
TOWARDS WORKLOAD-AWARE

DBMSS:

IDENTIFYING WORKLOAD TYPE

AND PREDICTING ITS CHANGE

���

�������	�
��	�����
�

�

���

������������������������� �����������������������������

����������!����������

�

"����#��$��%�������

&�������'�(��)���'��)�)�)�

���������'�*++,�

�

����������-��)������)��)�'�*++,�

 i

�.�/
��/�

The type of the workload on a database management system (DBMS) is a key

consideration in tuning its performance. Allocations for resources such as main memory

can be very different depending on whether the workload type is Online Transaction

Processing (OLTP) or Decision Support System (DSS). A DBMS also typically

experiences changes in the type of workload it handles during its normal processing

cycle. Database administrators must, therefore, recognize the significant shifts of

workload type that demand reconfiguring the system in order to maintain acceptable

levels of performance. We envision autonomous, self-tuning DBMSs that have the

capability to manage their own performance by automatically recognizing the workload

type and predicting its change over time.

In this thesis, we make two main contributions to the development of autonomic

DBMSs. The first contribution is a methodology for automatically identifying a DBMS

workload as either OLTP or DSS by building various classification models. We

demonstrate the methodology with both industry standard workloads and with real

workloads of global financial firms. The second contribution is a prediction architecture

to forecast when the type of a workload may change. The DBMS can therefore

proactively adjust its parameters, without incurring the overhead associated with the

constant monitoring. We present experiments to show that the performance of the DBMS

using our prediction mode outperforms other possible operation modes. They also show

that the prediction architecture can adapt to changes in the workload pattern. The

architecture does not demand human intervention and is potentially a generic solution for

other similar prediction problems.

 ii

��&�(0	�1
��/��

I would like to express my sincere appreciation to the many people who have supported

me during my PhD journey. I am grateful to my supervisor, Dr. Pat Martin, who always

believed in me and who has been there in good times and bad. I should thank our research

associate, Wendy Powley, for her administrative/technical help, her moral support, and

for sharing her office space and its associated funny atmosphere.

Special thanks go to my financial supporters: NSERC (Natural Sciences and

Engineering Research Council of Canada), OGS (Ontario Graduate Scholarship), CITO

(Communications and Information Technology Ontario), and IBM Canada where I spent

many unforgettable, lovely days of my PhD internship. Thanks to the many people at

IBM CAS (Centre for Advanced Studies), such as Berni Schiefer, Sam Lightstone, Kelly

Lyons, and many others, with whom I was privileged to work.

I give a big hug to my cute daughters, Asalah and Sarah, who always reminded me that

I need to take a break. And last but not least, to my wife, Niveen, who left heaven, as an

angel, just to be beside me on Earth. She has been the best cure for any pain I went

through. She has been always like the sunshine after the rain.

I am sure there are tens of others to thank. They know themselves, and they should

know that I am grateful to them and they are all in my heart.

 iii

�/�/�
��/�(��(
�1���	�/2�

I, Said Elnaffar, hereby certify that this PhD dissertation is original and all the ideas and

inventions attributed to others have been properly referenced.

 iv

/�.	��(���(�/��/�

ABSTRACT ..I

ACKNOWLEGMENTS... II

STATEMENT OF ORIGINALITY.. III

TABLE OF CONTENT ..IV

LIST OF FIGURES..VIII

LIST OF TABLES.. X

CHAPTER 1 INTRODUCTION .. 1

1.1 MOTIVATION: THE NEED FOR AUTONOMIC SYSTEMS ... 1

1.2 AUTONOMIC COMPUTING... 3

1.3 THESIS HYPOTHESIS... 5

1.4 RELATED WORK .. 6

1.5 CONTRIBUTIONS.. 6

1.6 ROAD MAP ... 10

CHAPTER 2 AUTONOMIC DBMSS.. 13

2.1 HOW AUTONOMIC ARE CURRENT DBMSS?.. 17

2.1.1 Self-optimizing... 17

2.1.2 Self-configuring ... 18

2.1.3 Self-healing.. 19

2.1.4 Self-protecting ... 20

2.1.5 Self-organizing .. 21

2.1.6 Self-inspecting ... 21

2.2 ANALYSIS—WHAT IS MISSING?... 22

2.3 SUMMARY ... 24

CHAPTER 3 WORKLOAD CHARACTERIZATION.. 27

 v

3.1 CHARACTERIZATION TECHNIQUES.. 28

3.1.1 Static Techniques... 31

3.1.2 Dynamic Techniques.. 35

3.2 CASE STUDIES .. 39

3.2.1 Batch and Interactive Systems ... 39

3.2.2 Client/Server Systems .. 42

3.2.3 Database Management Systems .. 44

3.2.4 Parallel Systems .. 46

3.2.5 World Wide Web Systems .. 48

3.3 CHARACTERIZATION FRAMEWORK ... 50

3.3.1 Requirements Analysis Phase .. 54

3.3.2 Model construction Phase ... 55

3.3.3 Model Validation Phase .. 57

3.4 SUMMARY ... 58

CHAPTER 4 WORKLOAD IDENTIFICATION... 61

4.1 OLTP VS. DSS: WHAT DIFFERENCE DOES IT MAKE?... 62

4.1.1 Different Configuration for Different Workloads .. 63

4.2 WORKLOAD IDENTIFICATION PROBLEM: INTRODUCTION ... 67

4.3 APPROACH .. 71

4.3.1 Overview.. 72

4.3.2 Snapshot Attributes.. 73

4.3.3 Methodology .. 78

4.4 EXPERIMENTS ... 80

4.4.1 Prediction Accuracy .. 82

4.4.2 Robustness ... 83

����� ������	��

��
����

�
�����������������

�
���������.. 84

4.4.4 Constructing Generic Classifiers .. 88

4.5 SUMMARY ... 93

 vi

CHAPTER 5 WORKLOAD PREDICTION ... 99

5.1 PROBLEM AND MOTIVATION .. 99

5.2 PREDICTION APPROACHES .. 102

5.3 THE PSYCHIC-SKEPTIC ARCHITECTURE .. 104

5.3.1 Parameters of the Architecture.. 107

5.4 THE TRAINING DATA MODEL ... 110

5.4.1 Predictability Assessment .. 110

5.4.2 Model Consolidation ... 111

5.4.3 Model Update Mechanism (MUM): Patching ... 113

5.4.4 Determining the Dominant Workload.. 114

5.5 THE PSYCHIC .. 114

5.5.1 Off-line Model Generation .. 115

5.5.2 Finding Shifts... 118

5.5.3 Estimating Shift Check Time.. 119

5.5.4 Filtering Shifts ... 122

5.5.5 Estimating Model Update Mechanism (MUM) Parameters .. 125

5.6 THE SKEPTIC ... 128

5.7 OPERATION MODES... 129

5.7.1 Out-of-the-box (Default) Mode.. 129

5.7.2 Dominant Workload Mode .. 130

5.7.3 Continuous Monitoring Mode.. 130

5.7.4 Psychic-Skeptic Mode.. 131

5.8 EXPERIMENTS... 131

5.8.1 Experiment 1: Pattern A .. 133

5.8.2 Experiment 2: Pattern B .. 140

5.8.3 Adaptability: Pattern A changes to Pattern B .. 145

5.9 SUMMARY ... 146

CHAPTER 6 CONCLUSIONS ... 148

 vii

6.1 OUR POSITION IN THE AUTONOMIC PATH ... 149

6.2 RESEARCH PLANS ... 150

REFERENCES .. 153

APPENDIX A: EXAMPLES OF DSSNESS SCENARIOS ... 164

APPENDIX B: GLOSSARY OF TERMS... 166

 viii

	��/�(����1$
���

Figure 1. The workload characterization process ..28

Figure 2. A simple histogram of disk accesses ..32

Figure 3. A two-parameter histogram...33

Figure 4. A state transition diagram representing a Markov model...................................35

Figure 5. Workload Characterization Methodology. ...53

Figure 6. Validating the representativeness of a workload model.....................................57

Figure 7. Different Shades of DSS and OLTP...71

Figure 8. Candidate attributes for snapshot objects ...75

Figure 9. The methodology of constructing a workload..77

Figure 10. Using the workload classifier to identify unknown workload mixes78

Figure 11. The pruned decision tree for Classifier(O, B). A classification rule is shown. 81

Figure 12. The classification tree of Classifier(C, H) ..82

Figure 13. Classifier(O, B) identifying Browsing and Ordering workloads......................82

Figure 14. Identifying the Shopping profile...83

Figure 15. Classifier(O, B) is robust against changes in the system configuration84

Figure 16. Classifier(C, H) and Classifier(O, B) identifying TPC-C and TPC-H85

Figure 17. Classifier(C, H) and Classifier(O, B) identifying the profiles of TPC-W........86

Figure 18. The decision tree of the hybrid classifier (HC) ..89

Figure 19. A snapshot of the GHC tree classifying four types of workloads.90

Figure 20. Prediction accuracy of HC..91

Figure 21. GHC’s analysis of TPC-generated workloads..92

Figure 22. The type of the workload is yet a decision that human has to make96

 ix

Figure 23. The integration between the workload classifier and predictor......................101

Figure 24. Psychic-Skeptic Architecture ...104

Figure 25. The Skeptic verifies the Psychic's predictions..105

Figure 26. Model Consolidation ..112

Figure 27. Model Patching...113

Figure 28. Finding Shifts ...117

Figure 29. Shifts form when the DSSness index intersects with the thresholds..............119

Figure 30. Determining Shift Bounds ..121

Figure 31. Estimating earliest and latest check times of a shift.......................................122

Figure 32. Filtering Shifts ..124

Figure 33. Estimating MUM Parameters ...125

Figure 34. Regular sampling throughout the day...126

Figure 35. An example of the daily pattern A..134

Figure 36. Absolute performance of pattern A (MUM is off). ..135

Figure 37. Relative performance of pattern A (MUM is off). ...136

Figure 38. Absolute performance of pattern A (MUM is ON).137

Figure 39. Relative performance of pattern A (MUM is ON).138

Figure 40. An example of the daily pattern B..139

Figure 41. Absolute performance of pattern B (MUM is off). ..141

Figure 42. Relative performance of pattern B (MUM is off)...142

Figure 43. Absolute performance of pattern B (MUM is ON).144

Figure 44. Relative performance of pattern B (MUM is ON). ..144

Figure 45. Adaptability test: Transition from pattern A to pattern B145

Figure 46. Evolution not revolution [33] ...150

 x

	��/�(��/�.	���

Table 1. Static and dynamic workload characterization techniques.30

Table 2. Characterization techniques used in batch and interactive systems.....................41

Table 3. Characterization techniques used in client/server systems.43

Table 4. Characterization techniques used in database systems.45

Table 5. Characterization techniques used in parallel systems. ...47

Table 6. Characterization techniques used in World Wide Web systems.49

Table 7. Categorizing the snapshot attributes ..76

Table 8. Benchmark settings used with DB2 Universal Database Version 7.2.80

Table 9. Parameters settings used for the SPRINT classification algorithm80

Table 10. Recognition of Industrial Workloads Using All Types of Classifiers87

Table 11. Parameters of the Psychic-Skeptic Architecture..107

Table 12. Performance Matrix ...108

Table 13. Training scenarios stored in the TrainingDataModel109

Table 14. Variables used in the Model Update Mechanism (MUM)...............................128

Table 15: Shifts of Pattern A..134

Table 16: The DBMS’s performance under pattern A...135

Table 17. Min and Max Performance of Pattern A while MUM is ON138

Table 18. The DBMS’s performance under pattern B...140

Table 19. Shifts of Pattern B..141

Table 20. Min and Max Performance of Pattern B while MUM is ON...........................142

 1

CHAPTER 1 INTRODUCTION

1.1 MOTIVATION: THE NEED FOR AUTONOMIC SYSTEMS

The increasing power of computing systems and the desire to

automate more tasks and processes means that systems are becoming too

complex to manage and tune. A proposed approach, called autonomic computing,

calls for systems that can manage and tune themselves automatically in order

to reduce the total cost of their ownership. IBM is using the phrase “autonomic

computing” to represent the vision of how IBM, the rest of the IT industry, academia, and

the national laboratories can address this new challenge [43]. By choosing the word

“autonomic,” IBM makes an analogy with the autonomic nervous system. The autonomic

nervous system frees our conscious brain from the burden of having to deal with vital but

lower-level functions. Autonomic computing will free system administrators from many

of today’s routine management and operational tasks. Corporations will be able to devote

more of their IT skills toward fulfilling the needs of their core businesses, instead of

having to spend an increasing amount of time dealing with the complexity of computing

systems.

The spiraling cost of managing complex computing systems is becoming a significant

inhibitor that threatens to undermine the future growth and societal benefits of

information technology. Simply stated, managing complex systems has grown too costly

and prone to error. Administering a myriad of system management details is too labor-

intensive. People under such pressure make mistakes, increasing the potential of system

 2

outages with a concurrent impact on business. Testing and tuning complex systems is

becoming more difficult. Consider the following:

� It is now estimated that one-third to one-half of a company’s total IT budget is spent

preventing or recovering from crashes [72][73].

� Nick Tabellion, CTO of Fujitsu Softek, said: “For every dollar to purchase storage,

you spend $9 to have someone manage it.” [29].

� Aberdeen Group studies show that administrative cost can account for 60 to 75

percent of the overall cost of database ownership (this includes administrative tools,

installation, upgrade and deployment, training, administrator salaries, and service and

support from database suppliers). [2]

� When you examine data on the root cause of computer system outages, you find that

about 40 percent are caused by operator error [72], and the reason is not because

operators are not well-trained or do not have the right capabilities. Rather, it is because

the complexities of today’s computer systems are too difficult to understand, and IT

operators and managers are under pressure to make decisions about problems in

seconds [9].

To respond, system design objectives must shift from the “pure” price/performance

requirements to issues of robustness and manageability in the total cost of ownership

equation. As a profession, we must strive to simplify and automate the management of

systems. Today’s systems must evolve to become much more self-managing, that is: self-

configuring, self-healing, self-optimizing, and self-protecting.

 3

1.2 AUTONOMIC COMPUTING

Automating the management of computing resources is not a new problem for computer

scientists. For decades, system components and software have been evolving to deal with

the increased complexity of system control, resource sharing, and operational

management. Autonomic computing is just the next logical evolution of these past trends

to address the increasingly complex and distributed computing environments of today. So

why then is this something new? Why a call to arms to the industry for heightened focus

and new approaches? The answer lies in the radical changes in the information

technology environment in the few short years since the mid-1990s, with the use of the

Internet and e-business extending environments to a dramatically larger scale, broader

reach, and a more mission-critical fundamental requirement for business. In that time the

norm for a large on-line system has escalated from applications such as networks

consisting of tens of thousands of fixed-function automated teller machines connected

over private networks to rich suites of financial services applications that can be accessed

via a wide range of devices (personal computer, notebook, handheld device, smart phone,

smart card, etc.) by tens of millions of people worldwide over the Internet. IBM’s

autonomic computing initiative has been outlined broadly. Paul Horn [43] described this

“grand challenge” and called for collaboration toward developing autonomic computing

systems that have characteristics as follows:

� To be autonomic, a system needs to “know itself”— and consist of components that

also possess a system identity.

� An autonomic system never settles for the status quo—it always looks for ways to

optimize its workings.

 4

� An autonomic system must perform something akin to healing—it must be able to

recover from routine and extraordinary events that might cause some parts to

malfunction.

� A virtual world is no less dangerous than the physical one, so an autonomic

computing system must be an expert in self-protection.

� An autonomic system cannot exist in a hermetic environment (and must adhere to

open standards).

� An autonomic system must configure and reconfigure itself under varying and

unpredictable conditions.

� An autonomic computing system knows its environment and the context surrounding

its activity, and acts accordingly.

� Perhaps most critical for the user, an autonomic computing system must anticipate

the optimized resources needed to meet a user’s information needs while keeping its

complexity hidden.

 This thesis focuses on the last three characteristics. We believe that for a system to be

autonomic, it should be aware of the properties of its workload, be able to anticipate their

changes over time, and reconfigure itself accordingly. We apply these principles on one

of the well-known complex computing systems, the Database Management System

(DBMS), which is increasingly becoming part of almost every computing system.

Realizing that expert Database Administrators (DBAs) are scarce and that they are a

major part of the Total Cost of Ownership (TCO) makes an urgent call for an Autonomic

DBMS (ADBMS).

 5

1.3 THESIS HYPOTHESIS

We argue that for a complex system, such as a DBMS, to be autonomic it must know the

important characteristics of its workload and how they change over time in order to be

able to tune and reconfigure itself accordingly. The type of the workload presented to a

database management system (DBMS) is a key consideration in tuning the system.

Allocations for resources such as main memory can be very different depending on

whether the workload type is Online Transaction Processing (OLTP) or Decision Support

System (DSS). A DBMS also typically experiences changes in the type of workload it

handles during its normal processing cycle. Database administrators must, therefore,

recognize the significant shifts of workload type that demand reconfiguration in order to

maintain acceptable levels of performance. We envision autonomous, self-tuning DBMSs

that have the capability to manage their own performance by automatically recognizing

the workload type and then reconfiguring their resources accordingly. In this thesis, we

present an approach to automatically identifying a DBMS workload as either OLTP or

DSS. We build a classification model based on the most significant workload

characteristics that differentiate OLTP from DSS and then use the model to identify any

change in the workload type.

Unfortunately, this methodology is still associated with run-time overhead primarily

caused by the constant, on-line monitoring. Therefore, in this research, we

present a prediction architecture that helps the DBMS forecast when the

workload may change its type so the DBMS can proactively adjust its

configuration parameters and resource allocations. Initially, the prediction system

analyzes the historical data of a few days in order to construct a prediction model that

 6

encompasses workload trends. Then it validates these trends using on-line models. The

architecture is efficient as it outperforms other options that a DBMS could use to tap

workload classifiers. Most importantly, it exhibits a high degree of adaptability as it can

capture and learn any new pattern in the workload automatically.

1.4 RELATED WORK

To the best of our knowledge, there is no previous published work examining the

problem of automatically identifying and predicting the type of a DBMS workload. There

are, however, numerous studies characterizing database workloads based on different

properties that can be exploited in tuning DBMSs [25]. Some studies use clustering to

obtain classes of transactions grouped according to their consumption of system resources

or according to the reference patterns in order to tune the system [94] or to balance the

workload [67]. Some studies focus on characterizing the database access patterns to

predict the buffer pool hit ratio [21] and the user access behavior [81]. Recent studies

characterize DBMS workloads on different computer architectures in order to diagnose

performance degradation problems [6] and to characterize the memory system behavior

of the OLTP and DSS workloads [7]. Hsu et al. [44] systematically analyze the workload

characteristics of TPC-C [89] and TPC-D [86] workloads, especially in relation to

those of real production database workloads. This study shows that the production

workloads exhibit a wide range of behavior, and in general, the two benchmarks

complement each other in reflecting the characteristics of the production workloads.

1.5 CONTRIBUTIONS

The following points constitute the contributions spawned from this thesis:

 7

• An Automatic Workload Identification Methodology. The methodology uses

supervised machine learning techniques that analyze resource-oriented, low level

characteristics of the workload. We note the following:

o The methodology depends solely on the analysis of the system resource

demands, which are easily obtainable from the typical system monitoring

tools.

o The methodology does not depend on any assumptions about the high

level description of the SQL statements nor on any prior knowledge about

the business or application domain.

o The methodology does not merely identify the type of workload but also

quantifies the intensity (e.g., DSSness and OLTPness percentages) of each

type in the workload mix. Any subsequent performance tuning and

modeling for the system control parameters should be a function of this

intensity.

o If there are more than two types of workloads, the same approach could be

applied by increasing the number of class labels considered. Our

experiments with the GHC classifier support this claim.

o We believe that this independent approach (as it requires minimal human

intervention and counts primarily on data obtained from the system itself)

can be generally useful to other computing systems that need to automate

the task of recognizing the type of the workload.

 8

o This methodology has a high potential of being incorporated into today's

commercial DBMSs1. One approach is to provide a set of prefabricated,

ready-to-use workload classifiers for different popular workload types. A

second approach is to adopt one of the hybrid classifiers that is trained on a

wide variety of workloads.

• Workload Prediction Architecture. The Psychic-Skeptic architecture takes

advantage of the low volatility and the cyclic patterns in the workload in order to

allow the DBMS to follow proactive tuning strategies. The architecture has the

following advantages:

o It is efficient as it obviates the overhead caused by the expensive use of

on-line prediction techniques that demand continuous monitoring for the

system.

o It can give an estimate of the best and worst performance under different

modes of operations and, therefore, it can recommend the best mode

suitable for a particular computing environment. Having prior knowledge

about the expected performance helps in detecting performance violations.

(e.g., a DBMS can alert DBAs by paging or emailing them if performance

drops).

o It is generic as we speculate that this approach can be effective in other

systems where their workloads exhibit some trend that makes them

relatively predictable. Our methodology could be used to automate many

1 Due to its practical impact, this work yielded an IBM US/Canada patent pending.

 9

other DBMS tasks such as determining when to make incremental

backups, re-build indexes and refresh materialized views, update statistics,

or reorganize data on the disk.

o The architecture itself exhibits two important autonomic features, namely,

self-optimizing, as almost all of its internal parameters are determined

automatically, and self-healing, as it adapts to new trends that may occur

in the workload in order to retain the good performance.

• Feasibility and Practicality of our Methods. Interestingly, our solutions do not

impose radical change to the DBMS infrastructure [18], promising a high degree

of their practicality and applicability to today’s large commercial DBMSs.

• Progressing towards Autonomic Computing. The workload identification and

prediction methodologies presented in this thesis demonstrate how the DBMS can

be workload-aware and more autonomic. In fact, our work fits in the predictive

and adaptive levels of the revolutionary path towards having autonomous systems.

• Surveying Workload Characterization Techniques and Methods. As part of our

research background, we surveyed a large number of case studies, across various

computer disciplines, in order to identify the workload modeling techniques. In

this study [25], we:

o summarize the commonly used techniques for workload modeling,

o describe the challenges that researchers typically face in characterizing

workloads, and

o propose a framework for workload characterization that serves as a

guideline for constructing a workload model. In this framework we

 10

suggest using data mining and data warehousing technologies in addition

to the traditional analysis methods.

• Implementing TPC-W Benchmark. The TPC-W benchmark is among the other

TPC benchmarks we used in this research due its interesting features. However,

due to the lack of a suitable implementation, it was necessary for us to implement

a TPC-W driver [88]. We trust that the implementation of this kit will be a useful

addition to the research community2.

1.6 ROAD MAP

The rest of this thesis is organized as follows. In �Chapter 2, we explain the need for

Autonomic DBMSs (ADBMSs) that are capable of managing and maintaining

themselves. In this chapter, we examine the characteristics that a DBMS should possess

in order to be considered autonomic. We assess the position of today’s DBMSs by

outlining example features from popular, commercial database products, such as DB2

UDB, SQL Server, and Oracle. We argue that today's DBMSs are still far from being

autonomic. We highlight the source of difficulties towards achieving that goal, and sketch

the most important research terrains that require investigation in order to have ADBMSs

one day.

 In �Chapter 3, we present a survey of workload characterization techniques. Workload

characterization is the process by which we produce models that are capable of describing

and reproducing the behavior of a workload. Such models are imperative to any

performance related studies such as capacity planning, workload balancing, performance

2 A number of database research groups have experimented with our kit.

 11

prediction and system tuning. In this chapter, we survey workload characterization

techniques used for several types of computer systems. We identify significant issues and

concerns encountered during the characterization process and propose an augmented

methodology for workload characterization as a framework. We believe that the surveyed

case studies, the described characterization techniques, and the proposed framework

provide a good introduction to the topic, assist in exploring the different options of

characterization tools that can be adopted, and provide general guidelines for deriving a

good workload model suitable as an input to performance studies.

�Chapter 4 discusses the workload identification problem. We start by stressing the role

of the workload type with respect to tuning a DBMS by demonstrating how a number of

configuration parameters can be differently set under OLTP and DSS workloads. Then

we present our approach to automatically identifying a DBMS workload. We build a

classification model based on the most significant workload characteristics that

differentiate OLTP from DSS and use the model to identify any change in the workload

type. We construct and compare classifiers built from two different sets of workloads,

namely the TPC-C and TPC-H benchmarks and the Browsing and Ordering profiles from

the TPC-W benchmark. We demonstrate the feasibility and success of these classifiers

with TPC-generated workloads and with industry-supplied workloads.

In �Chapter 5, we present a prediction architecture that helps the DBMS forecast when

the type of workload may change so that DBMS can proactively adjust its configuration

parameters and resource allocations. In this chapter, we present this architecture and

describe the functionality of its components. We show that the performance of the DBMS

using our prediction mode outperforms other possible operation modes. We also show

that it is adaptable to changes in the workload pattern, if any. Best of all, our prediction

 12

methodology does not demand human intervention as almost all of its parameters are

automatically estimated.

Finally, �Chapter 6 summarizes our work and sketches possible future research

directions.

 13

CHAPTER 2 AUTONOMIC DBMSS3

Database management systems (DBMSs) are a vital component of many mission-critical

information systems and, as such, must provide high performance, high availability,

excellent reliability and strong security. These DBMSs are managed by expert Database

Administrators (DBAs) who must be knowledgeable in areas such as capacity planning,

physical database design, systems tuning and systems management.

DBAs face increasingly more difficult challenges brought about by the growing

complexity of DBMSs, which stems from several sources:

• Increased emphasis on Quality of Service (QoS). DBMSs are components of

larger systems, such as electronic commerce applications, that support different

levels of QoS depending on users’ needs. A DBMS must provide service

guarantees in order that the overall system can satisfy the end-to-end QoS

requirements.

• Advances in database functionality, connectivity, availability, and

heterogeneity. DBAs must grapple with complex decisions about hardware

platforms, schema design, constraints and referential integrity, primary keys,

indexes, materialized views, the allocation of tables to disks, and shared-nothing,

shared-everything, or SMP-cluster topology.

• Ongoing maintenance. Once designed, databases require substantial human input

to build, configure, test, tune, and operate. DBAs handle table reorganization, data

statistics collection, backup control, security modeling and administration, disaster

3 The work presented in this chapter is published [27] and co-authored by Powley, Benoit, and Martin.

 14

recovery planning, configuration and performance tuning, problem analysis, and

more.

• Burgeoning database size. Data warehouses containing tens of terabytes of data

are not uncommon. Popular applications such as SAP typically create more than

20,000 tables and support thousands of users simultaneously [66].

• E-Service era. The problems described above become more apparent where the

internet presents to the DBMSs a broad diversity of workloads with high

variability under sophisticated multi-tier architectures.

DBMS customers and vendors, because of the spiraling complexity, have recently begun

to place an increased emphasis on reducing the Total Cost of Ownership (TCO) of

systems. Despite the dramatic recent growth in database sizes, TCO is increasingly

dominated by human costs, specifically the DBAs. A 1998 study by the Aberdeen Group

[1] showed an implementation of a leading industrial RDBMS incurred 81 percent of its

TCO from the human costs of training, maintenance, and implementation. Similarly, a

TCO report from D.H. Brown Associates [22] that compared two leading database

products for both data warehouse and online transaction processing (OLTP) applications

found that human costs represented a large component of TCO in all cases. Moreover,

skilled DBAs and application developers are scarce.

Autonomic computing systems are a proposed approach to mitigate management

complexity. In general, an autonomic computing system has the following properties [33]:

• The system is “aware of itself” and able to act accordingly.

• The system is able to configure and reconfigure itself under varying and

unpredictable conditions.

 15

• The system is able to recover from events that cause it to malfunction.

• The system is able to anticipate optimized resources needed to perform a task.

• The system is able to protect itself.

We believe that Autonomic Database Management Systems (ADBMS) are a desirable

long-term research goal. In pursuing this goal it is useful to evaluate current DBMSs in

light of the properties of autonomic computing systems in order to judge what has been

accomplished to date and what problems remain to be solved.

This chapter has three goals. The first goal is to specifically define a set of features that

a DBMS should have in order to be autonomic [27]. The second goal is to examine

current DBMSs with respect to their embodiment of the concepts of autonomic

computing systems [28]. We focus on three popular DBMS products, namely IBM DB2

Universal Database Version 8.1 [46], Oracle 9i [68] and Microsoft SQL Server 2000 [64].

Our objective is to report on the current state of practice with respect to autonomic

DBMSs based on a review of generally available materials such as research papers, white

papers and system documentation. We provide examples, not an exhaustive list, of

autonomic features. We do not attempt to draw comparisons between the DBMSs. The

third goal of this chapter is to highlight the present shortcomings and obstacles that hinder

DBMSs from being autonomic.

In examining the DBMSs, we believe that the autonomic features available in the

systems can be identified as belonging to one of the following general categories, which

correspond to the kinds of tasks that are typically performed by DBAs:

 16

• Plug-n-Play DBMSs. These features support system set-up and initialization.

They include initial capacity planning, DBMS installation, configuration, and

deployment, and data migration.

• Physical and Logical Design. These features include support for tasks related to

laying out the data on the storage devices and structuring them properly.

Examples of such tasks are the selection of the most efficient indexes and

materialized views, and partitioning tables [79].

• Ongoing Preventive Maintenance. This category encompasses features that aim

to keep the system stable and performing satisfactorily. They support the phase in

which the DBMS monitors itself in order to perform ongoing tasks such as self-

tuning and self-reorganizing. Examples include support for defragmenting data

and re-structuring indexes, creating backups, updating statistics, space

management, user management, and table and object maintenance.

• Problem Diagnosis and Correction. These features help with identifying any

anomalies in the system and determining their root cause, notifying the

administrators, taking corrective actions and tuning.

• Availability and Disaster Recovery. These features help the DBMS get back to

its stable state or recover from a disaster. For example, the DBMS should be able

to analyze its log carefully and identify the correct set of backup assets it retains in

order to get the system operational. They also support multiple server

synchronization and maintenance.

The remainder of the chapter is organized as follows. Section �2.1 presents our survey of

the autonomic features of three popular commercial DBMSs. Section �2.2 summarizes the

 17

survey and points out further functionality required in DBMSs to achieve the goal of

autonomic DBMSs.

2.1 HOW AUTONOMIC ARE CURRENT DBMSs?

Ganek and Corbi identify important, general properties of an autonomic computing

system [33]. In this section, we discuss DBMS-specific autonomic characteristics. We

first detail what kind of automation a characteristic implies in the realm of DBMSs and

then list some concrete examples drawn from commercial DBMSs that best match the

description of the particular autonomic characteristic. We should note again that this is

not meant to be an exhaustive list of features provided by the various DBMSs but instead

we wish to outline where DBMSs are today in terms of autonomic capabilities.

2.1.1 Self-optimizing

Self-optimization is one of the most challenging features to include in a DBMS. It allows

a DBMS to perform any task and execute any service utility in the most efficient manner

given the present workload parameters, available resources, and environment settings.

Obviously, the most important task in need of optimization is the execution of a query. In

fact, optimizing queries is one of the most apparent autonomic features of today’s

DBMSs. In general, query optimization involves query translation, the generation of a

cost-efficient execution plan and dynamic runtime optimizations [34].

 Producing accurate query plans depends heavily on statistics and column distributions.

Oracle [71] and SQL Server [17] provide facilities that automatically determine which

columns require histograms and also which tables require new statistics. Oracle also

supports a dynamic sampling feature that gathers statistics on the fly.

 18

 In some cases, query optimization can be infeasible. Therefore, the DB2 optimizer

allows the user to adjust the amount of optimization. More sophisticated models, such as

those found in Oracle [71] and SQL Server [64], automatically determine the appropriate

amount of optimization on a per-query basis. During query execution, cost models will be

able to benefit from the self-validation of the cardinality model proposed by DB2’s

Learning Optimizer (LEO) [85].

 Dynamic adjustment to the query execution strategy is one of the good features of

present DBMSs. Oracle provides automatic memory allocation [71] so that each query

has the appropriate amount of memory. DB2 and Oracle both provide an automatic

query parallelism selection mechanism.

 In addition to query optimization, a DBMS must also optimize the various utilities

such as backup, restore, statistics collection and data load utilities. DB2’s Load utility, for

example, performs mass insertions of data into a target table by exploiting a series of

parallel I/O sub-agents for pre-fetching, SMP parallelism degree, and the amount of

memory available for buffering and sorting.

2.1.2 Self-configuring

The performance of a DBMS depends on the configuration of the hardware and software

components. An autonomic DBMS should provide users with reasonable “out of the

box” performance and dynamically adapt its configuration to provide acceptable, if not

optimal, performance in light of constantly changing conditions. An ADBMS should

recognize changes in its environment that warrant re-configuration. It should also be able

to reconfigure itself without severely disrupting online operations. A DBMS

configuration includes performance parameters, resource consumption thresholds, and the

 19

existence of auxiliary data structures such as indexes and materialized views in the

database schema.

Typically, DBMSs provide configuration wizards such as DB2’s Configuration

Advisor. Configuration advisors are tools to assist with initial configuration but the

settings are, in most cases, static. The goal of an autonomic DBMS is to provide dynamic

adjustment of these settings. Little support is provided for this type of self-configuration.

SQL Server and Oracle both provide some degree of automatic memory management.

These systems allocate memory as needed by the database, limiting memory allocation

when either a user-imposed limit is reached or the system’s physical resources run low.

 Self-configuring features of an ADBMS should include support for determining the

optimal set of indexes and materialized views to be used by the query optimizer. All the

DBMSs provide an index advisor (DB2’s Design Advisor [59], SQL Server’s Index

Wizard [64], and Oracle’s Index Tuning Wizard [68]) that recommends a suitable set of

indexes. Similar to the index advisor, SQL Server [4] and Oracle [69] also recommend

materialized views that can be beneficial to the system.

2.1.3 Self-healing

A fundamental requirement of a DBMS is that the database remains in, or can be restored

to, a consistent state at all times. A DBMS must reliably log all operations, periodically

archive the database and be able to use the logs and backups to recover from failure.

Ideally an ADBMS should recognize when a full or incremental backup is necessary and

perform these operations with minimal system disruption. In the event of catastrophic

failure, an ADBMS should be able to retrieve the most recent backup, restore to the

consistent point just before the failure, then resume its halted operations after handling the

 20

exceptions. Oracle, for example, provides the ability to resume operations (such as a

batch load) following corrective action (such as the addition of more disk space) [68].

 All DBMSs support logging, backup and recovery mechanisms. DB2 has a recovery

tool, the Recovery Expert, which analyzes the recovery assets available and recommends

a technique to be selected. DB2’s Automatic Incremental Restore mechanism uses the

backup history for automatically searching for the correct backup images. SQL Server

and Oracle allow the DBA to set a recovery interval parameter that specifies a target for

recovery time in seconds.

2.1.4 Self-protecting

Database protection implies at least the following aspects: database security [5],

analytical auditing mechanisms, data encryption, and admission control strategies. These

features shield the DBMS from potential, errant requests that may deteriorate its

performance or bring the DBMS down.

 All multi-user DBMSs provide authentication mechanisms that prevent unauthorized

users from accessing the database. Database privacy ensures that users are granted access

only to the portions of the database that are required. Current DBMSs differ in the level

of access granularity; DB2 and SQL Server provide security on a per table basis whereas

Oracle provides row-level security.

 Admission and application control is essential for ADBMSs to protect the system

from database requests that may deteriorate performance and/or undesirably consume

system resources. The DB2 Query Patroller [46] and the Oracle Resource Manager [68]

are examples of admission control tools used today.

 21

2.1.5 Self-organizing

An ADBMS should be capable of dynamically re-organizing and re-structuring the layout

of data stored in databases (e.g., tables), associated auxiliary data structures (e.g.,

indexes), and any system-related data (e.g., system catalog) in order to optimize

performance. An ADBMS should assist in the initial layout of data on disks and should

be able to shift data from one disk to another to even out disk demands. This ability is not

present in current DBMSs, however Oracle does provide the ability to move tables while

on-line [68].

 To make efficient use of system resources, DB2, Oracle and SQL Server permit

dynamic online index reorganization to reclaim leaf level storage. SQL Server has also

the Partition Wizard and the Storage Design Wizard that help manage the layout of data

cubes on disks.

2.1.6 Self-inspecting

Bowing to the principle if you don’t measure it then you don’t know it, an ADBMS

should “know itself” in order to make intelligent decisions pertaining to all autonomic

features discussed in the previous sections. The DBMS must collect, store and analyze

relevant information about its components, performance, and workload. This

information should be utilized in optimizing the performance, detecting any potential

problems, updating statistics about the stored data, ensuring integrity of data read from

disk, scheduling maintenance utilities, and in identifying interesting trends in the

workload. The results of this constant inspection should be effectively presented to DBAs

(using a GUI interface, for example) and be available as input for other autonomic

components and operations.

 22

Using the DB2 Health Center or the Oracle Manager Console, a DBA can examine the

system for signs of unhealthiness and store performance data in a data warehouse. Such

performance data can be further analyzed by analysis tools such as The DB2 Performance

Expert.

The Maintenance Advisor is a tool that DBAs can use to examine DB2 statistics and

make recommendations on what maintenance utilities should be run. Another example of

automated inspection is DB2’s ability to perform Sector Consistency Checking for page

I/Os that ensures the integrity of read data by detecting any corruptions caused, for

example, by incomplete I/Os.

2.2 ANALYSIS—WHAT IS MISSING?

Despite the many advances that have been made towards autonomic database

management systems, much work remains to reduce the amount of human intervention

required by these systems. We can summarize the most significant shortcomings in the

following points:

• High need for human input and intelligence. Current DBMSs provide many

tools and utilities to assist the DBA in tasks such as initial configuration, system

monitoring and problem analysis, but in most cases these tasks still require a

significant amount of input, intelligence and decision making on the part of the

DBA.

• Lack of Dynamic Adaptation. Tuning advisors, for example, have proven useful

in the initial setup of the database system, however, the settings, in most cases, do

not automatically adapt to changes in the system environment or workload.

 23

• Lack of ability to reset DBMS parameters on-line. Although close, DBMSs do

not yet provide this capability. Note that being able to reset DBMS parameters

dynamically is a mere prerequisite to enable autonomic features but it does not

offer any kind of intelligent strategies.

• Lack of analytical capabilities. Many of the advisors and tools currently

available are based on “rules of thumb” or heuristics that capture the human

expertise programmatically. Robust analytical models and accurate prediction

mechanisms are required for the more difficult tuning and configuration tasks.

• No smart maintenance strategies. Database utilities such as rebinding, statistics

gathering, table and index reorganization and backup are currently provided by the

DBMSs. However, an autonomic DBMS must have the ability to predict the best

time to schedule the execution of these utilities.

• Inability to run some operations on-line. Some of the vital database operations

such as deframenting data, updating statistics, and pruning important data

structures like indexes can not be performed without bringing the DBMS down.

• Lack of on-line schema evolution. This feature should allow changing schema

aspects without incurring an outage.

• Lack of standard interfaces with other systems. Current DBMSs do not show

adequate enablement of autonomic features that allow smooth integration and

synergy between the DBMS, as a middleware, and others components such as

Web Servers.

• No exploitation of characteristics of the workload. Most of the current DBMSs

overlook analyzing the characteristics of the workload and its behavior over time.

 24

• Trivial security and privacy strategies. Current security and privacy features do

not offer any kind of clever strategies that help the DBMS develop or change its

protective plans. For example, ADBMSs should provide auditing mechanisms

where logs are used to track all DBMS activity. The DBMS can use this

information to track trends, analyze potential threats, support future security

planning, and assess the effectiveness of countermeasures. Agrawal et al. propose

more interesting ideas to improve DBMSs’ privacy [5].

Despite the efforts undertaken by industry-led projects such as IBM’s SMART and

Microsoft’s AutoAdmin, we have not witnessed a real change to the DBMS infrastructure

that is necessary, as a rigorous but flexible architecture, for making the transition to a

fully autonomic system.

2.3 SUMMARY

Autonomic DBMSs, that is DBMSs that can manage themselves, are an attractive

solution to complexity and total cost of ownership problems associated with DBMSs. We

examine three popular database products, namely DB2, Oracle and SQL Server, with

respect to their autonomic computing features. We find that, while all three products now

contain features of an ADBMS, there is still a long way to go before we can claim that

DBMSs are autonomic computing systems.

We conclude that ADBMS research should focus in four main areas. The first area is

the development of a proper infrastructure to allow the clean introduction of autonomic

computing system features. Current research literature proposes two very different paths

to ADBMSs. One is a revolutionary approach that argues for a complete redesign of

 25

DBMSs with fine-grained components [61][37] or components that provide a RISC-like

interface [93]. This RISC-style facilitates individual management of the components and

controlled interactions between them. The second approach is evolutionary [33] and

identifies a set of phases that existing systems can be taken through in order to become

autonomic systems. We feel the evolutionary approach is more realistic for existing

DBMS products.

The second main area of research for ADBMSs is intelligent decision-making tools. It

is important that DBMSs become able to independently analyze and act upon the

information they collect about their performance. A key component of this progress will

be the development of effective mathematical models and feedback control loops that can

be used to make more accurate performance prediction and reach better tuning decisions.

The third main area of research is the development of a useful model of the system

itself. A model must exist in order for DBMSs to know themselves. The model will have

to represent the resources used by the ADBMS efficiently, the relationships between

these resources, the workload of the ADBMS and the current state of the ADBMS.

The fourth main area of research is making DBMSs more intelligent by discovering

knowledge from data surrounding them, especially from their workloads. An ADBMS

will require workload characterization techniques [25] to automatically extract the

necessary information from this data. Statistical models and data mining techniques

[24][26] can help tap interesting properties in the DBMS’s workload. This research

direction is the ultimate motivation of our thesis as we present methodologies that allow a

DBMS to automatically recognize the workload type and efficiently predict its variation

over time.

 26

Finally, we do not think that progressing towards ADBMSs will mean the demise of

DBAs. It will mean the end of repetitive administrative tasks, freeing DBAs to spend

more time on new applications and on the business policies and strategies. Furthermore,

DBAs will be needed to evaluate and select recommendations before they are

implemented. Once comfortable with system recommendations, DBAs can enable a

DBMS to take actions automatically and simply report on them.

 27

CHAPTER 3 WORKLOAD CHARACTERIZATION

The performance evaluation of computer systems requires understanding of a system’s

workload. As shown in Figure 1, the workload is a set of requests, or components, that

place different demands on various system resources. Workload characterization provides

a model of a system’s workload by means of quantitive parameters and functions. The

model should be representative, compact, and accurate [10], and should be able to

describe and reproduce the dynamic behavior of the workload and its most essential static

features.

We explore various techniques other researchers use, in different computer fields, in

order to extract workload characteristics. This study helps us choose the appropriate

characterization methods to identify important properties of the DBMS workload

(�Chapter 4) and model its behavioral change over time (�Chapter 5).

The chapter has three goals4. First, we summarize the most common techniques used

to characterize workload, such as graph-based techniques, stochastic processes,

clustering, and numerical fitting. We give a brief description of these techniques and

classify them according to their ability to extract different aspects of the workload, that is,

the static properties or the dynamic behavior. Second, we organize these techniques

within a common framework. To this end, we present a general methodology for

workload characterization that is used in our research. Our third goal is to point out the

potential problems and concerns that may be encountered during the characterization

process.

4 A detailed discussion of the material presented in this chapter can be found in [25].

 28

The rest of the chapter is organized as follows. Section �3.1 gives a brief description of

the common techniques used in workload characterization. Section �3.2 summarizes

workload characterization techniques found in different types of computer systems,

namely batch and interactive systems, client/server systems, databases systems, parallel

systems, and WWW systems. Section �3.3 explains our workload characterization

framework and highlights the most significant concerns and potential problems that

researchers encounter during the characterization process.

3.1 CHARACTERIZATION TECHNIQUES

In this section, we briefly describe the techniques most commonly used to analyze system

workloads. The selection of a particular technique depends mainly on the purpose of the

performance study, and on the level of detail required. It might be necessary, in some

cases, to evaluate more than one technique in order to select the best one.

Functionally, we can classify the characterization techniques into two main categories:

static and dynamic. Static techniques explore the intrinsic characteristics of the workload,

such as transaction classes, the correlation between workload parameters and component

dispersion, which do not change over time. Examples of these techniques are clustering,

Figure 1. The workload characterization process

Workload
Model

Jobs
System

Performance
Study

Transactions

Commands

Sessions

Scripts

Workload

Characterization

SQL Statements

 29

principal component analysis, averaging, and correlation coefficients. Dynamic

techniques, such as Markov models, user behavior graphs, and regression methods, focus

on describing the behavior of the workload and the way it fluctuates over time. These

techniques usually analyze the historical data of the workload and, as a result, aid in

forecasting its behavior in the future.

Throughout the workload characterization process, adopting one technique is usually

not sufficient to obtain a complete analysis; several techniques may be used in

combination in order to come up with an approach that satisfies the research needs. For

example, clustering techniques might be used to classify the transactions submitted to the

system. Afterwards, each class may become a node in User Behavior Graphs [15], or a

transitional state in a Markov model. This example raises another issue, namely the

importance of obtaining both static and dynamic properties of the workload in order to

obtain a complete picture.

Visualization tools, such as graphs, histograms, and fitting curves, are a key means of

highlighting significant features in the workload under investigation while simple

techniques, like averages, may smooth out some details such as burstiness. Sections �3.1.1

and �3.1.2 describe static and dynamic characterization techniques respectively. Table 1

summarizes the techniques examined in these sections.

 30

Technique
Type

Technique Advantages Disadvantages

Descriptive Statistics
(average,
variance/standard
deviation, correlations,
distributions)

o Provides preliminary description
o Easy to calculate

o May not be sufficient; further
analysis is needed

Single-parameter
Histogram

o Expressive visual means
o Shows frequencies of each bin
o Frequency distribution can be used

in simulation models

o Incapable of expressing the
correlation among different
parameters

Multi-parameter
Histogram

o Illustrates the correlation between
different parameters

o Expressive visual means

o Difficult to plot the correlation
between more than two
parameters

Factor Analysis (e.g.,
Principal Component
Analysis)

o Simplifies performance data and
reduces their dimensionality

o Complex to calculate

St
at

ic

Clustering o Identifies homogeneous classes of
workload components based on
certain criteria

o Difficult to choose the
appropriate number of clusters

Markov Models
(Markov chains, Markov
processes)

o Predicts the order in which the
requests are executed

o Complex to calculate

Prediction Using Neural
Networks

o Performs short-term and long-term
forecasting of workload parameter
values

o Difficult to design and to
configure

Moving Average o Useful for short-term, single value
prediction

o Easy to calculate

o Cannot perform long-term
forecasting

o Cannot predict more than one
single value

o No special consideration for the
most recent observations

o Difficult to determine the best
number of observations

Exponential Smoothing o Useful for short-term, single-value
forecasting

o Places more weight on the most
recent observations

o Easy to calculate

o Cannot perform long-term
forecasting

o Cannot predict more than one
single value

o Difficult to determine the best
smoothing weight

Regression Methods
(linear and non-linear
fitting)

o Predicts the value of a parameter as
a function of others

o Identifies trends

o Can be complex to calculate

User Behavior Graphs o Used mostly in interactive systems
o Describes the user’s probable

transition to a particular
command/transaction type

o Requires clustering to compose
the nodes

D
yn

am
ic

Probabilistic Attributed
Context Free Grammar

o Used in hierarchical systems (e.g.,
client/server)

o Translates views of higher layers to
lower layers

o Cannot be used to map lower
layers to higher ones

Table 1. Static and dynamic workload characterization techniques.

 31

3.1.1 Static Techniques

Static techniques, such as descriptive statistics, single-parameter histogram, multi-

parameter histograms, principal component analysis, and clustering, help explore the

static characteristics of the workload. In this section we give a brief description of each

type.

Descriptive Statistics. Descriptive statistical techniques are used to identify the static

properties of the workload. Using these techniques helps describe what the workload

parameters look like: where their center (average) is, how broadly they are spread

(dispersion or variance), and how they are related to each other (correlation).

Averaging, or arithmetic mean, is the simplest method to characterize a workload

parameter such as user think time, number of active users, number of I/O operations

required to execute a query, or inter-arrival time of transactions. Averaging presents a

single number that summarizes the parameter values observed. However, it is not always

appropriate to count on arithmetic mean; the median, mode, geometric mean, or harmonic

mean should be used in some cases.

The average alone is not adequate if the performance data has high variability.

Variability is usually specified by the variance. However, the standard deviation, which

is the square root of the variance, is more useful in expressing the variability because it

has the same unit as the mean. The ratio of the standard deviation to the mean is called

the coefficient of variance (C.O.V). A zero C.O.V. indicates that the measured parameter

is constant. In this case, the mean gives the same information as the complete set. A high

C.O.V. indicates high variance, in which case it may be useful to look at the complete

histogram (discussed below). There are also other alternatives for specifying variability

 32

like range (minimum and maximum), 10th- and 90th- percentile, semi-interquartile range,

and the mean absolute deviation.

Correlation is another useful statistical technique to discover the relationship between

different workload parameters. It is a decimal fraction, called correlation coefficient,

which indicates the degree to which the parameters are related. There are numerous ways

(e.g., Biserial, Point Biserial, Tetrachoric, Spearman rank-order, etc.) to calculate the

coefficient of correlation. Pearsonian product moment, commonly called Pearsonian r, is

the most popular one [83].

Single-parameter Histograms. A histogram is a visual representation of a parameter

where the range of values is divided into intervals called bins. As shown in Figure 2, the

histogram displays the frequency of the observations of each bin. This frequency

distribution is used in simulation models to generate a test workload. However, one of the

Disk I/O Histogram

0
50

100
150
200
250
300
350
400
450

0-
50

50
-1

00

10
0-

15
0

15
0-

20
0

20
0-

25
0

25
0-

30
0

Disk I/O

Fr
eq

ue
nc

y

Frequency

Figure 2. A simple histogram of disk accesses

 33

drawbacks of a histogram is that it is incapable of expressing the correlation among

different parameters. Therefore, multi-parameter histograms can be used instead.

Multi-parameter Histograms. Multi-parameter histograms illustrate the correlation

between different workload parameters. The distribution of n workload parameters can be

described by an n-dimensional matrix or histogram. Figure 3 shows an example of a two-

parameter histogram that represents the number of read and written pages in a database

system. Each dot in the figure represents a system node. The number of dots in a cell of

the grid represents the number of nodes that read and wrote pages in the range

corresponding to the cell. As can be seen, the nodes reading a large number of pages are

also the ones that write a large number of pages. Therefore, a significant correlation may

exist between the two parameters. On the other hand, we should note that it is difficult to

plot multi-parameter histograms that correlate more than two parameters.

Factor Analysis. The term factor analysis usually refers to statistical techniques that

describe multidimensional sets of data by means of geometric representation. Their goal

0

1500

3000

4500

6000

7500

9000

0 1500 3000 4500 6000 7500 9000

#of Pages Read

#o
f P

ag
es

 W
ri

tt
en

Figure 3. A two-parameter histogram

 34

is to help choose a subspace of the variable space such that the projection of the data set

on that subspace preserves as much information of the original set as possible.

Consequently, factor analysis is beneficial for simplifying data and reducing their

dimensionality.

Principal Component Analysis (PCA) [39] is a factor analysis technique that maps a

set of parameters, or variables, into another set, called principal components,

characterized by orthogonality among the components and by linear dependence on the

parameters in the original set. PCA is an iterative process in which the first component is

chosen such that it maximizes the variance of the linear function expressing the

dependence of the transformed parameters on the original ones. The second component is

chosen such that it maximizes the remaining variance while this component must be

orthogonal to the first, and so on.

Clustering. Clustering is one of the most widely adopted techniques in workload

characterization [15][74][67][23]. Clustering identifies homogeneous groups, or classes,

of workload components, based on the similarity of resource demands. In general,

clustering methods can be classified as hierarchical or non-hierarchical. Hierarchical

techniques, like the Minimal Spanning Tree (MST) [80] method, start by assuming that

each component of a workload is a cluster. Then, the two clusters with the minimum

distance are merged to form a single cluster. The process iteratively continues until either

all the workload components are grouped into a single cluster or the desired number of

clusters is reached. On the other hand, the non-hierarchical techniques, like the k-means

algorithm [40], start from an initial partition that consists of the exact desired number of

clusters. Workload components are reassigned among clusters so that a particular cluster

criterion, known as distance function, is optimized.

 35

Deciding on the number of clusters is a common problem in any cluster analysis study.

Generally, it depends on the goal of the study and it is desirable to keep this number small

for practicality. Various clustering algorithms are available in the literature [51].

3.1.2 Dynamic Techniques

Next, we examine techniques commonly used to describe and predict the behavior of the

dynamic aspects of the workload.

Markov Models. Knowing the number of requests of each type, or class, is not sufficient.

It is also important to know the order in which requests are executed in the system. If it is

assumed that the next request depends only on the current one, then the requests follow a

Markov model [38]. This model can be represented by a transition matrix, which gives

the probability of moving to the next state given the current one. A corresponding state

transition diagram can be easily constructed from the transition matrix. Figure 4 shows

an example of a transition diagram in which the probability of a job using the disk after

visiting the CPU is 0.4, the probability of it returning to the CPU from the disk is 0.8, and

so on.

Figure 4. A state transition diagram representing a Markov model.

Client

CPU Disk I/O

0.5

0.8

0.4

1
0.2

0.1

 36

Markov models are used to describe the transitions between any system states, not just

between system resources. For example, in a software development environment that

provides several types of software tools, we can use a transition matrix to describe the

probability of transitions between the different types of development tools like editors,

compilers, linkers, and debuggers.

Prediction Using Neural Networks. Although getting a perfect prediction is a very hard

problem, neural networks can be used to obtain reasonably good predictions in some

cases [62]. Feedforward as well as recurrent networks are commonly used for this

purpose. The prediction problem can be viewed as a function approximation problem, in

which the function values are represented as time series, that is, a sequence of values

measured over time. Based on the knowledge of the most recent d values of a time series,

the neural network can be trained to predict the d+1 future value. The accuracy of

predicting the values of a parameter may increase if a multivariate time series and the

correlations among all workload parameters are taken into account [63].

Typically, two types of predictions are considered: short-term, or one-lag, and long-

term, or multi-lag, predictions. In one-lag predictions, the forecasting of the future value

is based just on the past actual values. Multi-lag prediction also exploits some of the

predicted values in order to predict future values. An example of multi-lag prediction is

forecasting the value of a time series a year from today while the values for the next

eleven months are unknown.

Moving Average. This is a simple prediction technique in which the next forecasted

value is the average of the previous ones. This method shows very good results if the data

are almost stationary, that is, with little variation [56]. However, it is not suitable for

 37

long-term prediction as it is not capable of predicting more than a single value at a time.

The forecasted value can be calculated as follows:

n
xxx

f nttt
t

11
1

+−−
+

+++= �

where 1+tf is the forecast value for period t+1, tx is the actual value at time t, and n is the

number of previous observations. It is not always easy to determine the number of

periods, n, that should be used. Thus, different values of n may be examined in order to

find the one that achieves the least mean squared error (MSE), which is calculated as

follows:

n

fx
MSE

n

t tt� =
−

= 1
2)(

Exponential Smoothing. Exponential smoothing is similar to the moving average in

terms of using the average to predict the next value. It is particularly useful for short-term

forecasting and when the data are stationary. However, it differs from the moving average

in the way it calculates the forecast value; it puts more weight on the most recent

historical observations. The idea stems from the hypothesis that the latest observations

give a better indication of the future. Here, the forecast value 1+tf is calculated as follows:

)(1 tttt fxff −+=+ α

where � is the smoothing weight (0<�<1). Again, some values of � are better than others

in terms of getting the least MSE, and additional tests help to choose a suitable one.

Regression Methods. The value of a variable, called the dependent variable, can be

predicted as a function of other variables, called independent variables, using regression

models. Many mathematical forms exist, which describe the relationship between these

 38

variables. A linear relationship is a common assumption used to estimate the values of the

dependent variable [63].

User Behavior Graphs. User Behavior Graphs (UBG) are considered as the basis for

several workload models [12]. They are similar to the state transition diagrams used in

Markov models and are commonly used to describe the workload of interactive systems,

such that each user has her own UBG [30]. A UBG is a probabilistic graph whose nodes

represent the different command types issued by the user, and whose arcs represent the

transition from one command type to another throughout a user session.

Probabilistic Attributed Context Free Grammar. A Probabilistic Attributed Context

Free Grammar (PACFG) [32] is a central means of constructing generative workload

models, especially in systems that have a hierarchical nature, like client/server and WWW

environments [53][78]. A PACFG can translate views between the different layers of the

system hierarchy. For example, a PACFG can map the client-oriented view of the

workload, such as commands submitted during user sessions, to a low-level system view

like TCP/IP protocol requests.

 A PACFG is a 3-tuple GA = {G, A, Q} where G is the regular grammar defined as G =

{VN, VT, P, S}. VN and VT are a set of non-terminal and terminal symbols, respectively, P

represents a set of production rules, S is the start symbol, A is a set of attributes and Q is a

set of probabilities associated with P. At each layer in the hierarchy, the system supports

a set of operations that are represented by non-terminals. The mapping of a particular

layer’s operations to the operations of the next layer is achieved by expanding each of the

non-terminals to a sequence of non-terminals or terminals at the next lower level. Such an

expansion is controlled by the production rules (P) and the associated set of probabilities

(Q). Each non-terminal has two attributes s and e, which respectively denote the start and

 39

end times of an operation, such as a user session, occurring at a particular layer. The

duration of an operation is the difference between s and e.

3.2 CASE STUDIES

We now present a summary of case studies5 of different types of computer systems,

namely batch and interactive systems, client/server systems, database management

systems, parallel systems, and WWW systems. Throughout these case studies, we focus

on the workload characterization aspects of each system type, and identify the most

commonly used techniques. We summarize the features of the commonly used

techniques, in each computer field, in a table. A row in a table represents a major

characterization technique (e.g., clustering) used to analyze the workload of that type of

computer system. The columns of the table describe the technique used, the workload

properties explored (i.e., static or dynamic), the methods used (e.g., k-means), the

approach followed (i.e., functional or resource-oriented), the basic workload component

considered (e.g., transaction, URL, session, etc.), the input parameters analyzed (e.g., # of

files), the workload type (i.e., interactive, batch, or scientific), the purpose of the study,

some of the useful results obtained, other techniques used in combination with this

technique, and some references to case studies that used this technique.

3.2.1 Batch and Interactive Systems

A number of characterization techniques appeared in early studies of interactive and

batch computer systems (e.g., [12] and [14]). Interestingly, these techniques are still the

5 Detailed in a technical report [25].

 40

basis of approaches adopted in recent studies of various computer systems. In general, the

different clustering and factor analysis techniques are commonly used to describe the

static aspects of the workload while stochastic processes, numerical fitting techniques and

graph based approaches are used to capture the dynamic behavior of the workload as it

changes over time. Table 2 summarizes the commonly used characterization techniques in

batch and interactive systems.

 41

G
raphs

N
um

erical
Fitting

Prediction
M

odels

Factor
A

nalysis

C
lustering

T
echnique

D
ynam

ic

D
ynam

ic

D
ynam

ic

Static

Static

Static/
D

ynam
ic

U
ser B

ehavior
G

raph

L
inear and

non-linear
R

egression

M
arkov C

hain

Principal
C

om
ponent

A
nalysis

k-m
eans,

M
inim

al
Spanning
T

ree

M
ethod

Functional,
resource-
oriented

R
esource-

oriented

Functional

R
esource-

oriented

R
esource-

oriented
(M

ostly),
Functional

A
pproach

C
om

m
and

Job

Job

Program

Job, program

C
om

ponent

C
om

m
and

type and
sequence,
resource
consum

ption

A
rrival rate,

tim
estam

p

T
ask type,

user state,
tim

estam
p

C
PU

 tim
e,

disk I/O
s,

language,
m

em
ory

C
PU

 tim
e, #of

files, #of Job
steps, #of I/O

s
per device
type

Param
eters

Interactive

Interactive

Interactive

B
atch

B
atch,

Interactive

W
orkload

T
ype

D
escribe

user/system

behavior as it
transits from

one state to
another

M
odel

w
orkload

arrival pattern

D
escribe

user/system

behavior as it
transits from

one state to
another

R
educe

dim
ensionality

of D
ata;

Identify
characteristics
of each
program

 types

D
istinguish

program
/com

m
and/task classes
according to
their
functionality or
resource
consum

ption

Purpose

A
 probabilistic

graph m
odel

Param
etric

m
odel of high-

degree
polynom

ial
functions

T
ransition

m
atrix or state

diagram

describing the
probable
sequence of
jobs or tasks

(2-3) factors
accounting for
the m

ajority of
the variance in
the data set

(7-9)
hom

ogeneous
groups R

esults

C
lustering

C
lustering

C
lustering

C
lustering

M
arkov

M
odels,

U
ser

B
ehavior

G
raphs

O
ther

T
echn.

C
om

bined

Table 2. Characterization techniques used in batch and interactive systems.

 42

3.2.2 Client/Server Systems

A client/server system consists of clients connected to servers via a network. Distributed

file systems, distributed database systems, distributed multimedia systems, and WWW

applications, are examples of client/server systems. They can be seen as a hierarchical

structure composed of three layers: client, network, and server. Characterization

techniques and tools may differ depending on the layer in which the characterization is

taking place (e.g., [19][20]). Table 3 summarizes the commonly used characterization

techniques in client/server systems.

 43

C
lustering

G
ram

m
ar

G
raphs

Statistics

T
echnique

Static

D
ynam

ic

D
ynam

ic

Static,
dynam

ic

Static/
D

ynam
ic

k-m
eans

Probabilistic
A

ttributed
C

ontext Free
G

ram
m

ar
(PA

C
FG

)

U
ser

B
ehavior

G
raph (U

B
G

)

E
xponential/

Poisson
processes,
B

im
odal

distributions,
variance,
averages,
tim

e-dom
ain

analysis
based on R

/S
statistic

M
ethod

Functional,
resource
oriented

Functional

Functional,
resource-
oriented

Functional –
characterizing
load per
protocol or
file type

A
pproach

U
ser sessions,

com
m

ands,
netw

ork
requests

Session,
com

m
and,

netw
ork

request

C
om

m
and

File, packet

C
om

ponent

C
om

m
and

type, netw
ork

request type

A
rrival tim

e,
com

m
and

type, netw
ork

request type

A
rrival tim

e,
com

m
and

type, m
essage

length,
source/destina
tion addresses

#of requests,
inter-arrival
tim

e, file
references,
#of I/O

s,
packet
lengths, error
rate

Param
eters

Interactive

Interactive

Interactive

Interactive

W
orkload

T
ype

R
educe the

analyzed data

B
uild a

generative
m

odel that
considers the
hierarchical
nature of
client/server

M
odel the

w
orkload at

user, system
,

netw
ork

levels
(separately)

M
odel the

reference
behavior at
file servers

Purpose

D
istinctive

groups of
com

m
ands

and netw
ork

requests

A
 m

odel used
as input to a
sim

ulation
m

odel

A
 m

odel
representing
user and
system

behavior

D
istributions

of requests
and their
arrival;
discovering
self-sim

ilarity
and
burstiness;
understand
user behavior

R
esults

PA
C

FG
,

U
B

G

C
lustering

C
lustering

-

O
ther

T
echn.

C
om

bined

Table 3. Characterization techniques used in client/server systems.

 44

3.2.3 Database Management Systems

As database management systems (DBMS) become increasingly popular and are often

part of larger systems, they require considerable tuning to get them working at an optimal

performance level [58]. As in any computing system, identifying the characteristics of the

workload should aid in tuning and configuring these systems more effectively (see for

example, [44][81]). Table 4 summarizes the commonly used characterization techniques

in database systems.

 45

Statistics

N
um

erical
Fitting

Prediction
M

odels

C
lustering

T
echnique

Static,
dynam

ic

D
ynam

ic

D
ynam

ic

Static

Static/
D

ynam
ic

B
asic

statistics
sum

m
aries

(avg.,
distributions),
non-
hom

ogeneous
Poisson
process,
histogram

s

N
on-linear

regression
(e.g.,
L

evenberg-
M

arquardt
m

ethod)

M
arkov chain

H
euristic,

N
eural

netw
ork, k-

m
eans M

ethod

Functional

Functional

Functional

R
esource-

oriented

A
pproach

D
B

transaction,
application,
SQ

L

statem
ent

D
B

transaction

D
B

 Q
uery

D
B

transaction

C
om

ponent

A
rrival tim

e, cache
m

iss rate, m
em

ory
footprint, # of
references to a
m

em
ory block,

read/w
rite page

accesses, C
PU

dem

ands,
deadlocks, num

ber
of transactions
com

pleted, #of
different pages
accessed per
transaction

A
rrival tim

e

T
hink tim

e,
sequence of
executing queries in
a session

#of database calls,
#of locks, #of
references

Param
eters

Interactive

Interactive

Interactive

B
atch,

interactive

W
orkload

T
ype

U
nderstand

m
em

ory
behavior in
different
architecture
s; enhance
buffer
replacem

ent
and
concurrency
control

M
odel the

arrival
pattern of
transactions

Predict
buffer hit
ratio; m

ake
predictive
prefetching;
enhance
caching

C
apacity

Planning,
load
balancing

Purpose

D
egree 8 of

exponential
polynom

ial,
cache reuse
distribution
, identifying
locality/seq
uentiality
of
reference.

D
egree 8 of

exponential
polynom

ial

A

predictive
m

odel for
the near
future
executed
queries

(4-8)
clusters

R
esults

N
um

erical
fitting

Statistics

Statistics

Statistics

O
ther

T
echn.

C
om

bine
d

Table 4. Characterization techniques used in database systems.

 46

3.2.4 Parallel Systems

Parallel applications are developed to solve problems in a shorter time and/or to solve

larger problems in the same time. To meet these objectives, we need to tune, debug and

diagnose the performance, which requires characterizing the parallel applications [13].

Essentially, the characterization requires collecting measurements by adding

instrumentation to the source code of the application, to the operating system scheduler,

or to the communication libraries [42]. Table 5 summarizes the commonly used

characterization techniques in parallel systems.

 47

Statistics

G
raph

T
echnique

Static

D
ynam

ic

Static/
D

ynam
ic

Signatures,
avg.
com

putation/
com

m
unicati

on tim
e, avg.

of
sent/received
m

essages,
avg. m

essage
length, # of
I/O

operations

Profiles,
shapes,
phases M

ethod

R
esource-

oriented

R
esource-

oriented

A
pproach

A
pplication

A
pplication

C
om

ponent

T
im

ing
param

eters:
execution,
com

putation,
com

m
unication

tim
es, I/O

 tim
es,

V
olum

e
param

eters: #
of
com

m
unicati

ons, I/O

operations,
floating-point
operations

of
processors
being busy
com

puting or
com

m
unicati

ng at certain
tim

e

Param
eters

Scientific

Scientific

W
orkload

T
ype

O
btain

inherent
characteristic
s of a parallel
application
run on a
specific
num

ber of
processors.

Identify
application
phases

Purpose

Single-value
m

etrics, and
signatures

G
raphs of

com
m

unicati
on,
com

putation,
and I/O

phases R

esults

-

Statistics

O
ther

T
echn.

C
om

bined

Table 5. Characterization techniques used in parallel systems.

 48

3.2.5 World Wide Web Systems

Internet-based systems can be classified as client/server systems described in Section

�3.2.2, but we opt to discuss them separately because the literature is rich with research

papers pertaining to workload analysis issues (e.g., [77][95][36]. This should not be a

surprise as we observe, day after day, the explosive increase of Internet popularity. Table

6 summarizes the commonly used characterization techniques in the World Wide Web

systems.

 49

G
raph

D
ata m

ining
and data
w

arehousing

G
ram

m
ar

Statistics

Prediction
M

odels

A
nalytical

M
odeling

T
echnique

D
ynam

ic

Static,
D

ynam
ic

D
ynam

ic

Static

D
ynam

ic

Static,
D

ynam
ic

Static/
D

ynam
ic

C
ustom

er B
ehavior

M
odel G

raph
(C

B
M

G
)

O
L

A
P: D

rill-dow
n,

roll-up, slice-and-
dice; D

M
 tools:

association,
clustering,
classification,
transition/trend
analysis

Probabilistic
A

ttributed C
ontext

Free G
ram

m
ar

A
verages,

distributions,
histogram

s,
correlations, C

O
V

,
H

urst param
eter

H
ybrid L

R
S-M

arkov
m

odels

Q
ueuing N

etw
ork

M
odel, L

ayered
Q

ueuing M
odel,

M
ethod of L

ayers

M
ethod

Functional,
R

esource-
oriented

Functional,
R

esource-
oriented

H
ierarchical

-Functional,
resource-
oriented

Functional

Functional

Functional,
resource-
oriented

A
pproach

Session U
R

L

U
ser session,

H
T

T
P

request,
T

C
P/IP

request

U
R

L
, File

U
R

L

U
R

L

C
om

ponent

T
im

estam
ps,

#of hits, # of
pages
view

ed, #of
visits

T
im

estam
ps,

IP addresses,
transfer size,
U

R
L

 type,
file size

U
R

L
 tim

e
stam

ps, U
R

L

type, think
tim

e

U
R

L

tim
estam

ps,
T

ransfer size,
file size, file
type, request
success rate,
client locality

U
R

L

sequences

C
PU

 tim
e,

disk I/O
s,

R
esponse

tim
e, U

R
L

sequences,
U

R
L

 type

Param
eters

Interactive

Interactive

Interactive

Interactive

Interactive

Interactive

W
orkload

T
ype

M
odel E

-
com

m
erce

w
orkloads

D
iscover

interesting
characteristi
cs in W

eb
log

Profile
requests
subm

itted to
W

W
W

servers

D
iscover

W
eb

invariants

Predict the
navigation
behavior of
W

W
W

surfers

Study Q
oS

m
easures

for E
-

C
om

m
erce

Server

Purpose

D
eriving useful

m
etrics from

C

B
M

G
 like avg. #

of visits per user
state, avg. session
length, buy to visit
ratio

D
iscovering w

eb
access patterns and
trends

M
ap the high user-

oriented view
 to

low
 T

C
P/IP

requests

D
iscovering ten

w
eb invariants

Producing sim
ple

and accurate m
odel

better than
M

arkov’s

T
he m

ean response
tim

e is a good
indicator for the 90

th
percentile of
response tim

es

R
esults

C
lustering

Prediction
techniques
and tim

e-
series
analysis,
C

lustering,
Statistics

- -

M
arkov

M
odel

Statistics

O
ther

T
echn.

C
om

bined

Table 6. Characterization techniques used in World Wide Web systems.

 50

3.3 CHARACTERIZATION FRAMEWORK

In this section, we propose a general framework for the workload characterization

process. The framework makes the process more systematic, emphasizes some essential

steps needed to derive a good workload model, and prevents some common problems. A

correct characterization process does not have to strictly follow all the steps

recommended by the framework. However, in our research, the framework helps us keep

the big picture of the whole process in mind so we do not miss any essential requirement.

The main difficulties that may be encountered throughout the workload

characterization process are:

• Difficulty of System Instrumentation. Systems need to be instrumented in order to

obtain performance measurements. This may require the insertion of some probes,

like counters, into the system itself or into the operating system. This task is

challenging due to the complexity of the systems and the typical absence of the source

code.

• System Disturbance. Instrumenting the system is an intrusion that adds extra

overhead. Hence, the degree of intrusion should be minimized to reduce the

perturbation of the system’s behavior under the investigated workload.

• Complexity of Analyzing Large Volume of Performance Data. A large amount of

system measurements are needed to construct a workload model [13], which increases

the complexity of managing and analyzing the data.

• Validating Model Representativeness. Assessing the workload model

representativeness, that is, how accurately the model represents the real workload, is a

key issue [63]. Normally, modeling tends to hide some details that might be desirable

 51

to study. Hence, a careful decision should be made about the model’s abstraction level

in the requirements analysis phase (explained next). This should help identify how

much information loss can be tolerated and what important features must be included

in the model.

• Model Compactness. The characterization process should result in a compact model.

It is impractical for the workload model to incorporate all the basic components of the

real workload. Ideally, a compact workload model should place a much smaller

demand on the system than the actual workload [63].

Ferrari et al.[31] describe a methodology for constructing a workload model. We augment

their methodology to produce a framework that introduces the following additional

concepts:

• Creating a Performance Database. Building a database for the workload parameter

values provides a robust way of storing and managing large volume of performance

data. It also provides a solid foundation for the application of any analytical technique

that might be adopted in the subsequent phases.

• Distinguishing between the static and dynamic techniques. This distinction is

sometimes important in the analytical phase in order to choose the appropriate tool,

and to create an adequately descriptive executable workload model.

• Using data warehousing and data mining technologies. In addition to the traditional

analytical and statistical techniques commonly used in workload characterization, we

suggest in this framework exploiting the capabilities of the data warehouse

technology [16] and data mining tools.

 52

The multi-dimensional data cube in a data warehouse provides operations such as drill-

down, roll-up, and slicing and dicing. These operations offer online analytical processing

(OLAP) capabilities, including an engine for deriving various statistics, and a highly

interactive and powerful data retrieval and analysis environment. The data warehouse

approach also overcomes the complexity problem stemming from processing large data

sets.

Besides the OLAP tools, the analytical capacity can be extended further by adopting

data mining techniques, which can discover implicit knowledge in the performance data

that can be expressed in terms of rules, charts, tables, graphs, and other visual forms for

characterizing, classifying, comparing, associating, or predicting the workload. Data

mining techniques have been used to discover interesting patterns and features in

customers’ data that may lead to better marketing strategies. Similarly, in the workload

characterization framework, we mine for interesting patterns and key characteristics in the

system’s workload. The integrated use of data warehousing and data mining has proven

useful in analyzing web logs [95] and we believe that using both technologies as part of

the workload characterization methodology would be beneficial too. Figure 5 shows the

framework of the workload characterization process. Deriving a workload model consists

of three phases: requirements analysis phase, construction phase, and validation phase.

Next, we describe these phases and explain the tasks involved in each of them.

 53

Figure 5. Workload Characterization Methodology.

•Identify the objective of characterization
•Determine the level of abstraction
•Define the basic workload components
•Determine what parameters to monitor
•Decide about representativeness criterion

Execute Model

Apply Rep. Criterion

Representative? Calibrate Model Model is OK
Yes No

�)�)�
�������
/�����

0��3��)��
�����

!���������4�������

Collect Data

System

55
��
		
�� ��
��
//
�� ((
��
��

Monitoring

��
((
��
�� /
/

$$
��
//
�� ((
��
��

��
""
$$
��

��

��
��
//
�� ��

�� ��
��
��
		
22
�� �
� ��
��

Instrumentation

Performance
 Database

�0�)���(�!�
/�����

��)�����)�4��)������)���
/����� ����

 54

3.3.1 Requirements Analysis Phase

The reasons for characterizing a system’s workload should be clear from the beginning

because they help derive the appropriate workload model. Therefore, based on a clear

identification of the goals of the performance study, analysts must determine the

following:

Abstraction Level. Depending on the intended use of the model, the level of abstraction

at which the characterization will take place should be determined. The system can be

viewed as a hierarchy; the highest level in this hierarchy is functional and the lowest one

is physical. At the functional level, for example, the analyst may focus on identifying the

types of applications executed in the system, identifying the kinds of web objects that are

requested frequently, or grouping database transactions according to their functionality.

At the physical level, they may categorize workload components, such as transactions,

TCP/IP requests, or user interactive commands, according to their resource consumption

(e.g., CPU, I/O, and memory). The higher the level, the lower the amount of detail with

which the workload can be described. The selection of the level of detail helps in making

other decisions like the choice of the basic workload component.

Basic Workload Component. The smallest unit of work must be determined. As shown

in Figure 1, a workload component can be an application, a script, a command, a SQL

statement, a user session, a transaction, a CPU instruction, a request, or a job. For

example, applications and CPU instructions can be considered as basic workload

components at the functional and physical levels, respectively.

Workload Parameters. Depending on the abstraction level and the basic workload

component, parameters are chosen to give a quantitive description of the workload

 55

components. Examples of workload parameters are packet size, arrival time, number of

I/O instructions, memory space demand, and number of file handles required. It is

preferable to choose parameters that are dependent on the workload rather than on the

system. For example, response time and CPU time are not appropriate as workload

parameters since they are highly dependent on the system currently executing the

workload. The ratio of the read-only requests to the update requests in a database

workload is a good candidate parameter as it effectively describes the workload under

study and has nothing to do with system configuration. In particular, those characteristics

that have an impact on the system performance should be included in the workload

parameters. Parameter selection may also be restricted by the capability of the monitoring

tools currently available in the system.

Criteria of Evaluating Model Representativeness. The criteria of evaluating the

accuracy and representativeness of the derived model should be determined. They are

used to validate the model as explained in Section �3.3.3.

3.3.2 Model construction Phase

This phase consists of the following three main tasks:

Collecting and Preprocessing Performance Data. During the measurement interval, the

workload parameter values are collected from the system. The raw data may not be ready

for direct analysis, so, further processing may be needed to put the data in a clean state

and in an appropriate format. For example, the raw data set usually contains noise and

outliers that may distort the results of the subsequence analysis. Furthermore, some type

of transformations might be needed in this step. For example, if one of the parameter’s

density functions is highly positively skewed, a logarithmic transformation is needed.

 56

Creating A Performance Database. After preprocessing and filtering the raw data, a

relational database is created to store the performance data. The database facilitates

information extraction and data summarization based on individual attributes.

Analysis Stage. Analyzing the workload parameter values aims to extract the workload’s

static and dynamic features. In Section �3.1, we described some of the tools commonly

used to perform the static and dynamic analyses. The static analysis tools explore the

intrinsic features of the workload and partition the workload components into

homogeneous classes or groups. However, in order to make the derived workload model

executable we need to capture the characteristics of the workload over time in order to

reproduce the correct workload mixes. Hence, the dynamic properties of some time series

are considered. Stochastic processes, numerical fitting techniques, and the various

predictive models are useful in describing the behavior of the workload over time. As

depicted in Figure 5, the traditional analytical/statistical techniques and the proposed data

mining and OLAP tools can be used, separately or together, to analyze the performance

data in order to characterize the workload.

Analyzing the static characteristics helps to choose representative components (mixes)

that can reflect the key properties of the real workload. Analyzing the dynamic behavior

of the workload completes the picture by describing the distribution and the sequence of

execution of these workload components. Determining the static and dynamic

characteristics of the workload can be the ultimate goal of the workload characterization

because such knowledge can be adequate to facilitate tuning and enhancing the system’s

performance. Hence, the characterization process may stop at this point. However, the

model can be further processed to generate an executable, runnable model that can be

practically ported to different systems to assess their performance. A benchmark is an

 57

example of an executable workload model. The executable format of the workload model

is also a means of its validation, as explained next.

3.3.3 Model Validation Phase

Validating the workload model is not always straightforward. One way of examining the

accuracy of the derived workload model is to assess its effect on the system compared

with the effect of real workload [31]. As can be seen in Figure 6, if the performance

measurements resulting from the application of the workload model and the real workload

are the same or proportional, then we have a good model. For example, Keeton and

Patterson [52] proposed and evaluated simplified microbenchmarks for studying the

architectural behavior of database workloads. These microbenchmarks pose simple

queries of the database to generate the same dominant I/O patterns exhibited in more

complex, fully-scaled workloads like TPC-C and TPC-D. One of the potential benefits

from this microbenchmark approach is smaller hardware requirements. The

representativeness of the new models is evaluated by comparing the processor and

memory system characteristics of the microbenchmarks with that of fully scaled

workloads running on similar hardware. These metrics were selected because most fully

scaled database servers are configured with enough disks to be CPU bound; hence

Figure 6. Validating the representativeness of a workload model

Workload
Model

System

Real
Workload

Compare
Performance

System

 58

processor and memory behavior are important factors in determining database

performance [7].

Other techniques of validation may take into account criteria like arrival time of

components and the resource usage profile [50]. If the derived workload model does not

provide sufficient accuracy then some calibration of its parameters (static characteristics)

or for its component mixes (dynamic characteristics) is required. The calibration process

is repeated until a satisfactory level of representation is reached.

3.4 SUMMARY

Characterizing the system’s workload is an essential early step in any performance study.

Although workload characterization, like performance evaluation, is still considered more

of an art than a science, the methodology discussed in this chapter can be deemed a

general framework for deriving a workload model. A substantial amount of details in this

framework are highly dependent on the objectives of the performance study as well as on

the type of system. We propose using data warehousing and data mining technologies as a

promising analytical approach. It may provide a potential solution for some of the well-

known problems in workload characterization like the difficulty of managing large

volumes of performance data sets and the complexity of analyzing them. This should lead

to better scalability, more interactivity, and a variety of different, possible analyses.

The wide range of analytical techniques discussed in this chapter can be used to extract

the static and dynamic characteristics of the workload. More than one technique may be

combined in order to obtain the desired model. In general, we have noticed that

identifying distinct classes in the workload using the various clustering techniques is the

main goal of many studies.

 59

The notion of multi-layer workload characterization has been adopted by many

workload characterization studies. It is based on viewing the system as a hierarchical

structure, which allows the characterization process to take place at any level in this

hierarchy. For example, in network-based systems, characterization can be accomplished

at many levels: user level, application level, protocol level, and network level.

A multi-layer characterization allows insight into how changes at the upper levels can

affect the lower levels, and enables the prediction of the impact of new applications or

systems. By analyzing the measures collected from each layer, a model of the overall

workload of the system can be obtained. Nonetheless, we have found that most of the

studies characterize the workload of each layer separately. Probabilistic graphs

techniques, such as User Behavior Graphs, have been commonly used for modeling the

workload at each layer.

Workload characterization typically relies on analyzing performance data collected

from the system. The choice of what to measure depends on the objective of the study, the

workload features to be evaluated, the level of abstraction (or details) required, and the

availability of monitoring tools to collect the proper measures. The selection of what to

measure is critical. Indeed, there is a tradeoff between the amount of detail to be

measured and the perturbations caused by monitoring. Measurements collected from the

system are not only important to the analysis phase; they are also useful for

parameterizing the derived models with empirical data drawn from the real system. In

some cases, such parameterization is essential to obtaining a successful model.

 However, and as already pointed out, obtaining the proper measurements from the

system is sometimes challenging. For example, web logs have been used as the primary

source of system data to model the workload of WWW applications. While this may

 60

reflect the actual use of the resources on a site, it does not record reader behaviors like

frequent backtracking or frequent reloading of the same resource if the resource is cached

by the browser or a proxy. Other means of data gathering like client-site log files

collected by the browser, or a Java Applet have been suggested. However, while these

techniques solve such problems, they demand the user’s collaboration, which is not

always available. In some systems, for example networks, special equipment such as

network cards, bridges, routers, and gateways, constituting the network-based systems

make the characterization process much harder. As a result, new measuring tools have

been devised in order to collect parameter values from the system.

We believe that workload characterization will remain the focus of researchers and

will constantly keep progressing in order to exploit newly introduced techniques and to

cope with the requirements of new computer architectures. We also believe that no matter

what new performance-oriented architectures have to offer toward enhancing

performance, the notion of characterizing the workload and identifying its features should

always lead to better improvements.

 61

CHAPTER 4 WORKLOAD IDENTIFICATION

Database administrators (DBAs) tune a database management system (DBMS) based on

their knowledge of the system and its workload. The type of the workload, specifically

whether it is Online Transactional Processing (OLTP) or Decision Support System (DSS),

is a key criterion for tuning [49][70]. For example, in an OLTP environment, which is

characterized by a high degree of concurrency, it is imperative to have a sufficient

number of database agents in order to process the workload efficiently. In a DSS

environment, intra-parallelism is indispensable for processing the very complex, long

queries, whereas it is undesirable to OLTP workloads. A change in the workload type is a

reflection of a change of users' tendency of utilizing a particular class of applications over

others. In addition, a DBMS experiences changes in the type of workload it handles

during its normal processing cycle. For example, a bank may experience an OLTP-like

workload by executing the traditional daily transactions for most of the month, while in

the last few days of the month, the workload becomes more DSS-like due to the

generation of financial reports and running long executive summaries. Unless we

automate the process, DBAs must recognize the significant shifts in the workload and

reconfigure the system accordingly in order to maintain acceptable levels of performance.

Experts use rule-of-thumb tuning strategies to handle each workload. We provide a

limited discussion of such tuning strategies (Section �4.1) as they are beyond the scope of

this work.

This chapter is structured as follows. Section �4.1 presents the motivation behind

identifying the workload type and spells out its significance with respect to configuring a

DBMS. Section �4.2 introduces the workload identification problem. Section �4.3 explains

 62

the approach and the methodology we use to solve this problem. Section �4.4 presents

several sets of experiments that validate our approach.

4.1 OLTP VS. DSS: WHAT DIFFERENCE DOES IT MAKE?

OLTP business applications (such as PeopleSoft, Siebel, and SAP) support multiple

users who require very rapid response times. Frequently, the database serves thousands of

concurrent users. Response time may include CPU, sort, locking, and I/O times. The

majority of SQL statements in an OLTP workload are INSERT, UPDATE, and DELETE

that require contention management and locking strategies. Yet, some OLTP applications

include batch-processing components and probably some concurrent decision-support

queries.

In contrast, DSS users ask complex business questions relevant to the available data

requiring complex SQL queries. Response times in a DSS environment are typically

measured in minutes rather than seconds. However, response time requirements vary

significantly based on business needs. DSS workloads are mostly read-only queries.

Parallelism (both CPU and I/O) greatly affects response times for these complex queries.

OLTP jobs, on the other hand, are very small and efficient so parallelism (by which we

mean intrapartition parallelism on a single SMP server) is neither necessary nor desirable.

These differences inevitably entail different settings of the configuration parameters in

order to ensure that the DBMS has sufficient resources to perform the processing

required. Next, we illustrate how to set some of these parameters in light of a given

workload type using experts' rule-of-thumb recommendations. These recommendations

are derived from the technical documentation of DB2 [46] and from our empirical

 63

experience. We trust that such recommendations are effective for other major DBMSs

such as SQL Server and Oracle.

4.1.1 Different Configuration for Different Workloads

There are a number of DBMS tuning parameters that are set differently for each workload

type. Examples of these parameters are:

MAXAGENTS. This parameter indicates the maximum number of DBMS agents. Having

sufficient number of agents to process the workload is imperative especially in an OLTP

workload where multiple concurrent users (or connections) access the database.

CATALOGCACHE. This parameter indicates the maximum amount of space that the

catalog cache can use from the database heap. Sufficient memory allocated to this

parameter helps preparing execution strategies for SQL statements. This cache is used to

obtain information about the definition of the database, tablespaces, tables, indexes, and

views. If all the required information is available in the cache, the DBMS can avoid disk

I/Os and shorten plan preparation times. Having a high cache hit ratio (95 percent or

better) is key for OLTP applications.

LOCKTIMEOUT. This parameter specifies the number of seconds that an application will

wait to obtain a lock. This helps avoid global deadlocks for applications. For an OLTP

workload, LOCKTIMEOUT should be set to a low value (e.g., 5-10 seconds). If a

transaction cannot get the locks it needs to complete its work then it should timeout

quickly and allow other transactions to execute. For a DSS workload, LOCKTIMEOUT

should be set to larger value (e.g., 60 seconds).

MINCOMMIT. This parameter allows the DBMS to delay the writing of log records to

disk until a minimum number of commits have been performed. This delay can help

 64

reduce the overhead associated with writing log records and as a result improve

performance when you have multiple applications running and many commits are

requested within a very short time frame. MINCOMMIT is a powerful tuning parameter for

OLTP workloads that process high volumes of transactions per second. When properly

set, I/Os to logs are grouped together — resulting in fewer log I/Os. In a DSS workload,

MINCOMMIT can be safely set to 1, whereas it should be set to a higher value in OLTP

environments.

LOGBUFSZ. This parameter specifies the amount of the memory to use as a buffer for log

records before writing these records to disk. This logging buffer should be larger in OLTP

databases than in DSS.

INTRA_PARALLEL. This parameter specifies whether the database manager can use

intra-partition parallelism. This parameter should be set to NO for OLTP workloads and

YES for DSS workloads.

MAX_QUERYDEGREE. If INTRA_PARALLEL is enabled, this parameter specifies the

maximum degree of intra-partition parallelism that is used for any SQL statement. An

SQL statement will not use more than this number of parallel operations. Since

parallelism is generally undesirable for OLTP workloads, it is recommended to set

MAX_QUERYDEGREE to 1. A proactive, cautious DBA would set MAX_QUERYDEGREE

to a value equal to the number of CPUs on the system in case the DSS workload is

dominant.

SHEAPTHRES & SORTHEAP. The SHEAPTHRES parameter works in concert with the

SORTHEAP parameter to govern sort memory. SHEAPTHRES dictates a soft limit for

total sort memory used by all databases, and SORTHEAP controls the limit on memory for

any one sort. OLTP workloads usually perform few sorts, and the sorts are typically

 65

small. A small value of SORTHEAP (e.g., 128) is sufficient for OLTP database. That

value results in double the number of concurrent sorts without increasing the

SHEAPTHRES memory.

DSS workloads perform many possibly large sorts. SORTHEAP memory is also used

for hash joins. For a DSS, at a minimum, the SHEAPTHRES should be doubled or tripled

(e.g., between 40,000 and 60,000) and the SORTHEAP size should be sufficiently large

(e.g., between 4,096 and 8,192).

DFT_QUERYOPT. This parameter is used to direct the optimizer to use different degrees

of optimization when compiling SQL queries. Since an OLTP transaction is typically

short, relatively simple, and properly indexed, selecting an access plan should not take

much DBMS computing power. Therefore DFT_QUERYOPT should be set low so that the

DBMS spends minimal time preparing its access plan. Spending a few seconds thinking

about the SQL access strategy when actual execution only takes a quarter of a second is a

waste.

On the other hand, SQL in a DSS query is very complex and often consumes large

quantities of CPU and I/O resources, so a few extra seconds of time spent preparing the

SQL access plan can be a wise investment, especially if it yields an access strategy that

trims minutes or hours off of a query's elapsed time. In a DSS environment,

DFT_QUERYOPT should be set high.

CHNGPGS_THRESH. Asynchronous page cleaners write changed pages from the buffer

pool to disk before the space in the buffer pool is required by a database agent. This

means that the agents do not have to wait for a changed page to be written out, before

being able to read a page, and an application's transactions should run faster. The

 66

CHNGPGS_THRESH parameter specifies the level (percentage) of changed pages at

which the asynchronous page cleaners will be started, if they are not currently active.

The default value for CHNGPGS_THRESH is 60 percent, meaning that when 60

percent of the pages in the buffer pools become dirty, then the asynchronous I/O cleaners

begin writing the changed pages out to disk. For a DSS workload, the default usually

delivers good results. For a high-transaction volume OLTP workload, lowering the

CHNGPGS_THRESH from 60 percent to 50 or 40 percent can be beneficial.

NUM_IO_CLEANERS. This parameter specifies the number of asynchronous page

cleaners that write changed pages from the buffer pool to disk before the space in the

buffer pool is required by a database agent. Performance experience indicates that

asynchronous write I/Os are usually at least twice as fast as synchronous write I/Os, so it

is important to try to achieve an asynchronous write percentage (AWP) of 90 or higher. In

an OLTP environment, it is recommended that the number of NUM_IO_CLEANERS is

incremented until either 90 percent of writes are performed asynchronously or the number

of NUM_IO_CLEANERS is equal to the number of CPUs. If the latter limit is reached, we

consider making gradual reductions in CHNGPGS_THRESH until AWP is greater than 90,

but set CHNGPGS_THRESH no lower than 30 percent.

In a DSS environment, DB2 uses NUM_IO_CLEANERS for writing to TEMPSPACE,

temporary intermediate tables, index creations, and more. Therefore, we recommend

setting NUM_IO_CLEANERS equal to the number of CPUs.

NUM_IO_SERVERS. This parameter specifies the number of I/O servers used to

prefetch data into the DBMS’s buffer pools. To achieve maximum parallelism in a DSS

workload, it imperative to have enough prefetchers available. However, most OLTP

applications do not require prefetching.

 67

4.2 WORKLOAD IDENTIFICATION PROBLEM: INTRODUCTION

Workload characterization is important in a world that increasingly deploys "universal"

database servers that are capable of operating on a variety of structured, semistructured

and unstructured data and across varied workloads ranging from OLTP through DSS.

Universal database servers, such as IBM® DB2� Universal Database� [49], allow

organizations to develop database skills on a single technology base that covers the broad

needs of their business. Universal databases are increasingly used for varying workloads

whose characteristics change over time in a cyclical way. Most of the leading database

servers today fall into this category of universal database, intended for use across a broad

set of data and applications.

The goal of our research is to develop a methodology by which a DBMS can

automatically identify the workload type. This is an important step towards autonomic

DBMSs, which know themselves and the context surrounding their activities, and can

automatically tune themselves to efficiently process the workloads put on them [33]. This

problem is challenging for a number of reasons:

• There are no rigorous, formal definitions of what makes a workload DSS or

OLTP. We currently have only general rules such as:

6 Complex queries are more prevalent in DSS workloads than in OLTP

workloads.

6 A DSS workload has fewer concurrent users accessing the system than

does an OLTP workload.

 68

• An autonomous computing solution requires that the DBMS identify the workload

type using only information available from the DBMS itself or from the operating

system (OS); no human intervention is involved.

• A solution must be online and inexpensive. This entails adopting lightweight

monitoring and analysis tools to reduce system perturbation and minimize

performance degradation.

• A solution must be tolerant of changes in the system settings and in the DBMS

configuration parameters.

• A solution should assess the degree to which a workload is DSS or OLTP, that is,

the concentration of each type in the mix. Any subsequent performance tuning

procedure should be a function of these degrees.

Our solution treats workload type identification as a data mining classification problem,

in which DSS and OLTP are the class labels, and the data objects classified are database

performance snapshots. We first construct a workload model, or a workload classifier, by

training the classification algorithm on sample OLTP and DSS workloads. We then use

the workload classifier to identify snapshot samples drawn from unknown workload

mixes. The classifier scores the snapshots by tagging them by one of the class labels, DSS

or OLTP. The number of DSS- and OLTP-tagged snapshots reflects the concentration

(relative proportions) of each type in the mix.

 69

We validate our approach experimentally with workloads generated from Transaction

Processing Performance Council (TPC) benchmarks6 and with real workloads provided

by three major global banking firms. These workloads are run on DB2� Universal

Database� Version 7.2 [49]. We construct and evaluate two classifiers. One classifier,

which we call Classifier(C, H), is built using OLTP and DSS training data from the TPC-

C [89] and TPC-H [90] benchmarks, respectively. As an OLTP system benchmark,

TPC-C simulates a complete environment where a population of terminal operators

executes transactions against a database. The benchmark is centered around the principal

activities (transactions) of an order-entry environment. These transactions include

entering and delivering orders, recording payments, checking the status of orders, and

monitoring the level of stock at the warehouses. While the benchmark portrays the

activity of a wholesale supplier, TPC-C is not limited to the activity of any particular

business segment, but, rather, represents any industry that must manage, sell, or distribute

a product or service. On the other hand, TPC-H is a decision support benchmark. It

consists of a suite of business oriented ad-hoc queries and concurrent data modifications.

The queries and the data populating the database have been chosen to have broad

industry-wide relevance. This benchmark illustrates decision support systems that

examine large volumes of data, execute queries with a high degree of complexity, and

give answers to critical business questions.

The second classifier, which we call Classifier(O, B), is built using OLTP and DSS

training data from the Ordering and Browsing profiles of the TPC-W [91] benchmark,

6 Note that since our TPC benchmark setups have not been audited per TPC specifications, our benchmark workloads
should only be referred to as TPC-like workloads. When the terms TPC-C, TPC-H, and TPC-W are used to refer to our
benchmark workload, it should be taken to mean TPC-C-, TPC-H-, and TPC-W-like, respectively.

 70

respectively. TPC-W comprises a set of basic operations designed to exercise

transactional web system functionality in a manner representative of internet commerce

application environments. These basic operations have been given a real-life context,

portraying the activity of a web site (bookstore) that supports user browsing, searching

and online ordering activity. Visitor activities are described by three profiles: Browsing,

Shopping, and Ordering. The Browsing profile is characterized by extensive browsing

and searching activities. The Shopping profile exhibits some product ordering activities

but browsing is still dominant. The Ordering profile has a majority of ordering activities.

Therefore, the ultimate difference between these profiles is the browse-to-order ratio.

Results obtained from testing the genericness of these classifiers show that every

workload is a mix of its own set of SQL statements with their own characteristics and

properties. Therefore, very specialized classifiers such as Classifier(C, H) and

Classifier(O, B) are not expected to always be successful. Nevertheless, we believe that

we can construct a generic classifier that is able to recognize a wide range of workloads

by combining the knowledge derived from the analysis of different flavors of DSS and

OLTP training sets. Such a generic classifier could be incorporated into a DBMS to assist

in tuning the system.

We present two generic classifiers. The first one, the hybrid classifier (HC), is

constructed by training it on a mix of the TPC-H and the Browsing profile workloads as a

DSS sample, and a mix of the TPC-C and the Ordering profile workloads as an OLTP

sample. The second generic classifier, the graduated-hybrid classifier (GHC), considers

the TPC-H (Heavy DSS or HD) and the Browsing profile (Light DSS or LH) as different

intensities or shades of DSS workloads, and the TPC-C (Heavy OLTP, or HO) and the

 71

Ordering profile (Light OLTP, or LO) as different shades of OLTP workloads in its

recognition (Figure 7). In other words, GHC attempts to qualitatively analyze the

different aspects of the DSS and OLTP elements in the workload by reporting the

concentration of each workload shade comprising each type. Besides having practical

advantages, with respect to adopting finer tuning strategies that suit different shades of

each workload type, GHC demonstrates that our approach can be applied to workloads of

more than two types.

The remainder of this chapter is organized as follows. Section �4.3 describes our

approach to the problem and the selection criteria for the snapshot attributes. We then

outline our methodology and how to compose the snapshots. Section �4.4 describes the

sets of experiments with the four classifiers, and discusses the results obtained from

experimenting with the benchmark and industry-supplied workloads.

4.3 APPROACH

We view the problem of classifying DBMS workloads as a machine-learning problem in

which the DBMS must learn how to recognize the type of the workload mix. The

workload itself contains valuable information about its characteristics that can be

extracted and analyzed using data mining tools. Our approach is to therefore use data

mining classification techniques, specifically Decision Trees Induction [65], to build a

Figure 7. Different Shades of DSS and OLTP

OOrrddeerriinngg
 ((LLOO))

BBrroowwssiinngg
 ((LLDD))

TTPPCC--CC
 ((HHOO))

TTPPCC--HH
 ((HHDD))

SShhooppppiinngg

OLTP DSS

 72

classification model. One of the advantages of using decision tree induction is its high

interpretability, that is, the ease of extracting the classification rules and the ability to

understand and justify the results, in comparison with other techniques such as neural

networks.

4.3.1 Overview

Classification is a two-step process. In the first step, we build a model (or classifier) to

describe a predetermined set of data classes. The model is constructed by analyzing a

training set of data objects. Each object is described by attributes, including a class label

attribute that identifies the class of the object. The learned model is represented in the

form of a decision tree embodying the rules that can be used to categorize future data

objects. In the second step, we use the model for classification. First, the predictive

accuracy of the classifier is estimated using a test data set. If the accuracy is considered

acceptable (for example, reporting that 80%, or more, of the tested snapshots are

classified as DSS or OLTP when we attempt to identify a DSS -or OLTP-deemed

workload), the model can be used to classify other sets of data objects for which the class

label is unknown.

For our problem, we define the DSS and OLTP workload types to be the two predefined

data class labels. The data objects used to build the classifier are performance snapshots

taken during the execution of a training database workload. Each snapshot reflects the

workload behavior (or characteristics) at some time during the execution and is labeled as

being either OLTP or DSS. We tried building our classifiers using two methods. We used

the SPRINT [84], a fast scalable decision-tree based algorithm, and the neural network

(NN) classification using feed-forward network architecture and the back-propagation

 73

learning algorithm. Both algorithms are implemented in IBM® DB2® Intelligent Miner�

Version 6.1 [48], which we used to design and configure our classifiers.

We found that the decision tree classification method is better for our problem than the

neural network method for several reasons. First, the decision tree method, as expected, is

easier to use and to set up than the neural networks method. Second, it is easier to

interpret and explain the results from the decision tree method. Third, the decision tree

method provides the ability to assign weights to the attributes that reflect the importance

of the attributes to the decision process. Finally, the decision tree method achieved a

higher accuracy in tests than the neural network algorithm. Table 9 describes the settings

we used in the decision tree algorithm that we adopted in implementing our methodology.

4.3.2 Snapshot Attributes

The data objects needed to build the classifier are performance snapshots taken during the

execution of the database workload. Each snapshot reflects the workload behavior at

some time during the execution. We use the following criteria to select the snapshot

attributes:

1. Relevance. Select attributes that play a role in distinguishing between DSS and

OLTP mixes.

2. Accessibility from the System. Select attributes that are readily and inexpensively

obtainable from the DBMS or the operating system at run time.

3. Low System-Dependence. Select attributes that are less sensitive to changes in the

system settings or to DBMS configuration parameter changes. System settings

include operating system resource allocations, such as memory and CPUs, and the

 74

database schema. DBMS configuration parameters include buffer pool sizes, sort

heap size, isolation level, and the number of locks.

We first considered the following list of candidate attributes for the workload snapshots:

1. ���������	
���
�: The ratio of SELECT statements versus Update/Insert/Delete (UID)

statements, which is usually higher in DSS than OLTP.

2. � 	���� ��	� : DSS transactions usually access larger portions of the database than

OLTP transactions.

3. ��� �� � ����
�� : Although a DSS query tends to summarize information, it may still

return more rows than an OLTP query.

4. � ������� �
: The number of SQL statements executed during the snapshot is

expected to be higher in OLTP than DSS.

5. � ��� ��� ��� � ��� �� � ��� : DSS transactions are typically larger and longer than OLTP

transactions so we expect more locks are held during the execution of a DSS

transaction than an OLTP transaction.

6. �	
��� ��� ��!�� "!� �# ��� �
�: We expect the ratio of data pages obtained from indexes

versus the pages obtained from other database objects, such as tables, in order to

satisfy a query to be higher in an OLTP workload than DSS.

7. � ��� ��� ��� � ��
�: DSS transactions typically perform a larger number of sorts than

OLTP transactions.

8. $% ��	���� ��
�� ���: Sorts in DSS transactions are usually more complex than the sorts

performed in OLTP transactions so they usually take longer time to complete.

 75

9. � ����!�: This denotes the number of pages read/written from/to the log file of the

database. An OLTP workload generates more logging activity than a DSS

workload because of the read/modify nature of the OLTP transactions.

10. � �
��	
����
�: OLTP workloads have a higher degree of locality than DSS workloads

and hence OLTP workloads may experience a higher hit ratio on the buffer pool

cache area.

11. � 	����� �	!!�� : DSS applications typically access large numbers of sequential pages

due to the substantial amount of full-table/index scan operations. OLTP

applications typically access relatively few random pages.

We consider the Browsing and Ordering profiles defined in the TPC-W benchmark [91]

as examples of DSS and OLTP workloads, respectively. Figure 8 shows the relative

values, with the DSS values normalized to 1, for a set of candidate attributes. The values

are derived from experiments with the TPC-W workloads on DB2 Universal Database.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Que
rie

sR
ati

o

Pag
es

Rea
d

Row
sS

ele
cte

d

Th
ro

ug
hp

ut

 Lo
ck

sH
eld

 In
de

xR
ati

o
 S

or
ts

 S
or

tT
im

e

 Lo
gg

ing

 H
itR

ati
o

PgS
ca

nn
ed

R
at

io

DSS

OLTP

Figure 8. Candidate attributes for snapshot objects

 76

The candidate attributes are all easily obtainable by the DB2 Snapshot Monitor and most

of them, as illustrated in Figure 8, are relevant. Based on the selection criteria discussed

above, we eliminated
������� �
� 	!� � ��
� �	
��&� � ������� �
 is dependent on the current system

utilization and the presently available system resources such as CPUs and memory. � �
��	
��

is strongly affected by the DBMS configuration, which can include buffer pool sizes and

the assignment of database objects to these pools.

The remaining attributes are not equally system-independent. Therefore, as shown in

Table 7, we group the attributes into three classes based on their degrees of system-

dependence and assign different weights to each class of attribute to reflect their

significance to the classification process. We arbitrarily assign weights of 1.0, 0.75, and

0.3 to low-, medium-, and high-dependence attributes, respectively7. �������� �	
��, � 	����

��	� , ��� ��� ����
�� , � 	����� �	!!�� ' and � ����!� are the least sensitive to changes in the system

configuration. � ��� ������� ��
� and �	
������ ��!��"!� �# �� are somewhat sensitive to configuration

changes that are likely to occur infrequently, such as changing the current available set of

7 These weights are independent of any product or system settings we are using. Any other reasonable numbers that
serve in ranking the attribute classes are acceptable.

System-Dependence Snapshot Attribute Weight
���������	
��� 1.0

� 	������	� � 1.0

��� ��� ����
�� � 1.0

� 	����� �	!!�� � 1.0

Low

� ����!�� 1.0

� ��� ������� ��
�� 0.75 Medium

�	
������ ��!��"!� �# ��� 0.75

� ��
�� ���� 0.3 High

� ��� ������� ��� ��� ��� � 0.3

Table 7. Categorizing the snapshot attributes

 77

indexes or views in the database schema. � ��
� � ��� and � ��� ��� ��� � ��� �� � ��� are the most

sensitive to changes in the system configuration and hence they are assigned the lowest

weights8.

8 � ��� ��� ��� � ��� �� � ��� is dependent on the isolation level, the lock escalation, the application activity, and the

application design.

Figure 9. The methodology of constructing a workload

Workload Classifier
(Rules)

Raw Snapshots

DSS Snapshots

Label as DSS;
Process Snapshots

((��		������������		

����!!��

$$����������

������

G
au

ge

A
ttr

ib
ut

e
s

time
…..

DDSSSS MMiixx

Raw Snapshots

OLTP Snapshots

Label as OLTP;
Process Snapshots

A
ttr

ib
ut

e
s

G
au

ge

time
…..

OOLLTTPP MMiixx

 78

4.3.3 Methodology

Figure 9 illustrates the process of constructing a workload model classifier. We run

sample DSS and OLTP workloads and collect sets of snapshots for each one. We label the

snapshots as OLTP or DSS and then use them as training sets to build the classifier. We

need to choose a snapshot interval such that there are sufficient training objects to build a

classifier and the interval is large enough to contain at least one completed SQL

statement.

With a snapshot interval of one second, we observed that many SQL statements

complete within that size interval in an OLTP workload. This is not the case, however, for

DSS workloads that contain complex queries that are too long to complete within one

Figure 10. Using the workload classifier to identify unknown workload mixes

Workload Classifier
(Rules)

Raw Snapshots

? Snapshots

Process Snapshots

A
ttr

ib
ut

es
 G

au
ge

time
…..

?? WWoorrkkllooaadd

DSS/OLTP Snapshots

 79

second. We therefore dynamically resize the snapshots by coalescing consecutive one-

second raw snapshots until we encompass at least one statement completion. We then

normalize the consolidated snapshots with respect to the number of SQL statements

executed within a snapshot. Consequently, each normalized snapshot describes the

characteristics of a single SQL statement. During this training phase, we usually run each

workload type (DSS and OLTP) for about 20 minutes, producing a total of 2400 one-

second, raw snapshots to process.

After training, we use the generated classifier to identify the OLTP-DSS mix of a

given workload as shown in Figure 10. We run the new workload for about 10-15 minutes

(producing 600-900 raw snapshots) and produce a set of consolidated snapshots as

described above. We then feed these snapshots to the classifier which identifies each one

as either DSS or OLTP, supporting this decision by a confidence value between 0.0 and

1.0 that indicates the probability that the class of the snapshot is predicted correctly. For

more reliability, only snapshots with high confidence values, greater than 0.9, are

considered. On average, we observed that over 90% of the total snapshots examined

satisfy this condition. Eventually, we compute the workload type concentration9 in the

mix, tC , as follows:

100×=
S
N

C
t

t

where t ∈ {DSS, OLTP}, tN is the number of snapshots that have been classified as t,

and S is the total number of snapshots considered.

9 In the remainder of the paper, we will sometimes express this concentration exclusively in terms of the DSS
percentage (or DSSness) in the mix. The OLTP percentage is the complement of the DSSness, that is, 100 – DSSness.

 80

4.4 EXPERIMENTS

Initially, we constructed two classifiers for our experiments. Classifier (O, B), was built

using the TPC-W Ordering and Browsing profiles as the OLTP and DSS training

workloads, respectively. Classifier (C, H) was built using the TPC-C and TPC-H

benchmarks as the OLTP and DSS training workloads, respectively. We ran each

training workload for approximately 20 minutes and collected snapshots every second.

The important properties of the experimental setup for these runs are summarized in

Table 8 and Table 9.

Figure 11 shows the pruned decision tree for Classifier(O, B). The appearance of the

�������� �	
�� attribute at the root of the tree reveals its importance in the classification

process. On the other hand, some attributes, namely, � ����!�, � ��� ������� ��
�, and � ��
�� ���, are

no longer part of the decision tree since they have a limited role in distinguishing between

Workload OS DB Scale Memory CPU Remarks

TPC-W Windows®
2000
Professional

10,000 items 512 MB Pentium III,
733 MHz

100 Emulated Browser; all
profiles

TPC-H Windows®
2000 Server

1GB 512 MB 8-way
Pentium II
200 MHz

Throughput test; 25 streams

TPC-C Windows
NT®
Server 4.0

100 Warehouses 3 GB 4-way
Pentium II
200 MHz

Table 8. Benchmark settings used with DB2 Universal Database Version 7.2.

Settings used in the DB2 Intelligent Miner

Maximum Tree Depth No Limit Imposed

Maximum Purity of Internal Node 100

Minimum Records Per Internal Node 5

Attribute Weights See Table 7

Error Matrix None

Table 9. Parameters settings used for the SPRINT classification
algorithm

 81

DSS and OLTP snapshots. The appearance of the � ��� ��� ��� � ��� �� � ��� attribute at lower

levels of the tree reflects its low significance in the classification process. This outcome

might be partially influenced by the lesser weight we assigned to it.

Figure 12 shows the decision tree of Classifier(C, H). It consists of a single node,

namely a test against the ���������	
�� attribute. Apparently, this single test is sufficient to

distinguish between TPC-H and TPC-C since the two workloads lie at the extreme ends

of the DSS-OLTP spectrum.

We conducted three sets of experiments to evaluate the classifiers. The first set of

experiments evaluates the prediction accuracy of the classifiers by inputting new samples

from the training workloads. The second set of experiments evaluates the robustness of

the classifiers with respect to changes in the mix concentration of the initial workloads,

Figure 11. The pruned decision tree for Classifier(O, B). A classification rule is shown.

 82

and with respect to changes to the system configuration. The third set of experiments

examines the genericness of the classifiers, that is, their ability to recognize the mix of a

different workload. We use both benchmark workloads and industry-supplied workloads

in these experiments. The benchmark workloads were run on DB2� Universal

Database� Version 7.2 [49]. The core parameters for the workloads are shown in Table

8.

4.4.1 Prediction Accuracy

Figure 13 shows the results of testing Classifier (O, B) against test samples drawn from

the Browsing and Ordering profiles. We use the standard three-fold, cross-validation . It

shows that Classifier(O, B) reports that approximately 91.6% of the snapshots in the

Browsing workload are DSS while the rest, 8.4%, are OLTP, whereas it reports that

approximately 6.2% of the snapshots in the Ordering workload are DSS while the rest,

93.8%, are OLTP. Similarly, when we applied Classifier(C, H) on test samples drawn

from TPC-C and TPC-H, it reported that the samples were 100% OLTP and 100% DSS,

respectively. Based on our understanding of the characteristics of these standard

Figure 12. The classification
tree of Classifier(C, H)

91.6

8.4 6.2

93.8

0

10

20

30

40

50

60

70

80

90

100

%

Browsing Ordering

DSS

OLTP

Figure 13. Classifier(O, B) identifying Browsing and
Ordering workloads

 83

workloads, and on their description in the benchmark specifications, these results meet

our expectations.

4.4.2 Robustness

We use the Shopping profile, a third mix available in TPC-W, to evaluate the ability of

the workload classifiers to detect variation in the type intensity of a workload10. As seen

in Figure 14, Classifier (O, B) reports 75.2% of the Shopping profile is DSS, which

means that the Shopping is closer to Browsing than Ordering. This finding matches the

TPC-W specifications, which leads us to believe that the classifier has effectively learnt

the characteristics of the TPC-W workload and is able to accurately sense variation in the

workload type intensity.

We also examine a classifier’s tolerance to changes in the system configurations. For

the construction of the classifiers discussed above we ran the training workloads with

DB2 Universal Database under the default configuration and with 512MB of main

memory. We then tested these classifiers against workloads run on a poorly configured

10 Note that our classifiers have never been trained on the Shopping profile.

91.6

75.2

6.2

0

10

20

30

40
50

60

70

80

90

100

%
 o

f D
S

S
ne

ss
Browsing Shopping Ordering

DSSness

Figure 14. Identifying the Shopping profile.

 84

DB2. Specifically, and in order to cause a dramatic confusion to the classifiers, we ran the

Browsing profile on a system configured for OLTP and we ran the Ordering profile on a

system configured for DSS. Furthermore, the total memory available for the DBMS was

reduced to 256MB in order to cause additional impact on the system. Figure 15 shows

that, even under these changes, Classifier (O, B) still shows high degrees of accuracy and

tolerance to system changes. The predictions reported under the changed system

configurations deviate from those of the original by 1%-4%, which is not significant.

����� ������	��

��
����

�
�����������������

�
����������

In order to evaluate the general usefulness of the classifiers, we test whether a classifier

trained on particular workload mixes can be used to recognize the workload mixes of

another workload. We tested Classifier(C, H) and Classifier(O, B) with both benchmark-

generated workloads and industrial workloads.

6.2 6.8

91.6 87.7

0

10

20
30
40

50

60

70
80

90
100

%
 o

f
D

S
S

n
es

s
Ordering Brow sing

Before Cfg.
Changes

After Cfg.
Changes

Figure 15. Classifier(O, B) is robust against
changes in the system configuration

 85

4.4.3.1 Benchmark Workloads

Figure 16 shows that both Classifier (O, B) and Classifier(C, H) can accurately identify

the workload types in the TPC-C and TPC-H workloads. Figure 17 compares the

prediction accuracy of the two classifiers against the three mixes of TPC-W. Classifier(C,

H) shows poor results due to its simple, single rule derived from the two extreme

workloads. We conclude from these results that a single rule is not good enough to

distinguish between the mixes of a moderate workload like TPC-W.

4.4.3.2 Industrial Workloads

Our industrial workloads are samples provided by three global investment banking firms,

which we identify simply as Firm-1, Firm-2, and Firm-311. They each provide online

financial services including investment research tools and functions for creating and

11 We appreciate IBM's help in getting production workloads from these major firms. The firms prefer to

remain anonymous at this time.

0 0

100 100

0
10
20
30
40
50
60
70
80
90

100

%
 o

f
D

S
S

n
es

s

TPC-C
Workload

TPC-H
Workload

Classif ier(H, C)

Classif ier(B, O)

Figure 16. Classifier(C, H) and Classifier(O, B)
identifying TPC-C and TPC-H

 86

tracking orders. Based on descriptions of the applications provided by the firms, we

extrapolate that the characteristics of workloads of these firms resemble the TPC-W

profiles workloads. Therefore, we assume that Classifier(O, B) is the most appropriate

classifier for their workloads. Table 10 summarizes the results of our experiments with

the industrial workloads using all of our classifiers (hybrid classifiers will be explained in

the next section).

Firm-1 provided several workload samples from an online decision support system

that helps investors and shareholders to get the most recent information about the market

status in order to help them balance their portfolios and make knowledgeable financial

decisions. We noticed a resemblance between the characteristics of Firm-1’s workload

and of the Browsing profile so we tried identifying this workload type using Classifier(O,

B). As shown in Table 10, Classifier(O, B) reported 90.96% of DSSness, which meets our

expectations. On the other hand, Classifier(C, H) failed in its identification (62.77%

DSSness).

98.9

64.7

94.5

6.2

75.2

91.6

0

20

40

60

80

100

120

Ordering Shopping Brow sing

%
 o

f
D

SS
n

es
s

Classifier(H, C)

Classifier(B, O)

Figure 17. Classifier(C, H) and Classifier(O, B)
identifying the profiles of TPC-W

 87

Firm-2 provided samples from both DSS and OLTP workloads. The DSS workload is

characterized by complex queries accessing a large fact table (over 3 million rows) and

performing join operations with five other small tables. The OLTP workloads, on the

other hand, consist mostly of transactions that involve INSERT, UPDATE, and DELETE

SQL statements and many simple SELECT statements. Table 10 shows the concentration

of DSS work in Firm-2’s workloads reported by both classifiers. Classifier(C, H) was

able to correctly identify the DSS concentration in the DSS workload but failed with the

OLTP workload. This failure is again due to the simplicity of this classifier, which relies

solely on the ratio of the queries (that is, �������� �	
��� attribute) in the mix. The OLTP

workload was mistakenly classified as 100% DSS because it contained a substantial

number of queries. Classifier(O, B), on the other hand, correctly identified the Firm-2’s

workload types, which is another indication of the need for a more complex decision tree

with more multiple-attribute rules in the general case.

 Firm-3 provides customers with a set of DSS-like functions to search for stock

information and a set of OLTP-like functions to place orders and manage accounts. They

also include administrative tasks such as making money transfers among accounts, and

Classifier(C, H) Classifier(O, B) HC GHC Firm DBA’s
Opinion

DSS OLTP DSS OLTP DSS OLTP HD LD LO HO

1 Peak
DSS

62.77% 37.23% 90.96% 9.04% 89.79% 10.21% 0% 88% 11% 1%

Peak
DSS

100% 0% 98.7% 1.3% 100% 0% 0% 98.7% 1.3% 0% 2

Peak
OLTP

100% 0% 0% 100% 0% 100% 0% 0% 100% 0%

Peak
DSS

100% 0% 100% 0% 100% 0% 0% 100% 0% 0% 3

Peak
OLTP

3.13% 96.87% 0% 100% 0% 100% 0% 0% 90.62% 9.38%

Table 10. Recognition of Industrial Workloads Using All Types of Classifiers

 88

changing account and trading passwords. The different DSS and OLTP samples collected

from this firm were collected in a more controlled environment as we monitored test

systems, which made it relatively easy to determine when to collect relatively pure DSS

and OLTP workload mixes. Table 10 shows that Classifier(O, B) and Classifier(C, H)

successfully identify the DSS workload (DSSness = 100%) and the OLTP workload

(OLTPness > 95%) of Firm-3.

4.4.4 Constructing Generic Classifiers

Notwithstanding the success of Classifier(O, B), the above results obtained from

assessing the genericness of the two classifiers lead us to believe that a classifier trained

on a particular workload should not be expected to be universally good at identifying

other workloads, especially if the other workloads have different characteristics. Every

workload is a mix of its own set of SQL statements with their own characteristics.

Nevertheless, we argue that we can construct a more generic classifier, a hybrid classifier,

by training it on different flavors of DSS and OLTP mixes in order to derive more generic

rules that can recognize a wider range of workloads. We believe that a hybrid classifier

can be made more generic by training it on different samples drawn from different flavors

of DSS and OLTP workloads. Such training should empower the prediction accuracy

because the classifier would attempt to come up with rules that could take into account a

wider variety of different workload characteristics. In the subsequent sections we describe

two hybrid classifiers we built and evaluated, namely the Hybrid Classifier (HC) and the

Graduated Hybrid Classifier (GHC).

 89

4.4.4.1 Hybrid Classifier (HC)

The hybrid classifier (HC) is trained on different samples drawn from different

characteristics, or flavors, of DSS and OLTP workloads. This should improve the

prediction accuracy because the classifier would attempt to come up with rules that take

into account a wider variety of workload properties. We consider the Browsing and the

TPC-H workloads as flavors of DSS and the Ordering and the TPC-C workloads as

flavors of OLTP. Figure 18 shows the pruned decision tree of HC, which looks

structurally similar to the pruned tree of Classifier(O, B), but is different with respect to

its rules.

Figure 18. The decision tree of the hybrid classifier (HC)

 90

4.4.4.2 Graduated Hybrid Classifier (GHC)

For the purpose of effectively configuring a system, it is useful to distinguish between a

heavy DSS (HD) workload, such as TPC-H, and a light DSS (LD) workload, such as the

Browsing profile. The same thing is true for a heavy OLTP (HO) workload, such as TPC-

C, and a light OLTP (LO) workload, such as the Ordering profile.

The Graduated Hybrid Classifier (GHC) improves upon HC by explicitly recognizing

a wider variety of workloads, specifically classes HD, LD, LO and HO (Figure 19). GHC

demonstrates the ability of our methodology to devise a classifier whose rules can

Figure 19. A snapshot of the GHC tree classifying four types of workloads.

 91

identify finer differences among workloads. In other words, our methodology is able to

handle the case of multiple workload types.

We hypothesize that the DSS and OLTP percentages reported by the HC are the sums

of the HD and LD percentages, and HO and LO percentages reported by the GHC,

respectively. The results of our experiments validate this hypothesis, as we explain next.

4.4.4.3 Evaluating the Generic Classifiers

We compare the performance of the HC and GHC with the results reported by the

specialized classifier (Classifier(C, H) or Classifier(O, B)) that we found to be the best at

identifying a particular workload sample. We again tested our classifiers with both

benchmark-generated workloads and industrial workloads.

4.4.4.3.1 Benchmark workloads

Figure 20 shows the prediction accuracy of HC, tested on different testing samples drawn

from the various benchmark workloads. The reported DSSness percentage is extremely

close to what was reported by each workload’s genuine classifier. Figure 21 shows the

0 0

7.4 6.2

73.6 75.2

89.4 91.6 99.4 100

0

10

20

30

40

50

60

70

80

90

100

%
 o

f D
S

S
ne

ss

TPCC Ordering Shopping Browsing TPCH

Hybrid

Non-Hybrid

Figure 20. Prediction accuracy of HC

 92

results of the GHC’s analysis of the various TPC-generated workloads. This analysis

decomposes each workload into four components: HO, LO, LD, and HD. Note how it is

rare to observe any HD or HO in the moderate TPC-W profiles. Similarly, the presence of

the light workloads of TPC-W profiles is very little in the extreme workloads of TPC-C

and TPC-H (there is 3.56% of LD in the TPC-H, which is very small). We conjecture that

the more varieties of workload types with which the hybrid classifiers are trained, the

more generic and useful they become.

4.4.4.3.2 Industrial Workloads

 The results of our experiments in Section �4.4.3 confirmed our assumption that

Classifier(O, B) is the most appropriate classifier for identifying the workloads of the

three e-business firms. Therefore, we should compare the performance of the two generic

classifiers with the performance of Classifier(O, B).

As seen in Table 10, Classifier(O, B) reported 90.96% of DSSness in Firm-1’s peak DSS

workload, and HC reported a similar percentage, 89.79%. GHC also reported a similar

100

0 0 0

0

93.07

6.93
0 0

26.4

73.38

0 0.11

10.64

89.25

0 0 0
3.56

96.44

0

10

20

30

40

50

60

70

80

90

100

%
 o

f S
na

ps
h

ot
s

TPCC Ordering Shopping Browsing TPCH

HO
LO
LD
HD

Figure 21. GHC’s analysis of TPC-generated workloads

 93

percentage of DSSness, namely 88%, but made the further distinction that this was all

light DSS (LD). GHC also indicated that the OLTP portion in Firm-1’s workload is

actually a mix of LO (11%) and HO (1%).

Table 10 shows that all classifiers, including HC, assigned a high DSSness (almost

100%) to Firm-2’s peak DSS workload. However, GHC makes the further differentiation

that the workload is all LD, which is correct. Likewise, Classifier(O, B), HC and GHC all

recognized the high percentage of OLTPness (100%) in Firm-2’s peak OLTP workload.

With respect to Firm-3’s workloads, we found that all of the four classifiers were able to

correctly recognize Firm-3’s peak DSS and peak OLTP workloads (Table 10). GHC

makes the further distinction that the OLTP workload is composed of 90.62% of LO and

9.38% of HO.

GHC is more practical because it gives a qualitative dimension to what is being

reported as DSS and OLTP. We also observe that the total sum of HD and LD workloads

reported by the GHC is almost equal to the DSSness reported by the HC. Similarly, the

total sum of HO and LO workloads, reported by the GHC, is almost equal to the

OLTPness reported by the HC. The results lead us to conclude that GHC produced good,

finer classification rules that are able to distinguish among the various shades of DSS and

OLTP workloads.

4.5 SUMMARY

In order to manage their own performance automatically, autonomic DBMSs must be

able to recognize important characteristics of their workload, such as its type. In this

chapter, we present a methodology by which a DBMS can learn how to distinguish

between today’s two dominant workload types, namely DSS and OLTP. Our

 94

methodology uses classification techniques from data mining to analyze performance data

available from a DBMS to build a classifier for that workload. Once built, the classifier

can be used to detect if the workload shifts from one type to another and to evaluate the

relative intensity of each type at a point in time.

We demonstrate our methodology by creating and evaluating two classifiers. One

classifier, Classifier (O, B), is built using the TPC-W Ordering and Browsing profiles as

the OLTP and DSS training sets, respectively. The second classifier, Classifier (C, H), is

built using the TPC-C and TPC-H benchmark workloads as the OLTP and DSS training

sets, respectively. The key difference between the two classifiers is the complexity of

their decision trees. Classifier (C, H) consists of one single-attribute rule, namely a test

against the �������� �	
��, while Classifier (O, B) uses several multi-attribute rules to

distinguish DSS from OLTP. We found the single-attribute classifier did not identify

general workloads as well as the multi-attribute classifier.

We present three sets of experiments with the classifiers. The first set of experiments

shows the validity of the classifiers since they are able to accurately recognize different

test samples from their base workloads. The second set of experiments shows the

robustness of the classifiers. Classifier (O, B) is able to accurately determine the relative

concentration of DSS and OLTP work within the Shopping profile, which is a variation of

its base workloads. Classifier (O, B) is also shown to be able to accurately recognize its

base workloads under different system configurations. The third set of experiments

examines the genericness of the classifiers. In these experiments we used both benchmark

and industrial workloads. We found that Classifier (C, H), because of its trivial decision

tree, was not able to adequately recognize some general workloads. Classifier (O, B), on

the other hand, had good results with both the benchmark and industrial workloads.

 95

We believe that our experiments indicate that, despite the fact that every workload is a

mix of its own set of SQL statements with their own characteristics, we can construct a

generic classifier that is able to recognize a wide range of workloads. Therefore, we

presented and evaluated two generic workload classifiers for automatically recognizing

the type of the workload.

The Hybrid Classifier (HC) was constructed with training sets that represent a wider

range of different characteristics, or flavors, of DSS and OLTP workloads. Our

experiments show that such a training method improves the performance of the HC over

our previous classifiers because it forces the creation of more sophisticated rules that are

capable of recognizing the different flavors of DSS and OLTP work.

The Graduated-Hybrid Classifier (GHC) improves upon HC by also reporting on the

workload flavors (light and heavy), and their concentrations, that constitute these DSS

and OLTP portions in the analyzed sample. In addition to the practical benefits of being

able to make finer distinctions, GHC demonstrates that our method is able to construct

classifiers for more than two workload types.

Our experiments with benchmark workloads and the industry-supplied workloads

confirmed that the total DSSness reported by the HC is almost equal to the summation of

its components, the HD and LD, reported by the GHC. Similar results were observed with

respect to the OLTPness and its components, HO and LO. This reflects the accuracy of

the predictions of the hybrid classifiers.

 The good results obtained from testing the generic classifiers make us believe that it is

feasible to consider incorporating them into a DBMS to tune, or at least help tune, the

system. DB2 Universal Database v8.1, for example, includes a Configuration Advisor

that defines settings for critical configuration parameters for a DB2 database based on

 96

workload characterization, and system environment. While the Configuration Advisor is

able to automatically detect its physical system environment through programmatic

means, it requires descriptive input from either a human operator or a calling application

to define characteristics of the workload environment (Figure 22). A workload

classification engine, such as the one described in this chapter, would automate the

classification process, obviating the need for the user to provide some of the key input to

the Configuration Advisor.

 Automatic classification within the Configuration Advisor would allow for the

automatic generation of settings for operational parameters such memory allocations

(sort, buffer pools, lock space, communication buffers, etc), parallelism degrees,

aggressiveness of page cleaning or prefetching, and query optimization depth, whose

internal modeling are a function of the workload classification. In many cases, it is

Figure 22. The type of the workload is yet a decision that human has to make

 97

reasonable to expect the classifier to more accurately identify the operational workload

than a human operator.

Note that our approach is independent of any specific DBMS or classification tool.

Moreover, and based on the criteria we set, the snapshot attributes we selected are the

result of a comprehensive study of more than 220 performance variables. These variables

are commonly available in today’s commercial DBMSs such as DB2 and Oracle�[707����

���������)������.��������%��)�����)�����������������)�����������������8�

Workload classifiers can be useful and put into practice in different ways. One

approach of incorporating the classifiers into DBMSs is to provide a set of prefabricated,

ready-to-use workload classifiers for different popular workload types. A second

approach is to adopt one of the hybrid classifiers that is trained on a wide variety of

workloads.

 Furthermore, a feedback mechanism can be established between the workload classifier

and the DBA, which would allow the DBA to understand and correlate the currently

observed performance with the workload type reported by the classifier. This would help

the DBA develop better performance-tuning strategies. The feedback would allow DBAs

to corroborate the workload type reported by the classifier and to determine if any

retraining is necessary in order to improve the classifier’s prediction accuracy.

 The classification methodology we used follows the guidelines of the characterization

framework presented in the previous chapter. For example, in the Requirements Analysis

Phase, we decided to do resource-oriented characterization for the low-level performance

attributes (e.g., # of pages read and avg. sort time) of SQL statements (Basic Workload

Components). In this chapter, we described what workload attributes we need to analyze

and the criterion behind their selection. In the Model Construction Phase, we used the

 98

DBMS monitors to collect performance data. These data were preprocessed and stored in

traditional text files as their volume does not warrant the use of a DBMS. In our analysis,

we ultimately used data mining with some basic statistical analysis. The final workload

model is represented by a decision tree produced from the classification algorithm. In the

Validation Phase, we tested this model using independent workload samples in order to

validate the prediction accuracy of the classification tree.

 99

CHAPTER 5 WORKLOAD PREDICTION

5.1 PROBLEM AND MOTIVATION

In the previous chapters, we explained the need for autonomic systems that manage

themselves in light of the characteristics of their workload. We specifically discussed how

important it is for a complex system such as a DBMS to automatically recognize the type

of its workload, namely whether it is OLTP or DSS, in order to tune its performance. We

also presented a classification methodology by which the DBMS can identify the type of

the workload automatically.

However, identifying the type of the workload is just the beginning. A DBMS may

experience changes in the type of workload it handles during its normal processing cycle.

For example:

• when new data are rolled in to or rolled out from a warehouse vs. when analysts are

querying it.

• a bank may experience an OLTP-like workload by executing the traditional daily

transactions for most of the month, while in the last few days of the month, the

workload becomes more DSS-like due to the tendency to issue financial reports and

run long executive queries to produce summaries.

• In the money market, traders may exhibit some daily pattern as they access the

information systems of their brokers [92]. For example, in the early hours of the

market, traders tend to intensively query the system in order to analyze historical

performance of the market and to analyze some candidate stocks. After this phase of

analysis, traders may place financial transactions (buying, selling, etc.) for the rest of

 100

the morning session. At noon, and during lunch hour, they keep querying the system

in order to keep track of the progress of their portfolio. The early afternoon session

may be a mix session of placing new transactions and monitoring the performance of

the current holdings. In the late hours of the day, near the closing time of the market,

traders tend to aggressively submit orders in order to close their financial positions or

to open new ones for the next day. After the market closes, the system dominantly

experiences a DSS-like workload as traders analyze the day's performance and assess

the status of their portfolio.

We believe that such changes can be predictable by analyzing historical data.

Therefore, it is not enough for autonomic DBMSs to identify the current type of the

workload, but also to predict when a change in the workload type will occur. We could

simply keep the workload classifier activated and monitor the system constantly to sense

significant shifts of workloads. However, this approach imposes undesirable overhead

and perturbation on the system. We found in our experiments that running the workload

classifier reduces the throughput of the DBMS by 10% on average. Moreover, if each

newly introduced autonomic feature does not take care to reduce its operational cost, this

incremental introduction of features and functions could lead to accumulative overhead

that threatens to undermine the very benefits autonomic computing aims to provide.

 101

The goal of this chapter is to propose an alternative, more efficient solution by which

the DBMS can learn about a workload's dynamic behavior over time and forecast when a

change in the workload type might occur in order to proactively reset the DBMS

parameters to suit the new workload. It is important to realize that the workload

prediction problem builds on top of the work on workload identification, and

complements it as illustrated in Figure 23. The workload classifier’s job is to assess the

DSSness of the workload at a given time. The workload prediction architecture, after it

analyzes a time series of DSSness, forecasts major shifts in the DSSness and alerts the

DBMS of these shifts. Major shifts are formed when the DSSness reaches predefined

thresholds that warrant reconfiguring the DBMS. These thresholds divide the DSSness

range into three zones that lead to the identification of three main workload types: OLTP,

MIX, and DSS.

This chapter is structured as follows. Section �5.2 discusses the possible prediction

approaches that can be used to identify workload shifts. Section �5.3 presents a high-level

Figure 23. The integration between the workload classifier and predictor

Forecasted DSSness Index

DBMS

Workload Classifier

Workload Predictor

... SQL statements

Snapshots ...

DSSness Index

 102

description of our approach and our prediction architecture. Sections �5.4, �5.5, and �5.6

provide a detailed description of the core components of the architecture. Section �5.7

describes the various operation modes that a DBMS can adopt in order to be workload-

aware. Section �5.8 evaluates the performance of our prediction approach and compares it

with other operation modes.

5.2 PREDICTION APPROACHES

Initially, we can think of solving this prediction problem by one of two approaches:

1. On-line Prediction. Some prediction problems that attempt to detect the idle periods

in computer systems use on-line prediction techniques [35] that require continuous

monitoring of the system as long as it is on-line and operational. This approach aims

to forecast (using, for example, moving averages or exponential smoothing

techniques) very near-future events such as when a disk becomes idle so the system

can spin it down in order to save energy.

On-line prediction is usually done by constantly collecting data about a single

performance index in the system, such as the number of I/O accesses, and by

analyzing its fluctuation over time. Such data represent a single time series. Our

workload type prediction problem resembles idleness detection problems in some

aspects, and differs from them in others. It is similar to idleness detection problems in

the sense of using the DSSness index as the single time series that fluctuates over time

as a reflection of the change in the concentration of the DSS-OLTP mix in the

workload. If the DSSness rises, the higher the intensity of the DSS mix is in the

workload.

 103

However, the major difference between our problem and the traditional idleness

prediction problem is that the latter counts on monitoring one basic, primitive

performance index collected at run-time in such a way that does not impose

significant overhead on the system. In contrast, our DSSness index, produced by the

workload classifier, is a metric resulting from a non-trivial analysis of several

performance variables (snapshot attributes) collected on-line from an intricate system

such as the DBMS. This inevitably causes extra overhead on the system and impairs

its performance.

2. Off-line Prediction. Another way of predicting workload type changes is by

performing a one-time, off-line analysis. This approach is useful for data that are

relatively easy to forecast as they likely exhibit a certain cyclical patterns over a time

window (e.g., daily or weekly). Based on our experience, the workload type

prediction problem is a good candidate for this approach due to the low volatility of

change of workload type in real systems. A change typically occurs over several hours

as a result of users’ tendencies to run particular types of applications at certain times.

This one-time, off-line analysis, however, is less trustworthy than the on-line

prediction because exceptional behavior may occur during the course of the day in a

way that contradicts the suggestion made by the off-line predictor. Consequently, if

the DBMS puts absolute trust in the off-line prediction and resets its parameters

accordingly then performance could dramatically degrade and the penalty of such a

wrong prediction becomes very costly.

 104

5.3 THE PSYCHIC-SKEPTIC ARCHITECTURE

There are three possible operation modes12 under which the DBMS can operate with

respect to workload type. The first operation mode is the Default Mode in which the

DBMS uses the default, out-of-the-box settings that suit mixed workloads in general. The

second mode is Dominant Workload Mode in which the DBMS is tuned to suit the

dominant workload throughout the day. The third mode is the Continuous Monitoring

Mode in which the DBMS counts on on-line prediction operations in order to forecast

near future shifts in the workload type.

We propose a fourth mode that uses the Psychic-Skeptic architecture. This architecture

12 More details about these modes are provided in Section �5.7.

Figure 24. Psychic-Skeptic Architecture

Patches

Psychic

DSSness

Skeptic

Shifts
SwitchTo(type)

Actuator

Off-line model Adjust DBMS
Parameters

On-line Predictor

Verify

On-line Workload

Workload Classifier

Model Builder

Shift Detection

Shift Schedule

System Clock

Training Data Model

Workload Samples

Model Update Mechanism (MUM)

 105

takes advantage of the combination of the online and off-line predictive approaches in

order to make effective, low cost predictions. Note that our focus is on repeatable, daily

patterns and we are not concerned with handling bursts that may suddenly occur during

the day for some unexpected reason. For example, as a response to an unscheduled,

managerial request, the DBA may run a reporting-intensive application in order produce

the required summaries. Such bursts are considered exceptions because they do not form

a regular pattern in that business.

As depicted in Figure 24, the Psychic-Skeptic architecture consists of three main

components: the TrainingDataModel, the Psychic, and the Skeptic. The premise of the

prediction architecture is as follows. The Psychic analyzes a daily time series of DSSness

stored in the TrainingDataModel and produces an off-line prediction model, polynomial

f(x), that can estimate major shifts in the DSSness with respect to some DSSness

thresholds (see Figure 25). These shifts are passed to the Skeptic who does not give

Figure 25. The Skeptic verifies the Psychic's predictions

Actual shift period

Predicted shift period

threshold

 Skeptic checks Skeptic checks

time � � � �

Actual
Predicted

f(x)

 106

absolute trust to the Psychic’s predictions. Rather, the Skeptic keeps monitoring the

system time in order to intercept the nearest upcoming forecasted shift. When the shift is

due, the Skeptic validates the shift by performing an on-line, short-term prediction using

linear regression. So, if the shift is due at time t, the Skeptic monitors the system for the �

minutes before and after t, that is the interval [t - �, t + �]. The Skeptic does not instruct

the DBMS to reset its parameters unless it confirms the trend of the shift using the linear

model. In order to keep all prediction models updated, the Skeptic is also responsible for

performing regular sampling for the DSSness throughout the day and sends these

DSSness patching samples to the TrainingDataModel in order to update the stored

training data. The Psychic refreshes its off-line prediction model and its forecasted shift

schedule accordingly. This regular update guarantees the adaptability of the architecture

and makes it less vulnerable to changes in the workload pattern. Without lack of

generality, and for the sake of simplicity, we assume a day is time window over which

our prediction architecture operates. Therefore, the time scale consists of 1440 minutes

(24 hours). However, the same concepts are applicable to any other time window such as

weeks or months. Next we describe the global parameters of the prediction architecture.

 107

5.3.1 Parameters of the Architecture

Our prediction system's configuration depends on a number of key parameters. Having

these parameters adds flexibility to the architecture and makes it generic and adaptive to

the setup of the IT environment. Table 11 summarizes these parameters under two

categories: global and TrainingDataModel. Most of these parameters are automatically

estimated by the architecture or derived from the computing setup surrounding the

DBMS.

Now we provide a brief description of the global parameters that are used across

several modules in the architecture. These parameters need to be set once and remain

constant afterwards. Other types of parameters will be explained in the context of

subsequent sections.

• Model Update Mechanism (MUM) is a switch parameter that can be set to ON or

OFF in order to respectively enable or disable the Model Update Mechanism feature of

the architecture. In general, if the daily pattern is trusted to remain stable, the MUM

Module Parameter Description Range Default
Value

MUM Boolean parameter to
activate or deactivate the
Model Update Mechanism.

ON or OFF ON

monCost Workload classifier
overhead

(0-100)% 10%

performanceMatrix DBMS’s performance 0.0-1.0 See
Table 12

dss_threshold DSSness value that lies
between the DSS and MIX
workload zones

(0-100)% 70%

oltp_threshold DSSness value that lies
between the MIX and
OLTP workload zones

(0-100)% 30%

Global

min_check_time # minutes that Skeptic
needs to validate a shift

30-1440 30 min.

numScenarios # of daily scenarios used for
training

1-5 3 TrainingDataModel

numDaysToCompleteUpdate # of days needed to update a
whole scenario

fastUpdateDays –
slowUpdateDays

7

Table 11. Parameters of the Psychic-Skeptic Architecture

 108

parameter can be OFF. Setting MUM to ON entails a small overhead but guarantees to

keep the prediction models up to date and provides immunity against changes in the

workload pattern.

• monCost is the percentage of performance (throughput) degradation caused by

running the workload classifier on-line. This percentage needs to be empirically

determined once and remains constant afterwards.

• oltp_threshold and dss_threshold. Most of the Current DBMSs are tuned based on

identifying three main types of workloads (Figure 22): DSS, OLTP, or MIX. We use

the DSSness percentage and the oltp_threshold and dss_threshold to identify

workload shifts as follows:

�
�

�
�

�

<
≤≤

>
=

thresholdoltpDSSnessOLTP

thresholddssDSSnessthresholdoltpMIX

thresholddssDSSnessDSS

DSSnesspeworkloadTy

_ if ,
__ if ,

_ if ,
)(

The values of oltp_threshold and dss_threshold represent the empirical values of the

DSSness at which it is worth resetting the DBMS configuration to suit the new

workload type. We have empirically found that 30 and 70 are good estimates for the

oltp_threshold and dss_threshold, respectively.

• performanceMatrix is a 3x3 matrix. If x and y ∈ {OLTP, MIX, DSS}, then each

entry (Workloadx, Settingsy) in the performanceMatrix is a performance factor that

denotes the relative performance of a DBMS, processing workload type x when its

settings are suitable for workload type y, to the optimal performance of this DBMS

 OLTP Settings MIX Settings DSS Settings
OLTP workload 1.0 0.5 0.3
MIX workload 0.5 1.0 0.5
DSS workload 0.3 0.5 1.0

Table 12. Performance Matrix

 109

when it processes workload y under settings suitable for type y. Therefore the optimal

performance is deemed 1.0 and each entry is a ratio between 0 and 1.0. All cost-

benefit analyses use this performance matrix. These performance factors are

empirically determined just once by running different combinations of different

workloads vs. different DBMS settings. Table 12 shows the empirically estimated

performance factors that we use in our experiments.

• min_check_time is the minimum number of minutes needed by the Skeptic to

execute on-line in order to validate the Psychic’s forecasted shift. This value

determines the number of the DSSness samples that will be used to build the linear

model at run-time. Throughout our experiments, we found that 30 minutes, which

constitutes 2% of the time scale of the day (max_time_scale=1440 minutes), is a

reasonable size to start with. The final size is eventually determined by the Psychic

after analyzing the training data. min_check_time is also the minimum size of the time

slots used by the Model Update Mechanism (MUM) to patch the historical data (as

explained in Section �5.5.3).

Next, we describe the Psychic-Skeptic architecture components in detail. We explain their

functions, their parameters, and how they collaborate with each other.

Day Samples Weight
Day0 1
Day1 2
Day2 4

 …
..

…
..

DaynumScenarios-1 2(numScenarios-1)

Table 13. Training scenarios stored in the TrainingDataModel

 110

5.4 THE TRAINING DATA MODEL

The TrainingDataModel is a queue-like data structure component (Table 13) that is

responsible for storing and managing historical samples, we call them Scenarios, of a

number of days (numScenarios) to train the Psychic and the Skeptic. It is equipped with

all functions to add, remove, and edit these data. TrainingDataModel stores numScenarios

chronologically ordered scenarios (full day samples). DaynumScenarios-1 is the most recent

while Day0 is the oldest. Each day is assigned a weight that is double that of the previous

day. Therefore, Day0 is assigned a weight of 1, Day1 is assigned 2, Day2 is assigned 4,

etc. DaynumScenarios-1 is assigned 2(numScenarios-1). In order to adhere to the notion of

probabilities, we normalize these weights by transforming them to the 0-1.0 scale, as

explained next. Assigning weights to the sample days is vital to the quality of the

prediction models built in this architecture as such weights put more stress on the most

recent observed days than the older ones. Each scenario consists of a time series, (ti,

DSSnessi), where DSSnessi is the DSSness reading reported by the workload classifier at

time ti.

Next, we describe the main functions that the TrainingDataModel provides to the other

architecture components.

5.4.1 Predictability Assessment

The Psychic-Skeptic architecture is based on the premise of predictable pattern. In order

to devise a mechanism that allows us to verify the existence of a predictable, cyclic

DSSness pattern over the numScenarios days stored in the training model, we need to

view the DSSness samples of all days as a single time series. We can then use the

 111

autocorrelation coefficient, rk, to test the predictability of the DSSness using the

following formula [60]:

� −

� −−
=

=

−

=
+

N

i

kN

i
kii

k

DDi

DDDD
r

1

2
1

)(

))((

where

k denotes the lag (k=1,2,3,…), which is the length of the daily prediction period (k =

max_time_scale).

N is the total number of samples collected over numScenarios days, N= numScenarios*

max_time_scale.

Di is the DSSness sample number i, where i=1..N.

D denotes the mean of the DSSness samples, that is,
N

D
D

N

i
i�

= =1

rk is the autocorrelation coefficient whose range is [-1, 1]. A near-zero value indicates a

lack of correlation between the DSSness values occurring at the same time within each

day. A positive value of rk indicates a conformance of the DSSness trend while a negative

value indicates an inverse trend. In general, we deem rk >0.5 a strong indication of having

a predictable trend. In our experiments, rk is 0.65 on average.

5.4.2 Model Consolidation

In order to analyze the daily scenarios, we transform them into a compact form that

represents all days while taking into account the weight of each day. As shown in Figure

 112

26, this consolidated scenario is constructed by calculating avgDSSnesst, which represents

the weighted average of all DSSness(d,t) samples collected at time t, in scenario number d:

wDSSnessavgDSSness d
d

tdt

osnumScenari

×= �
−

=

1

0
),(

where
12

2

2

2
1

0

−
=

�
= −

=

osnumScenari

d

i

i

d

d osnumScenariw , and it denotes the weight of scenario number d.

As we discuss in subsequent sections, the consolidated scenario is needed by numerous

components of the architecture. For example, the Psychic builds an off-line prediction

model by applying polynomial regression to the consolidated scenario. It also estimates

the interval [earliestCheckTime, latestCheckTime] during which the Skeptic works in

order to validate the forecasted shifts. In addition, the dominant workload type is

determined by analyzing the consolidated scenario. The Model Update Mechanism

(MUM) also uses the consolidated scenario to back-test the performance of the DBMS

under different operation modes in order to optimize the MUM parameters.

Task consolidatingScenarios
 total = 2^numScenarios -1

 consolidatedScenario = new Scenario();

 For t=0 to max_time_scale

avgDSS = 0;
 For d=0 to (numScenarios-1)
 sample = scenario[d].Sample[t];
 avgDSS += sample.dssness *(d/total);
 Endfor //for each daily scenario in the TrainingDataModel

 consolidatedScenario.addSample(t, avgDSS);
 Endfor // for each time tick within each scenario

 return consolidatedScenario;
End Task

Figure 26. Model Consolidation

 113

5.4.3 Model Update Mechanism (MUM): Patching

The prediction architecture manifests its adaptability to pattern changes by having the

Model Update Mechanism (MUM) that can patch the training data. Patching is a function

by which the Skeptic can gradually update the historical data in order to keep the

underlying prediction models up to date.

Patching occurs by propagating the DSSness samples of a particular scenario to the

next older scenario. A DSSness(d, t) sample of day d at time t replaces DSSness(d-1, t) for

d=1..numScenarios-2. DSSness(numScenarios-1, t) , which is the most recent scenario in the

TrainingDataModel, is patched by the newly DSSness samples collected by the Skeptic.

Figure 27 sketches the patching task.

Task ModelPatching (patchingScenario)
// Patching all scenarios in TrainingDataModel except the most recent one
// by back propagation

 For d=0 to numScenarios-2
s1 = scenarios[d];

 s2 = scenarios[d+1];

 // Get each sample in patchingScenario and patch at its time tick

For i=1 to patchingScenario.numSamples
s = patchingScenario.sample[i];

 t = s.time;
 s1.sample[t] = s2.sample[t];
 Endfor // for each sample the patchingScenario
 Endfor // for each scenario in TrainingDataModel

 //Now, patch the most recent scenario with samples from patchingScenario
 lastScenario = scenarios[numScenarios-1];

 For i=1 to patchingScenario.numSamples

s = patchingScenario.sample[i];
 lastScenario.sample[s.time] = s;
 Endfor

End Task

Figure 27. Model Patching

 114

5.4.4 Determining the Dominant Workload

The DBA can run the DBMS with fixed settings that suit the dominant workload type

experienced in a business. This type can be systematically determined by analyzing the

consolidated scenario derived from the historical data. The TrainingDataModel

determines the dominant workload type by scanning the consolidated scenario and

constructing a distribution of the DSSness sample types (DSS, MIX, or OLTP). The type

that has the highest frequency is deemed to be the dominant one.

 Selecting the value of numScenarios is a tradeoff between the quality of the off-line

model and the pace by which all scenarios in the data set can be fully refreshed. Having

multiple days in the training set may lead to a more robust off-line prediction model.

However, the MUM will take a longer time to patch the entire stack of scenarios

according to the propagation algorithm described earlier. Experimentally, we found that

numScenarios=3 is a reasonable size that produces good prediction quality and high

adaptability.

5.5 THE PSYCHIC

The Psychic is one of the core components of the prediction architecture. It is primarily

responsible for producing an off-line prediction model by tapping the cyclic pattern that

occurs during the day. More specifically, the Psychic carries out five main tasks in the

following sequence:

1. Off-line Model Generation. The psychic analyzes historical data stored in the

TrainingDataModel and produces the best, least complex polynomial that fits them.

 115

2. Finding Shifts. The produced polynomial is used to find the potential workload

shifts by finding intersection points of this polynomial with the dss_threshold and

oltp_threshold.

3. Estimating Shift Check Time. In order for the Skeptic to validate a particular shift

that has been forecasted by the Psychic, the Skeptic needs a timeframe during which

it monitors the workload and eventually decides whether to endorse this shift or to

disregard it. The start and end time of this timeframe, for each shift, is estimated at

this stage.

4. Filtering Shifts. Not all shifts are good. The Psychic performs a cost-benefit analysis

to determine if a shift is worth consideration or if ignoring it would be more

beneficial to the overall system performance.

5. Setting the MUM Parameters. The MUM assures the validity of prediction models

used in this architecture. It makes the prediction architecture less vulnerable to

possible changes in the workload pattern over time. In order to achieve this goal

efficiently, the MUM needs to optimize its internal parameters in light of the

characteristics of the workload.

More details about these tasks are explained in the following subsections.

5.5.1 Off-line Model Generation

The Psychic uses a polynomial as an off-line model. A representative polynomial is

generated by applying the polynomial regression algorithm to the consolidated scenario

obtained from the TraniningDataModel.. In our experiments, the produced polynomials

are mostly from the 3rd and 4th degrees. There are many tools that can be used for time

series prediction such as neural networks, ARMA/ARIMA (Autoregressive Moving

 116

Average/Autoregressive Integrated Moving Average) models, DPLL (Digital Phase

Locked Loop), digital filters, or Fourier series [60]. These models can be used to predict

the DSSness (dependent variable) at a given time (independent variable). However, the

Psychic needs to predict when (i.e., time) the DSSness reaches specific threshold. This

requires dealing with the inverse of the prediction function, which is not always easy to

derive using the above prediction tools. The extrapolation using polynomial regression,

on the other hand, lends itself to the ease of geometric manipulation (i.e., it is easy to find

where the polynomial intersects with certain threshold) and it is an intuitive, compact

representation for the workload trend.

 117

Task findShifts
 shiftSchedule = new ShiftSchedule();

 // ************ find intersections with dss_threshold *************
 Roots[] = findRoots(offlinePredictionModel - dss_threshold);
 firstDerivative = offlinePredictionModel.derivative();

 For i=1 to roots.numRoots
 slope = firstDerivative.value(round(roots[i]));

 // Abandon minima and maxima because they are not real shifts.
 If (abs(slope)>0.001 AND roots[i] in [0..max_time_scale])
 shift = new Shift();
 shift.setTime(roots[i]);

 If (slope >0)
 shift.setType(MIX_UP_TO_DSS);
 Else
 shift.setType(DSS_DOWN_TO_MIX);
 Endif

 shiftSchedule.addShift(shift);
 Endif

 Endfor // for each root

 // ************ find intersections with oltp_threshold ***********
 Roots[] = findRoots(offlinePredictionModel - oltp_threshold);

 For i=0 to roots.numRoots
 slope = firstDerivative.value(round(roots[i]));

 // Abandon minima and maxima because they are not real shifts.
 If (abs(slope)>0.001 AND roots[i] in [0..max_time_scale])

shift = new Shift();
 shift.setTime(roots[i]);

 If (slope>0)
 shift.setType(OLTP_UP_TO_MIX);
 Else
 shift.setType(MIX_DOWN_TO_OLTP);
 Endif

 shiftSchedule.addShift(shift);
 Endif

 Endfor // for each root

 return shiftSchedule;
End Task

Figure 28. Finding Shifts

 118

5.5.2 Finding Shifts

The Psychic uses the generated polynomial to find the points of time where the DSSness

index intersects with the dss_threshold or the oltp_threshold (see Figure 29). Therefore,

the Psychic calculates the roots of the polynomial f(t) when f(t) – dss_threshold = 0 and

when f(t) – oltp_threshold = 0. However, we have to exclude the points that are minima

and maxima as they almost touch the threshold levels and do not actually embody real

shifts. These false shifts can be easily identified by checking the slope of the curve using

the first derivative f’(x). If f’(t) � 0, then shift t must be discarded.

So far, the Psychic could find all shifts that may occur but we still lack the semantics

of each shift. A shift can be one of four types depending on its trend:

OLTP_UP_TO_MIX, MIX_UP_TO_DSS, DSS_DOWN_TO_MIX, or

MIX_DOWN_TO_OLTP. The slope of the shift can determine the direction of the shift

by identifying its inclination (slope > 0) or declination (slope < 0). Figure 28 sketches the

task of detecting shifts.

 119

5.5.3 Estimating Shift Check Time

This task determines the shortest period of time during which the Skeptic will run in order

to validate a forecasted shift. This goal is achieved in two steps: 1) determining shift

bounds, and 2) estimating earliest and latest check times.

1) Determining Shift Bounds. The extreme bounds that delimit a shift are determined by

the nearest local maximum and local minimum surrounding the shift time as

illustrated in Figure 29. They represent the search space, [a..b], for estimating the

earliestCheckTime and latestCheckTime period, [e..l], as explained in step 2 below.

The first and last shifts may become special cases. If the first shift is not preceded by

a minimum or maximum, the lowerBoundCheckTime is set to zero, which is the

beginning of the day. And if the last shift is not followed by any minimum or

maximum then the upperBoundCheckTime is set to the last minute of the day

Figure 29. Shifts form when the DSSness index intersects with the thresholds.

Day Time

� �

a e t l b

Local Max

Local Min f(x)

DSS zone

dss-threshold

oltp-threshold

MIX zone

OLTP zone

DSSness

 120

(max_time_scale). Figure 30 describes how to find the [lowerBoundCheckTime,

upperBoundCheckTime] period.

2) Estimating Earliest and Latest Check Times. In this step the Psychic tries to find a

subset period, [earliestCheckTime, latestCheckTime], within the

[lowerBoundCheckTime, upperBoundCheckTime] of a shift. This is imperative as it

reduces the time needed by the Skeptic to validate a shift at run time. Figure 31

describes how to estimate [earliestCheckTime, latestCheckTime] by analyzing the

training scenarios stored in the TrainingDataModel. Initially, the Psychic starts with

earliestCheckTime=t-(min_check_time/2), and

latestCheckTime=t+(min_check_time/2), where t denotes the expected shift time. This

interval is incrementally expanded until the Skeptic’s linear model applied to the

consolidated scenario agrees on the trend of the shift. Expansion is performed by

decrementing earliestCheckTime and incrementing latestCheckTime such that the

conditions earliestCheckTime >= lowerBoundCheckTime and latestCheckTime<=

upperBoundCheckTime are not violated.

 121

Task determiningShiftBounds(shiftSchedule)
localMAndM[] = localMinimaAndMaxima();
numLocalMAndM = localMAndM.length;

 For s =1 to shiftSchedule.numShifts
 found = false;

 For i=0 to numLocalMAndM -1

 If (localMAndM[i] > shift[s].time)

 //Handling the FIRST shift's special case
 If(i>0)
 Shift[s].lowerBoundCheckTime = localMAndM[i-1];
 Else

Shift[s].lowerBoundCheckTime(0);
 Endif

 Shift[s].upperBoundCheckTime = localMAndM[i];
 found = true;

 ExitLoop;
Endif

Endfor

 // If no min/max follows a shift
 If(NOT found)
 Shift[s].upperBoundCheckTime = MAX_TIME_SCALE;

 // Setting the lower bound

 If(numLocalMAndM > 0)
Shift[s].lowerBoundCheckTime = localMAndM[numLocalMAndM -1];

 Else
 Shift[s].lowerBoundCheckTime = 0;
 Endif

 Endif

 Endfor
End Task

Figure 30. Determining Shift Bounds

 122

5.5.4 Filtering Shifts

Some of the detected shifts might not be beneficial to the performance. A shift might be

too short such that it is not worth resetting the DBMS’s configuration parameters. The

Psychic performs a cost-benefit analysis for each shift in order to decide whether to

Task estimatingEarliestAndLatestCheckTimes

double slope;
 firstDerivative = offlinePredictionModel().derivative();

 skeptic = new Skeptic();
 For i=1 to numShifts
 shift[i].latestCheckTime= shift[i].time+ (min_check_time /2);

shift[i].earliestCheckTime = shift[i].time - (min_check_time /2);

 // Make tests on the Consolidated Scencario
 scenario = consolidateScenarios();

 While(true)
 // Ask the Skeptic for help
 skeptic.evaluateOnlineModel(scenario, shift[i]);
 slope = skeptic.slope();

 correctTrend=((shift[i].isTrendingUp AND slope >0) OR
 (shift[i].isTrendingDown AND slope <0));

 if (!correctTrend)

 // Expanding the checking period from left and right.
 if (shift[i].earliestCheckTime > shift[i].lowerBoundCheckTime)
 shift[i].earliestCheckTime=shift[i].earliestCheckTime -1 ;

 if (shift[i].latestCheckTime < shift[i].upperBoundCheckTime)
 shift[i].latestCheckTime=shift[i].latestCheckTime +1;
 Else

exitLoop;
 Endif

// Stop expanding if one of the boundaries is hit.
 if (shift[i].earliestCheckTime <= shift[i].lowerBoundCheckTime OR
 shift[i].latestCheckTime >= shift[i].upperBoundCheckTime)

exitLoop;
 Endif

 Endwhile

 Endfor // for each shift
End Task

Figure 31. Estimating earliest and latest check times of a shift

 123

accept or reject a shift. This decision is made by comparing the performance difference

between the two cases:

1) The shift is accepted. This implies that the Skeptic causes some overhead due to

its validation procedure, and that the DBMS’s parameters are reset.

2) The shift is discarded. No validation is performed by the Skeptic, and the DBMS

retains its current settings.

Figure 32 details the cost-benefit analysis used to filter shifts. Note that filtering is not

needed if we have fewer than two shifts. The cost-benefit analysis is ultimately based

on the global parameters performanceMatrix and monCost.

 124

Task filterShifts
i=1;
If (numShifts >= 2)
While(i< numShifts)
 shift1 = shifts[i];
 shift2 = shifts[i+1];

 if(NOT isComplement(shift1, shift2))
 loop;

 //--- Performance if shifts are adopted
 wt = workloadTypeAt(shift1.earliestCheckTime);
 dbSettings = wt; // resetting db parameters
 c = performanceMatrix[wt, dbSettings] - monCost;
 perfIfMon = (shift1.time - shift1.earliestCheckTime)*c;

 wt = workloadTypeAt(shift1.latestCheckTime);
 perfIfMon += (shift1.latestCheckTime - shift1.time)*c;

 dbSettings = wt;
 c = performanceMatrix[wt, dbSettings];
 perfIfMon+=(shift2.earliestCheckTime - shift1.latestCheckTime)*c;

 c = performanceMatrix[wt, dbSettings] - monCost;
 perfIfMon+=(shift2.time - shift2.earliestCheckTime)*c;

 wt = workloadTypeAt(shift2.latestCheckTime);
 c = performanceMatrix[wt, dbSettings] - monCost;
 perfIfMon += (shift2.latestCheckTime - shift2.time)*c;

 //--- Performance if shifts are discarded
 wt = workloadTypeAt(shift1.earliestCheckTime);
 dbSettings = wt;
 c = performanceMatrix[wt, dbSettings];
 perfIfNotMon = (shift1.time - shift1.earliestCheckTime)*c;

 wt = workloadTypeAt(shift1.latestCheckTime);
 c = performanceMatrix[wt, dbSettings];
 perfIfNotMon += (shift2.time - shift1.time)* c;

 wt = workloadTypeAt(shift2.latestCheckTime);
 c = performanceMatrix[wt, dbSettings];
 perfIfNotMon += (shift2.latestCheckTime - shift2.time)*c;

 if (perfIfMon <= perfIfNotMon)
 removeShiftAt(i);
 removeShiftAt(i+1);
 End If

 i++;
 Endwhile

End Task

Figure 32. Filtering Shifts

 125

5.5.5 Estimating Model Update Mechanism (MUM) Parameters

The MUM aims to ensure that all prediction models are up to date, which makes the

prediction accuracy less vulnerable to changes in the daily pattern. It achieves this goal by

performing regular DSSness sampling for short intervals throughout the day. The MUM

parameters are optimized such that the MUM satisfies the following two constraints: 1)

the MUM guarantees coverage for the entire day after a numDaysToCompleteUpdate

days, and 2) the expected performance of the prediction system is still higher than the

performance of any other operation mode. To satisfy these conditions, the MUM

parameters are automatically estimated by back-testing the historical data.

Task setMUMParameters

 s = consolidateScenarios();

 p1 = perfWithFixedSettings(s, dominantWorkload());
 p2 = perfUnderContinuousMonitoring(s);

 // Maximum # of days to update the model implies checking one only everyday
 maxUpdateDays = ceil(max_time_scale / min_check_time);

 For i = 1 to maxUpdateDays
 setDaysToCompleteModelUpdate(i);

 p3 = perfUnderPredictionArchitecture(s);

 If (p3 > (p1+PERF_PERCENTAGE) && p3 > (p2+PERF_PERCENTAGE))
 fastUpdateDays = i;
 fastUpdatePerf = p3;
 exitLoop;
 Endif

 Endfor // # of update days currently examined

 slowUpdateDays = maxUpdateDays;
 setDaysToCompleteModelUpdate(slowUpdateDays);

 slowUpdatePerf = perfUnderPredictionArchitecture(s);

End Task

Figure 33. Estimating MUM Parameters

 126

To understand how the MUM works, we can view the day as a number of equal,

ordered time zones, as shown in Figure 34. Each zone is divided into a number of equal,

ordered time slots. To ensure a uniform distribution of checked periods over the course of

a day, the Skeptic runs at only one slot per zone in each day. In other words, in day one,

the Skeptic is triggered at slot one of zone 1, slot 1 of zone 2, slot 1 of zone 3, etc. In day

two, it runs at slot 2 of zone 1, slot 2 of zone 2, slot 2 of zone 3, etc. Therefore, if there

are n slots in a zone, n days are required to make a complete coverage of a day.

At run-time, the Actuator, a subcomponent in the Skeptic, monitors the system clock

for the start time (S) and end time (E) of the upcoming slot in order to ask the Skeptic to

start and stop sampling at these times, respectively.

ZoneSizeZoneSlotSizeDayS ×+×=

SlotSizeSE +=

Day denotes the day number throughout the model-update process. Initially, Day is set to

0 in the first day and it is incremented at the end of each day. Zone denotes the current

zone number. It is reset to 0 at the beginning of each day and is incremented at the end of

each of each slot. SlotSize and ZoneSize are constants denoting the size of the slot and the

zone respectively, where:

timecheckSlotSize _min_=

Figure 34. Regular sampling throughout the day

……….
Zone 1

Slot 1 Slot 2 Slot 3 Slot 1 Slot 2 Slot 3

Zone n

Day time

 127

ateompleteUpdnumDaysToCSlotSizeZoneSize ×=

�
�

	

�=
ZoneSize

calemax_time_s
numZones

We conservatively choose to set SlotSize to min_check_time, which is the shortest

check period that the Skeptic uses to validate a shift. numDaysToCompleteUpdate is a

parameter that specifies the number of days by which the first scenario in the training set

is fully refreshed. Its value ranges from fastUpdateDays to slowUpdateDays, where

fastUpdateDays denotes the minimum number of days that the MUM needs in order to

complete the update while the performance of the architecture remains superior, and

slowUpdateDays is the maximum number of days needed to update the model such that

one slot is sampled every day. It is easy to realize that

�
�

	

�=
SlotSize

calemax_time_s
DaysslowUpdate . fastUpdateDays is optimized by starting by one

day and incrementing it until the prediction architecture outperforms the other operation

modes (Section �5.7) by an arbitrary percentage PERF_PERCENTAGE, that is,

fastUpdatePerf >= (anyOtherPerf+PERF_PERCENTAGE). We use

PERF_PERCENTAGE=1% in our experiments. fastUpdatePerf and slowUpdatePerf are

the performance measures associated with setting numDaysToCompleteUpdate to

fastUpdateDays and slowUpdateDays respectively. Therefore,

numDaysToCompleteUpdate creates a tradeoff between the pace at which the architecture

can fully update a training scenario and the performance level. Setting

numDaysToCompleteUpdate to fastUpdateDays leads to a faster update, but with a

relatively lower performance due to the incurred run-time monitoring. Setting

numDaysToCompleteUpdate to slowUpdateDays leads to the maximum DBMS

 128

performance but a longer time is required to update the model. In general, the architecture

has the ability to estimate the DBMS’s performance for any value assigned to

numDaysToCompleteUpdate and vice versa. Figure 33 shows how to estimate the MUM

parameters that were discussed. Table 14 summarizes the variables used in this

estimation.

5.6 THE SKEPTIC

The Skeptic’s main function is to validate the Psychic’s forecasted shifts. For each

upcoming shift, the Skeptic samples the workload from earliestCheckTime to

latestCheckTime. The workload samples are analyzed to confirm whether the trend of a

shift conforms to the Psychic’s prediction. The Skeptic builds an on-line prediction model

using linear regression that fits the collected samples. The slope of the line is used to

determine the trend of the workload. If the on-line prediction model confirms the shift,

the DBMS’s settings are reset to suit the upcoming workload type. Otherwise, the DBMS

Variable Description
numDaysToCompleteUpdate Number of days needed to update an entire scenario
Slot The slot number in a particular zone.
Zone The zone number within the day
Day The day number since the start of the MUM update
S The next start time for the MUM to work
E The end time for the current update session
slotSize Size of the slot
zoneSize Size of the zone
numZones Number of zones in a day
fastUpdateDays Minimum # of days to update an entire scenario
slowUpdateDays Maximum # of days to update an entire scenario
fastUpdatePerf Overall performance using fastUpdateDays
slowUpdatePerf Overall performance using slowUpdateDays

Table 14. Variables used in the Model Update Mechanism (MUM)

 129

resets its settings to the default, which is the safest resort and can sub-optimally handle

MIX workloads of OLTP and DSS.

The Skeptic-MUM collaboration. Whether the MUM is enabled or disabled, the Skeptic

samples collected during the validation process are deemed the most recent observations

of the day during that interval. Therefore, in addition to the regular sampling performed

by the MUM mechanism, the Skeptic also passes its own samples collected throughout

the validation task to the MUM component in order to patch the historical data stored in

the TrainingDataModel.

5.7 OPERATION MODES

A DBMS can run in one of the following operation modes: out-of-the-box (default)

settings, fixed settings suitable for the dominant workload, dynamic settings using

continuous monitoring, or the Psychic-Skeptic architecture. Our experiments compare the

performance of the DBMS under these different modes and show that the Psychic-Skeptic

architecture has the potential to outperform the other modes. Next, we briefly describe

how the DBMS handles the workload under each operation mode.

5.7.1 Out-of-the-box (Default) Mode

This is a trivial operation mode in which the DBA chooses to run the DBMS with out-of-

the-box default settings that suit a mixed workload. These settings remain static and do

not respond to any changes in the workload type nor adapt to the dominancy of a

particular workload type.

 130

5.7.2 Dominant Workload Mode

In dominant workload mode, the consolidated scenario obtained by the

TrainingDataModel is analyzed in order to determine the dominant workload type. This is

done by measuring the total time (in minutes) that each workload type lasts throughout

the day. The workload type that runs for the longest accumulated time is deemed

dominant, and the DBMS is configured to suit this dominant workload. This

configuration is static and does not change. The performance obtained from this mode is

always expected to outperform the Default Mode described above. However, it is not

expected to provide the best performance as it is not adaptable.

5.7.3 Continuous Monitoring Mode

This is supposed to be the most adaptable mode that can fully take advantage of the

Workload Classifier. It performs on-line, short-term prediction using the moving average

(MA) [63]:

n
yyy

d nttt
t

11
1

... +−−
+

+++
=

where d t 1+ is the DSSness forecast value for the period t+1, yt is the actual value

(observation) at time t, and n the number of DSSness samples used to calculate d t 1+ . One

problem with this technique is the determination of n, the number of periods included in

the averaging. n should be selected such that it minimizes the forecasting error, which is

defined by the square of the difference between the forecast and actual values. The mean

squared error (MSE) is given by

n
d tytMSE

n
t� −

= =1
2)(

 131

Different values of n, such that MAX>=n >=1, may be tested using the historical data to

find the one that gives the smallest MSE. We arbitrarily use MAX=10 as a maximum

value for n. Detecting a shift using a single MA value leads to instability as the value may

oscillate around the threshold lines oltp_threshold and dss_threshold. To avoid this

pitfall, we use a timer to ensure that all forecasts satisfy the threshold for the last

min_check_time/2 minutes. min_check_time is the initial check time needed by the

Skeptic to validate shifts by sampling before and after the expected shift time. In this MA

technique we need just check before the expected start time of the shift, and therefore, we

use half of the interval.

This mode is advantageous as it is responsive to changes in the workload. However, it

involves the undesirable, on-line overhead of running the Workload Classifier. Therefore,

it is hard to speculate on the performance of this mode with respect to the two above

without back-testing the historical data. In general, this mode is very adaptive but costly.

5.7.4 Psychic-Skeptic Mode

Assuming the existence of a repeatable pattern in the workload, we argue that the overall

performance of the system can be superior using the Psychic-Skeptic prediction system as

shown in the following experiments.

5.8 EXPERIMENTS

Our experiments have two main goals. First, we validate the Psychic-Skeptic approach

and compare its performance to the alternative operation modes. Second, we show that

our approach is robust and able to adapt to changes that may occur in the workload

pattern.

 132

We test our architecture using artificially generated data that allow us to examine

specific cases as well as arbitrary situations. DSSness data are generated using the notion

of Scenarios and ScenarioDescriptors. A ScenarioDescriptor can be perceived as a

template for generating scenarios that exhibit a particular daily pattern. Therefore, a

particular ScenarioDescriptor is used as a factory to generate multiple daily scenarios that

exhibit a particular pattern. A ScenarioDescriptor can represent any workload pattern that

may characterize a special event or season (e.g., statuary holidays, Christmas shopping

days, weekends, weekdays, etc.) over any window of time (day, week, etc.).

A ScenarioDescriptor consists of a set of pairs (time, DSSness) that play the role of

anchors of DSSness values on the final DSSness curve. The time is a minute during the

day so its domain is [0, 1440] (24 hours a day), and DSSness ranges from 0 to 100. These

anchors enable us to direct and shape the trend of the DSSness in any way we desire. In

order to generate a scenario out of this descriptor, a series of DSSness values are

automatically generated between every two consecutive anchors. In order to make our

scenarios more realistic, we inject a ± (0-5)% of random noise in the DSSness, and ± (0-

2)% of random noise in the time, which is equivalent to ± (0-30) minutes. Noise injected

in the time dimension affects when a shift may start or end. Noise injected in the DSSness

dimension affect whether a shift is likely to occur or not based on its intersection with the

threshold lines.

In each experiment, we simulate13 the performance of a DBMS run under each of the

four operation modes based on the empirically-obtained parameters described in Section

�5.3.1. The performance of the Psychic-Skeptic architecture is evaluated when the MUM

13 The Psychic-Skeptic Architecture is implemented in Java.

 133

is enabled and when it is disabled. We use the default parameter settings illustrated in

Table 11, unless otherwise indicated.

In these experiments we report the following:

- The expected performance using the architecture with the MUM enabled.

- The minimum and maximum performance expected from the architecture under

fast and slow MUM, respectively.

- The performance of the DBMS under each of the four operation modes.

- The relative performance improvements and degradation of the various operation

modes with respect to the Default Mode.

5.8.1 Experiment 1: Pattern A

The goal of this experiment is to examine the performance of the DBMS under the pattern

A generated by the ScenarioDescriptor = { (0, 10), (150, 20), (160, 23), (250, 47), (350,

 60), (450, 70), (470, 67), (500, 63), (650, 58), (660, 50), (850, 25), (900, 20), (1000,

17), (1050, 15), (1150, 16), (1200, 17), (1440, 50)}. Figure 35 shows an instance

scenario of this daily pattern. As seen, the DBMS experiences a workload that is mostly

OLTP in the first two hours of the day. Then it changes to a mixed workload over the

next 12 hours. In the next 9 hours, the dominant workload becomes OLTP, and then it

shifts back to a mixed workload. The autocorrelation coefficient, rk, of this workload =

0.6562, which indicates a predictable cycle of DSSness across multiple days.

 134

The Psychic’s off-line prediction model for this daily pattern is:

f(x) = -6.61 + 0.32*X -4.07E-4*X2 + 2.64E-8*X3 + 8.73E-11*X4

The initial shift schedule, which may change later if the MUM is enabled, for this daily

pattern is shown in Table 15. Table 16 summarizes the performance statistics observed

with the Pattern A while MUM is ON and OFF, using the four operation modes. Note that

by the absolute performance we refer to the performance percentage that can be achieved

with respect to the maximum, theoretical performance resulting from matching the

DBMS settings with the workload type for each minute. By the relative performance we

refer to the percentage of performance improvement (or degradation) of any operation

mode with respect to the Default Mode.

Figure 35. An example of the daily pattern A.

 Shift Type EarliestCheckTime Time LatestCheckTime
Shift 1 OLTP_UP_TO_MIX 152 167 182
Shift 2 MIX_DOWN_TO_OLTP 804 819 834
Shift 3 OLTP_UP_TO_MIX 1278 1293 1308

Table 15: Shifts of Pattern A

time

DSSness

oltp_threshol

dss_threshold

 135

M
U
M

Perf. Statistic Default Dominant MA PS Arch

Mean 76.23 76.23 87.39 97.08

Std. Dev. 0.82 0.82 0.26 0.52

A
bs

ol
ut

e

Conf. Int. [75.95, 76.51] [75.95, 76.51] [87.30, 87.48] [96.90, 97.26]

Mean n/a 0 14.65 27.37

Std. Dev. n/a 0 1.24 1.1

O
FF

R
el

at
iv

e

Conf. Int. n/a n/a [14.22, 15.08] [26.99, 27.75]

Mean 76.23 76.23 87.37 94.54

Std. Dev. 0.82 0.82 0.29 1.35

A
bs

ol
ut

e

Conf. Int. [75.94, 76.51] [75.94, 76.51] [87.27, 87.47] [94.08, 95.01]

Mean n/a 0 14.63 24.03

Std. Dev. n/a 0 1.25 2.08

O
N

R
el

at
iv

e

Conf. Int. n/a n/a [14.19, 15.06] [23.30, 24.75]

Table 16: The DBMS’s performance under pattern A

50

55

60

65

70

75

80

85

90

95

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

 Default

 Dominant

 MA

 PS Arch

Figure 36. Absolute performance of pattern A (MUM is off).

Days

Pe
rf

or
m

an
ce

 (%
)

 136

We should notice also that the mixed workload is dominant for pattern A. Therefore,

the performance obtained under the Dominant Mode is equivalent to the Default Mode.

Performance when MUM is OFF. All modes are tested for at least 30 days with the

MUM turned off. Figure 36 shows the DBMS’s absolute performance under different

operation modes. The best performance is achieved under the Psychic-Skeptic

architecture (avg. 97.08%), followed by the MA Mode (avg. 87.39%), then the Dominant

Mode (avg. 76.23%), which is equivalent to Default Mode. Figure 37 shows that the

Psychic-Skeptic architecture achieved an average of 27.37% performance improvement

over the Default Mode compared to 14.65% performance improvement achieved by the

MA Mode. All performance estimates are based on workload classifier overhead of 10%

(monCost = 10%).

0

5

10

15

20

25

30

35

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

 MA

 PS Arch

Figure 37. Relative performance of pattern A (MUM is off).

Days

Pe
rf

or
m

an
ce

 (%
)

 137

Performance when MUM is ON. When the MUM is enabled, the architecture reports the

following estimates:

- The minimum number of days (fastUpdateDays) needed to complete updating the

most recent scenario in the TraningDataModel. It also reports the expected

performance (fastUpdatePerf) if the system uses fastUpdateDays to complete the

update.

- The maximum number of days (slowUpdateDays) needed to complete the model

update, and the associated (slowUpdatePerf).

50

55

60

65

70

75

80

85

90

95

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

 Default

 Dominant

 MA

 PS Arch

Figure 38. Absolute performance of pattern A (MUM is ON).

Days

Pe
rf

or
m

an
ce

 (%
)

 138

Setting the numDaysToCompleteUpdate parameter to the minimum number of days for

the update, fastUpdateDays, results in a system that is updated quickly while retaining

superior performance overall other operation modes. On the other extreme, the business

may decide to minimize overhead by setting numDaysToCompleteUpdate to the

maximum number of updating days, slowUpdateDays. Therefore,

numDaysToCompleteUpdate creates a tradeoff between the pace of model update and

overall performance. Notice that the architecture can estimate the performance under any

given numDaysToCompleteUpdate, and vice versa. Knowing the expected performance

beforehand allows the DBMS to issue an alert in case the performance is degrading.

Table 17 indicates the minimum performance expected when

0

5

10

15

20

25

30

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

 MA

 PS Arch

Figure 39. Relative performance of pattern A (MUM is ON).

 Days Performance
Fast Upate fastUpdateDays = 2 fastUpdatePerf = 92.78%
Slow Update slowUpdateDays = 48 slowUpdatePerf = 97.58%

Table 17. Min and Max Performance of Pattern A while MUM is ON

 139

numDaysToCompleteUpdate is set to fastUpdateDays. It also shows the maximum

performance when numDaysToCompleteUpdate is set to slowUpdateDays.

Figure 38 compares the performance of the DBMS under the four operation modes.

Regarding the Psychic-Skeptic architecture, the MUM is turned on with

numDaysToCompleteUpdate =7, that is, a complete daily scenario will be updated after

one week. The Psychic-Skeptic architecture still outperforms others (avg. 94.54%),

followed by the MA Mode (avg. 87.37%), then the Dominant Mode (76.23%), which is

equivalent to Default Mode. Figure 39 shows that the Psychic-Skeptic architecture

achieves an average of 24.03% performance improvement over the Default Mode

compared to 14.63% achieved by the MA Mode.

Figure 40. An example of the daily pattern B.

time

DSSness

oltp_threshol

dss_threshold

 140

5.8.2 Experiment 2: Pattern B

The goal of this experiment is to examine the performance of the DBMS under the pattern

B generated by the ScenarioDescriptor = { (0, 55), (150, 45), (160, 46), (250, 50),

(350, 70), (450, 80), (500, 90), (650, 85), (700, 95), (850, 80), (900, 70), (1000,

 60), (1050 55), (1150, 40), (1200, 35), (1250, 25), (1300, 20), (1350, 23), (1440,

 15)}. Figure 40 shows an instance scenario of this daily pattern. As seen, the DBMS

experiences a workload that is mostly mixed in the first 8 hours of the day. Then it starts

to be more DSS over the next 10 hours. In the next 6 hours, it seems to be more of a MIX,

and then it shifts to an OLTP for the rest of the day. The autocorrelation coefficient (rk) is

0.6628, which indicates a predictable cycle of DSSness across multiple days.

M
U
M

Perf. Statistic Default Dominant MA PS Arch

Mean 74.04 74.04 87.74 95.95

Std. Dev. 0.91 0.91 0.25 1.42
A

bs
ol

ut
e

Conf. Int. [73.73, 74.35] [73.73, 74.35] [87.66, 87.83] [95.46,96.44]

Mean n/a 0 18.53 29.62

Std. Dev. n/a 0 1.37 2.83

O
FF

R
el

at
iv

e

Conf. Int. n/a n/a [18.06, 19.01] [28.64, 30.60]

Mean 74.04 74.04 87.74 94.19

Std. Dev. 0.91 0.91 0.26 1.47

A
bs

ol
ut

e

Conf. Int. [73.73, 74.35] [73.73, 74.35] [87.63, 87.82] [93.68, 94.70]

Mean n/a 0 18.50 27.24

Std. Dev. n/a 0 1.37 2.72

O
N

R
el

at
iv

e

Conf. Int. n/a n/a [18.03, 18.97] [26.30, 28.18]

Table 18. The DBMS’s performance under pattern B

 141

The Psychic’s off-line prediction model for this daily pattern is:

f(x) = 52.53 -0.12*X + 7.71E-4*X2 -9.98E-7*X3 + 3.55E-10*X4

The initial shift schedule, which may change later if the MUM is enabled, for this daily

pattern is shown in Table 19. Table 18 summarizes the performance statistics observed

with Pattern B while MUM is ON and OFF, using the four operation modes.

The dominant workload for pattern B is MIX, therefore, the performance under the

Dominant and the Default modes is equivalent.

Performance when MUM is OFF. All modes are tested for at least 30 days with the

MUM turned off. Figure 41 shows the DBMS’s absolute performance under the different

 Shift Type EarliestCheckTime Time LatestCheckTime
Shift 1 MIX_UP_TO_DSS 358 373 388
Shift 2 DSS_DOWN_TO_MIX 914 929 944
Shift 3 MIX_DOWN_TO_OLTP 1178 1193 1208

Table 19. Shifts of Pattern B

50

55

60

65

70

75

80

85

90

95

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

 Default

 Dominant

 MA

 PS Arch

Figure 41. Absolute performance of pattern B (MUM is off).

Days

Pe
rf

or
m

an
ce

 (%
)

Misprediction

 142

operation modes. The best performance is achieved under the Psychic-Skeptic

architecture (avg. 95.95%), followed by the MA Mode (avg. 87.74%), then the Dominant

Mode (avg. 74.04.23%), which is equivalent to the Default Mode. Figure 42 shows that

the Psychic-Skeptic architecture achieved an average of 27.24% performance

improvement over the Default Mode compared to 18.50% achieved by the MA Mode. All

performance estimates are based on workload classifier overhead of 10% (monCost=

10%). The Skeptic invalidated the shift that is supposed to occur at minute 1193 in the

fourth day. This misprediction causes remarkable performance degradation in that day as

shown in Figure 41. Another shift invalidation occurs at minute 929 in the 15th day but it

has insignificant impact on the performance.

 Days Performance
Fast Update fastUpdateDays= 2 fastUpdatePerf = 91.34%
Slow Update slowUpdateDays = 48 slowUpdatePerf = 95.91%

Table 20. Min and Max Performance of Pattern B while MUM is ON

0

5

10

15

20

25

30

35

40

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

 MA

 PS Arch

Figure 42. Relative performance of pattern B (MUM is off).

Pe
rf

or
m

an
ce

 (%
)

 143

Performance when MUM is ON. Table 20 indicates the minimum performance expected

when numDaysToCompleteUpdate is set to fastUpdateDays. It also shows the maximum

performance when numDaysToCompleteUpdate is set to slowUpdateDays.

Figure 43 compares the performance of the DBMS under the four operation modes.

Regarding the Psychic-Skeptic architecture, the MUM is turned on with

numDaysToCompleteUpdate =7, that is, a complete daily scenario is updated after one

week. The Psychic-Skeptic architecture still outperforms the others (avg. 94.14%),

followed by the MA Mode (avg. 87.74%), then the Dominant Mode (74.04%), which is

equivalent to the Default Mode. Figure 44 shows that the Psychic-Skeptic architecture

achieves an average of 27.24% performance improvement over the Default Mode

compared to 18.50% achieved by the MA Mode. The Skeptic invalidates the shift that is

supposed to occur at minute 933 in the sixth and 20th days. These mispredicted shifts

cause no severe impact on the performance. However, the Skeptic invalidates the shift

that is supposed to occur at minute 1201 in the 9th day. As seen in Figure 43, this

misprediction has a significant impact on the overall performance in that day.

 144

50

55

60

65

70

75

80

85

90

95

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

 Default

 Dominant

 MA

 PS Arch

Figure 43. Absolute performance of pattern B (MUM is ON).

0

5

10

15

20

25

30

35

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

 MA

 PS Arch

Figure 44. Relative performance of pattern B (MUM is ON).

Days

Pe
rf

or
m

an
ce

 (%
)

Days

Pe
rf

or
m

an
ce

 (%
)

Misprediction

 145

5.8.3 Adaptability: Pattern A changes to Pattern B

The goal of this experiment is to demonstrate one of the vital features of the Psychic-

Skeptic architecture, which is its adaptability to changes in the daily pattern. We run the

DBMS under pattern A, described above, for 30 days. Then, we swiftly switch to pattern

B, under which the behavior of the DBMS is examined for another 30 days. This sudden

shift in the daily pattern is unrealistic as changes usually happen gradually over several

days. However, this swift change allows us to aggressively push the architecture to its

limits and observe the worst case scenario. The MUM is active all the time and

numDaysToCompleteUpdate is set to 7.

 The performance of the DBMS during the first month is assessed with respect to the

expected performance under pattern A. Similarly, the DBMS performance during the

second month is assessed with respect to the expected performance under pattern B.

Therefore, in this experiment we indicate how much the observed DBMS performance

deviates from the mean of the expected performance. Since the means of the two

-45.00%

-40.00%

-35.00%

-30.00%

-25.00%

-20.00%

-15.00%

-10.00%

-5.00%

0.00%

5.00%

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64

Figure 45. Adaptability test: Transition from pattern A to pattern B

Days
Pe

rf
or

m
an

ce
 (%

)

 146

performance indices can be different, we normalize the differences in the performance by

expressing them as percentages, as follows:

100
)(×−=

Expected
ExpectedObserved

perfDiff

Figure 45 shows the percentage of the performance deviation from the expected one.

During the first 30 days as the DBMS handles workload of pattern A, the mean observed

performance, 94.50%, as compared to the expected performance of 94.54%. At the end of

the first 30 days processing pattern A, we exposed the DBMS to pattern B. On day 31, the

performance dramatically degrades as it drops to 56.3% (that is, a 40% degradation) from

the expected performance (94.19%). However, since the MUM is enabled, the

performance gradually catches up over the 7 day updating period. By the end of this

period, the performance reaches 93.90%. The mean performance over the period ending

the update to the end of the second month (i.e., 21 days) is 93.57%, which is close to what

we expect, 94.19%. This shows that the system is able to return to its stable state.

5.9 SUMMARY

Monitoring systems and constant on-line analysis cause performance penalties that may

hinder the adaptation of tools such as the workload classifier. Luckily, the overhead of

such tools can be mitigated by exploiting characteristics in the workload. In this chapter,

we introduced the Psychic-Skeptic prediction architecture. The Psychic analyses

historical data and produces a shift schedule. Each shift indicates whether the workload is

heading to the DSS, OLTP, or MIX region. These regions are delimited by two DSSness

thresholds. The DBMS does not put full trust in the off-line predicted shifts. Therefore it

asks the Skeptic to validate each shift at run-time by sampling the workload for a small

 147

interval around the expected shift time in order to confirm its direction. If the shift is

approved, the DBMS resets its configuration to suit the new workload type.

The architecture is self-optimizing as the majority of its parameters is automatically

estimated and is transparent to the end user (DBA). The architecture adapts to changes in

the workload pattern as it is equipped by the Model-Update-Mechanism (MUM) that

samples the workload at regular times in order to patch historical data and keep prediction

models up to date.

Our experiments have two goals. The first goal is to assess the performance of the

DBMS using the Psychic-Skeptic architecture. Experiments show that the prediction

architecture outperforms other modes of operation, namely the Default Mode, the

Dominant Workload Mode, and the Constant Monitoring using the MA. The second goal

is to demonstrate the adaptability of the architecture. Our experiments show that the

architecture is robust against changes in the workload pattern. Although the pattern

transition we experimented with was swift and stiff, the architecture managed to learn the

new pattern within the expected period of time. Therefore, we consider the MUM a self-

healing mechanism as it picks up the performance after its deterioration due to changes in

the workload characteristics. We obtained similar results by experimenting with a number

of scenarios generated by different scenario descriptors. Some of these scenarios are

shown in Appendix A.

 148

CHAPTER 6 CONCLUSIONS

Database Management Systems (DBMSs) are complex systems whose manageability is

increasingly becoming a real concern. Realizing that there is a dearth of skilled DBAs and

that the cost of hiring them is a major part of the Total Cost of Ownership (TCO) makes

Autonomic DBMS (ADBMS) indispensable.

 In this thesis, we discussed the important characteristics that DBMSs should have in

order to be self-managing. A closer look at present, prominent commercial DBMSs

reveals that there is a lot of effort remaining to make them autonomous. The complexity

of managing these systems in particular stem from several sources such as the incrased

emphasis on QoS, the numerous functionalities and advanced features added everyday,

housekeeping tasks, expanding database size, and the strong trending towards e-service

era. We pointed out to several research areas that need attention in order to mitigate the

complexity of management DBMSs.

 We also stressed one of the most imperative properties of ADBMSs, which is being

workload-aware. Therefore, we studied the various workload characterization techniques

used in different computing areas. Such a study helped us determine what technique to

choose in order to explore interesting properties and patterns in the DBMS workload. As

a proof of concept, we showed how the type of the workload, specifically whether it

OLTP or DSS, is a key criterion for performance optimization. We developed a

methodology by which the DBMS can automatically recognize its workload type and

assess its concentration in the overall workload mix. This methodology is primarily based

on data mining classification techniques. We demonstrated the success of this

methodology by using artificial and real workloads. This piece of work shows the utility

 149

of exploiting the static characteristics of the workload. We then presented the prediction

architecture that analyzes the dynamic characteristics of the workload in order to forecast

its change over time. This prediction architecture is adaptive and generic such that it can

be used to solve other similar prediction problems.

6.1 OUR POSITION IN THE AUTONOMIC PATH

To implement autonomic computing features, we advocate the evolutionary approach that

delivers improvements to current systems in order to provide significant self-managing

value to the end users without requiring them to completely replace their current IT

environments. Five evolutionary levels have been envisioned in order to reach fully

autonomic systems [33]. Figure 46 is a representation of those levels, starting from the

basic level, through managed, predictive, and adaptive levels, and finally to the

autonomic level.

As seen in the figure, the basic level represents the starting point where some IT

systems are today. Each system element is managed independently by IT professionals

who set it up, monitor it, and eventually replace it. At the managed level, systems

management technologies can be used to collect information from disparate systems onto

fewer consoles, reducing the time it takes for the administrator to collect and synthesize

information as the systems become more complex to operate. In the predictive level, as

new technologies are introduced that provide correlation among several elements of the

system, the system itself can begin to recognize patterns, predict the optimal

configuration, and provide advice on what course of action the administrator should take.

As these technologies improve, and as people become more comfortable with the advice

 150

and predictive power of these systems, we can progress to the adaptive level where the

systems themselves become self-learners and can automatically take the correct actions

based on the information that is available to them and the knowledge of what is

happening in the systems. Finally, at the fully autonomic level, the system operation is

governed by business policies and high level objectives. Users interact with the system to

monitor the business processes or alter the objectives.

 We consider our work in this thesis goes inline with this progressive path towards

having autonomic DBMSs as it fits mostly in the predictive and adaptive levels described

above.

6.2 RESEARCH PLANS

Our thesis poses a number of future research directions such as:

• Investigating the feasibility of using the Psychic-Skeptic architecture to solve

other types of database problems such as:

Figure 46. Evolution not revolution [33]

 151

o System Backup and Restore. Depending on the forecasted start and length

of the idle period, the system may automatically perform incremental

backup for specific portions of data.

o Data Defragmentation and Reorganization. The system could anticipate

the time periods at which it experiences low I/Os in order to rearrange data

on disk in order to enhance their accessibility.

o Updating Statistics. In DBMSs, query planning, optimization, and

execution depend heavily on up to date statistics of the stored data. The

system could exploit some idle periods to update these statistics.

o Updating Indexes and Views. Auxiliary data structures such as indexes and

materialized views can immensely improve system performance.

However, maintaining these data structures can cause nontrivial overhead

if performed at inappropriate times (e.g., at peak workloads). The system

could predict under utilized periods of time and update its data structures

during these periods.

• Tuning the DBMS parameters as a function of the intensity of each workload type.

Presently, DBMSs are tuned based on determining the dominant workload (e.g.,

either OLTP or DSS) using rule-of-thumb tuning strategies. An interesting

research area would be to develop tuning strategies that take into account the

intensity of each workload type (e.g., the DSSness degree) in the overall workload

mix.

• Conducting an empirical study in which a feedback mechanism is established

between the workload classifier and the DBA, which would allow the DBA to

 152

understand and correlate the currently observed performance with the workload

type reported by the classifier. This would help the DBA develop better

performance-tuning strategies. Furthermore, the feedback would allow DBAs to

corroborate the workload type reported by the classifier and to determine if any

retraining is necessary in order to improve the classifier’s prediction accuracy.

• Developing a Model Validation Mechanism, with which a workload classifier can

automatically validate itself with respect to drastic changes in the properties of the

business’s workload. The system will therefore be able to determine when to

refresh the model in order to maintain high classification accuracy.

• Investigating the feasibility of adopting new database architectures (e.g., RISC-

like architecture) that may reduce the complexity of managing their performance

and ease their integration with other systems.

• Using control theory and fuzzy logic to control complex systems like DBMSs.

These concepts have been used [41] to manage what might be less intricate

systems than DBMSs so it is worth investigating their feasibility with respect to

databases.

 153

REFERENCES

[1] Aberdeen Group. “Database Cost of Ownership Study,”

http://relay.bvk.co.yu/progress/aberdeen/aberdeen.htm, 1998.

[2] Aberdeen Group. IBM Data Management Tools: New Opportunities for Cost-Effective

Administration, Profile Report, Aberdeen Group, Inc., Boston (April 2002), p. 3.

[3] Aboulnaga, A. and Chaudhuri, S. "Self-tuning Histograms: Building Histograms

Without Looking at Data". Proceedings of ACM SIGMOD, Philadelphia, 1999.

[4] Agrawal, S., Chaudhuri, S., and Narasayya, V. "Automated Selection of Materialized

Views and Indexes for SQL Databases". VLDB 2000, pp. 496-505.

[5] Agrawal, R., Kiernan, J., Srikant, R., and Xu, Y. "Hippocratic Databases". VLDB

2002, Hong Kong, China. VLDB Endowment, (2002).

[6] Ailamaki, A., DeWitt, D., Hill, M., and Wood, D. “DBMSs On A Modern Processor:

Where Does Time Go?,” Proc. of Int. Conf. On Very Large Data Bases (VLDB ‘99),

266-277, (Sept 1999).

[7] Barroso, L., Gharachorloo, K., and Bugnion, E. "Memory System Characterization of

Commercial Workloads" Proc. Of the 25th International Symposium on Computer

Architecture, 3-14, (June 1998).

[8] Bernstein, P. "Applying Model Management to Classical Meta Data Problems"

Proceedings of the first Biennial Conference on Innovative Data Systems Research,

VLDB, (January 2003).

 154

[9] Brown, A. and Patterson, D. “To Err Is Human,” Proceedings of the First Workshop

on Evaluating and Architecting System Dependability (EASY ’01), Goeteborg,

Sweden (July 2001).

[10] Calzarossa, M. and Serazzi, G.. "Workload Characterization: a Survey". Proceedings

of the IEEE 81, 8, 1136-1150, (August 1993).

[11] Castano, S., Fugini , M., Martella, G., and Samarati , P. Database Security.

AddisonWesley, (1995).

[12] Calzarossa, M. and Ferrari, D. "A Sensitivity Study of the Clustering Approach to

Workload Modeling". Performance Evaluation 6, 1, 25-33, (1986).

[13] Calzarossa, M., Massari, L. and Tessera, D. "Workload Characterization – Issues and

Methodologies". Performance Evaluation - Origins and Directions, volume 1769 of

Lecture Notes in Computer Science, Haring, G., Lindemann, C. and Reiser, M.,

Eds., Springer-Verlag, 459-484.

[14] Calzarossa, M. and Serazzi, G. "A Characterization of the Variation in Time of

Workload Arrival Patterns". IEEE Trans. On Computers 34, 2, 156-162., (1985).

[15] Calzarossa, M. and Serazzi, G. "Construction and Use of Multiclass Workload

Models". Performance Evaluation 9, 4, 341-352, (1994).

[16] Chaudhuri, S., and Dayal, U. "An Overview of Data Warehousing and OLAP

Technology". SIGMOD Record 26, 1 (March 1997).

[17] Chaudhuri, S. and Narasayya, V. "Automating Statistics Management for Query

Optimizers". Proceedings of 16th International Conference on Data Engineering,

San Diego, USA (2000).

 155

[18] Chaudhuri, S. and Weikum, G. “Rethinking Database Architecture,” Proceedings of

26th VLDV, Cairo, Egypt, (2000).

[19] Crovella, M. and Lindemann, C. Internet Performance Modeling: The State of the

Art at the Turn of the Century. Performance Evaluation 42, 91-108, (2000).

[20] Cunha, C., Bestavros, A., and Crovella, M. "Characteristics of WWW Client-based

Traces". Technical Report BU-CS-95-010, Computer Science Dept., Boston

University, (1995).

 [21] Dan, A., Yu, P., and Chung, J. “Characterization of Database Access Pattern for

Analytic Prediction of Buffer Hit Probability,” Very Large Data Bases (VLDB)

Journal 4, No. 1, 127-154, (1995).

[22] D.H. Brown Associates. “DB2 UDB vs. Oracle8i: Total Cost of Ownership”. D.H.

Brown Associates, Inc., Port Chester, NY.. http://www.breakthroughdb2.com/.,

(December 2000).

[23] Elms, C. "Clustering - One method for Workload Characterization". Proceedings of

the International Conference on Computer Capacity Management, San Francisco,

Calif., (1980).

[24] Elnaffar, S. "A Methodology for Auto-Recognizing DBMS Workloads".

Proceedings of Centre for Advanced Studies Conference (CASCON ’02), (October

2002).

[25] Elnaffar, S., and Martin, P. "Characterizing Computer Systems’ Workloads".

Technical Report 2002-461, School of Computing, Queen’s University, Canada,

(Dec. 2002).

 156

[26] Elnaffar, S., Martin, P., and Horman, R. "Automatically Classifying Database

Workloads". Proceedings of ACM Conference on Information and Knowledge

Management (CIKM ACM ’02), (November 2002).

[27] Elnaffar, S., Powley, W., Benoit, D. and Martin, P. "Today’s DBMSs: How

Autonomic Are They?" Proceedings of the First IEEE International Autonomic

Systems Workshop, DEXA 2003, Prague, (2003).

[28] Elnaffar, S., Powley, W., Benoit, D. and Martin, P. "Today’s DBMSs: How

Autonomic Are They?" Technical Report 2003-469, School of Computing, Queen’s

University, Canada, (Sept. 2003).

[29] Evans-Correia, K. “Simplifying Storage Management Starts with More Efficient

System Utilization,” Interview with N. Tabellion, searchStorage (August 2001), see

http://searchstorage.techtarget.com/qna/0,289202,sid5_gci764063,00.html.

[30] Ferrari, D. "On the Foundations of Artificial Workload Design". Proc. of ACM

Sigmetrics Conf. On Measurement and Modeling of Computer systems, Cambridge,

MA, 8-14.

[31] Ferrari, D., Serazzi, G., and Zeigner, A. Measurement and Tuning of Computer

Systems, Prentice Hall, Englewood Cliffs, N.J., (1983).

[32] Fu, K. Syntactic Methods in Pattern Recognition, Academic Press.

[33] Ganek, A. and Corbi, T. "The Dawning of the Autonomic Computing Era". IBM

Systems Journal, 42, 1, (March 2003).

[34] Gassner, P., Lohman, G., Schiefer, B., and Wang, Y. “Query Optimization in the

IBM DB2 Family”. IEEE Data Engineering Bulletin, 16(4), pp. 4-18, (1993).

 157

[35] Golding, R, Bosch, P., Staelin, C., Sullivan, T. and Wilkes, J. "Idleness is not sloth."

Proceedings of the Winter Usenix Conference, New Orleans, Louisiana, pp. 201-12,

(January 1995).

[36] Han, J., Chiang, J., Chee, S., Chen, J., Chen, Q., Cheng, S., Gong, W., Kamber, M.,

Liu, G., Koperski, K., Lu Y., Stefanovic, N., Winstone, L., Xia, B., Zaiane, O.,

Zhang, S. and Zhu, H. 1997. DBMiner: A System for Data Mining in Relational

Databases and Data Warehouses. In Proc. CASCON ’97: Meeting of Minds,

Toronto, Canada, 249-260, (November 1997).

[37] Harizopoulos, S. and Ailamaki, A. "A Case for Staged Database Systems"

Proceedings of the first Biennial Conference on Innovative Data Systems Research,

VLDB, (January 2003).

[38] Howard, R. Dynamic Programming and Markov Processes, John Wiley.

[39] Harman, H.. Modern Factor Analysis, University of Chicago Press, Chicago, IL.

[40] Hartigan, J. and Wong, M. "A K-means Clustering Algorithms". Applied Statistics

28, 100-108.

[41] Hellerstein, JL and Parekh, S. "An Introduction to Control Theory with Applications

to Computer Science," ACM Sigmetrics, (2001).

[42] Hofmann, R., Klar, R., Mohr, B., Quick, A., and Siegle, M. "Distributed

Performance Monitoring: Methods, Tools, and Applications". IEEE Trans. On

Parallel and Distributed Systems 5, 6, 585-598.

[43] Horn, P. “Autonomic Computing: IBM’s Perspective on the State of Information

Technology,”

 158

http://www.research.ibm.com/autonomic/manifesto/autonomic_computing.pdf

(October 2001).

[44] Hsu, W., Smith, A., and Young, H. “Characteristics of Production Database

Workloads and the TPC Benchmarks,” IBM Systems Journal 40, No. 3 (2001).

[45] Hudson, S. and Smith, I. "Supporting Dynamic Downloadable Appearances in an

Extensible User Interface Toolkit". ACM Proc. of UIST ’97, New York, 159-168,

(October 1997).

[46] IBM, DB2 Universal Database Version 8.1 Administration Guide: Performance,

IBM Corporation, (2003).

[47] IBM, IBM’s Vision of Autonomic Computing: Autonomic Computing Concepts.

http://www.research.ibm.com/autonomic/manifesto/autonomic_computing.pdf, (2002).

[48] IBM, DB2 Intelligent Miner for Data, http://www-

4.ibm.com/software/data/iminer/fordata/about.html, (1999).

[49] IBM, DB2 Universal Database Version 7 Administration Guide: Performance, IBM

Corporation (2000).

[50] Jain, R. The Art of Computer Systems Performance Analysis: Techniques for

Experimental Design, Measurement, Simulation, and Modeling, Wiley-

Interscience, New York, NY, (April 1991).

[51] Jain, A., Murty, M., and Flynn, P. "Data Clustering: A Review". ACM Computing

Surveys 31, 3, 264-323, (Sept. 1999).

[52] Keeton, K., and Patterson, D. "Towards a Simplified Database Workload for

Computer Architecture Evaluations". Workload Characterization for Computer

System Design, John, L. and Maynard, A., Eds., Kluwer Academic Publishers,

(2000).

 159

[53] Kotsis, G., Krithivasan, K., and Raghavan, S. "A Workload Characterization

Methodology for WWW Applications". Proc. of International Conference on The

Performance and Management of Complex Communication Networks (PMCCN'97),

145-159.

[54] Kwan, E., Lightstone, S., Storm, A. and Wu, L., IBM Server Group, "Automatic

Configuration for IBM DB2 Universal Database". Online,

http://www.redbooks.ibm.com/redpapers/pdfs/redp0441.pdf.

 [55] Landwehr, C. "Formal Models of Computer Security". ACM Computing Surveys,

13(3):247–278, (1981).

[56] Letmanyi, H. "Guide on Workload Forecasting". Special Publication 500-123,

Computer Science and Technology, National Bureau of Standards, Washington,

D.C., (March 1985).

[57] Lightstone, S., Lohman, G., and Zilio, D. “Toward Autonomic Computing with DB2

Universal Database”, ACM SIGMOD Record, (September 2002).

[58] Lo, J., Barroso, L., Eggers, S., Gharachorloo, K., Levy, H., and Parekh, S. "An

Analysis of Database Workload Performance on Simultaneous Multithreaded

Processors". Proc. of the 25thAnnual International Symposium on Computer

Architecture, 39—50, (June 1998).

[59] Lohman, G., Valentin, G., Zilio, D., Zuliani, M. and, Skelly, A. "DB2 Advisor: An

optimizer Smart Enough to Recommend Its Own Indexes", Proceedings, 16th IEEE

Conference on Data Engineering, San Diego, CA, (2000).

[60] Masters, T. Neural, Novel & Hybrid Algorithms for Time Series Prediction, John

Wiley & Sons, Inc, New York, NY, (1995).

 160

[61] McCann, J. "The Database Machine: Old Story, New Slant?". Proceedings of the

first Biennial Conference on Innovative Data Systems Research, VLDB, (January

2003).

[62] Mehrotra, K., Mohan, C., and Ranka, S. Elements of Artificial Neural Networks,

Cambridge, Massachussetts, MIT Press, (1997).

[63] Menascé, D., Almeida , V., and Dowly, L. Capacity Planning and Performance

Modeling: From Mainframes to Client-server Systems, Prentice Hall, USA, ISBN 0-

13-035494-5.

[64] Microsoft. SQL Server 2000 Documentation, Microsoft Corporation, (2002).

[65] Murthy, S. “Automatic Construction of Decision Trees from Data: A Multi-

disciplinary Survey,” Data Mining and Knowledge Discovery 2, 345—389, (1998).

[66] Office of the Information and Privacy Commissioner, Ontario. Data Mining: Staking

a Claim on Your Privacy, (January 1998).

[67] Nikolaou, C., Labrinidis, A., Bohn, V., Ferguson, D., Artavanis, M., Kloukinas, C.

and Marazakis., M.. The Impact of Workload Clustering on Transaction Routing,

Technical Report FORTH-ICS TR-238, (December 1998).

[68] Oracle. Oracle 9i Manageability Features. An Oracle White Paper,

http://www.oracle.com/ip/deploy/database/oracle9i/collateral/ma_bwp10.pdf, (September 2001).

[69] Oracle. Oracle 9i Materialized Views. An Oracle White Paper,

http://technet.oracle.com/products/oracle9i/pdf/o9i_mv.pdf, (May 2001).

[70] Oracle. Oracle9iDatabase Performance Guide and Reference, Release 1(9.0.1),

Part# A87503-02, Oracle Corp. (2001).

 161

[71] Oracle. Query Optimization in Oracle 9i. An Oracle White Paper,

http://technet.oracle.com/products/bi/pdf/o9i_optimization_twp.pdf, (February 2002).

[72] Patterson, D. “Availability and Maintainability >> Performance: New Focus for a

New Century,” USENIX Conference on File and Storage Technologies (FAST ’02),

Keynote Address, Monterey, CA (January 2002).

[73] Patterson D., Brown, A., Broadwell, P., Candea, G., Chen, M., Cutler, J., Enriquez,

P., Fox, A., Kiciman, E., Merzbacher, M., Oppenheimer, D., Sastry, N., Tetzlaff,

W., Traupman, J., and Treuhaft, N. "Recovery-Oriented Computing (ROC):

Motivation, Definition, Techniques, and Case Studies", U.C. Berkeley Computer

Science Technical Report, UCB//CSD-02-1175, University of California, Berkeley

(March 15, 2002).

[74] Pentakalos, O. and Menascé, D. "Automated Clustering Based Workload

Characterization for Mass Storage Systems". Fifth NASA Goddard Space Flight

Center Conference on Mass Storage Systems and Technologies, College Park, MD,

(September 1996).

[75] Pirahesh, H., Hellerstein, J., and Hasan, W. “Extensible/Rule Based Query Rewrite

Optimization in Starburst”. Procs. ACM SIGMOD Conference, pp. 39-48, (1992).

[76] Pirahesh, H., Leung, T., and W. Hasan, “A Rule Engine for Query Transformation in

Starburst and IBM DB2 C/S DBMS”, Procs. IEEE Intl. Conf. On Data Engineering,

pp. 391-400 (1997).

[77] Pitkow, J. and Pirolli, P. Mining Longest Repeating Subsequences to Predict the

World Wide Web Surfing. Proc. of USITS' 99: The 2nd USENIX Symposium on

Internet Technologies & Systems, Boulder, Colorado, USA, (October 1999).

 162

[78] Raghavan, S., Vasukiammaiyar, D. and Haring, G. "Generative Networkload Models

for a Single Server Environment". Proc. ACM SIGMETRICS Conf., 118—127.

[79] Rao, J., Zhang, C., Lohman, G., Megiddo, N. , "Automating Physical Database

Design in a Parallel Database System", Proc. 2002 ACM SIGMOD, Madison, WI,

(2002).

[80] Rohlf, F. "Algorithm 76: Hierarchical Clustering Using the Minimal Spanning Tree".

In The Computer Journal 16, 93-95, (1973).

[81] Sapia, C. “PROMISE: Predicting Query Behavior to Enable Predictive Caching

Strategies for OLAP Systems,”. Proc. of the Second International Conference on

Data Warehousing and Knowledge Discovery (DAWAK 2000), 224-233, (2000).

[82] Schiefer, B. and Valentin, G. "DB2 Universal Database Performance Tuning", IEEE

Data Engineering Bulletin, 22(2), pp. 12-19, (June 1999).

[83] Schiff, D. and D’Agostino, R. Practical Engineering Statistics, Wiley-Interscience,

ISBN 0471547689.

[84] Shafer, J., Agrawal, R., Mehta, M. "SPRINT: A Scalable Parallel Classifier for Data

Mining," Proc. of the 22th Int'l Conference on Very Large Databases, Mumbai

(Bombay), India, (September 1996).

[85] Stillger, M., Lohman, G., Markl, V., and Kandil, M.. “LEO - DB2's LEarning

Optimizer”, VLDB 2001, Rome, Italy, pp. 19-28, (2001).

[86] TPC. TPC Benchmark D Standard Specification Revision 2.1, Transaction

Processing Performance Council (1999).

[87] TPC. TPC Benchmark H Standard Specification Revision 1.3.0, Transaction

Processing Performance Council (1999).

 163

[88] TPC. TPC Benchmark W (Web Commerce) Standard Specification Revision 1.7,

Transaction Processing Performance Council (October 2001).

[89] TPC. TPC Benchmark C Standard Specification Revision 5.0, Transaction

Processing Performance Council (February 2001).

[90] TPC. TPC Benchmark H Standard Specification Revision 1.3.0, Transaction

Processing Performance Council (1999).

[91] TPC. TPC Benchmark W (Web Commerce) Standard Specification Revision 1.7,

Transaction Processing Performance Council (October 2001).

[92] Turner, T. A Beginner's Guide To Day Trading Online. Adams Media Corp., first

edition, (2000).

[93] Weikum, G., Mönkeberg, A., Hasse, C., and Zabback, P. "Self-tuning Database

Technology and Information Services: From Wishful Thinking to Viable

Engineering". VLDB 2002, pp. 20-31, (2002).

[94] Yu, P., and Dan, A. “Performance Analysis of Affinity Clustering on Transaction

Processing Coupling Architecture,” IEEE Transactions on Knowledge and Data

Engineering 6, 5, 764-786, (October 1994).

[95] Zaïane, O., Xin, M. and Han, J. "Discovering Web Access Patterns and Trends by

Applying OLAP and Data Mining Technology on Web Logs". Proc. Advances in

Digital Libraries Conf. (ADL'98), Santa Barbara, CA, 19-29, (April 1998).

 164

APPENDIX A: EXAMPLES OF DSSNESS SCENARIOS

time

DSSness

time

DSSness

oltp_threshold

dss_threshold

oltp_threshold

dss_threshold

 165

time

DSSness

time

DSSness

oltp_threshold

dss_threshold

oltp_threshold

dss_threshold

 166

APPENDIX B: GLOSSARY OF TERMS

ADBMS (Autonomic Database Management System) – a DBMS that exhibits the

characteristics of an autonomic system by being self-configuring, self-optimizing,

self-healing, and self-protecting.

AC (Autonomic Computing) - an initiative started by IBM in 2001. Its ultimate aim is to

create self-managing computer systems to overcome their rapidly growing

complexity and to enable their further growth.

Browsing Profile – it is a TPC-W workload profile characterized by extensive browsing

and searching activities.

Classifier(C, H) - workload classifier built by training it on samples from the TPC-C and

TPC-H workloads.

Classifier(O, B) - workload classifier built by training it on samples from the Ordering

and Browsing profiles of TPC-W.

DBA (Database Administrator) - a person who is responsible for the environmental

aspects of a database. In general, these include: Recoverability, Integrity, Security,

Availability, and Performance.

 167

DBMS (Database Management System) - a computer program (or more typically, a

suite of them) designed to manage a database, a large set of structured data, and run

operations on the data requested by numerous users.

DSS (Decision Support System) Workload - workload consisting of decision-support

queries of high complexity and low volume.

DSSness – a percentage that determines the concentration of the DSS type vs. OLTP type

in a workload sample.

Dynamic Characteristics – the properties that describe the workload behavior over time

(e.g., how the workload type changes during the day).

HC (Hybrid Classifier) – it is a workload trained on different flavors of OLTP

workloads, namely TPC-C and the Ordering Profile, and on different flavors of DSS

workloads, namely TPC-H and the Browsing Profile.

GHC (Graduated Hybrid Classifier – it is an HC (Hybrid Classifier) but has the ability

to recognize different shades of DSS workloads and OLTP workloads.

MUM (Model Update Mechanism) – a component in the in the Psychic-Skeptic

architecture that performs regular workload sampling to keep prediction models up

to date.

 168

OLTP (On-Line Transaction Processing) - an OLTP workload consists of high volume

of transactions, and a few simple queries.

Ordering Profile – it is a TPC-W workload profile characterized by extensive ordering

activities.

Performance Snapshot – a set of low-level performance measures (or attributes)

collected at some point in time as the DBMS processes some workload. Snapshots

are the basic objects for the classification algorithm used to build the Workload

Classifier.

Psychic – it is a component in the Psychic-Skeptic architecture that performs off-line

prediction for workload type shifts by analyzing historical data.

Shopping Profile - it is a TPC-W workload profile that exhibits some product ordering

activities but browsing is still dominant.

Skeptic – it is a component in the Psychic-Skeptic architecture that works on-line by

sampling the workload for small intervals in order to validate every shift predicted

by the Psychic.

Static Characteristics - workload properties that provide a general description of the

workload with no respect to how these properties may change over time (e.g., the

dominant workload type, or the average requests submitted to the system per day).

 169

TCO (Total Cost of Ownership) - a type of calculation designed to help consumers and

enterprise managers assess direct and indirect costs as well as benefits related to the

purchase of computer software or hardware.

TPC (Transaction Processing Performance Council) – an organization that produces

industry-standard benchmarks for DBMSs.

TPC-C Workload – an example of a hardcore OLTP workload. TPC-C simulates a

complete environment where a population of terminal operators executes

transactions against a database. The benchmark is centered around the principal

activities (transactions) of an order-entry environment.

TPC-H Workload – an example of a hardcore DSS workload. TPC-H illustrates decision

support systems that examine large volumes of data, execute queries with a high

degree of complexity, and give answers to critical business questions.

TPC-W Workload - comprises a set of basic operations designed to exercise

transactional web system functionality in a manner representative of internet

commerce application environments. User activities are described by three profiles:

Browsing, Shopping, and Ordering.

TrainingDataModel - is a component in the Psychic-Skeptic architecture that stores

historical data of DSSness of a number of days. TrainingDataModel provides a

 170

number of analytical functions that operate on these data to other components in the

architecture.

Workload - a set of requests, or components, that place different demands on various

system resources.

Workload Characterization – a process by which a representative, compact, and

accurate model of a system’s workload is built. The model should be able to

describe and reproduce the dynamic behavior of the workload and its most essential

static features.

Workload Classifier – a tool that can assess the relative concentration (percentage) of

each workload type in a given workload sample.

Workload Predictor – a tool that can predict major shifts in the workload type.

