of OLTP workloads in its 

recognition (Figure 7). In other words, GHC attempts to qualitatively analyze the 

different aspects of the DSS and OLTP elements in the workload by reporting the 

concentration of each workload shade comprising each type. Besides having practical 

advantages, with respect to adopting finer tuning strategies that suit different shades of 

each workload type, GHC demonstrates that our approach can be applied to workloads of 

more than two types.  

The remainder of this chapter is organized as follows. Section �4.3 describes our 

approach to the problem and the selection criteria for the snapshot attributes. We then 

outline our methodology and how to compose the snapshots. Section �4.4 describes the 

sets of experiments with the four classifiers, and discusses the results obtained from 

experimenting with the benchmark and industry-supplied workloads.  

4.3 APPROACH  

We view the problem of classifying DBMS workloads as a machine-learning problem in 

which the DBMS must learn how to recognize the type of the workload mix. The 

workload itself contains valuable information about its characteristics that can be 

extracted and analyzed using data mining tools. Our approach is to therefore use data 

mining classification techniques, specifically Decision Trees Induction [65], to build a 
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classification model.  One of the advantages of using decision tree induction is its high 

interpretability, that is, the ease of extracting the classification rules and the ability to 

understand and justify the results, in comparison with other techniques such as neural 

networks. 

4.3.1 Overview 

Classification is a two-step process. In the first step, we build a model (or classifier) to 

describe a predetermined set of data classes. The model is constructed by analyzing a 

training set of data objects. Each object is described by attributes, including a class label 

attribute that identifies the class of the object. The learned model is represented in the 

form of a decision tree embodying the rules that can be used to categorize future data 

objects. In the second step, we use the model for classification. First, the predictive 

accuracy of the classifier is estimated using a test data set. If the accuracy is considered 

acceptable (for example, reporting that 80%, or more, of the tested snapshots are 

classified as DSS or OLTP when we attempt to identify a DSS -or OLTP-deemed 

workload), the model can be used to classify other sets of data objects for which the class 

label is unknown.  

For our problem, we define the DSS and OLTP workload types to be the two predefined 

data class labels. The data objects used to build the classifier are performance snapshots 

taken during the execution of a training database workload. Each snapshot reflects the 

workload behavior (or characteristics) at some time during the execution and is labeled as 

being either OLTP or DSS. We tried building our classifiers using two methods. We used 

the SPRINT [84], a fast scalable decision-tree based algorithm, and the neural network 

(NN) classification using feed-forward network architecture and the back-propagation 
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learning algorithm. Both algorithms are implemented in IBM® DB2® Intelligent Miner� 

Version 6.1 [48], which we used to design and configure our classifiers.  

We found that the decision tree classification method is better for our problem than the 

neural network method for several reasons. First, the decision tree method, as expected, is 

easier to use and to set up than the neural networks method. Second, it is easier to 

interpret and explain the results from the decision tree method. Third, the decision tree 

method provides the ability to assign weights to the attributes that reflect the importance 

of the attributes to the decision process. Finally, the decision tree method achieved a 

higher accuracy in tests than the neural network algorithm. Table 9 describes the settings 

we used in the decision tree algorithm that we adopted in implementing our methodology. 

4.3.2 Snapshot Attributes 

The data objects needed to build the classifier are performance snapshots taken during the 

execution of the database workload. Each snapshot reflects the workload behavior at 

some time during the execution. We use the following criteria to select the snapshot 

attributes: 

1. Relevance. Select attributes that play a role in distinguishing between DSS and 

OLTP mixes. 

2. Accessibility from the System. Select attributes that are readily and inexpensively 

obtainable from the DBMS or the operating system at run time.  

3. Low System-Dependence. Select attributes that are less sensitive to changes in the 

system settings or to DBMS configuration parameter changes. System settings 

include operating system resource allocations, such as memory and CPUs, and the 
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database schema. DBMS configuration parameters include buffer pool sizes, sort 

heap size, isolation level, and the number of locks. 

We first considered the following list of candidate attributes for the workload snapshots:  

1. ���������	
���
�: The ratio of SELECT statements versus Update/Insert/Delete (UID) 

statements, which is usually higher in DSS than OLTP.  

2. � 	���� ��	� : DSS transactions usually access larger portions of the database than 

OLTP transactions. 

3. ��� �� � ����
�� : Although a DSS query tends to summarize information, it may still 

return more rows than an OLTP query. 

4. � ������� �
: The number of SQL statements executed during the snapshot is 

expected to be higher in OLTP than DSS. 

5. � ��� ��� ��� � ��� �� � ��� : DSS transactions are typically larger and longer than OLTP 

transactions so we expect more locks are held during the execution of a DSS 

transaction than an OLTP transaction. 

6. �	
��� ���  ��!�� "!� �# ��� �
�: We expect the ratio of data pages obtained from indexes 

versus the pages obtained from other database objects, such as tables, in order to 

satisfy a query to be higher in an OLTP workload than DSS. 

7. � ��� ��� ��� � ��
�: DSS transactions typically perform a larger number of sorts than 

OLTP transactions. 

8. $% ��	���� ��
�� ���: Sorts in DSS transactions are usually more complex than the sorts 

performed in OLTP transactions so they usually take longer time to complete. 
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9. � ����!�: This denotes the number of pages read/written from/to the log file of the 

database. An OLTP workload generates more logging activity than a DSS 

workload because of the read/modify nature of the OLTP transactions. 

10. � �
��	
����
�: OLTP workloads have a higher degree of locality than DSS workloads 

and hence OLTP workloads may experience a higher hit ratio on the buffer pool 

cache area. 

11. � 	����� �	!!�� : DSS applications typically access large numbers of sequential pages 

due to the substantial amount of full-table/index scan operations. OLTP 

applications typically access relatively few random pages. 

We consider the Browsing and Ordering profiles defined in the TPC-W benchmark [91] 

as examples of DSS and OLTP workloads, respectively. Figure 8 shows the relative 

values, with the DSS values normalized to 1, for a set of candidate attributes. The values 

are derived from experiments with the TPC-W workloads on DB2 Universal Database.  
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Figure 8. Candidate attributes for snapshot objects 
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The candidate attributes are all easily obtainable by the DB2 Snapshot Monitor and most 

of them, as illustrated in Figure 8, are relevant. Based on the selection criteria discussed 

above, we eliminated 
������� �
� 	!� � ��
� �	
��&� � ������� �
 is dependent on the current system 

utilization and the presently available system resources such as CPUs and memory. � �
��	
�� 

is strongly affected by the DBMS configuration, which can include buffer pool sizes and 

the assignment of database objects to these pools. 

The remaining attributes are not equally system-independent. Therefore, as shown in 

Table 7, we group the attributes into three classes based on their degrees of system-

dependence and assign different weights to each class of attribute to reflect their 

significance to the classification process. We arbitrarily assign weights of 1.0, 0.75, and 

0.3 to low-, medium-, and high-dependence attributes, respectively7. �������� �	
��, � 	����

��	� , ��� ��� ����
�� , � 	����� �	!!�� ' and � ����!� are the least sensitive to changes in the system 

configuration. � ��� ������� ��
� and �	
������ ��!��"!� �# �� are somewhat sensitive to configuration 

changes that are likely to occur infrequently, such as changing the current available set of 
                                                 

7 These weights are independent of any product or system settings we are using. Any other reasonable numbers that 
serve in ranking the attribute classes are acceptable. 

 

System-Dependence Snapshot Attribute Weight 
���������	
��� 1.0 

� 	������	� � 1.0 

��� ��� ����
�� � 1.0 

� 	����� �	!!�� � 1.0 

Low 

� ����!�� 1.0 

� ��� ������� ��
�� 0.75 Medium 

�	
������ ��!��"!� �# ��� 0.75 

� ��
�� ���� 0.3 High 

� ��� ������� ��� ��� ��� � 0.3 

Table 7. Categorizing the snapshot attributes  
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indexes or views in the database schema. � ��
� � ��� and � ��� ��� ��� � ��� �� � ���  are the most 

sensitive to changes in the system configuration and hence they are assigned the lowest 

weights8.  

                                                 

8 � ��� ��� ��� � ��� �� � ���  is dependent on the isolation level, the lock escalation, the application activity, and the 

application design. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 9. The methodology of constructing a workload 
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4.3.3 Methodology 

Figure 9 illustrates the process of constructing a workload model classifier. We run 

sample DSS and OLTP workloads and collect sets of snapshots for each one. We label the 

snapshots as OLTP or DSS and then use them as training sets to build the classifier. We 

need to choose a snapshot interval such that there are sufficient training objects to build a 

classifier and the interval is large enough to contain at least one completed SQL 

statement. 

With a snapshot interval of one second, we observed that many SQL statements 

complete within that size interval in an OLTP workload. This is not the case, however, for 

DSS workloads that contain complex queries that are too long to complete within one 

 

 

 

 
 

 

 

 

 

 

 

Figure 10. Using the workload classifier to identify unknown workload mixes 
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second. We therefore dynamically resize the snapshots by coalescing consecutive one-

second raw snapshots until we encompass at least one statement completion. We then 

normalize the consolidated snapshots with respect to the number of SQL statements 

executed within a snapshot. Consequently, each normalized snapshot describes the 

characteristics of a single SQL statement. During this training phase, we usually run each 

workload type (DSS and OLTP) for about 20 minutes, producing a total of 2400 one-

second, raw snapshots to process. 

After training, we use the generated classifier to identify the OLTP-DSS mix of a 

given workload as shown in Figure 10. We run the new workload for about 10-15 minutes 

(producing 600-900 raw snapshots) and produce a set of consolidated snapshots as 

described above. We then feed these snapshots to the classifier which identifies each one 

as either DSS or OLTP, supporting this decision by a confidence value between 0.0 and 

1.0 that indicates the probability that the class of the snapshot is predicted correctly. For 

more reliability, only snapshots with high confidence values, greater than 0.9, are 

considered. On average, we observed that over 90% of the total snapshots examined 

satisfy this condition. Eventually, we compute the workload type concentration9 in the 

mix, tC , as follows:  

100×=
S
N

C
t

t  

where t ∈ {DSS, OLTP}, tN  is the number of snapshots that have been classified as t, 

and S is the total number of snapshots considered. 

                                                 

9 In the remainder of the paper, we will sometimes express this concentration exclusively in terms of the DSS 
percentage (or DSSness) in the mix. The OLTP percentage is the complement of the DSSness, that is, 100 – DSSness. 
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4.4 EXPERIMENTS 

Initially, we constructed two classifiers for our experiments. Classifier (O, B), was built 

using the TPC-W Ordering and Browsing profiles as the OLTP and DSS training 

workloads, respectively.  Classifier (C, H) was built using the TPC-C and TPC-H 

benchmarks as the OLTP and DSS training workloads, respectively.  We ran each 

training workload for approximately 20 minutes and collected snapshots every second. 

The important properties of the experimental setup for these runs are summarized in 

Table 8 and Table 9. 

Figure 11 shows the pruned decision tree for Classifier(O, B). The appearance of the 

�������� �	
�� attribute at the root of the tree reveals its importance in the classification 

process. On the other hand, some attributes, namely, � ����!�, � ��� ������� ��
�, and � ��
�� ���, are 

no longer part of the decision tree since they have a limited role in distinguishing between 

Workload OS DB Scale Memory CPU Remarks 

TPC-W Windows® 
2000 
Professional 

10,000 items 512 MB Pentium III, 
733 MHz 

100 Emulated Browser; all 
profiles 

TPC-H Windows® 
2000 Server 

1GB 512 MB 8-way 
Pentium II 
200 MHz 

Throughput test; 25 streams 

TPC-C Windows 
NT® 
Server 4.0 

100 Warehouses 3 GB 4-way 
Pentium II 
200 MHz 

 

Table 8. Benchmark settings used with DB2 Universal Database Version 7.2. 

Settings used in the DB2 Intelligent Miner 

Maximum Tree Depth No Limit Imposed 

Maximum Purity of Internal Node 100 

Minimum Records Per Internal Node 5 

Attribute Weights See Table 7 

Error Matrix None 

Table 9. Parameters settings used for the SPRINT classification 
algorithm  
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DSS and OLTP snapshots. The appearance of the � ��� ��� ��� � ��� �� � ���  attribute at lower 

levels of the tree reflects its low significance in the classification process. This outcome 

might be partially influenced by the lesser weight we assigned to it.  

Figure 12 shows the decision tree of Classifier(C, H). It consists of a single node, 

namely a test against the ���������	
�� attribute. Apparently, this single test is sufficient to 

distinguish between TPC-H and TPC-C since the two workloads lie at the extreme ends 

of the DSS-OLTP spectrum.  

We conducted three sets of experiments to evaluate the classifiers. The first set of 

experiments evaluates the prediction accuracy of the classifiers by inputting new samples 

from the training workloads. The second set of experiments evaluates the robustness of 

the classifiers with respect to changes in the mix concentration of the initial workloads, 

 

 

Figure 11. The pruned decision tree for Classifier(O, B). A classification rule is shown. 
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and with respect to changes to the system configuration. The third set of experiments 

examines the genericness of the classifiers, that is, their ability to recognize the mix of a 

different workload.  We use both benchmark workloads and industry-supplied workloads 

in these experiments. The benchmark workloads were run on DB2� Universal 

Database� Version 7.2 [49]. The core parameters for the workloads are shown in Table 

8. 

4.4.1 Prediction Accuracy 

Figure 13 shows the results of testing Classifier (O, B) against test samples drawn from 

the Browsing and Ordering profiles. We use the standard three-fold, cross-validation . It 

shows that Classifier(O, B) reports that approximately 91.6% of the snapshots in the 

Browsing workload are DSS while the rest, 8.4%, are OLTP, whereas it reports that 

approximately 6.2% of the snapshots in the Ordering workload are DSS while the rest, 

93.8%, are OLTP. Similarly, when we applied Classifier(C, H) on test samples drawn 

from TPC-C and TPC-H, it reported that the samples were 100% OLTP and 100% DSS, 

respectively. Based on our understanding of the characteristics of these standard 

 
Figure 12. The classification 
tree of Classifier(C, H) 
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Figure 13. Classifier(O, B) identifying Browsing and 
Ordering workloads 
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workloads, and on their description in the benchmark specifications, these results meet 

our expectations.  

4.4.2 Robustness 

We use the Shopping profile, a third mix available in TPC-W, to evaluate the ability of 

the workload classifiers to detect variation in the type intensity of a workload10. As seen 

in Figure 14, Classifier (O, B) reports 75.2% of the Shopping profile is DSS, which 

means that the Shopping is closer to Browsing than Ordering. This finding matches the 

TPC-W specifications, which leads us to believe that the classifier has effectively learnt 

the characteristics of the TPC-W workload and is able to accurately sense variation in the 

workload type intensity.  

We also examine a classifier’s tolerance to changes in the system configurations. For 

the construction of the classifiers discussed above we ran the training workloads with 

DB2 Universal Database under the default configuration and with 512MB of main 

memory. We then tested these classifiers against workloads run on a poorly configured 

                                                 

10 Note that our classifiers have never been trained on the Shopping profile. 
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Figure 14. Identifying the Shopping profile. 
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DB2. Specifically, and in order to cause a dramatic confusion to the classifiers, we ran the 

Browsing profile on a system configured for OLTP and we ran the Ordering profile on a 

system configured for DSS. Furthermore, the total memory available for the DBMS was 

reduced to 256MB in order to cause additional impact on the system. Figure 15 shows 

that, even under these changes, Classifier (O, B) still shows high degrees of accuracy and 

tolerance to system changes. The predictions reported under the changed system 

configurations deviate from those of the original by 1%-4%, which is not significant. 

����� ������	��

��
����

�
�����������������

�
����������

In order to evaluate the general usefulness of the classifiers, we test whether a classifier 

trained on particular workload mixes can be used to recognize the workload mixes of 

another workload. We tested Classifier(C, H) and Classifier(O, B) with both benchmark-

generated workloads and industrial workloads. 
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Figure 15. Classifier(O, B) is robust against 
changes in the system configuration 
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4.4.3.1 Benchmark Workloads 

Figure 16 shows that both Classifier (O, B) and Classifier(C, H) can accurately identify 

the workload types in the TPC-C and TPC-H workloads. Figure 17 compares the 

prediction accuracy of the two classifiers against the three mixes of TPC-W. Classifier(C, 

H) shows poor results due to its simple, single rule derived from the two extreme 

workloads. We conclude from these results that a single rule is not good enough to 

distinguish between the mixes of a moderate workload like TPC-W.  

4.4.3.2 Industrial Workloads  

Our industrial workloads are samples provided by three global investment banking firms, 

which we identify simply as Firm-1, Firm-2, and Firm-311. They each provide online 

financial services including investment research tools and functions for creating and 

                                                 

11 We appreciate IBM's help in getting production workloads from these major firms. The firms prefer to 

remain anonymous at this time. 
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Figure 16. Classifier(C, H) and Classifier(O, B) 
identifying TPC-C and TPC-H 
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tracking orders. Based on descriptions of the applications provided by the firms, we 

extrapolate that the characteristics of workloads of these firms resemble the TPC-W 

profiles workloads. Therefore, we assume that Classifier(O, B) is the most appropriate 

classifier for their workloads.  Table 10 summarizes the results of our experiments with 

the industrial workloads using all of our classifiers (hybrid classifiers will be explained in 

the next section).  

Firm-1 provided several workload samples from an online decision support system 

that helps investors and shareholders to get the most recent information about the market 

status in order to help them balance their portfolios and make knowledgeable financial 

decisions. We noticed a resemblance between the characteristics of Firm-1’s workload 

and of the Browsing profile so we tried identifying this workload type using Classifier(O, 

B). As shown in Table 10, Classifier(O, B) reported 90.96% of DSSness, which meets our 

expectations. On the other hand, Classifier(C, H) failed in its identification (62.77% 

DSSness).  
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Figure 17. Classifier(C, H) and Classifier(O, B) 
identifying the profiles of TPC-W 
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Firm-2 provided samples from both DSS and OLTP workloads. The DSS workload is 

characterized by complex queries accessing a large fact table (over 3 million rows) and 

performing join operations with five other small tables. The OLTP workloads, on the 

other hand, consist mostly of transactions that involve INSERT, UPDATE, and DELETE 

SQL statements and many simple SELECT statements. Table 10 shows the concentration 

of DSS work in Firm-2’s workloads reported by both classifiers. Classifier(C, H) was 

able to correctly identify the DSS concentration in the DSS workload but failed with the 

OLTP workload. This failure is again due to the simplicity of this classifier, which relies 

solely on the ratio of the queries (that is, �������� �	
��� attribute) in the mix. The OLTP 

workload was mistakenly classified as 100% DSS because it contained a substantial 

number of queries. Classifier(O, B), on the other hand, correctly identified the Firm-2’s 

workload types, which is another indication of the need for a more complex decision tree 

with more multiple-attribute rules in the general case. 

 Firm-3 provides customers with a set of DSS-like functions to search for stock 

information and a set of OLTP-like functions to place orders and manage accounts. They 

also include administrative tasks such as making money transfers among accounts, and 

Classifier(C, H) Classifier(O, B) HC GHC Firm DBA’s 
Opinion 

DSS OLTP DSS OLTP DSS OLTP HD LD LO HO 

1 Peak 
DSS 

62.77% 37.23% 90.96% 9.04% 89.79% 10.21% 0% 88% 11% 1% 

Peak 
DSS 

100% 0% 98.7% 1.3% 100% 0% 0% 98.7% 1.3% 0% 2 

Peak 
OLTP 

100% 0% 0% 100% 0% 100% 0% 0% 100% 0% 

Peak 
DSS 

100% 0% 100% 0% 100% 0% 0% 100% 0% 0% 3 

Peak 
OLTP 

3.13% 96.87% 0% 100% 0% 100% 0% 0% 90.62% 9.38% 

Table 10. Recognition of Industrial Workloads Using All Types of Classifiers 
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changing account and trading passwords. The different DSS and OLTP samples collected 

from this firm were collected in a more controlled environment as we monitored test 

systems, which made it relatively easy to determine when to collect relatively pure DSS 

and OLTP workload mixes. Table 10 shows that Classifier(O, B) and Classifier(C, H) 

successfully identify the DSS workload (DSSness = 100%) and the OLTP workload 

(OLTPness >  95%) of Firm-3.  

4.4.4 Constructing Generic Classifiers  

Notwithstanding the success of Classifier(O, B), the above results obtained from 

assessing the genericness of the two classifiers lead us to believe that a classifier trained 

on a particular workload should not be expected to be universally good at identifying 

other workloads, especially if the other workloads have different characteristics. Every 

workload is a mix of its own set of SQL statements with their own characteristics. 

Nevertheless, we argue that we can construct a more generic classifier, a hybrid classifier, 

by training it on different flavors of DSS and OLTP mixes in order to derive more generic 

rules that can recognize a wider range of workloads. We believe that a hybrid classifier 

can be made more generic by training it on different samples drawn from different flavors 

of DSS and OLTP workloads. Such training should empower the prediction accuracy 

because the classifier would attempt to come up with rules that could take into account a 

wider variety of different workload characteristics. In the subsequent sections we describe 

two hybrid classifiers we built and evaluated, namely the Hybrid Classifier (HC) and the 

Graduated Hybrid Classifier (GHC). 
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4.4.4.1 Hybrid Classifier (HC) 

The hybrid classifier (HC) is trained on different samples drawn from different 

characteristics, or flavors, of DSS and OLTP workloads. This should improve the 

prediction accuracy because the classifier would attempt to come up with rules that take 

into account a wider variety of workload properties. We consider the Browsing and the 

TPC-H workloads as flavors of DSS and the Ordering and the TPC-C workloads as 

flavors of OLTP. Figure 18 shows the pruned decision tree of HC, which looks 

structurally similar to the pruned tree of Classifier(O, B), but is different with respect to 

its rules. 

 

Figure 18. The decision tree of the hybrid classifier (HC) 
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4.4.4.2 Graduated Hybrid Classifier (GHC) 

For the purpose of effectively configuring a system, it is useful to distinguish between a 

heavy DSS (HD) workload, such as TPC-H, and a light DSS (LD) workload, such as the 

Browsing profile. The same thing is true for a heavy OLTP (HO) workload, such as TPC-

C, and a light OLTP (LO) workload, such as the Ordering profile.  

The Graduated Hybrid Classifier (GHC) improves upon HC by explicitly recognizing 

a wider variety of workloads, specifically classes HD, LD, LO and HO (Figure 19). GHC 

demonstrates the ability of our methodology to devise a classifier whose rules can 

 
Figure 19. A snapshot of the GHC tree classifying four types of workloads.  
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identify finer differences among workloads. In other words, our methodology is able to 

handle the case of multiple workload types.  

We hypothesize that the DSS and OLTP percentages reported by the HC are the sums 

of the HD and LD percentages, and HO and LO percentages reported by the GHC, 

respectively. The results of our experiments validate this hypothesis, as we explain next. 

4.4.4.3 Evaluating the Generic Classifiers 

We compare the performance of the HC and GHC with the results reported by the 

specialized classifier (Classifier(C, H) or Classifier(O, B)) that we found to be the best at 

identifying a particular workload sample. We again tested our classifiers with both 

benchmark-generated workloads and industrial workloads. 

4.4.4.3.1 Benchmark workloads 

Figure 20 shows the prediction accuracy of HC, tested on different testing samples drawn 

from the various benchmark workloads. The reported DSSness percentage is extremely 

close to what was reported by each workload’s genuine classifier. Figure 21 shows the 
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Figure 20. Prediction accuracy of HC  
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results of the GHC’s analysis of the various TPC-generated workloads. This analysis 

decomposes each workload into four components: HO, LO, LD, and HD. Note how it is 

rare to observe any HD or HO in the moderate TPC-W profiles. Similarly, the presence of 

the light workloads of TPC-W profiles is very little in the extreme workloads of TPC-C 

and TPC-H (there is 3.56% of LD in the TPC-H, which is very small). We conjecture that 

the more varieties of workload types with which the hybrid classifiers are trained, the 

more generic and useful they become. 

4.4.4.3.2 Industrial Workloads 

 The results of our experiments in Section �4.4.3 confirmed our assumption that 

Classifier(O, B) is the most appropriate classifier for identifying the workloads of the 

three e-business firms. Therefore, we should compare the performance of the two generic 

classifiers with the performance of Classifier(O, B).  

As seen in Table 10, Classifier(O, B) reported 90.96% of DSSness in Firm-1’s peak DSS 

workload, and HC reported a similar percentage, 89.79%. GHC also reported a similar 
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Figure 21. GHC’s analysis of TPC-generated workloads 
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percentage of DSSness, namely 88%, but made the further distinction that this was all 

light DSS (LD). GHC also indicated that the OLTP portion in Firm-1’s workload is 

actually a mix of LO (11%) and HO (1%). 

Table 10 shows that all classifiers, including HC, assigned a high DSSness (almost 

100%) to Firm-2’s peak DSS workload. However, GHC makes the further differentiation 

that the workload is all LD, which is correct. Likewise, Classifier(O, B), HC and GHC all 

recognized the high percentage of OLTPness (100%) in Firm-2’s peak OLTP workload.  

With respect to Firm-3’s workloads, we found that all of the four classifiers were able to 

correctly recognize Firm-3’s peak DSS and peak OLTP workloads (Table 10). GHC 

makes the further distinction that the OLTP workload is composed of 90.62% of LO and 

9.38% of HO.  

GHC is more practical because it gives a qualitative dimension to what is being 

reported as DSS and OLTP. We also observe that the total sum of HD and LD workloads 

reported by the GHC is almost equal to the DSSness reported by the HC. Similarly, the 

total sum of HO and LO workloads, reported by the GHC, is almost equal to the 

OLTPness reported by the HC. The results lead us to conclude that GHC produced good, 

finer classification rules that are able to distinguish among the various shades of DSS and 

OLTP workloads. 

4.5 SUMMARY  

In order to manage their own performance automatically, autonomic DBMSs must be 

able to recognize important characteristics of their workload, such as its type. In this 

chapter, we present a methodology by which a DBMS can learn how to distinguish 

between today’s two dominant workload types, namely DSS and OLTP. Our 
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methodology uses classification techniques from data mining to analyze performance data 

available from a DBMS to build a classifier for that workload. Once built, the classifier 

can be used to detect if the workload shifts from one type to another and to evaluate the 

relative intensity of each type at a point in time.  

We demonstrate our methodology by creating and evaluating two classifiers. One 

classifier, Classifier (O, B), is built using the TPC-W Ordering and Browsing profiles as 

the OLTP and DSS training sets, respectively. The second classifier, Classifier (C, H), is 

built using the TPC-C and TPC-H benchmark workloads as the OLTP and DSS training 

sets, respectively. The key difference between the two classifiers is the complexity of 

their decision trees. Classifier (C, H) consists of one single-attribute rule, namely a test 

against the �������� �	
��, while Classifier (O, B) uses several multi-attribute rules to 

distinguish DSS from OLTP. We found the single-attribute classifier did not identify 

general workloads as well as the multi-attribute classifier.  

We present three sets of experiments with the classifiers. The first set of experiments 

shows the validity of the classifiers since they are able to accurately recognize different 

test samples from their base workloads. The second set of experiments shows the 

robustness of the classifiers. Classifier (O, B) is able to accurately determine the relative 

concentration of DSS and OLTP work within the Shopping profile, which is a variation of 

its base workloads. Classifier (O, B) is also shown to be able to accurately recognize its 

base workloads under different system configurations. The third set of experiments 

examines the genericness of the classifiers. In these experiments we used both benchmark 

and industrial workloads. We found that Classifier (C, H), because of its trivial decision 

tree, was not able to adequately recognize some general workloads. Classifier (O, B), on 

the other hand, had good results with both the benchmark and industrial workloads.  
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We believe that our experiments indicate that, despite the fact that every workload is a 

mix of its own set of SQL statements with their own characteristics, we can construct a 

generic classifier that is able to recognize a wide range of workloads. Therefore, we 

presented and evaluated two generic workload classifiers for automatically recognizing 

the type of the workload.  

The Hybrid Classifier (HC) was constructed with training sets that represent a wider 

range of different characteristics, or flavors, of DSS and OLTP workloads. Our 

experiments show that such a training method improves the performance of the HC over 

our previous classifiers because it forces the creation of more sophisticated rules that are 

capable of recognizing the different flavors of DSS and OLTP work.  

The Graduated-Hybrid Classifier (GHC) improves upon HC by also reporting on the 

workload flavors (light and heavy), and their concentrations, that constitute these DSS 

and OLTP portions in the analyzed sample. In addition to the practical benefits of being 

able to make finer distinctions, GHC demonstrates that our method is able to construct 

classifiers for more than two workload types.  

Our experiments with benchmark workloads and the industry-supplied workloads 

confirmed that the total DSSness reported by the HC is almost equal to the summation of 

its components, the HD and LD, reported by the GHC. Similar results were observed with 

respect to the OLTPness and its components, HO and LO. This reflects the accuracy of 

the predictions of the hybrid classifiers. 

  The good results obtained from testing the generic classifiers make us believe that it is 

feasible to consider incorporating them into a DBMS to tune, or at least help tune, the 

system. DB2 Universal Database v8.1, for example, includes a Configuration Advisor 

that defines settings for critical configuration parameters for a DB2 database based on 
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workload characterization, and system environment. While the Configuration Advisor is 

able to automatically detect its physical system environment through programmatic 

means, it requires descriptive input from either a human operator or a calling application 

to define characteristics of the workload environment (Figure 22).  A workload 

classification engine, such as the one described in this chapter, would automate the 

classification process, obviating the need for the user to provide some of the key input to 

the Configuration Advisor.  

  Automatic classification within the Configuration Advisor would allow for the 

automatic generation of settings for operational parameters such memory allocations 

(sort, buffer pools, lock space, communication buffers, etc), parallelism degrees, 

aggressiveness of page cleaning or prefetching, and query optimization depth, whose 

internal modeling are a function of the workload classification.  In many cases, it is 

 
 

Figure 22. The type of the workload is yet a decision that human has to make 
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reasonable to expect the classifier to more accurately identify the operational workload 

than a human operator. 

Note that our approach is independent of any specific DBMS or classification tool. 

Moreover, and based on the criteria we set, the snapshot attributes we selected are the 

result of a comprehensive study of more than 220 performance variables. These variables 

are commonly available in today’s commercial DBMSs such as DB2 and Oracle�[707����

���������)������.��������%��)�����)�����������������)�����������������8�

Workload classifiers can be useful and put into practice in different ways. One 

approach of incorporating the classifiers into DBMSs is to provide a set of prefabricated, 

ready-to-use workload classifiers for different popular workload types. A second 

approach is to adopt one of the hybrid classifiers that is trained on a wide variety of 

workloads. 

  Furthermore, a feedback mechanism can be established between the workload classifier 

and the DBA, which would allow the DBA to understand and correlate the currently 

observed performance with the workload type reported by the classifier. This would help 

the DBA develop better performance-tuning strategies. The feedback would allow DBAs 

to corroborate the workload type reported by the classifier and to determine if any 

retraining is necessary in order to improve the classifier’s prediction accuracy. 

 The classification methodology we used follows the guidelines of the characterization 

framework presented in the previous chapter. For example, in the Requirements Analysis 

Phase, we decided to do resource-oriented characterization for the low-level performance 

attributes (e.g., # of pages read and avg. sort time) of SQL statements (Basic Workload 

Components). In this chapter, we described what workload attributes we need to analyze 

and the criterion behind their selection. In the Model Construction Phase, we used the 
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DBMS monitors to collect performance data. These data were preprocessed and stored in 

traditional text files as their volume does not warrant the use of a DBMS. In our analysis, 

we ultimately used data mining with some basic statistical analysis. The final workload 

model is represented by a decision tree produced from the classification algorithm. In the 

Validation Phase, we tested this model using independent workload samples in order to 

validate the prediction accuracy of the classification tree. 
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CHAPTER 5 WORKLOAD PREDICTION 

5.1 PROBLEM AND MOTIVATION 

In the previous chapters, we explained the need for autonomic systems that manage 

themselves in light of the characteristics of their workload. We specifically discussed how 

important it is for a complex system such as a DBMS to automatically recognize the type 

of its workload, namely whether it is OLTP or DSS, in order to tune its performance. We 

also presented a classification methodology by which the DBMS can identify the type of 

the workload automatically.  

However, identifying the type of the workload is just the beginning. A DBMS may 

experience changes in the type of workload it handles during its normal processing cycle. 

For example: 

• when new data are rolled in to or rolled out from a warehouse vs. when analysts are 

querying it.  

• a bank may experience an OLTP-like workload by executing the traditional daily 

transactions for most of the month, while in the last few days of the month, the 

workload becomes more DSS-like due to the tendency to issue financial reports and 

run long executive queries to produce summaries. 

• In the money market, traders may exhibit some daily pattern as they access the 

information systems of their brokers [92]. For example, in the early hours of the 

market, traders tend to intensively query the system in order to analyze historical 

performance of the market and to analyze some candidate stocks. After this phase of 

analysis, traders may place financial transactions (buying, selling, etc.) for the rest of 



 100 

the morning session. At noon, and during lunch hour, they keep querying the system 

in order to keep track of the progress of their portfolio. The early afternoon session 

may be a mix session of placing new transactions and monitoring the performance of 

the current holdings. In the late hours of the day, near the closing time of the market, 

traders tend to aggressively submit orders in order to close their financial positions or 

to open new ones for the next day. After the market closes, the system dominantly 

experiences a DSS-like workload as traders analyze the day's performance and assess 

the status of their portfolio. 

We believe that such changes can be predictable by analyzing historical data. 

Therefore, it is not enough for autonomic DBMSs to identify the current type of the 

workload, but also to predict when a change in the workload type will occur. We could 

simply keep the workload classifier activated and monitor the system constantly to sense 

significant shifts of workloads. However, this approach imposes undesirable overhead 

and perturbation on the system. We found in our experiments that running the workload 

classifier reduces the throughput of the DBMS by 10% on average. Moreover, if each 

newly introduced autonomic feature does not take care to reduce its operational cost, this 

incremental introduction of features and functions could lead to accumulative overhead 

that threatens to undermine the very benefits autonomic computing aims to provide. 
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The goal of this chapter is to propose an alternative, more efficient solution by which 

the DBMS can learn about a workload's dynamic behavior over time and forecast when a 

change in the workload type might occur in order to proactively reset the DBMS 

parameters to suit the new workload. It is important to realize that the workload 

prediction problem builds on top of the work on workload identification, and 

complements it as illustrated in Figure 23. The workload classifier’s job is to assess the 

DSSness of the workload at a given time. The workload prediction architecture, after it 

analyzes a time series of DSSness, forecasts major shifts in the DSSness and alerts the 

DBMS of these shifts. Major shifts are formed when the DSSness reaches predefined 

thresholds that warrant reconfiguring the DBMS. These thresholds divide the DSSness 

range into three zones that lead to the identification of three main workload types: OLTP, 

MIX, and DSS. 

This chapter is structured as follows. Section �5.2 discusses the possible prediction 

approaches that can be used to identify workload shifts. Section �5.3 presents a high-level 

 

 

 

 

 

 

 

 

 

 

 

Figure 23. The integration between the workload classifier and predictor 
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description of our approach and our prediction architecture. Sections �5.4, �5.5, and �5.6 

provide a detailed description of the core components of the architecture. Section �5.7 

describes the various operation modes that a DBMS can adopt in order to be workload-

aware. Section �5.8 evaluates the performance of our prediction approach and compares it 

with other operation modes.  

5.2 PREDICTION APPROACHES 

Initially, we can think of solving this prediction problem by one of two approaches: 

1. On-line Prediction. Some prediction problems that attempt to detect the idle periods 

in computer systems use on-line prediction techniques [35] that require continuous 

monitoring of the system as long as it is on-line and operational. This approach aims 

to forecast (using, for example, moving averages or exponential smoothing 

techniques) very near-future events such as when a disk becomes idle so the system 

can spin it down in order to save energy.   

On-line prediction is usually done by constantly collecting data about a single 

performance index in the system, such as the number of I/O accesses, and by 

analyzing its fluctuation over time. Such data represent a single time series. Our 

workload type prediction problem resembles idleness detection problems in some 

aspects, and differs from them in others. It is similar to idleness detection problems in 

the sense of using the DSSness index as the single time series that fluctuates over time 

as a reflection of the change in the concentration of the DSS-OLTP mix in the 

workload. If the DSSness rises, the higher the intensity of the DSS mix is in the 

workload.  
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However, the major difference between our problem and the traditional idleness 

prediction problem is that the latter counts on monitoring one basic, primitive 

performance index collected at run-time in such a way that does not impose 

significant overhead on the system. In contrast, our DSSness index, produced by the 

workload classifier, is a metric resulting from a non-trivial analysis of several 

performance variables (snapshot attributes) collected on-line from an intricate system 

such as the DBMS. This inevitably causes extra overhead on the system and impairs 

its performance.  

2. Off-line Prediction. Another way of predicting workload type changes is by 

performing a one-time, off-line analysis. This approach is useful for data that are 

relatively easy to forecast as they likely exhibit a certain cyclical patterns over a time 

window (e.g., daily or weekly). Based on our experience, the workload type 

prediction problem is a good candidate for this approach due to the low volatility of 

change of workload type in real systems. A change typically occurs over several hours 

as a result of users’ tendencies to run particular types of applications at certain times.  

This one-time, off-line analysis, however, is less trustworthy than the on-line 

prediction because exceptional behavior may occur during the course of the day in a 

way that contradicts the suggestion made by the off-line predictor. Consequently, if 

the DBMS puts absolute trust in the off-line prediction and resets its parameters 

accordingly then performance could dramatically degrade and the penalty of such a 

wrong prediction becomes very costly.  
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5.3 THE PSYCHIC-SKEPTIC ARCHITECTURE 

There are three possible operation modes12 under which the DBMS can operate with 

respect to workload type. The first operation mode is the Default Mode in which the 

DBMS uses the default, out-of-the-box settings that suit mixed workloads in general. The 

second mode is Dominant Workload Mode in which the DBMS is tuned to suit the 

dominant workload throughout the day. The third mode is the Continuous Monitoring 

Mode in which the DBMS counts on on-line prediction operations in order to forecast 

near future shifts in the workload type. 

We propose a fourth mode that uses the Psychic-Skeptic architecture. This architecture 

                                                 

12 More details about these modes are provided in Section �5.7. 

 

Figure 24. Psychic-Skeptic Architecture 
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takes advantage of the combination of the online and off-line predictive approaches in 

order to make effective, low cost predictions. Note that our focus is on repeatable, daily 

patterns and we are not concerned with handling bursts that may suddenly occur during 

the day for some unexpected reason. For example, as a response to an unscheduled, 

managerial request, the DBA may run a reporting-intensive application in order produce 

the required summaries. Such bursts are considered exceptions because they do not form 

a regular pattern in that business.  

As depicted in Figure 24, the Psychic-Skeptic architecture consists of three main 

components: the TrainingDataModel, the Psychic, and the Skeptic. The premise of the 

prediction architecture is as follows. The Psychic analyzes a daily time series of DSSness 

stored in the TrainingDataModel and produces an off-line prediction model, polynomial 

f(x), that can estimate major shifts in the DSSness with respect to some DSSness 

thresholds (see Figure 25).  These shifts are passed to the Skeptic who does not give 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25. The Skeptic verifies the Psychic's predictions 
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absolute trust to the Psychic’s predictions. Rather, the Skeptic keeps monitoring the 

system time in order to intercept the nearest upcoming forecasted shift. When the shift is 

due, the Skeptic validates the shift by performing an on-line, short-term prediction using 

linear regression. So, if the shift is due at time t, the Skeptic monitors the system for the � 

minutes before and after t, that is the interval [t - �, t + �]. The Skeptic does not instruct 

the DBMS to reset its parameters unless it confirms the trend of the shift using the linear 

model. In order to keep all prediction models updated, the Skeptic is also responsible for 

performing regular sampling for the DSSness throughout the day and sends these 

DSSness patching samples to the TrainingDataModel in order to update the stored 

training data. The Psychic refreshes its off-line prediction model and its forecasted shift 

schedule accordingly. This regular update guarantees the adaptability of the architecture 

and makes it less vulnerable to changes in the workload pattern. Without lack of 

generality, and for the sake of simplicity, we assume a day is time window over which 

our prediction architecture operates. Therefore, the time scale consists of 1440 minutes 

(24 hours). However, the same concepts are applicable to any other time window such as 

weeks or months. Next we describe the global parameters of the prediction architecture. 
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5.3.1 Parameters of the Architecture 

Our prediction system's configuration depends on a number of key parameters. Having 

these parameters adds flexibility to the architecture and makes it generic and adaptive to 

the setup of the IT environment. Table 11 summarizes these parameters under two 

categories: global and TrainingDataModel. Most of these parameters are automatically 

estimated by the architecture or derived from the computing setup surrounding the 

DBMS.  

Now we provide a brief description of the global parameters that are used across 

several modules in the architecture. These parameters need to be set once and remain 

constant afterwards. Other types of parameters will be explained in the context of 

subsequent sections. 

• Model Update Mechanism (MUM) is a switch parameter that can be set to ON or 

OFF in order to respectively enable or disable the Model Update Mechanism feature of 

the architecture. In general, if the daily pattern is trusted to remain stable, the MUM 

Module Parameter Description Range Default 
Value 

MUM Boolean parameter to 
activate or deactivate the 
Model Update Mechanism. 

ON or OFF ON 

monCost Workload classifier 
overhead 

(0-100)% 10% 

performanceMatrix DBMS’s performance  0.0-1.0 See 
Table 12 

dss_threshold DSSness value that lies 
between the DSS and MIX 
workload zones 

(0-100)% 70% 

oltp_threshold DSSness value that lies 
between the MIX and 
OLTP workload zones 

(0-100)% 30% 

Global 

min_check_time # minutes that Skeptic 
needs to validate a shift 

30-1440 30 min. 

numScenarios # of daily scenarios used for 
training 

1-5 3 TrainingDataModel 

numDaysToCompleteUpdate # of days needed to update a 
whole scenario 

fastUpdateDays – 
slowUpdateDays 

7 

Table 11. Parameters of the Psychic-Skeptic Architecture 
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parameter can be OFF. Setting MUM to ON entails a small overhead but guarantees to 

keep the prediction models up to date and provides immunity against changes in the 

workload pattern. 

• monCost is the percentage of performance (throughput) degradation caused by 

running the workload classifier on-line. This percentage needs to be empirically 

determined once and remains constant afterwards. 

• oltp_threshold and dss_threshold. Most of the Current DBMSs are tuned based on 

identifying three main types of workloads (Figure 22): DSS, OLTP, or MIX. We use 

the DSSness percentage and the oltp_threshold and dss_threshold to identify 

workload shifts as follows:  
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The values of oltp_threshold and dss_threshold represent the empirical values of the 

DSSness at which it is worth resetting the DBMS configuration to suit the new 

workload type. We have empirically found that 30 and 70 are good estimates for the 

oltp_threshold and dss_threshold, respectively.  

• performanceMatrix is a 3x3 matrix. If x and y ∈  {OLTP, MIX, DSS}, then each 

entry (Workloadx, Settingsy) in the performanceMatrix is a performance factor that 

denotes the relative performance of a DBMS, processing workload type x when its 

settings are suitable for workload type y, to the optimal performance of this DBMS 

 OLTP Settings MIX  Settings DSS   Settings 
OLTP workload 1.0 0.5 0.3 
MIX  workload 0.5 1.0 0.5 
DSS workload 0.3 0.5 1.0 

Table 12. Performance Matrix 
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when it processes workload y under settings suitable for type y. Therefore the optimal 

performance is deemed 1.0 and each entry is a ratio between 0 and 1.0. All cost-

benefit analyses use this performance matrix. These performance factors are 

empirically determined just once by running different combinations of different 

workloads vs. different DBMS settings. Table 12 shows the empirically estimated 

performance factors that we use in our experiments. 

• min_check_time is the minimum number of minutes needed by the Skeptic to 

execute on-line in order to validate the Psychic’s forecasted shift. This value 

determines the number of the DSSness samples that will be used to build the linear 

model at run-time. Throughout our experiments, we found that 30 minutes, which 

constitutes 2% of the time scale of the day (max_time_scale=1440 minutes), is a 

reasonable size to start with. The final size is eventually determined by the Psychic 

after analyzing the training data. min_check_time is also the minimum size of the time 

slots used by the Model Update Mechanism (MUM) to patch the historical data (as 

explained in Section �5.5.3). 

Next, we describe the Psychic-Skeptic architecture components in detail. We explain their 

functions, their parameters, and how they collaborate with each other. 

Day Samples Weight 
Day0 1 
Day1 2 
Day2 4 

   
   

   
   

   
   

   
   

   
   

      
   

  …
..  

…
.. 

DaynumScenarios-1 2(numScenarios-1) 

Table 13. Training scenarios stored in the TrainingDataModel  
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5.4 THE TRAINING DATA MODEL 

The TrainingDataModel is a queue-like data structure component (Table 13) that is 

responsible for storing and managing historical samples, we call them Scenarios, of a 

number of days (numScenarios) to train the Psychic and the Skeptic. It is equipped with 

all functions to add, remove, and edit these data. TrainingDataModel stores numScenarios 

chronologically ordered scenarios (full day samples). DaynumScenarios-1 is the most recent 

while Day0 is the oldest. Each day is assigned a weight that is double that of the previous 

day. Therefore, Day0 is assigned a weight of 1, Day1  is assigned 2, Day2 is assigned 4, 

etc. DaynumScenarios-1 is assigned 2(numScenarios-1). In order to adhere to the notion of 

probabilities, we normalize these weights by transforming them to the 0-1.0 scale, as 

explained next. Assigning weights to the sample days is vital to the quality of the 

prediction models built in this architecture as such weights put more stress on the most 

recent observed days than the older ones. Each scenario consists of a time series, (ti, 

DSSnessi), where DSSnessi is the DSSness reading reported by the workload classifier at 

time ti.   

Next, we describe the main functions that the TrainingDataModel provides to the other 

architecture components. 

5.4.1 Predictability Assessment 

The Psychic-Skeptic architecture is based on the premise of predictable pattern. In order 

to devise a mechanism that allows us to verify the existence of a predictable, cyclic 

DSSness pattern over the numScenarios days stored in the training model, we need to 

view the DSSness samples of all days as a single time series. We can then use the 
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autocorrelation coefficient, rk, to test the predictability of the DSSness using the 

following formula [60]: 
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where  

k denotes the lag (k=1,2,3,…), which is the length of the daily prediction period (k = 

max_time_scale). 

N is the total number of samples collected over numScenarios days, N= numScenarios* 

max_time_scale. 

Di is the DSSness sample number i, where i=1..N.  

D  denotes the mean of the DSSness samples, that is,  
N
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rk is the autocorrelation coefficient whose range is [-1, 1]. A near-zero value indicates a 

lack of correlation between the DSSness values occurring at the same time within each 

day. A positive value of rk indicates a conformance of the DSSness trend while a negative 

value indicates an inverse trend. In general, we deem rk >0.5 a strong indication of having 

a predictable trend. In our experiments, rk is 0.65 on average.  

5.4.2 Model Consolidation 

In order to analyze the daily scenarios, we transform them into a compact form that 

represents all days while taking into account the weight of each day. As shown in Figure 
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26, this consolidated scenario is constructed by calculating avgDSSnesst, which represents 

the weighted average of all DSSness(d,t) samples collected at time t, in scenario number d: 
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As we discuss in subsequent sections, the consolidated scenario is needed by numerous 

components of the architecture. For example, the Psychic builds an off-line prediction 

model by applying polynomial regression to the consolidated scenario. It also estimates 

the interval [earliestCheckTime, latestCheckTime] during which the Skeptic works in 

order to validate the forecasted shifts. In addition, the dominant workload type is 

determined by analyzing the consolidated scenario. The Model Update Mechanism 

(MUM) also uses the consolidated scenario to back-test the performance of the DBMS 

under different operation modes in order to optimize the MUM parameters. 

Task consolidatingScenarios 
   total = 2^numScenarios -1  
         
   consolidatedScenario = new Scenario(); 
         
   For t=0 to max_time_scale 

avgDSS = 0; 
     For d=0 to (numScenarios-1) 
       sample = scenario[d].Sample[t]; 
        avgDSS += sample.dssness *(d/total); 
     Endfor  //for each daily scenario in the TrainingDataModel 
             
     consolidatedScenario.addSample(t, avgDSS); 
    Endfor // for each time tick within each scenario 
         
    return consolidatedScenario; 
End Task 

 

Figure 26. Model Consolidation 
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5.4.3 Model Update Mechanism (MUM): Patching 

The prediction architecture manifests its adaptability to pattern changes by having the 

Model Update Mechanism (MUM) that can patch the training data. Patching is a function 

by which the Skeptic can gradually update the historical data in order to keep the 

underlying prediction models up to date.  

Patching occurs by propagating the DSSness samples of a particular scenario to the 

next older scenario. A DSSness(d, t) sample of day d at time t replaces DSSness(d-1, t) for 

d=1..numScenarios-2. DSSness(numScenarios-1, t) , which is the most recent scenario in the 

TrainingDataModel, is patched by the newly DSSness samples collected by the Skeptic. 

Figure 27 sketches the patching task. 

 

Task ModelPatching (patchingScenario) 
// Patching all scenarios in TrainingDataModel except the most recent one 
// by back propagation 

   For d=0 to numScenarios-2     
s1 = scenarios[d]; 

    s2 = scenarios[d+1]; 
             
     // Get each sample in patchingScenario and patch at its time tick 

For i=1 to patchingScenario.numSamples  
s = patchingScenario.sample[i]; 

        t = s.time; 
        s1.sample[t] = s2.sample[t]; 
      Endfor // for each sample the patchingScenario 
    Endfor // for each scenario in TrainingDataModel 
         
    //Now, patch the most recent scenario with samples from patchingScenario 
    lastScenario = scenarios[numScenarios-1]; 
     
    For i=1 to patchingScenario.numSamples  

s = patchingScenario.sample[i]; 
  lastScenario.sample[s.time] = s; 
    Endfor 
   
End Task 

 

Figure 27. Model Patching 
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5.4.4 Determining the Dominant Workload 

The DBA can run the DBMS with fixed settings that suit the dominant workload type 

experienced in a business. This type can be systematically determined by analyzing the 

consolidated scenario derived from the historical data.  The TrainingDataModel 

determines the dominant workload type by scanning the consolidated scenario and 

constructing a distribution of the DSSness sample types (DSS, MIX, or OLTP). The type 

that has the highest frequency is deemed to be the dominant one. 

 

 Selecting the value of numScenarios is a tradeoff between the quality of the off-line 

model and the pace by which all scenarios in the data set can be fully refreshed. Having 

multiple days in the training set may lead to a more robust off-line prediction model. 

However, the MUM will take a longer time to patch the entire stack of scenarios 

according to the propagation algorithm described earlier. Experimentally, we found that 

numScenarios=3 is a reasonable size that produces good prediction quality and high 

adaptability. 

5.5 THE PSYCHIC 

The Psychic is one of the core components of the prediction architecture. It is primarily 

responsible for producing an off-line prediction model by tapping the cyclic pattern that 

occurs during the day. More specifically, the Psychic carries out five main tasks in the 

following sequence:  

1. Off-line Model Generation. The psychic analyzes historical data stored in the 

TrainingDataModel and produces the best, least complex polynomial that fits them. 
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2. Finding Shifts. The produced polynomial is used to find the potential workload 

shifts by finding intersection points of this polynomial with the dss_threshold and 

oltp_threshold. 

3. Estimating Shift Check Time. In order for the Skeptic to validate a particular shift 

that has been forecasted by the Psychic, the Skeptic needs a timeframe during which 

it monitors the workload and eventually decides whether to endorse this shift or to 

disregard it. The start and end time of this timeframe, for each shift, is estimated at 

this stage. 

4. Filtering Shifts. Not all shifts are good. The Psychic performs a cost-benefit analysis 

to determine if a shift is worth consideration or if ignoring it would be more 

beneficial to the overall system performance. 

5. Setting the MUM Parameters. The MUM assures the validity of prediction models 

used in this architecture. It makes the prediction architecture less vulnerable to 

possible changes in the workload pattern over time. In order to achieve this goal 

efficiently, the MUM needs to optimize its internal parameters in light of the 

characteristics of the workload.  

More details about these tasks are explained in the following subsections. 

5.5.1 Off-line Model Generation 

The Psychic uses a polynomial as an off-line model. A representative polynomial is 

generated by applying the polynomial regression algorithm to the consolidated scenario 

obtained from the TraniningDataModel.. In our experiments, the produced polynomials 

are mostly from the 3rd and 4th degrees. There are many tools that can be used for time 

series prediction such as neural networks, ARMA/ARIMA (Autoregressive Moving 
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Average/Autoregressive Integrated Moving Average) models, DPLL (Digital Phase 

Locked Loop), digital filters, or Fourier series [60]. These models can be used to predict 

the DSSness (dependent variable) at a given time (independent variable). However, the 

Psychic needs to predict when (i.e., time) the DSSness reaches specific threshold. This 

requires dealing with the inverse of the prediction function, which is not always easy to 

derive using the above prediction tools. The extrapolation using polynomial regression, 

on the other hand, lends itself to the ease of geometric manipulation (i.e., it is easy to find 

where the polynomial intersects with certain threshold) and it is an intuitive, compact 

representation for the workload trend.  
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Task findShifts  
  shiftSchedule = new ShiftSchedule(); 
 
         
  // ************ find intersections with dss_threshold ************* 
  Roots[] = findRoots(offlinePredictionModel - dss_threshold); 
  firstDerivative = offlinePredictionModel.derivative(); 
         
  For i=1 to roots.numRoots  
    slope = firstDerivative.value( round(roots[i]) ); 
    
   // Abandon minima and maxima because they are not real shifts. 
   If (abs(slope)>0.001 AND roots[i] in [0..max_time_scale])  
    shift = new Shift(); 
     shift.setTime(roots[i]); 
 
    If (slope >0) 
    shift.setType(MIX_UP_TO_DSS);  
   Else 
    shift.setType(DSS_DOWN_TO_MIX);  
    Endif  
 
    shiftSchedule.addShift(shift); 
   Endif 
 
  Endfor // for each root 
         
  // ************ find intersections with oltp_threshold *********** 
  Roots[] = findRoots(offlinePredictionModel - oltp_threshold); 
         
  For i=0 to roots.numRoots  
   slope = firstDerivative.value( round(roots[i]) ); 
    
   // Abandon minima and maxima because they are not real shifts. 
   If (abs(slope)>0.001 AND roots[i] in [0..max_time_scale])  

shift = new Shift(); 
    shift.setTime( roots[i] ); 
     
    If (slope>0) 
    shift.setType(OLTP_UP_TO_MIX); 
    Else 
    shift.setType(MIX_DOWN_TO_OLTP); 
    Endif 
  
    shiftSchedule.addShift(shift); 
   Endif 
 
  Endfor // for each root 
 
  return shiftSchedule; 
End Task 

 

Figure 28. Finding Shifts  
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5.5.2 Finding Shifts 

The Psychic uses the generated polynomial to find the points of time where the DSSness 

index intersects with the dss_threshold or the oltp_threshold (see Figure 29). Therefore, 

the Psychic calculates the roots of the polynomial f(t) when f(t) – dss_threshold = 0 and 

when f(t) – oltp_threshold = 0. However, we have to exclude the points that are minima 

and maxima as they almost touch the threshold levels and do not actually embody real 

shifts. These false shifts can be easily identified by checking the slope of the curve using 

the first derivative f’(x). If f’(t) � 0,  then shift t must be discarded.   

So far, the Psychic could find all shifts that may occur but we still lack the semantics 

of each shift. A shift can be one of four types depending on its trend: 

OLTP_UP_TO_MIX, MIX_UP_TO_DSS, DSS_DOWN_TO_MIX, or 

MIX_DOWN_TO_OLTP. The slope of the shift can determine the direction of the shift 

by identifying its inclination (slope > 0) or declination (slope < 0). Figure 28 sketches the 

task of detecting shifts. 
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5.5.3 Estimating Shift Check Time 

This task determines the shortest period of time during which the Skeptic will run in order 

to validate a forecasted shift. This goal is achieved in two steps: 1) determining shift 

bounds, and 2) estimating earliest and latest check times.  

1) Determining Shift Bounds. The extreme bounds that delimit a shift are determined by 

the nearest local maximum and local minimum surrounding the shift time as 

illustrated in Figure 29. They represent the search space, [a..b], for estimating the 

earliestCheckTime and latestCheckTime period, [e..l], as explained in step 2 below. 

The first and last shifts may become special cases. If the first shift is not preceded by 

a minimum or maximum, the lowerBoundCheckTime is set to zero, which is the 

beginning of the day. And if the last shift is not followed by any minimum or 

maximum then the upperBoundCheckTime is set to the last minute of the day 

 

Figure 29. Shifts form when the DSSness index intersects with the thresholds. 
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(max_time_scale). Figure 30 describes how to find the [lowerBoundCheckTime, 

upperBoundCheckTime] period.  

2) Estimating Earliest and Latest Check Times. In this step the Psychic tries to find a 

subset period, [earliestCheckTime, latestCheckTime], within the 

[lowerBoundCheckTime, upperBoundCheckTime] of a shift. This is imperative as it 

reduces the time needed by the Skeptic to validate a shift at run time. Figure 31 

describes how to estimate [earliestCheckTime, latestCheckTime] by analyzing the 

training scenarios stored in the TrainingDataModel. Initially, the Psychic starts with 

earliestCheckTime=t-(min_check_time/2), and 

latestCheckTime=t+(min_check_time/2), where t denotes the expected shift time. This 

interval is incrementally expanded until the Skeptic’s linear model applied to the 

consolidated scenario agrees on the trend of the shift. Expansion is performed by 

decrementing earliestCheckTime and incrementing latestCheckTime such that the 

conditions earliestCheckTime >= lowerBoundCheckTime and latestCheckTime<= 

upperBoundCheckTime are not violated. 
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Task determiningShiftBounds(shiftSchedule) 
localMAndM[] = localMinimaAndMaxima(); 
numLocalMAndM = localMAndM.length; 

         
 For s =1 to shiftSchedule.numShifts          
  found = false; 
 
   For i=0 to numLocalMAndM -1 

   If (localMAndM[i] > shift[s].time)  
 

   //Handling the FIRST shift's special case  
   If(i>0) 
    Shift[s].lowerBoundCheckTime = localMAndM[i-1]; 
   Else 

Shift[s].lowerBoundCheckTime( 0); 
   Endif 
                     
   Shift[s].upperBoundCheckTime = localMAndM[i]; 
   found = true; 
 
   ExitLoop; 
Endif 

Endfor 
             
  // If no min/max follows a shift 
  If(NOT found)  
    Shift[s].upperBoundCheckTime = MAX_TIME_SCALE; 
 
  // Setting the lower bound 

  If(numLocalMAndM > 0) 
Shift[s].lowerBoundCheckTime = localMAndM[numLocalMAndM -1]; 

  Else 
    Shift[s].lowerBoundCheckTime = 0; 
  Endif 
 

  Endif 
          
 Endfor 
End Task 
 

 

Figure 30. Determining Shift Bounds  
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5.5.4 Filtering Shifts 

Some of the detected shifts might not be beneficial to the performance. A shift might be 

too short such that it is not worth resetting the DBMS’s configuration parameters. The 

Psychic performs a cost-benefit analysis for each shift in order to decide whether to 

     
Task estimatingEarliestAndLatestCheckTimes 

double slope; 
   firstDerivative = offlinePredictionModel().derivative(); 
         
   skeptic = new Skeptic(); 
 For i=1 to numShifts  
     shift[i].latestCheckTime= shift[i].time+ (min_check_time /2); 

shift[i].earliestCheckTime = shift[i].time - (min_check_time /2); 
             
     // Make tests on the Consolidated Scencario 
     scenario = consolidateScenarios(); 
             
     While(true) 
       // Ask the Skeptic for help 
        skeptic.evaluateOnlineModel(scenario, shift[i]); 
        slope = skeptic.slope(); 
                 

     correctTrend=((shift[i].isTrendingUp AND slope >0) OR  
                  (shift[i].isTrendingDown AND slope <0)); 

                 
        if (!correctTrend)  

    // Expanding the checking period from left and right. 
          if (shift[i].earliestCheckTime > shift[i].lowerBoundCheckTime) 
           shift[i].earliestCheckTime=shift[i].earliestCheckTime -1 ; 
                     
          if (shift[i].latestCheckTime < shift[i].upperBoundCheckTime ) 
           shift[i].latestCheckTime=shift[i].latestCheckTime +1; 
         Else 

exitLoop; 
         Endif 
                 

// Stop expanding if one of the boundaries is hit. 
        if (shift[i].earliestCheckTime <= shift[i].lowerBoundCheckTime OR 
                shift[i].latestCheckTime >= shift[i].upperBoundCheckTime) 

exitLoop; 
   Endif 
 
      Endwhile 
 
    Endfor // for each shift 
End Task 

 

Figure 31. Estimating earliest and latest check times of a shift  
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accept or reject a shift. This decision is made by comparing the performance difference 

between the two cases:  

1) The shift is accepted. This implies that the Skeptic causes some overhead due to 

its validation procedure, and that the DBMS’s parameters are reset. 

2) The shift is discarded. No validation is performed by the Skeptic, and the DBMS 

retains its current settings. 

Figure 32 details the cost-benefit analysis used to filter shifts. Note that filtering is not 

needed if we have fewer than two shifts. The cost-benefit analysis is ultimately based 

on the global parameters performanceMatrix and monCost. 
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Task filterShifts  
i=1; 
If (numShifts >= 2) 
While( i< numShifts )  
  shift1 = shifts[i]; 
  shift2 = shifts[i+1]; 
             
  if(NOT isComplement(shift1, shift2) ) 
    loop; 
   
  //--- Performance if shifts are adopted 
  wt = workloadTypeAt(shift1.earliestCheckTime); 
  dbSettings = wt; // resetting db parameters 
  c = performanceMatrix[wt, dbSettings] - monCost; 
  perfIfMon = (shift1.time - shift1.earliestCheckTime)*c; 
             
  wt = workloadTypeAt(shift1.latestCheckTime); 
  perfIfMon += (shift1.latestCheckTime - shift1.time)*c; 
 
  dbSettings = wt;  
  c = performanceMatrix[wt, dbSettings]; 
  perfIfMon+=(shift2.earliestCheckTime - shift1.latestCheckTime)*c; 
 
  c = performanceMatrix[wt, dbSettings] - monCost; 
  perfIfMon+=(shift2.time - shift2.earliestCheckTime)*c; 
 
  wt = workloadTypeAt(shift2.latestCheckTime); 
  c = performanceMatrix[wt, dbSettings] - monCost; 
  perfIfMon +=  (shift2.latestCheckTime - shift2.time)*c;  
             
             
  //--- Performance if shifts are discarded 
  wt = workloadTypeAt(shift1.earliestCheckTime); 
  dbSettings = wt; 
  c = performanceMatrix[wt, dbSettings]; 
  perfIfNotMon = (shift1.time - shift1.earliestCheckTime)*c; 
 
  wt = workloadTypeAt(shift1.latestCheckTime); 
  c = performanceMatrix[wt, dbSettings]; 
  perfIfNotMon += (shift2.time - shift1.time)* c; 
 
  wt = workloadTypeAt(shift2.latestCheckTime); 
  c = performanceMatrix[wt, dbSettings]; 
  perfIfNotMon += (shift2.latestCheckTime - shift2.time)*c; 
             
  if (perfIfMon <= perfIfNotMon)  
    removeShiftAt(i); 
    removeShiftAt(i+1);  
  End If 
 
   i++;  
 Endwhile 

End Task 
 
 

 

Figure 32. Filtering Shifts 
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5.5.5 Estimating Model Update Mechanism (MUM) Parameters 

The MUM aims to ensure that all prediction models are up to date, which makes the 

prediction accuracy less vulnerable to changes in the daily pattern. It achieves this goal by 

performing regular DSSness sampling for short intervals throughout the day. The MUM 

parameters are optimized such that the MUM satisfies the following two constraints: 1) 

the MUM guarantees coverage for the entire day after a numDaysToCompleteUpdate 

days, and 2) the expected performance of the prediction system is still higher than the 

performance of any other operation mode. To satisfy these conditions, the MUM 

parameters are automatically estimated by back-testing the historical data.  

     
Task setMUMParameters  
   
  s = consolidateScenarios(); 
         
  p1 = perfWithFixedSettings(s, dominantWorkload() ); 
  p2 = perfUnderContinuousMonitoring(s); 
         
  // Maximum # of days to update the model implies checking one only everyday 
  maxUpdateDays = ceil(max_time_scale / min_check_time); 
    
  For i = 1 to maxUpdateDays 
   setDaysToCompleteModelUpdate(i); 

    p3 = perfUnderPredictionArchitecture(s); 
 
    If (p3 > (p1+PERF_PERCENTAGE) && p3 > (p2+PERF_PERCENTAGE) ) 
   fastUpdateDays = i; 
   fastUpdatePerf = p3; 
      exitLoop; 
  Endif 
 
   Endfor // # of update days currently examined 
 
 slowUpdateDays = maxUpdateDays; 
 setDaysToCompleteModelUpdate(slowUpdateDays); 

   slowUpdatePerf = perfUnderPredictionArchitecture(s); 
   
End Task 

 

Figure 33. Estimating MUM Parameters 
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To understand how the MUM works, we can view the day as a number of equal, 

ordered time zones, as shown in Figure 34. Each zone is divided into a number of equal, 

ordered time slots. To ensure a uniform distribution of checked periods over the course of 

a day, the Skeptic runs at only one slot per zone in each day. In other words, in day one, 

the Skeptic is triggered at slot one of zone 1, slot 1 of zone 2, slot 1 of zone 3, etc. In day 

two, it runs at slot 2 of zone 1, slot 2 of zone 2, slot 2 of zone 3, etc. Therefore, if there 

are n slots in a zone, n days are required to make a complete coverage of a day.  

At run-time, the Actuator, a subcomponent in the Skeptic, monitors the system clock 

for the start time (S) and end time (E) of the upcoming slot in order to ask the Skeptic to 

start and stop sampling at these times, respectively. 

ZoneSizeZoneSlotSizeDayS ×+×=  

SlotSizeSE +=  

Day denotes the day number throughout the model-update process. Initially, Day is set to 

0 in the first day and it is incremented at the end of each day. Zone denotes the current 

zone number. It is reset to 0 at the beginning of each day and is incremented at the end of 

each of each slot. SlotSize and ZoneSize are constants denoting the size of the slot and the 

zone respectively, where: 

timecheckSlotSize _min_=  

 

Figure 34. Regular sampling throughout the day 
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ateompleteUpdnumDaysToCSlotSizeZoneSize ×=  
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We conservatively choose to set SlotSize to min_check_time, which is the shortest 

check period that the Skeptic uses to validate a shift. numDaysToCompleteUpdate is a 

parameter that specifies the number of days by which the first scenario in the training set 

is fully refreshed. Its value ranges from fastUpdateDays  to slowUpdateDays, where 

fastUpdateDays denotes the minimum number of days that the MUM needs in order to 

complete the update while the performance of the architecture remains superior, and 

slowUpdateDays is the maximum number of days needed to update the model such that 

one slot is sampled every day. It is easy to realize that 

�
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�=
SlotSize

calemax_time_s
DaysslowUpdate . fastUpdateDays is optimized by starting by one 

day and incrementing it until the prediction architecture outperforms the other operation 

modes (Section �5.7) by an arbitrary percentage PERF_PERCENTAGE, that is,  

fastUpdatePerf >= (anyOtherPerf+PERF_PERCENTAGE). We use 

PERF_PERCENTAGE=1% in our experiments. fastUpdatePerf and slowUpdatePerf are 

the performance measures associated with setting numDaysToCompleteUpdate to 

fastUpdateDays and slowUpdateDays respectively. Therefore, 

numDaysToCompleteUpdate creates a tradeoff between the pace at which the architecture 

can fully update a training scenario and the performance level. Setting 

numDaysToCompleteUpdate to fastUpdateDays leads to a faster update, but with a 

relatively lower performance due to the incurred run-time monitoring. Setting 

numDaysToCompleteUpdate to slowUpdateDays leads to the maximum DBMS 
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performance but a longer time is required to update the model. In general, the architecture 

has the ability to estimate the DBMS’s performance for any value assigned to 

numDaysToCompleteUpdate and vice versa. Figure 33 shows how to estimate the MUM 

parameters that were discussed. Table 14 summarizes the variables used in this 

estimation.  

5.6 THE SKEPTIC 

The Skeptic’s main function is to validate the Psychic’s forecasted shifts. For each 

upcoming shift, the Skeptic samples the workload from earliestCheckTime to 

latestCheckTime. The workload samples are analyzed to confirm whether the trend of a 

shift conforms to the Psychic’s prediction. The Skeptic builds an on-line prediction model 

using linear regression that fits the collected samples. The slope of the line is used to 

determine the trend of the workload. If the on-line prediction model confirms the shift, 

the DBMS’s settings are reset to suit the upcoming workload type. Otherwise, the DBMS 

Variable Description 
numDaysToCompleteUpdate Number of days needed to update an entire scenario 
Slot The slot number in a particular zone. 
Zone The zone number within the day 
Day The day number since the start of the MUM update 
S The next start time for the MUM to work 
E The end time for the current update session 
slotSize Size of the slot 
zoneSize Size of the zone 
numZones Number of zones in a day 
fastUpdateDays Minimum # of days to update an entire scenario 
slowUpdateDays Maximum #  of days to update an entire scenario 
fastUpdatePerf Overall performance using fastUpdateDays 
slowUpdatePerf Overall performance using slowUpdateDays 

Table 14. Variables used in the Model Update Mechanism (MUM)  
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resets its settings to the default, which is the safest resort and can sub-optimally handle 

MIX workloads of OLTP and DSS.  

The Skeptic-MUM collaboration. Whether the MUM is enabled or disabled, the Skeptic 

samples collected during the validation process are deemed the most recent observations 

of the day during that interval. Therefore, in addition to the regular sampling performed 

by the MUM mechanism, the Skeptic also passes its own samples collected throughout 

the validation task to the MUM component in order to patch the historical data stored in 

the TrainingDataModel.  

5.7 OPERATION MODES 

A DBMS can run in one of the following operation modes: out-of-the-box (default) 

settings, fixed settings suitable for the dominant workload, dynamic settings using 

continuous monitoring, or the Psychic-Skeptic architecture. Our experiments compare the 

performance of the DBMS under these different modes and show that the Psychic-Skeptic 

architecture has the potential to outperform the other modes. Next, we briefly describe 

how the DBMS handles the workload under each operation mode. 

5.7.1 Out-of-the-box (Default) Mode  

This is a trivial operation mode in which the DBA chooses to run the DBMS with out-of-

the-box default settings that suit a mixed workload. These settings remain static and do 

not respond to any changes in the workload type nor adapt to the dominancy of a 

particular workload type.  
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5.7.2 Dominant Workload Mode 

In dominant workload mode, the consolidated scenario obtained by the 

TrainingDataModel is analyzed in order to determine the dominant workload type. This is 

done by measuring the total time (in minutes) that each workload type lasts throughout 

the day. The workload type that runs for the longest accumulated time is deemed 

dominant, and the DBMS is configured to suit this dominant workload. This 

configuration is static and does not change. The performance obtained from this mode is 

always expected to outperform the Default Mode described above. However, it is not 

expected to provide the best performance as it is not adaptable.  

5.7.3 Continuous Monitoring Mode 

This is supposed to be the most adaptable mode that can fully take advantage of the 

Workload Classifier. It performs on-line, short-term prediction using the moving average 

(MA) [63]: 
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where d t 1+  is the DSSness forecast value for the period t+1, yt is the actual value 

(observation) at time t, and n the number of DSSness samples used to calculate d t 1+ . One 

problem with this technique is the determination of n, the number of periods included in 

the averaging. n should be selected such that it minimizes the forecasting error, which is 

defined by the square of the difference between the forecast and actual values. The mean 

squared error (MSE) is given by 
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Different values of n, such that MAX>=n >=1, may be tested using the historical data to 

find the one that gives the smallest MSE. We arbitrarily use MAX=10 as a maximum 

value for n. Detecting a shift using a single MA value leads to instability as the value may 

oscillate around the threshold lines oltp_threshold and dss_threshold. To avoid this 

pitfall, we use a timer to ensure that all forecasts satisfy the threshold for the last 

min_check_time/2 minutes. min_check_time is the initial check time needed by the 

Skeptic to validate shifts by sampling before and after the expected shift time. In this MA 

technique we need just check before the expected start time of the shift, and therefore, we 

use half of the interval.  

This mode is advantageous as it is responsive to changes in the workload. However, it 

involves the undesirable, on-line overhead of running the Workload Classifier. Therefore, 

it is hard to speculate on the performance of this mode with respect to the two above 

without back-testing the historical data. In general, this mode is very adaptive but costly. 

5.7.4 Psychic-Skeptic Mode 

Assuming the existence of a repeatable pattern in the workload, we argue that the overall 

performance of the system can be superior using the Psychic-Skeptic prediction system as 

shown in the following experiments. 

5.8  EXPERIMENTS 

Our experiments have two main goals. First, we validate the Psychic-Skeptic approach 

and compare its performance to the alternative operation modes. Second, we show that 

our approach is robust and able to adapt to changes that may occur in the workload 

pattern.  
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We test our architecture using artificially generated data that allow us to examine 

specific cases as well as arbitrary situations. DSSness data are generated using the notion 

of Scenarios and ScenarioDescriptors. A ScenarioDescriptor can be perceived as a 

template for generating scenarios that exhibit a particular daily pattern. Therefore, a 

particular ScenarioDescriptor is used as a factory to generate multiple daily scenarios that 

exhibit a particular pattern. A ScenarioDescriptor can represent any workload pattern that 

may characterize a special event or season (e.g., statuary holidays, Christmas shopping 

days, weekends, weekdays, etc.) over any window of time (day, week, etc.). 

A ScenarioDescriptor consists of a set of pairs (time, DSSness) that play the role of 

anchors of DSSness values on the final DSSness curve. The time is a minute during the 

day so its domain is [0, 1440] (24 hours a day), and DSSness ranges from 0 to 100. These 

anchors enable us to direct and shape the trend of the DSSness in any way we desire. In 

order to generate a scenario out of this descriptor, a series of DSSness values are 

automatically generated between every two consecutive anchors. In order to make our 

scenarios more realistic, we inject a ± (0-5)% of random noise in the DSSness, and ± (0-

2)% of random noise in the time, which is equivalent to ± (0-30) minutes. Noise injected 

in the time dimension affects when a shift may start or end. Noise injected in the DSSness 

dimension affect whether a shift is likely to occur or not based on its intersection with the 

threshold lines. 

In each experiment, we simulate13 the performance of a DBMS run under each of the 

four operation modes based on the empirically-obtained parameters described in Section 

�5.3.1. The performance of the Psychic-Skeptic architecture is evaluated when the MUM 

                                                 

13 The Psychic-Skeptic Architecture is implemented in Java. 
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is enabled and when it is disabled. We use the default parameter settings illustrated in 

Table 11, unless otherwise indicated. 

In these experiments we report the following: 

- The expected performance using the architecture with the MUM enabled. 

- The minimum and maximum performance expected from the architecture under 

fast and slow MUM, respectively. 

- The performance of the DBMS under each of the four operation modes. 

- The relative performance improvements and degradation of the various operation 

modes with respect to the Default Mode. 

5.8.1 Experiment 1: Pattern A 

The goal of this experiment is to examine the performance of the DBMS under the pattern 

A generated by the ScenarioDescriptor  = { (0, 10), (150, 20),  (160, 23), (250, 47),  (350,

 60), (450, 70), (470, 67), (500, 63), (650, 58), (660, 50), (850, 25), (900, 20), (1000, 

17), (1050, 15), (1150, 16 ), (1200, 17), (1440, 50)}. Figure 35 shows an instance 

scenario of this daily pattern. As seen, the DBMS experiences a workload that is mostly 

OLTP in the first two hours of the day. Then it changes to a mixed workload over the 

next 12 hours. In the next 9 hours, the dominant workload becomes OLTP, and then it 

shifts back to a mixed workload. The autocorrelation coefficient, rk, of this workload = 

0.6562, which indicates a predictable cycle of DSSness across multiple days. 
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The Psychic’s off-line prediction model for this daily pattern is: 

f(x) = -6.61 + 0.32*X -4.07E-4*X2 + 2.64E-8*X3 + 8.73E-11*X4 

The initial shift schedule, which may change later if the MUM is enabled, for this daily 

pattern is shown in Table 15. Table 16 summarizes the performance statistics observed 

with the Pattern A while MUM is ON and OFF, using the four operation modes. Note that 

by the absolute performance we refer to the performance percentage that can be achieved 

with respect to the maximum, theoretical performance resulting from matching the 

DBMS settings with the workload type for each minute. By the relative performance we 

refer to the percentage of performance improvement (or degradation) of any operation 

mode with respect to the Default Mode.  

    
 

Figure 35. An example of the daily pattern A. 

 Shift Type EarliestCheckTime Time LatestCheckTime 
Shift 1 OLTP_UP_TO_MIX 152 167 182 
Shift 2 MIX_DOWN_TO_OLTP 804 819 834 
Shift 3 OLTP_UP_TO_MIX 1278 1293 1308 

Table 15: Shifts of Pattern A 
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M
U
M 

Perf. Statistic Default Dominant MA PS Arch 

Mean 76.23 76.23 87.39 97.08 

Std. Dev. 0.82 0.82 0.26 0.52 

A
bs

ol
ut

e 

Conf. Int. [75.95, 76.51] [75.95, 76.51] [87.30, 87.48] [96.90, 97.26] 

Mean n/a 0 14.65 27.37 

Std. Dev. n/a 0 1.24 1.1 

O
FF

 

R
el

at
iv

e 

Conf. Int. n/a n/a [14.22,  15.08] [26.99, 27.75] 

Mean 76.23 76.23 87.37 94.54 

Std. Dev. 0.82 0.82 0.29 1.35 

A
bs

ol
ut

e 

Conf. Int. [75.94, 76.51] [75.94, 76.51] [87.27, 87.47] [94.08, 95.01] 

Mean n/a 0 14.63 24.03 

Std. Dev. n/a 0 1.25 2.08 

O
N

 

R
el

at
iv

e 

Conf. Int. n/a n/a [14.19, 15.06] [23.30, 24.75] 

Table 16: The DBMS’s performance under pattern A 
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Figure 36. Absolute performance of pattern A (MUM is off). 
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We should notice also that the mixed workload is dominant for pattern A. Therefore, 

the performance obtained under the Dominant Mode is equivalent to the Default Mode.  

 

Performance when MUM is OFF. All modes are tested for at least 30 days with the 

MUM turned off. Figure 36 shows the DBMS’s absolute performance under different 

operation modes. The best performance is achieved under the Psychic-Skeptic 

architecture (avg. 97.08%), followed by the MA Mode (avg. 87.39%), then the Dominant 

Mode (avg. 76.23%), which is equivalent to Default Mode. Figure 37 shows that the 

Psychic-Skeptic architecture achieved an average of 27.37% performance improvement 

over the Default Mode compared to 14.65% performance improvement achieved by the 

MA Mode. All performance estimates are based on workload classifier overhead of 10% 

(monCost = 10%). 
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Figure 37. Relative performance of pattern A (MUM is off). 
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Performance when MUM is ON. When the MUM is enabled, the architecture reports the 

following estimates: 

- The minimum number of days (fastUpdateDays) needed to complete updating the 

most recent scenario in the TraningDataModel. It also reports the expected 

performance (fastUpdatePerf) if the system uses fastUpdateDays to complete the 

update.  

- The maximum number of days (slowUpdateDays) needed to complete the model 

update, and the associated (slowUpdatePerf).  
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Figure 38. Absolute performance of pattern A (MUM is ON). 
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Setting the numDaysToCompleteUpdate parameter to the minimum number of days for 

the update, fastUpdateDays, results in a system that is updated quickly while retaining 

superior performance overall other operation modes. On the other extreme, the business 

may decide to minimize overhead by setting numDaysToCompleteUpdate to the 

maximum number of updating days, slowUpdateDays.  Therefore, 

numDaysToCompleteUpdate creates a tradeoff between the pace of model update and 

overall performance. Notice that the architecture can estimate the performance under any 

given numDaysToCompleteUpdate, and vice versa. Knowing the expected performance 

beforehand allows the DBMS to issue an alert in case the performance is degrading.  

Table 17 indicates the minimum performance expected when 
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Figure 39. Relative  performance of  pattern A (MUM is ON). 

 Days  Performance 
Fast Upate fastUpdateDays = 2 fastUpdatePerf = 92.78% 
Slow Update slowUpdateDays = 48 slowUpdatePerf  = 97.58% 

Table 17. Min and Max Performance of Pattern A while MUM is ON 
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numDaysToCompleteUpdate is set to fastUpdateDays. It also shows the maximum 

performance when numDaysToCompleteUpdate is set to slowUpdateDays. 

Figure 38 compares the performance of the DBMS under the four operation modes. 

Regarding the Psychic-Skeptic architecture, the MUM is turned on with 

numDaysToCompleteUpdate =7, that is, a complete daily scenario will be updated after 

one week.   The Psychic-Skeptic architecture still outperforms others (avg. 94.54%), 

followed by the MA Mode (avg. 87.37%), then the Dominant Mode (76.23%), which is 

equivalent to Default Mode. Figure 39 shows that the Psychic-Skeptic architecture 

achieves an average of 24.03% performance improvement over the Default Mode 

compared to 14.63% achieved by the MA Mode. 

    
 

Figure 40. An example of the daily pattern B. 
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5.8.2 Experiment 2: Pattern B 

The goal of this experiment is to examine the performance of the DBMS under the pattern 

B generated by the ScenarioDescriptor  = { (0, 55), (150, 45), (160, 46), (250, 50), 

(350, 70), (450, 80), (500, 90), (650, 85), (700, 95), (850, 80), (900, 70), (1000,

 60), (1050 55), (1150, 40 ), (1200, 35), (1250, 25), (1300, 20), (1350, 23), (1440,

 15)}. Figure 40 shows an instance scenario of this daily pattern. As seen, the DBMS 

experiences a workload that is mostly mixed in the first 8 hours of the day. Then it starts 

to be more DSS over the next 10 hours. In the next 6 hours, it seems to be more of a MIX, 

and then it shifts to an OLTP for the rest of the day. The autocorrelation coefficient ( rk) is 

0.6628, which indicates a predictable cycle of DSSness across multiple days. 

M
U
M 

Perf. Statistic Default Dominant MA PS Arch 

Mean 74.04 74.04 87.74 95.95 

Std. Dev. 0.91 0.91 0.25 1.42 
A

bs
ol

ut
e 

Conf. Int. [73.73, 74.35] [73.73, 74.35] [87.66, 87.83] [95.46,96.44] 

Mean n/a 0 18.53 29.62 

Std. Dev. n/a 0 1.37 2.83 

O
FF

 

R
el

at
iv

e 

Conf. Int. n/a n/a [18.06, 19.01] [28.64, 30.60] 

Mean 74.04 74.04 87.74 94.19 

Std. Dev. 0.91 0.91 0.26 1.47 

A
bs

ol
ut

e 

Conf. Int. [73.73, 74.35] [73.73, 74.35] [87.63, 87.82] [93.68, 94.70] 

Mean n/a 0 18.50 27.24 

Std. Dev. n/a 0 1.37 2.72 

O
N

 

R
el

at
iv

e 

Conf. Int. n/a n/a [18.03, 18.97] [26.30, 28.18] 

Table 18. The DBMS’s performance under pattern B 
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The Psychic’s off-line prediction model for this daily pattern is: 

f(x) = 52.53 -0.12*X + 7.71E-4*X2 -9.98E-7*X3 + 3.55E-10*X4 

The initial shift schedule, which may change later if the MUM is enabled, for this daily 

pattern is shown in Table 19. Table 18 summarizes the performance statistics observed 

with Pattern B while MUM is ON and OFF, using the four operation modes.  

The dominant workload for pattern B is MIX, therefore, the performance under the 

Dominant and the Default modes is equivalent.  

 

Performance when MUM is OFF. All modes are tested for at least 30 days with the 

MUM turned off. Figure 41 shows the DBMS’s absolute performance under the different 

 Shift Type EarliestCheckTime Time LatestCheckTime 
Shift 1 MIX_UP_TO_DSS 358 373 388 
Shift 2 DSS_DOWN_TO_MIX 914 929 944 
Shift 3 MIX_DOWN_TO_OLTP 1178 1193 1208 

Table 19. Shifts of Pattern B 
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operation modes. The best performance is achieved under the Psychic-Skeptic 

architecture (avg. 95.95%), followed by the MA Mode (avg. 87.74%), then the Dominant 

Mode (avg. 74.04.23%), which is equivalent to the Default Mode. Figure 42 shows that 

the Psychic-Skeptic architecture achieved an average of 27.24% performance 

improvement over the Default Mode compared to 18.50% achieved by the MA Mode. All 

performance estimates are based on workload classifier overhead of 10% (monCost= 

10%). The Skeptic invalidated the shift that is supposed to occur at minute 1193 in the 

fourth day. This misprediction causes remarkable performance degradation in that day as 

shown in Figure 41. Another shift invalidation occurs at minute 929 in the 15th day but it 

has insignificant impact on the performance.  

 Days  Performance 
Fast Update fastUpdateDays= 2 fastUpdatePerf  = 91.34% 
Slow Update slowUpdateDays  = 48 slowUpdatePerf  = 95.91% 

Table 20. Min and Max Performance of Pattern B while MUM is ON 
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Performance when MUM is ON. Table 20 indicates the minimum performance expected 

when numDaysToCompleteUpdate is set to fastUpdateDays. It also shows the maximum 

performance when numDaysToCompleteUpdate is set to slowUpdateDays. 

Figure 43 compares the performance of the DBMS under the four operation modes. 

Regarding the Psychic-Skeptic architecture, the MUM is turned on with 

numDaysToCompleteUpdate =7, that is, a complete daily scenario is updated after one 

week.   The Psychic-Skeptic architecture still outperforms the others (avg. 94.14%), 

followed by the MA Mode (avg. 87.74%), then the Dominant Mode (74.04%), which is 

equivalent to the Default Mode. Figure 44 shows that the Psychic-Skeptic architecture 

achieves an average of 27.24% performance improvement over the Default Mode 

compared to 18.50% achieved by the MA Mode. The Skeptic invalidates the shift that is 

supposed to occur at minute 933 in the sixth and 20th days. These mispredicted shifts 

cause no severe impact on the performance. However, the Skeptic invalidates the shift 

that is supposed to occur at minute 1201 in the 9th day. As seen in Figure 43, this 

misprediction has a significant impact on the overall performance in that day. 
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Figure 43. Absolute performance of  pattern B (MUM is ON). 
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5.8.3 Adaptability:  Pattern A changes to Pattern B 

The goal of this experiment is to demonstrate one of the vital features of the Psychic-

Skeptic architecture, which is its adaptability to changes in the daily pattern. We run the 

DBMS under pattern A, described above, for 30 days. Then, we swiftly switch to pattern 

B, under which the behavior of the DBMS is examined for another 30 days. This sudden 

shift in the daily pattern is unrealistic as changes usually happen gradually over several 

days. However, this swift change allows us to aggressively push the architecture to its 

limits and observe the worst case scenario. The MUM is active all the time and 

numDaysToCompleteUpdate is set to 7.  

 The performance of the DBMS during the first month is assessed with respect to the 

expected performance under pattern A. Similarly, the DBMS performance during the 

second month is assessed with respect to the expected performance under pattern B. 

Therefore, in this experiment we indicate how much the observed DBMS performance 

deviates from the mean of the expected performance. Since the means of the two 
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performance indices can be different, we normalize the differences in the performance by 

expressing them as percentages, as follows: 

100
)( ×−=

Expected
ExpectedObserved

perfDiff  

Figure 45 shows the percentage of the performance deviation from the expected one. 

During the first 30 days as the DBMS handles workload of pattern A, the mean observed 

performance, 94.50%, as compared to the expected performance of 94.54%. At the end of 

the first 30 days processing pattern A, we exposed the DBMS to pattern B. On day 31, the 

performance dramatically degrades as it drops to 56.3% (that is, a 40% degradation) from 

the expected performance (94.19%). However, since the MUM is enabled, the 

performance gradually catches up over the 7 day updating period. By the end of this 

period, the performance reaches 93.90%. The mean performance over the period ending 

the update to the end of the second month (i.e., 21 days) is 93.57%, which is close to what 

we expect, 94.19%. This shows that the system is able to return to its stable state. 

5.9 SUMMARY  

Monitoring systems and constant on-line analysis cause performance penalties that may 

hinder the adaptation of tools such as the workload classifier. Luckily, the overhead of 

such tools can be mitigated by exploiting characteristics in the workload. In this chapter, 

we introduced the Psychic-Skeptic prediction architecture. The Psychic analyses 

historical data and produces a shift schedule. Each shift indicates whether the workload is 

heading to the DSS, OLTP, or MIX region. These regions are delimited by two DSSness 

thresholds. The DBMS does not put full trust in the off-line predicted shifts. Therefore it 

asks the Skeptic to validate each shift at run-time by sampling the workload for a small 
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interval around the expected shift time in order to confirm its direction. If the shift is 

approved, the DBMS resets its configuration to suit the new workload type.  

The architecture is self-optimizing as the majority of its parameters is automatically 

estimated and is transparent to the end user (DBA). The architecture adapts to changes in 

the workload pattern as it is equipped by the Model-Update-Mechanism (MUM) that 

samples the workload at regular times in order to patch historical data and keep prediction 

models up to date.  

Our experiments have two goals. The first goal is to assess the performance of the 

DBMS using the Psychic-Skeptic architecture. Experiments show that the prediction 

architecture outperforms other modes of operation, namely the Default Mode, the 

Dominant Workload Mode, and the Constant Monitoring using the MA. The second goal 

is to demonstrate the adaptability of the architecture. Our experiments show that the 

architecture is robust against changes in the workload pattern.  Although the pattern 

transition we experimented with was swift and stiff, the architecture managed to learn the 

new pattern within the expected period of time. Therefore, we consider the MUM a self-

healing mechanism as it picks up the performance after its deterioration due to changes in 

the workload characteristics. We obtained similar results by experimenting with a number 

of scenarios generated by different scenario descriptors. Some of these scenarios are 

shown in Appendix A.  
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CHAPTER 6 CONCLUSIONS 

Database Management Systems (DBMSs) are complex systems whose manageability is 

increasingly becoming a real concern. Realizing that there is a dearth of skilled DBAs and 

that the cost of hiring them is a major part of the Total Cost of Ownership (TCO) makes 

Autonomic DBMS (ADBMS) indispensable.  

 In this thesis, we discussed the important characteristics that DBMSs should have in 

order to be self-managing. A closer look at present, prominent commercial DBMSs 

reveals that there is a lot of effort remaining to make them autonomous.  The complexity 

of managing these systems in particular stem from several sources such as the incrased 

emphasis on QoS, the numerous functionalities and advanced features added everyday, 

housekeeping tasks, expanding database size, and the strong trending towards e-service 

era. We pointed out to several research areas that need attention in order to mitigate the 

complexity of management DBMSs.  

 We also stressed one of the most imperative properties of ADBMSs, which is being 

workload-aware. Therefore, we studied the various workload characterization techniques 

used in different computing areas. Such a study helped us determine what technique to 

choose in order to explore interesting properties and patterns in the DBMS workload. As 

a proof of concept, we showed how the type of the workload, specifically whether it 

OLTP or DSS, is a key criterion for performance optimization. We developed a 

methodology by which the DBMS can automatically recognize its workload type and 

assess its concentration in the overall workload mix. This methodology is primarily based 

on data mining classification techniques. We demonstrated the success of this 

methodology by using artificial and real workloads. This piece of work shows the utility 
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of exploiting the static characteristics of the workload. We then presented the prediction 

architecture that analyzes the dynamic characteristics of the workload in order to forecast 

its change over time. This prediction architecture is adaptive and generic such that it can 

be used to solve other similar prediction problems.  

6.1 OUR POSITION IN THE AUTONOMIC PATH 

To implement autonomic computing features, we advocate the evolutionary approach that 

delivers improvements to current systems in order to provide significant self-managing 

value to the end users without requiring them to completely replace their current IT 

environments. Five evolutionary levels have been envisioned in order to reach fully 

autonomic systems [33].   Figure 46 is a representation of those levels, starting from the 

basic level, through managed, predictive, and adaptive levels, and finally to the 

autonomic level. 

As seen in the figure, the basic level represents the starting point where some IT 

systems are today. Each system element is managed independently by IT professionals 

who set it up, monitor it, and eventually replace it. At the managed level, systems 

management technologies can be used to collect information from disparate systems onto 

fewer consoles, reducing the time it takes for the administrator to collect and synthesize 

information as the systems become more complex to operate. In the predictive level, as 

new technologies are introduced that provide correlation among several elements of the 

system, the system itself can begin to recognize patterns, predict the optimal 

configuration, and provide advice on what course of action the administrator should take. 

As these technologies improve, and as people become more comfortable with the advice 
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and predictive power of these systems, we can progress to the adaptive level where the 

systems themselves become self-learners and can automatically take the correct actions 

based on the information that is available to them and the knowledge of what is 

happening in the systems. Finally, at the fully autonomic level, the system operation is 

governed by business policies and high level objectives. Users interact with the system to 

monitor the business processes or alter the objectives. 

 We consider our work in this thesis goes inline with this progressive path towards 

having autonomic DBMSs as it fits mostly in the predictive and adaptive levels described 

above. 

6.2 RESEARCH PLANS  

Our thesis poses a number of future research directions such as:  

• Investigating the feasibility of using the Psychic-Skeptic architecture to solve 

other types of database problems such as:  

   

 

Figure 46. Evolution not revolution [33] 
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o System Backup and Restore. Depending on the forecasted start and length 

of the idle period, the system may automatically perform incremental 

backup for specific portions of data.  

o Data Defragmentation and Reorganization. The system could anticipate 

the time periods at which it experiences low I/Os in order to rearrange data 

on disk in order to enhance their accessibility. 

o Updating Statistics. In DBMSs, query planning, optimization, and 

execution depend heavily on up to date statistics of the stored data. The 

system could exploit some idle periods to update these statistics. 

o Updating Indexes and Views. Auxiliary data structures such as indexes and 

materialized views can immensely improve system performance. 

However, maintaining these data structures can cause nontrivial overhead 

if performed at inappropriate times (e.g., at peak workloads). The system 

could predict under utilized periods of time and update its data structures 

during these periods. 

• Tuning the DBMS parameters as a function of the intensity of each workload type. 

Presently, DBMSs are tuned based on determining the dominant workload (e.g., 

either OLTP or DSS) using rule-of-thumb tuning strategies. An interesting 

research area would be to develop tuning strategies that take into account the 

intensity of each workload type (e.g., the DSSness degree) in the overall workload 

mix. 

• Conducting an empirical study in which a feedback mechanism is established 

between the workload classifier and the DBA, which would allow the DBA to 
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understand and correlate the currently observed performance with the workload 

type reported by the classifier. This would help the DBA develop better 

performance-tuning strategies. Furthermore, the feedback would allow DBAs to 

corroborate the workload type reported by the classifier and to determine if any 

retraining is necessary in order to improve the classifier’s prediction accuracy. 

• Developing a Model Validation Mechanism, with which a workload classifier can 

automatically validate itself with respect to drastic changes in the properties of the 

business’s workload. The system will therefore be able to determine when to 

refresh the model in order to maintain high classification accuracy. 

• Investigating the feasibility of adopting new database architectures (e.g., RISC-

like architecture) that may reduce the complexity of managing their performance 

and ease their integration with other systems. 

• Using control theory and fuzzy logic to control complex systems like DBMSs. 

These concepts have been used [41] to manage what might be less intricate 

systems than DBMSs so it is worth investigating their feasibility with respect to 

databases.  
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APPENDIX A: EXAMPLES OF DSSNESS SCENARIOS 
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APPENDIX B: GLOSSARY OF TERMS 

ADBMS (Autonomic Database Management System) – a DBMS that exhibits the 

characteristics of an autonomic system by being self-configuring, self-optimizing, 

self-healing, and self-protecting. 

 

AC (Autonomic Computing) - an initiative started by IBM in 2001. Its ultimate aim is to 

create self-managing computer systems to overcome their rapidly growing 

complexity and to enable their further growth. 

 

Browsing Profile – it is a TPC-W workload profile characterized by extensive browsing 

and searching activities. 

 

Classifier(C, H) - workload classifier built by training it on samples from the TPC-C and 

TPC-H workloads. 

 

Classifier(O, B) - workload classifier built by training it on samples from the Ordering 

and Browsing profiles of TPC-W. 

 

DBA (Database Administrator) - a person who is responsible for the environmental 

aspects of a database. In general, these include: Recoverability, Integrity, Security, 

Availability, and Performance. 
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DBMS (Database Management System) - a computer program (or more typically, a 

suite of them) designed to manage a database, a large set of structured data, and run 

operations on the data requested by numerous users. 

 

DSS (Decision Support System) Workload - workload consisting of decision-support 

queries of high complexity and low volume. 

 

DSSness – a percentage that determines the concentration of the DSS type vs. OLTP type 

in a workload sample. 

 

Dynamic Characteristics – the properties that describe the workload behavior over time 

(e.g., how the workload type changes during the day). 

 

HC (Hybrid Classifier) – it is a workload trained on different flavors of OLTP 

workloads, namely TPC-C and the Ordering Profile, and on different flavors of DSS 

workloads, namely TPC-H and the Browsing Profile. 

 

GHC (Graduated Hybrid Classifier – it is an HC (Hybrid Classifier) but has the ability 

to recognize different shades of DSS workloads and OLTP workloads. 

 

MUM (Model Update Mechanism) – a component in the in the Psychic-Skeptic 

architecture that performs regular workload sampling to keep prediction models up 

to date. 
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OLTP (On-Line Transaction Processing) - an OLTP workload consists of high volume 

of transactions, and a few simple queries. 

 

Ordering Profile – it is a TPC-W workload profile characterized by extensive ordering 

activities. 

 

Performance Snapshot – a set of low-level performance measures (or attributes) 

collected at some point in time as the DBMS processes some workload. Snapshots 

are the basic objects for the classification algorithm used to build the Workload 

Classifier. 

 

Psychic – it is a component in the Psychic-Skeptic architecture that performs off-line 

prediction for workload type shifts by analyzing historical data. 

 

Shopping Profile - it is a TPC-W workload profile that exhibits some product ordering 

activities but browsing is still dominant. 

 

Skeptic – it is a component in the Psychic-Skeptic architecture that works on-line by 

sampling the workload for small intervals in order to validate every shift predicted 

by the Psychic. 

 

Static Characteristics - workload properties that provide a general description of the 

workload with no respect to how these properties may change over time (e.g., the 

dominant workload type, or the average requests submitted to the system per day). 
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TCO (Total Cost of Ownership) - a type of calculation designed to help consumers and 

enterprise managers assess direct and indirect costs as well as benefits related to the 

purchase of computer software or hardware. 

 

TPC (Transaction Processing Performance Council) – an organization that produces 

industry-standard benchmarks for DBMSs. 

 

TPC-C Workload – an example of a hardcore OLTP workload. TPC-C simulates a 

complete environment where a population of terminal operators executes 

transactions against a database. The benchmark is centered around the principal 

activities (transactions) of an order-entry environment. 

 

TPC-H Workload – an example of a hardcore DSS workload. TPC-H illustrates decision 

support systems that examine large volumes of data, execute queries with a high 

degree of complexity, and give answers to critical business questions. 

 

TPC-W Workload - comprises a set of basic operations designed to exercise 

transactional web system functionality in a manner representative of internet 

commerce application environments. User activities are described by three profiles: 

Browsing, Shopping, and Ordering. 

 

TrainingDataModel - is a component in the Psychic-Skeptic architecture that stores 

historical data of DSSness of a number of days. TrainingDataModel provides a 
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number of analytical functions that operate on these data to other components in the 

architecture. 

 

Workload - a set of requests, or components, that place different demands on various 

system resources. 

 

Workload Characterization – a process by which a representative, compact, and 

accurate model of a system’s workload is built. The model should be able to 

describe and reproduce the dynamic behavior of the workload and its most essential 

static features. 

 

Workload Classifier – a tool that can assess the relative concentration (percentage) of 

each workload type in a given workload sample. 

 

Workload Predictor – a tool that can predict major shifts in the workload type. 

 


