
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/262405027

What	is	the	IQ	of	your	data	transformation
system?

Conference	Paper	·	October	2012

DOI:	10.1145/2396761.2396872

CITATIONS

6

READS

37

4	authors,	including:

Giansalvatore	Mecca

Università	degli	Studi	della	Basilicata

99	PUBLICATIONS			2,499	CITATIONS			

SEE	PROFILE

Paolo	Papotti

Arizona	State	University

76	PUBLICATIONS			530	CITATIONS			

SEE	PROFILE

Donatello	Santoro

Università	degli	Studi	della	Basilicata

18	PUBLICATIONS			76	CITATIONS			

SEE	PROFILE

All	in-text	references	underlined	in	blue	are	linked	to	publications	on	ResearchGate,

letting	you	access	and	read	them	immediately.

Available	from:	Paolo	Papotti

Retrieved	on:	19	September	2016

https://www.researchgate.net/publication/262405027_What_is_the_IQ_of_your_data_transformation_system?enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz&el=1_x_2
https://www.researchgate.net/publication/262405027_What_is_the_IQ_of_your_data_transformation_system?enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz&el=1_x_3
https://www.researchgate.net/?enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz&el=1_x_1
https://www.researchgate.net/profile/Giansalvatore_Mecca?enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz&el=1_x_4
https://www.researchgate.net/profile/Giansalvatore_Mecca?enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz&el=1_x_5
https://www.researchgate.net/institution/Universita_degli_Studi_della_Basilicata?enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz&el=1_x_6
https://www.researchgate.net/profile/Giansalvatore_Mecca?enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz&el=1_x_7
https://www.researchgate.net/profile/Paolo_Papotti?enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz&el=1_x_4
https://www.researchgate.net/profile/Paolo_Papotti?enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz&el=1_x_5
https://www.researchgate.net/institution/Arizona_State_University?enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz&el=1_x_6
https://www.researchgate.net/profile/Paolo_Papotti?enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz&el=1_x_7
https://www.researchgate.net/profile/Donatello_Santoro?enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz&el=1_x_4
https://www.researchgate.net/profile/Donatello_Santoro?enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz&el=1_x_5
https://www.researchgate.net/institution/Universita_degli_Studi_della_Basilicata?enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz&el=1_x_6
https://www.researchgate.net/profile/Donatello_Santoro?enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz&el=1_x_7

What is the IQ of your Data Transformation System?

Giansalvatore Mecca1 Paolo Papotti2 Salvatore Raunich3 Donatello Santoro1,4

1 Università della Basilicata – Potenza, Italy
2 Qatar Computing Research Institute (QCRI) – Doha, Qatar

3 University of Leipzig – Leipzig, Germany
4 Università Roma Tre – Roma, Italy

ABSTRACT
Mapping and translating data across different representations is a
crucial problem in information systems. Many formalisms and
tools are currently used for this purpose, to the point that devel-
opers typically face a difficult question: “what is the right tool for
my translation task?” In this paper, we introduce several techniques
that contribute to answer this question. Among these, a fairly gen-
eral definition of a data transformation system, a new and very effi-
cient similarity measure to evaluate the outputs produced by such a
system, and a metric to estimate user efforts. Based on these tech-
niques, we are able to compare a wide range of systems on many
translation tasks, to gain interesting insights about their effective-
ness, and, ultimately, about their “intelligence”.

Categories and Subject Descriptors: H.2 [Database Management]:
Heterogeneous Databases

General Terms: Algorithms, Experimentation, Measurement.

Keywords: Data Transformation, Schema Mappings, ETL, Bench-
marks.

1. INTRODUCTION
The problem of translating data among heterogeneous represen-

tations is a long-standing issue in the IT industry and in database
research. The first data translation systems date back to the sev-
enties. In these years, many different proposals have emerged to
alleviate the burden of manually expressing complex transforma-
tions among different repositories.

However, these proposals differ under many perspectives. There
are very procedural and very expressive systems, like those used in
ETL [18]. There are more declarative, but less expressive schema-
mapping systems. Some of the commercial systems are essentially
graphical user-interfaces for defining XSLT queries. Others, like
data-exchange systems, incorporate sophisticated algorithms to en-
force constraints and generate solutions of optimal quality. Some
systems are inherently relational. Others use nested data-models to
handle XML data, and in some cases even ontologies.

In light of this heterogeneity, database researchers have express-
ed a strong need to define a unifying framework for data translation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’12, October 29–November 2, 2012, Maui, HI, USA.
Copyright 2012 ACM 978-1-4503-1156-4/12/10 ...$15.00.

and integration applications [16, 6]. In fact, it would be very use-
ful, given a task that requires to translate some input instance of
a source schema into an output instance of the target schema, to
have a common model to answer the following fundamental ques-
tion: “what is the right tool for my translation task?”

Answering this question entails being able to compare and clas-
sify systems coming from different inspirations and different appli-
cation domains. For this purpose, several benchmarks have been
proposed [3, 29]. In this paper, we concentrate on an ambitious
task that has not been addressed so far, i.e., we aim at measuring
the level of intelligence of a data transformation system, in order to
base the comparison upon this measure.

In our vision, the level of intelligence of the internal algorithms
of a tool can be roughly defined as the ratio between the quality of
the outputs generated by the system, and the amount of user effort
required to generate them. In other terms, we want to measure,
for each system, how much effort it takes to obtain results of the
highest possible quality.

To make this rather general intuition more precise, we need sev-
eral tools: (i) a notion of data-transformation system that is suffi-
ciently general to capture a wide variety of the tools under exam,
and at the same time tight enough for the purpose of our evaluation;
(ii) a definition of the quality of a data translation tool on a map-
ping scenario; (iii) a definition of the user-effort needed to achieve
such quality.

1.1 Contributions
We develop several techniques that contribute to give an answer

to the question above.

(i) We introduce a very general definition of a data-transforma-
tion system, in terms of its input-output behavior; differently from
earlier approaches that have focused their attention on the actual
specification of the transformations, we see a system as a black box
receiving as input some specification of the mapping task and an
instance of the source schema, and producing as output an instance
of the target schema; then, we analyze the system in terms of this
input-output function.

(ii) We define the notion of quality of a data transformation tool on
a given scenario as the similarity of the output instance wrt the ex-
pected instance, i.e., the “right” solution that the human developer
expects for a given input. Notice that we allow nested data mod-
els and XML data, and therefore measuring the quality of an output
imposes to compare two different trees, notoriously a difficult prob-
lem, for which high-complexity techniques are usually needed. We
show, however, that for the purpose of this evaluation it is possible
to define an elegant and very efficient similarity measure that pro-
vides accurate evaluations. This comparison technique is a much
needed contribution in this field, since it is orders of magnitude

https://www.researchgate.net/publication/220538641_STBenchmark_Towards_a_benchmark_for_mapping_systems?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/220789390_Benchmarking_ETL_workflows?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/221322452_Beauty_and_the_Beast_The_Theory_and_Practice_of_Information_Integration?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/221213000_Model_management_20_Manipulating_richer_mappings?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz

Figure 1: Sample Scenario in the GUI of an Open-Source Mapping System

faster than typical edit-distance measures, and scales up to large
instances. In addition, it concretely supports the mapping improve-
ment process, since it returns detailed feedback about mismatches
between the two trees. By doing this, it helps users in understand-
ing why their mapping is faulty, and proves much more effective
than simple yes/no measures used in previous benchmarks.

(iii) Transformation systems typically require users to provide an
abstract specification of the mapping, usually through some graph-
ical user interface; to see an example, consider Figure 1, which
shows the graphical specification of a mapping scenario. The figure
shows the source and target schema with a number of correspon-
dences used to provide a high-level specification of the mappings,
as it is common in this framework. Based on the mapping specifi-
cation, given a source instance the system generates an output, i.e.,
a target instance such as the ones shown on the right. Despite the
fact that different tools have usually different primitives to specify
the transformations, it is still possible to abstract the mapping spec-
ification as a labeled input graph; our estimate of the user effort is
a measure of the size of an encoding of this graph inspired by the
minimum description length principle in information theory [19].
We believe that this measure approximates the level of user effort
better than previous measures that were based on point-and-click
counts [3].

(iv) We develop a working prototype of our techniques, and use
it to conduct a comprehensive evaluation of several data transfor-
mation systems. In this evaluation, we are able to gain a deeper in-
sight about data transformation tools that exist on the market and in
the research community, based on a novel graphical representation,
called quality-effort graphs. More specifically, we fix a number of
representative scenarios, with different levels of complexity, and
different challenges in terms of expressive power. Then, we run
the various tools on each scenario with specifications of increasing
efforts, and we measure the quality of the outputs. The introduc-
tion of quality-effort graphs is a major contribution of this paper: it
allows us to derive several evidences about how much intelligence
the internal algorithms of a tool put into the solution, i.e., how fast
the quality of solutions increases with respect to the increasing ef-
fort.

We want to make it clear that our primary goal is not comparing
transformation systems in terms of expressiveness, as it has been
done in previous benchmarks [3]. In fact, our approach has been
conceived to be applicable to a wide variety of tools, which, as we
discussed above, have rather different inspiration and goals. For
example, in our evaluation, we consider both schema-mapping sys-
tems and ETL tools. It is well known that ETL tools are by far
more expressive than schema-mapping systems, since they allow

for a number of operations like pivoting, aggregates, rollups [18]
that are not natively supported by other systems in our evaluation.
As a consequence, in any application scenario in which these prim-
itives are needed, the developer has very little choice. However,
there are a number of transformation tasks for which tools of dif-
ferent kinds are indeed applicable, and therefore it makes sense to
compare their level of effectiveness in carrying out these specific
tasks. In fact, this work represents a concrete investigation of the
trade-offs between declarative and procedural approaches, a foun-
dational problem in computer science.

Using the framework proposed in this paper, we conduct a sys-
tematic evaluation of data transformation tools. We strongly be-
lieve that this evaluation provides precious insights in the vast and
heterogeneous world of transformation systems, and may lead to a
better understanding of its different facets.

• On one side, it may be the basis for a new and improved gen-
eration of benchmarks that extend the ones developed so far
[3, 29]. Besides providing a better guide to data architects,
this would also help to identify strong and weak points in
current systems, and therefore to elaborate on their improve-
ments.

• In this respect, our framework represents an advancement to-
wards the goal of bringing together the most effective fea-
tures of different approaches to the problem of data transla-
tion. As an example, it may lead to the integration of more
sophisticated mapping components into ETL workflows [9].

• Finally, as it will be discussed in the following sections, it
provides a platform for defining test scenarios for data ex-
change systems, another missing component in the mapping
ecosphere.

1.2 Outline
The paper is organized as follows. Section 2 introduces the no-

tion of a transformation system. The quality measure is introduced
in Section 3, its complexity in Section 4. User efforts are discussed
in Section 5. We introduce ways to define a scenario and to select
gold standards in Section 6. Experiments are reported in Section 7.
Related works are in Section 8, conclusions in Section 9.

2. TRANSFORMATION SYSTEMS
In our view, a data-transformation system is any tool capable of

executing transformation scenarios (also called mapping scenarios
or translation tasks). Regardless of the way in which transforma-
tions are expressed, in our setting these scenarios require to trans-
late instances of a source schema into instances of a target schema.

https://www.researchgate.net/publication/232614768_Orchid_Integrating_Schema_Mapping_and_ETL?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/220538641_STBenchmark_Towards_a_benchmark_for_mapping_systems?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/220538641_STBenchmark_Towards_a_benchmark_for_mapping_systems?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/220538641_STBenchmark_Towards_a_benchmark_for_mapping_systems?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/220789390_Benchmarking_ETL_workflows?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/220695762_InformationTheory_Inference_and_Learning_Algorithms?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz

The transformation system is seen as a black box, of which we are
only interested in the input-output behavior, as shown in Figure 2.

For the purpose of our evaluations, we fix a set of translation
tasks. A translation task is defined in terms of a quadruple {S, T,
IS , Ie}, where: (i) S is the source schema; (ii) T is the target
schema; (iii) IS is an input instance, i.e., a valid instance of S; (iv)
Ie, the expected output, is an instance of T generated by applying
the desired transformation to IS .

Notice that the source and target schema may be either explicit,
or implicit, as it happens in many ETL tasks. To better express
the intended semantics of the transformation, it is possible that
also some specification of the mapping, Me, is given, in a cho-
sen language. This, however, is not to be intended as a constraint
on the way in which the transformation should be implemented,
but rather as a means to clarify to developers the relationship be-
tween the expected output, Ie, and the input, IS , in such a way that
Ie =Me(IS).

Figure 2: Architecture of the Evaluation Framework

We want to emphasize the high level of generality with which
the various components of the architecture have been chosen.

First, as it was discussed in the previous section, we encode the
behavior of a system in terms of its input-output function. By doing
this, we allow ample space to the different formalisms that are com-
monly used to express the semantics of the transformation and the
mapping specification, Me; it is in fact perfectly fine to specify the
mapping as a query Q in a concrete query language – say XQuery
– as STBenchmark does [3]. As an alternative, the transformation
can be expressed as a set of embedded dependencies (tgds and egds)
[10], as it happens in schema-mapping and data-exchange works.
To be even more general, it is also possible to assume that a pro-
cedural specification of the mappings is provided, as it happens in
some ETL tools.

Second, we are not constraining the primitives offered by the
systems under evaluation, nor the way in which users express the
transformation. This can be done through a GUI, or – going to the
opposite extreme – even by manually writing a query in an exe-
cutable query language.

Finally, the data model according to which S and T are con-
structed is a generic one. For the purpose of this paper, we adopt
a nested-relational data model, as it will be detailed in the follow-
ing Section, that provides a uniform representation for most of the
structures typically found in concrete data models – primarily rela-
tional and, to some extent, XML. However, as it will be clear in the
following Section, any data model based on collections, tuples of
attributes and relationships is compatible with our framework.

A distinctive feature of our approach is that we assume that a
“gold standard”, Ie, has been fixed for each scenario. We discuss
in detail how this can be done in Section 6. For the time being,
we want to emphasize that this is the basis of our evaluation. More
specifically, as shown in Figure 2, assume a translation task {S, T,
IS , Ie} is given, and we need to evaluate a transformation system
TS. We proceed as follows:

• we use the primitives offered by TS to express the desired
transformation; this gives us a specificationM - possibly in a
different formalism or query language wrt the expected one,
Me - that is supposed to have the same input-output behav-
ior;

• we run M on the input instance, IS , to generate the output, a
target instance Ig;

• then, we measure the quality achieved by the system by com-
paring Ig to our expected output, Ie. If Ig = Ie, then TS
achieves 100% quality on that specific translation task. Oth-
erwise, the quality achieved by TS is the measure of the sim-
ilarity between Ig and Ie;

• once the quality has been measured, we use the techniques in
Section 5 to measure the user-effort, and generate the quality-
effort graph.

3. THE QUALITY MEASURE
As discussed in the previous Section, our idea is to evaluate the

quality of a tool by measuring the similarity of its outputs wrt a
fixed, expected instance that has been selected in advance using
one of the methods that will be introduced in Section 6.

Since we adopt a nested relational data model, our instances are
trees, as shown in Figure 1. While there are many existing simi-
larity measures for trees, it is important to emphasize that none of
these can be used in this framework, for the following reasons:

(i) We want to perform frequent and repeated evaluations of each
tool, for each selected scenario, and for mapping specifications of
different complexity. In addition, we want to be able to work with
possibly large instances, to measure how efficient is the transforma-
tion generated by a system. As a consequence, we cannot rely on
known tree-similarity measures, like, for example, edit distances
[7], which are of high complexity and therefore would prove too
expensive.

(ii) The problem above is even more serious, if we think that our
instances may be seen as graphs, rather than trees, as it will be
discussed in the following paragraphs; we need in fact to check
key/foreign-key references that can be seen as additional edges
among leaves, thus making each instance a fully-fledged graph.
Graph edit distance [13] is notoriously more complex than tree edit
distance.

(iii) Even if we were able to circumvent the complexity issues,
typical tree and graph-comparison techniques still would not work
in this setting. To see this, consider that it is rather frequent in map-
ping applications to generate synthetic values in the output – these
values are called surrogate keys in ETL and labeled nulls in data-
exchange. In Figure 1, values D1, D2, I1, I2, I3 are of this kind.
These values are essentially placeholders used to join tuples, and
their actual values do not have any business meaning. We therefore
need to check if two instances are identical up to the renaming of
their synthetic values. We may say that we are rather looking for
a technique to check tree or graph isomorphisms [12], rather than
actual similarities.

It can be seen that we face a very challenging task: we need to
devise a new similarity measure for trees that is efficient, and at the
same time precise enough for the purpose of our evaluation.

In order to do this, we introduce the following key-idea: since the
instances that we want to compare are not arbitrary trees, but rather
the result of a transformation, we expect them to exhibit a number
of regularities; as an example, they are supposedly instances of a

https://www.researchgate.net/publication/220654831_A_survey_of_graph_edit_distance?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/2566500_Data_Exchange_Semantics_and_Query_Answering?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/220538641_STBenchmark_Towards_a_benchmark_for_mapping_systems?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/2762637_The_Graph_Isomorphism_Problem?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz

fixed nested schema that we know in advance. This means that we
know: (a) how tuples in the instances must be structured; (b) how
they should be nested into one another; (c) in which ways they join
via key-foreign key relationships.

We design our similarity metric by abstracting these features of
the two trees in a set-oriented fashion, and then compare these fea-
tures using precision, recall and ultimately F-measures to derive
the overall similarity. In the following paragraphs, we make this
intuition more precise.

3.1 Data Model
We fix a number of base data types, τi – e.g., string, integer,

date etc. – each with its domain of values, dom(τi), and a set
of attribute labels, A0, A1 A type is either a base type or a
set or tuple complex type. A set type has the form set(A : τ),
where A is a label and τ is a tuple type. A tuple type has the form
tuple(A0 : τ0, A1 : τ1, . . . , An : τn), where eachAi is a label and
each τi is either a base type or a set type. A schema is either a set or
a tuple type. Notice that schemas can be seen as (undirected) trees
of type nodes. In the following, we will often blur the distinction
between a schema and the corresponding tree.

Constraints may be imposed over a schema. A constraint is ei-
ther a functional dependency or an inclusion constraint – i.e., a for-
eign key – defined in the usual way [1]. Both schemas in Figure 1
are constructed according to this data model. It can be seen that the
source schema is relational, the target schema is nested.

Let us first formalize the notion of an instance of a schema in
our data model, as a tree that may contain constants and invented
values. More specifically, for each base type, τi, we consider the
constants in the corresponding domain dom(τi). We also con-
sider a countable set of special values, NULLS, typically denoted
by N0, N1, N2 . . . that are called placeholders – but in other ter-
minologies have been called labeled nulls and surrogates – which
we shall use to invent new values into the target when required
by the mappings. An instance of the base type, τi, is a value in
dom(τi) ∪ NULLS. Instances of base types are also called atomic
values.

Instances of a tuple type tuple(A0 : τ0, A1 : τ1, . . . , An : τn)
are (unordered) tuples of the form [A0 : v0, A1 : v1, . . . , An : vn],
where, for each i = 0, 1 . . . , n, vi is an instance of τi. Instances
of a set type set(A : τ) are finite sets of the form {v0, v1, . . . , vn}
such that each vi is an instance of τ . An instance of a schema
is an instance of the root type. Sample instances can be found in
Figure 1 (D1, D2, I1, I2, I3 are placeholders); from those exam-
ples it should be apparent that, like schemas, also instances can be
seen as undirected trees. In the following, we shall often refer to
tuple nodes in an instance simply as “tuples”.

As it is common in nested data model, we assume a partitioned
normal form (PNF) [26], i.e., at each level of nesting we forbid two
tuples with the same set of atomic values. In light of this, we also
forbid tuples whose atomic values are all placeholders.

3.2 Identifiers
Given a mapping scenario as defined in Section 2, we consider

the target schema, T , and the expected solution, Ie. The features
we associate with a target instance are tuple and join identifiers.

Tuple identifiers are string encodings of paths going from the
root to tuple nodes. To introduce them, we shall first introduce a
function enc() that we recursively apply to nodes. Given a node n
in an instance tree, I , we denote by father(n) the father of n, if it
exists; for the root node, nroot , father(nroot) is a special, dummy
node, ⊥ such that enc(⊥) equals the empty string. Then, the enc()
function is defined as follows:

• if n is an instance of a set node set(A : τ), then enc(n) =
enc(father(n)).A;

• if n is an instance of a tuple node [A0 : v0, A1 : v1, . . . , An :
vn], then enc(n) =

enc(father(n)).[Ai0 : enc(vi0), . . . , Aik : enc(vik)]
where vi0 . . . vik are the atomic values in the tuple, and Ai0 ,
. . . Aik appear in lexicographic order;

• if n is an instance of a base type τ , then enc(n) = value(n),
where value(n) equals n if n is a constant in dom(τ), or the
string null if n is a placeholder in NULLS.

Join identifiers are strings encoding the fact that the same place-
holder appears multiple times in an instance. More specifically,
given two tuples t1, t2 in an instance with atomic attributes A,B,
respectively, they are said to be joinable over attributes A,B if the
same placeholder N appears as the value of attribute A in t1 and
of attribute B in t2. If t1 = t2, i.e., we consider the same tuple
twice, then we require that A 6= B, i.e., A and B must be different
attributes.

We are now ready to define the identifiers associated with an
instance. Given an instance I of the target schema T , we define
two different sets of strings associated with I . The tuple ids:

tids(I) = {enc(t) | t is a tuple node in I}

and the join ids:

jids(I) = {enc(t1).A = enc(t2).B |
t1, t2 are tuples in I joinable over A,B and
enc(t1).A, enc(t2).B appear in lexicographic order}

Tuple and join identifiers for the instances in Figure 1 are re-
ported in Figure 3. It is worth noting that the computation of tuple
identifiers requires special care. As it can be seen in the figure, we
keep the actual values of placeholders out of our identifiers, in such
a way that two instances are considered to be identical provided
that they have the same tuples and the same join pairs, regardless
of the actual synthetic values generated by the system.

3.3 Instance Quality
Based on these ideas, whenever we need to compute the quality

of a solution generated by a system, Ig , we compare Ig to the ex-
pected output, Ie by comparing their identifiers. More specifically:
we first compute the tuple and join ids in Ie, tids(Ie), jids(Ie).
Then, we compute the actual ids in Ig , tids(Ig), jids(Ig), and mea-
sure their precision and recall wrt to tids(Ie), jids(Ie), respectively,
as follows:

ptids =
|tids(Ig) ∩ tids(Ie)|

|tids(Ig)|
rtids =

|tids(Ig) ∩ tids(Ie)|
|tids(Ie)|

pjids =
|jids(Ig) ∩ jids(Ie)|

|jids(Ig)|
rjids =

|jids(Ig) ∩ jids(Ie)|
|jids(Ie)|

As it is common, to obtain the distance between Ig and Ie, we
combine precisions and recalls into a single F-measure [31], by
computing the harmonic means of the four values as follows:

distance(Ig, Ie) = 1− 4
1

ptids
+ 1

rtids
+ 1

pjids
+ 1

rjids

Figure 3 reports the values of precision and recall and the overall
F-measure for our example.

We want to emphasize the fact that our technique nicely han-
dles placeholders. Consider for example instance Ie = {R(a,N1),
S(N1, b)}, where a, b are constants, and N1 is a placeholder. Any
instance that is identical to Ie up to the renaming of placeholders –

https://www.researchgate.net/publication/220225490_Extended_Algebra_and_Calculus_for_Nested_Relational_Databases?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz

Figure 3: Comparing instances. Instance A is the expected output, B is the generated output

like, for example, Ie = {R(a,N2), S(N2, b)} – has distance 0 wrt
Ie. On the contrary, instances with different constants, and/or ad-
ditional/missing tuples, are considered different and have distance
greater than 0.

Notice also that our approach also allows us to easily detect
the actual differences with respect to the expected output, i.e., tu-
ples/surrogates that were expected and were not generated, and un-
expected tuples/surrogates. Consider for example tuple ids; we de-
fine the set of missing tuples and the set of extra tuples as follows
(here − is the set-difference operator):

missingTuples(Ig, Ie) = tids(Ie)− tids(Ig)
extraTuples(Ig, Ie) = tids(Ig)− tids(Ie)

Similarly for missing joins and extra joins:
missingJoins(Ig, Ie) = jids(Ie)− jids(Ig)
extraJoins(Ig, Ie) = jids(Ig)− jids(Ie)

When reported to users, these sets represent a precious feedback,
since they clearly point out what are the tuples and surrogates that
cause mismatches between the expected solution and the one gen-
erated by a system. In other words, our similarity measure provides
two different comparison indicators: the first one is a number mea-
suring the overall similarity of the two instances; the second one is
a detailed list of “edits” (tuple additions, tuple deletions, surrogate
replacements) that should be applied to the instances to make them
equal. In this respect, it is very similar to a traditional edit distance
measure, as it will be discussed in Section 4.

4. COMPLEXITY AND EXPRESSIBILITY
Since our quality measure is based on the idea of comparing

instances, we believe it is important to explore its relationship to
other known tree-comparison techniques. As we have already no-
ticed, the problem we deal with is at the crossroads of two different
problems: the one of computing tree similarity (like, for example,
tree edit distances), and the one of detecting graph isomorphisms
(due to the presence of placeholders). In this section, we establish
a number of results that relate the complexity and expressibility of
our framework to those of other known techniques. In particular,
we show that our technique is orders of magnitude faster than some
of the known alternatives.

Assume that we need to compare two instances, of n1, n2 nodes,
t1, t2 tuple nodes, and p1, p2 placeholders, respectively. Notice
that ti < ni, pi < ni. Usually pi � ni. On the contrary, while
the number of tuples is strictly lower than the number of nodes, for
large instances ti is of the same order of magnitude as ni, since
tuples in sets are the primary factor of multiplicity for the instance
tree. Therefore, in the following, we shall approximate ti by ni.
Let us call n the maximum value of n1, n2. To establish a com-
plexity bound, let us analyze the various steps of the algorithm.
(i) As a first step, our algorithm computes tuple identifiers. This
can be done by visiting the instance and keeping track of the labels
and identifiers of the visited nodes. This step has therefore a cost
of O(n1 + n2) and generates t1 + t2 identifiers.
(ii) Then, we generate join pairs. For each placeholder, during
the visit we also keep track of the identifiers of the tuples it ap-
pears in. To generate join pairs, we need to combine these identi-
fiers in all possible ways. If we call omax the maximum number of

occurrences of a placeholder in one of the instances, we generate
nmax =

(
omax
2

)
identifiers at most for each placeholder. Note that

omax is usually quite low, in the order of 2 or 3; moreover, it typ-
ically depends on the mapping and it is independent from n. As a
consequence, we shall approximate the number of join identifiers
by O(p1 + p2).
(iii) Finally, in order to compare the two instances and compute the
quality measure, we need to intersect the two identifier sets. To do
this, we can use a sort-merge algorithm, with a cost ofO(t1log(t1)+
t2log(t2)) to compare tuple identifiers, and O(p1log(p1)+ p2log(
p2)) to compare join identifiers. Since, as discussed above, pi �
ni and we can approximate ti by ni, we have a total cost of O(n1

log(n1) + n2log(n2)). The overall time cost is therefore lower
than O(nlog(n)).

We are interested in comparing this bound with those of other
comparison techniques. In order to do this, we shall discuss two
different cases.
Case 1: General Case Let us first discuss the case in which the
two instances may contain placeholders. In this case, we find it use-
ful to formalize the relationship between our instances, which we
have defined in Section 3 as undirected trees, and their graph coun-
terpart. Given a schema T , and an instance I of T , the instance
graph associated with I contains all nodes and edges in I . In ad-
dition it contains an additional edge between each pair of distinct
leaf nodes labeled by the same placeholder N .

Based on this, we are not looking for identical instance graphs,
but rather isomorphic instance graphs, i.e., instance graphs that are
identical up to the renaming of placeholders. We say that two in-
stance graphsG1, G2 are isomorphic if there is a bijective mapping,
h, between the nodes of G1 and G2 such that: (i) for each pair of
nodes n1, n2 in G1 there exists an edge between n1 and n2 if and
only if there exists and edge between h(n1) and h(n2) in G2; (ii)
in addition, the mapping h preserves the labels of non-placeholder
nodes, i.e., if n is labeled by a constant v, then also h(n) is la-
beled by v. We can state the following soundness property for our
algorithm:

THEOREM 4.1. Given two instances I1, I2, then distance(I1,
I2) = 0 if and only if the corresponding instance graphs G1, G2

are isomorphic.

Notice that the general problem of computing graph isomor-
phisms is known to be in NP, and only high complexity algorithms
are currently known for its solution [12]. This makes these tech-
niques hardly applicable in practice. Our technique, on the con-
trary, runs with an O(nlog(n)) time bound, and therefore easily
allows the comparison of large instances. The improvement in the
complexity bound is not surprising, since the problem we concen-
trate on is a simplified variant of the general graph-isomorphism
problem. It is, however, remarkable that for this specific instance
of the problem such a significant speed-up is achievable.
Case 2: Absence of Placeholders It is interesting to evaluate the
performance of our algorithm also in the case in which instances do
not contain placeholders. In this case, the instance graph coincides
with the instance tree, and the notion of isomorphism degrades into

https://www.researchgate.net/publication/2762637_The_Graph_Isomorphism_Problem?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz

the usual one of equality. It would therefore be possible to apply
one of the known tree-similarity algorithms, like, for example, tree-
edit distances, to compute the quality of solutions.

The tree-edit distance measures the similarity of a tree T1 with
respect to a tree T2 by counting the number of operations that are
needed to transform T1 into T2. In our framework, we concentrate
on two operations: node insertions and node deletions. We call
these insert(T1, T2), delete(T1, T2).

In order to state our result, we need to introduce an additional
data structure, called the tuple-reduced tree associated with an in-
stance I . The latter is obtained by taking the induced subtree of I
corresponding to set and tuple nodes, and then by relabeling tuple
nodes by the corresponding tuple identifiers in I . In essence, such
subtree is obtained by discarding nodes corresponding to atomic
attributes, and by embedding their values into tuple labels (Figure
1 shows the tuple-reduced trees of the two instances).

We can state the following result, which shows that our algorithm
correctly computes the tree edit distance of tuple-reduced trees.

THEOREM 4.2. Given two instances I1, I2 without placehold-
ers, then distance(I1, I2) = 0 if and only if the corresponding
tuple-reduced trees T1, T2 are identical. Moreover, the set of ex-
tra tuples (missing tuples) detected by the algorithm is equal to the
set of node insertions (node deletions, respectively) computed by
the tree-edit distance over T1, T2, i.e., missingTuples(T1, T2) =
insert(T1, T2), extraTuples(T1, T2) = delete(T1, T2).

Notice that the best algorithms [7] to compute edit distances have
an upper bound of O(n1n2). Better bounds can be achieved for
ordered trees, but this is clearly not the case we consider, since we
do not assume any order of appearance of tuples inside sets. Our
bound improves this for the particular instance of the problem we
concentrate on. Other works [4] have reported bounds similar to
ours, but, unlike ours, results computed by these algorithms cannot
be related to tree edit distances.

5. ESTIMATING USER EFFORTS
Now that we have formalized our quality metric, we need to in-

troduce a way to measure user efforts. This is needed in order to
compute our quality-effort graphs.

Previous works have used point-and-click counts to do this [2].
However, click-counts are often unreliable since they are heavily
influenced by GUI layout choices and, even more important, by
the level of expertise of users. On the contrary, to estimate user-
efforts, we measure the complexity of the mapping specification by
means of an information-theoretic technique. We model the specifi-
cation complexity as an input graph with labeled nodes and labeled
edges. This model is general enough to cover a very broad range of
approaches to data transformations.

More precisely, the input graph is an undirected graph G =
(N,E), where N is a set of nodes, and E is a set of edges. Nodes
are partitioned in two groups: schema nodes, and additional nodes.
Given a graphical specification of a transformation, we build the
corresponding input-graph as follows: (i) every element in the
source and target schemas is a schema node in the graph; (ii) ar-
rows among elements in the GUI become edges among nodes in
the graph; (iii) a tool may provide a library of graphical elements
– for example to introduce system functions – that are modeled as
additional nodes in the graph; (iv) extra information entered by the
user (e.g., manually typed text) is represented as labels over nodes
and edges.

We report in Figure 4 the input-graph for a sample scenario spec-
ified using a commercial mapping system (this scenario will be dis-
cussed in Section 6.1). In this example there are 31 nodes for the

source and target schemas; arrows are drawn among schema nodes
to specify logical correspondences. The white boxes are graphi-
cal elements on the GUI that specify functions used to manipulate
source values; there are 5 functions in this scenario that generate
additional nodes in the graph.

Figure 4: Sample input graph.
We measure the size of such graphs by encoding their elements

according to a minimum description length technique [19], and then
by measuring the size in bits of such description, with the following
algorithm:

• as a first step, we assign a unique id to each node in the graph,
and compute the minimum number of bits, bn, needed to en-
code node ids. Our example uses a total of 36 nodes, so that
we need 6 bits for their encoding. Therefore bn = 6 bits;

• next, we measure the size of the encoding of nodes in the
graph; the source and target schema nodes are considered
as part of the input and therefore are not counted in the en-
coding. On the contrary, we encode the additional function
nodes. To do this, we build an encoding of the correspond-
ing function, by assigning a binary id to each function in the
library. Based on the size of the library of functions provided
by the tool (approximately 150), every function node in our
example requires an additional 8 bits for its encoding; there-
fore, encoding additional nodes requires 5 ∗ (6 + 8) bits;

• then, we measure the encoding of edges; each edge in the
graph is encoded by the pair of node ids it connects, with a
cost of 2bn bits; in our example, the graph contains 26 edges
(without labels) that we shall encode by 2 ∗ 6 bits;

• finally, node and edge labels are treated as arbitrary strings,
and therefore are encoded in ASCII; in this example, one of
the graph nodes must be labeled by a single char, for which
we need 8 bits.

The specification complexity is therefore given by the following
sum of costs: (5 ∗ (6 + 8)) + (25 ∗ (2 ∗ 6)) + (6 + 8) = 384
bits. With the same technique we are able to measure the size of
the specification needed by different systems, and compare efforts.

We want to stress that this representation is general enough to
accomodate very different visual paradigms. To give another ex-
ample, consider Figure 5. It shows the input graph for a complex
ETL workflow. In the graph, each oval represents a workflow step.
The schemas and intermediate recordsets used in the various steps
are encoded as nodes, with their correspondences as edges.

Our abstraction can also be used to model purely textual queries.
In this case, the input graph degenerates into a single node, labeled
with the textual specification of the query.

https://www.researchgate.net/publication/220538757_Comparing_and_evaluating_mapping_systems_with_STBenchmark?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/221310049_Approximate_Matching_of_Hierarchical_Data_Using_pq-Grams_--_Slides?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/220695762_InformationTheory_Inference_and_Learning_Algorithms?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz

Figure 5: Input graph for an ETL workflow.

6. DESIGNING SCENARIOS
Based on the techniques introduced in Sections 3 and 5, we have

conducted a comprehensive experimental evaluation based on sev-
eral transformation scenarios. Before getting to the details of these
experimental results, we want to discuss how it is possible to design
scenarios in this framework.

Designing a scenario amounts to choosing a source and target
schema, and an input-output function, i.e., a set of source instances
given as inputs, and a set of target instances considered as expected
outputs, i.e., as the gold standard. It can be seen that the critical
point of this process consists in deciding what the expected output
should be when some input is fed to the system.

6.1 Selecting the Gold Standard
In this respect, our approach is very general, and allows one to

select expected outputs in various ways. It is in principle possible
to craft the expected output by hand.

A more typical way – as it was done, for example, in [2] – would
be to express the input-output function as a query Q written in a
concrete query language, say SQL or XQuery. In this case, for a
given input IS , the expected output would be Ie = Q(IS). For
more complex workflows, one would need to choose a reference
system, design the transformation using the system, compute the
result, and take this as the expected output.

This approach has the disadvantage of forcing designers to ex-
press all of the details of the intended transformation, thus leaving
very limited space to explore the variants supported by alternative
tools. As an example, it requires to devise a precise strategy to
generate surrogates – for example by using Skolem functions [17].

Data exchange theory [10, 11] represents an elegant alternative.
More precisely, it provides a clean theoretical framework to state
two essential elements of the description of a scenario: (a) a se-
mantics of the transformation in terms of logical expressions; (b)
a clear notion of optimal solution for each mapping scenario and
source instance.

A mapping is specified using dependencies, expressed as logical
formulas of two forms: tuple-generating dependencies (tgds) and
equality-generating dependencies (egds). Source-to-target tgds (s-
t tgds) are used to specify which tuples should be present in the
target based on the tuples that appear in the source. Target tgds and
target egds encode foreign-key and key constraints over the target.

As an example, consider the vertical partition scenario of ST-
Benchmark [2]. This scenario takes a single, non-normalized table,
SourceReaction, and splits it into two tables, Reaction, Chemical-

Info, joined via a key-foreign key reference. In doing this, it in-
troduces a surrogate key.1 Notice that the input graph in Figure 4
refers exactly to this scenario.

The intended transformation can be formally expressed in data
exchange as follows:
m1. ∀e, n, d, q, c, o, r : SourceReaction(e, n, d, q, c, o, r)→

∃F : Reaction(e, n, c, o, F) ∧ ChemicalInfo(d, q, F)
t1. ∀e, n, c, o, f : Reaction(e, n, c, o, f)

→ ∃D,Q: ChemicalInfo(D,Q, f)
e1. ∀d, q, f, f ′ : ChemicalInfo(d, q, f) ∧ ChemicalInfo(d, q, f ′)

→ (f = f ′)

Here, m1 is a source-to-target tgd that states how the target ta-
bles should be materialized based on the source data. Dependency
t1 is a target tgd stating the referential integrity constraint over the
target tables. Finally, e1 is a target egd expressing the fact that the
first two attributes are a key for the ChemicalInfo table. Notice how,
by using existential variables, the tgds express the requirement that
a placeholder is used to correlate the target tables, without actually
providing any technical details about its generation.

A data exchange problem may have multiple solutions on a given
source instance, with different degrees of quality. The core univer-
sal solution [11] is the “optimal” one, since, informally speaking,
it is the smallest among the solutions that preserve the mapping. A
nice property of the core solution is that there exist polynomial al-
gorithms [11, 15, 30], some of which have been proven to be very
scalable [23] to generate the core.

In light of this, a natural way to design scenarios would be to
express the semantics of the transformation as a set of logical de-
pendencies, and to pick the core universal solution as the expected
output for a given source instance. In our experiments, whenever
this was possible, we used this approach. We want, however, to
remark that this is not the only alternative, as discussed above, nor
it is imposed by the method.

6.2 Test Scenarios
This discussion suggests another promising facet of our evalua-

tion technique. In fact, it shows that it can be used as the basis for a
regression-test tool for schema-mapping systems whose algorithms
are under development. Suppose, in fact, that we need to test the
algorithms of a new system, currently under development. We may
proceed as follows: (a) fix a set of mapping scenarios expressed as
sets of logical dependencies; (b) use an existing system – for exam-
ple [21, 22] or [30] – to generate the core universal solution; (c) run
the system under evaluation to generate the output, and measure its
distance from the expected output. Then, in case of errors, use the
feedback to correct the translation algorithms.

In essence, this is an alternative evaluation process with respect
to the one that we have discussed so far, in which there is less em-
phasis on quality-effort trade-offs, and more on correctness. To the
best of our knowledge, this is the first proposal towards the devel-
opment of test tools for schema-mapping systems.

7. EXPERIMENTAL RESULTS
The techniques presented in the paper have been implemented

in a working prototype using Java; the prototype has been used to
perform a large experimental evaluation. To start, we show how
the proposed quality measure scales well up to very large instances
and outperforms existing techniques. Then, we use our framework
to compare several data-translation systems on a common set of
scenarios and discuss the results. All the experiments have been

1We are actually considering a variant of the original scenario in [3] that
has no key constraints.

https://www.researchgate.net/publication/220430961_Efficient_core_computation_in_data_exchange?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/220538757_Comparing_and_evaluating_mapping_systems_with_STBenchmark?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/220538757_Comparing_and_evaluating_mapping_systems_with_STBenchmark?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/220538371_Scalable_Data_Exchange_with_Functional_Dependencies?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/221212694_Core_schema_mappings?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/2566500_Data_Exchange_Semantics_and_Query_Answering?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/200034162_ILOG_Declarative_Creation_and_Manipulation_of_Object_Identifiers?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/220538287_Spicy_an_Open-Source_Tool_for_Second-Generation_Schema_Mapping_and_Data_Exchange?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/2922471_Data_Exchange_Getting_to_the_Core?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/2922471_Data_Exchange_Getting_to_the_Core?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/2922471_Data_Exchange_Getting_to_the_Core?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz

conducted on a Intel Xeon machine with four 2.66Ghz cores and 4
GB of RAM under Linux.

7.1 Scalability of the Quality Measure
To test the scalability of our quality measure on instances of

large size, we used the instance provided for the Unnesting scenario
in STBenchmark [3]. The original instance contains 2.2 millions
nodes and has a size of 65 MB. We generated a modified version
of the same file by randomly introducing errors, in such a way that
the original and the modified instance had a similarity of 90% ac-
cording to our quality metrics. Then, we extracted smaller subtrees
from this complete instance, in order to obtain a pool of instances
of increasing size, varying from a few hundreds to 2 million nodes.

Since the nesting scenario does not require the generation of
surrogates, we were able to compare experimentally our measure
against an implementation of a tree-edit distance algorithm for or-
dered trees [5]. We tested ordered instances because of the lack of
implementations of the tree edit-distance algorithm for unordered
ones. We remark, however, that in the general case of unordered
trees the complexity of the tree edit-distance computation is even
higher.

We compared times of execution to compute our quality mea-
sure, the tree edit-distance on the original trees, and the tree edit-
distance on the more compact tuple-reduced trees introduced in
Section 4. We call this hybrid measure TED-TRT.

Figure 6: Execution times with files of increasing size.

Figure 6 summarizes the experimental results in terms of execu-
tion times and instance sizes. We experimentally confirmed the re-
sults reported in Section 4. More specifically, as stated in Theorem
4.2, the distance measured using our quality measure was identical
to the one measured using the TED-TRT distance. In addition, the
computation was orders of magnitude faster. In the graph on the left
hand side, we show the comparison of our measure against the tree
edit-distance on small instances. On the right, we show times only
for our quality measure, since the tree edit-distance implementation
did not scale to large instances. On the contrary, our comparison
algorithm scaled nicely: it computed the distance between two files
of approximately 65 MB in less than 30 seconds, thus confirming
the low complexity bound established in Section 4.

7.2 Comparison of the Systems
In the spirit of evaluating representative systems from different

perspectives, we have included the following tools: (i) an open-
source schema-mapping research prototype [21, 22]; (ii) a com-
mercial schema-mapping system; (iii) a commercial ETL tool.

In addition, to discuss the relationship of our technique to ST-
Benchmark, we have also evaluated the performances of a different
schema-mapping tool [25] on some of the scenarios. It is worth
mentioning that we also considered the idea of including in our
evaluation the open-source OpenII data integration tool [28]. We
found out that, while promising, the data translation module of the

current version of OpenII is still in a rather preliminary state, and
therefore decided to exclude it from the evaluation.

To conduct the evaluation, we selected twelve transformation
tasks from the literature, with different levels of complexity. The
selected tasks can be roughly classified in three categories:

(i) basic mapping-operations, taken from STBenchmark [3]: Copy
(Cp), Denormalization (Dn), Vertical Partition (VP), Key Assign-
ment (KA), Value Management (VM), and Nesting (Ne);

(ii) advanced mapping operations, taken from [23, 21]: Mini-
mization (Mi), Fusion (Fu), Nested Keys (NK); these scenarios re-
quire the management of more complex target constraints wrt those
above;

(iii) typical ETL tasks: Aggregation (Ag) is a simplified version of
the line workflow from an ETL benchmark [29], while AccessLog
(AL) and CreditCards (CC) are taken from the http://cloveretl.com/-
examples Web page.

Of these twelve scenarios, five required the introduction of sur-
rogates; two use nested models, the others are relational. For each
scenario we have identified the gold standard, that is, the desired
target solution for the given translation task and source instance.
As discussed in Section 6, expected solutions were identified in
such a way that they contained no unsound or redundant informa-
tion [11]. Then, we tried to generate the expected output with each
of the tools, and measured efforts and quality.

Figure 7: Effort needed by the systems to obtain 100% quality in the
various scenarios.

Notice that the three tools under exam use fairly different strate-
gies to compute the transformations: the research mapping systems
generate SQL or XQuery code, the commercial mapping system
typically generates XSLT, while the ETL workflow requires the in-
ternal engine in order to produce results. Nevertheless, our general
view of the transformation process permits their comparison. We
also want to mention that, while it is not in the scope of this paper
to compare the systems in terms of scalability, all of the systems in
our experiments scaled well to large instances.

Results are shown in Figure 7 and 8. More specifically, Figure
7 reports the effort needed by the various systems to obtain 100%
quality in the various scenarios, while Figure 8 shows the quality-
effort graphs. There are several evidences in the graphs that we
want to highlight. Let us first look at Figure 7. As a first evi-
dence, we note that the research mapping tool required consider-
ably less effort than the commercial counterparts on the basic and
advanced mapping tasks. On these tasks, the ETL tool was the one
requiring the highest effort to compute the requested transforma-
tions. However, we also note that the situation is reversed for the
ETL-oriented tasks. Notice how the commercial mapping system
had intermediate performances. This suggests that these tools are
progressively evolving from the schema-mapping ecosphere into
fully-fledged ETL tools.

https://www.researchgate.net/publication/2845165_Translating_Web_Data?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/220538371_Scalable_Data_Exchange_with_Functional_Dependencies?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/220538371_Scalable_Data_Exchange_with_Functional_Dependencies?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/221213616_OpenII_An_Open_Source_Information_Integration_Toolkit?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/221212694_Core_schema_mappings?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/220538641_STBenchmark_Towards_a_benchmark_for_mapping_systems?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/220538641_STBenchmark_Towards_a_benchmark_for_mapping_systems?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/220789390_Benchmarking_ETL_workflows?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/220538287_Spicy_an_Open-Source_Tool_for_Second-Generation_Schema_Mapping_and_Data_Exchange?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/2922471_Data_Exchange_Getting_to_the_Core?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/228620439_Simpack_A_generic_java_library_for_similarity_measures_in_ontologies?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz

Figure 8: Quality-effort graphs. For each scenario, the smaller the area, the higher is the IQ of a transformation tool.

To get more insights about this, let us look at the quality-effort
graphs in Figure 8. The Figure shows how much effort is needed to
get a certain level of quality with a given system. Recall that one of
our aims is that of measuring the “level of intelligence” of a tool,
as its quality/effort ratio. From the graphical viewpoint, this notion
of IQ can be associated with the area of the graph delimited by the
effort-quality function: such area can be taken as a measure of the
progressive effort needed by a tool to achieve increasing levels of
quality in one experiment. The smaller the area, the higher is the
IQ of a system.

We can observe that the research mapping tool handles in a more
natural way some complex operations, like nesting values or data
fusion and redundancy removal. But, as soon as the task at hand
becomes more procedural, like in the key-assignment scenario or
when typical ETL-like operations such as aggregations are requi-
red, this advantage becomes less visible or it is completely lost.
This is apparent in the Aggregation, AccessLog, and CreditCard
scenarios – three rather typical data warehousing transformations.
For these tasks, while the effort needed to compute the transfor-
mation in commercial systems was in line with those of previous
scenarios, in the case of the research mapping tool the cost was
enormously increased by the need of manually changing the gen-
erated SQL code in order to introduce the needed aggregates. In
fact, there is no declarative way of expressing aggregates in data
exchange yet.

In fact, our experiments confirm the intuition that the sophisti-
cated declarative algorithms introduced in recent years in schema-
mappings research may really provide some advantage in terms
of productivity to the data architect. However, this advantage is
somehow confined to the typical scope of applicability of schema-
mappings. When users want to deal with more complex scenarios,
i.e., transformations requiring a rather fine-grained manipulation
of values, the adoption of more procedural paradigms brings some
advantages.

We strongly believe that these results clearly confirm the need
for a new strategy for developing data-transformation tools, which
brings together the best of both worlds, in the spirit of [9]. While
the expressive power of procedural ETL tools is necessary to prop-
erly handle the wide range of transformations that a data architect

typically faces, still there are a variety of mapping tasks – ranging
from conjunctive queries, data-fusion and instance minimization,
to management of functional dependencies and nested constraints
– for which research mapping tools provide building blocks that
may represent a very powerful addition to commercial transforma-
tion systems.

Figure 9: Comparison to
STBenchmark.

As a final remark, we
think it is useful to put in
perspective the results re-
ported in [3] using STBen-
chmark. STBenchmark
uses a coarse-grained yes/-
no style of evaluation to
measure the performance
of a mapping system on a
given scenario. Our tech-
nique gives a better un-
derstanding of the perfor-

mances of a system, especially in those cases in which it is not
capable of fully capturing the semantics of a transformation.

We considered the mapping algorithm used in the STBenchmark
evaluation [25], and evaluated its performance on three advanced
mapping scenarios. The table in Figure 9 shows the maximum
quality that we were able to obtain with such a system by using
the GUI only, i.e., without manually changing the SQL or XQuery
code (operation, which, as discussed has very high costs in our
metrics). It can be seen that in three of the scenarios the system
failed to achieve 100% quality. Differently from the yes/no output
of STBenchmark, our comparison technique provided a detailed ac-
count of the results obtained by the algorithm in these cases. This
is a further evidence that our evaluation framework may help to im-
prove the design of benchmarks, and to gain better insights about
the effectiveness and limitation of tools.

8. RELATED WORKS
Data translation tasks in enterprise settings are very often tack-

led using Extraction-Transform-Load (or ETL) tools, where trans-
formations are defined by using sequences of building blocks in
a rather procedural fashion. Representative examples of ETL sys-

https://www.researchgate.net/publication/2845165_Translating_Web_Data?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/232614768_Orchid_Integrating_Schema_Mapping_and_ETL?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/220538641_STBenchmark_Towards_a_benchmark_for_mapping_systems?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz

tems can be found on the market (e.g., Oracle Warehouse Builder or
IBM Information Server) (www.oracle.com/technetwork/developer-
tools/warehouse, www-01.ibm.com/software/data/integration) and in
the open-source community (e.g., Clover ETL or Talend Open Stu-
dio) (www.cloveretl.com, www.talend.com).

Different generations of research mapping systems have been de-
veloped in the last ten years. A first generation of schema-mapping
systems [24, 25] has been followed first by an intermediate gen-
eration [30, 23], focused on the quality of the solutions, and then
by a second generation [21, 22], which is able to handle a larger
class of scenarios. In addition, Altova Mapforce and Stylus Studio
(www.altova.com/mapforce, www.stylusstudio.com) are examples of
commercial mapping systems.

Several works have studied the issue of quality in mapping-systems
with a different focus, either to check desirable properties [27], or
to rank alternative mappings [8].

The analysis of the information-integration and business-intel-
ligence market is the subject of a large number of studies by busi-
ness consulting firms [14]. However, these reports are centered
around features and functionalities of the various systems, and do
not rely on a quality evaluation metric such as the one developed
in this paper. Closer to our approach, there exist some early bench-
marks, designed both for ETL tools [29, 32, 20] and schema-map-
ping systems [3], which provide a basis for evaluating systems in
the respective areas only. They mainly concentrate on expressibil-
ity, by introducing representative, small scenarios [3, 29], or on the
efficiency evaluation [20]. With respect to measuring user efforts,
existing solutions (such as [3]) rely on a simple metric based on
the count of user actions (e.g., the number of clicks and the num-
ber of typed characters) in defining the transformation. Their main
limitation, however, is that they fail in answering the main question
addressed in this paper.

9. CONCLUSIONS
In this paper, we introduce a number of novel techniques that

significantly improve the ones used in previous works. Our qual-
ity measure, coupled with the information-theoretic effort measure,
enables the introduction of a new tool, called quality-effort graph,
to study the effectiveness of a data transformation system.

This evaluation framework provides a clear perception of the
level of intelligence of a data transformation tool, and ultimately
measures how productive it is for a given scenario. For the specific
problem of data-translation, it represents a concrete measure of the
trade-off between declarative and procedural approaches.

In addition, we have shown that the technique is very scalable,
despite the fact that we deal with a rather difficult problem, i.e.,
comparing possibly isomorphic graph-like structures.

We believe that this technique sheds some light on the right ap-
proach to solve data-integration problems: transforming and inte-
grating data is a multi-faceted problem that requires a combination
of state-of-the-art techniques, bringing together the expressibility
of ETL tools and the declarative algorithms of schema-mapping re-
search. Coupling together these approaches is a challenging but
very promising research problem.

Acknowledgments The authors would like to thank Angela Bonifati and
Yannis Velegrakis for the many helpful discussions on the subject of this
paper.

10. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases.

Addison-Wesley, 1995.
[2] B. Alexe, W. Tan, and Y. Velegrakis. Comparing and Evaluating Mapping

Systems with STBenchmark. PVLDB, 1(2):1468–1471, 2008.
[3] B. Alexe, W. Tan, and Y. Velegrakis. STBenchmark: Towards a Benchmark for

Mapping Systems. PVLDB, 1(1):230–244, 2008.
[4] N. Augsten, M. Bohlen, and J. Gamper. Approximate Matching of Hierarchical

Data Using pq-Grams. In VLDB, pages 301–312, 2005.
[5] A. Bernstein, E. Kaufmann, C. Kiefer, and C. Bürki. SimPack: A Generic Java

Library for Similiarity Measures in Ontologies. Technical report, Department of
Informatics, University of Zurich, 2005.

[6] P. A. Bernstein and S. Melnik. Model Management 2.0: Manipulating Richer
Mappings. In SIGMOD, pages 1–12, 2007.

[7] P. Bille. A Survey on Tree Edit Distance and Related Problems. TCS,
337:217–239, 2005.

[8] A. Bonifati, G. Mecca, A. Pappalardo, S. Raunich, and G. Summa. Schema
Mapping Verification: The Spicy Way. In EDBT, pages 85 – 96, 2008.

[9] S. Dessloch, M. A. Hernandez, R. Wisnesky, A. Radwan, and J. Zhou. Orchid:
Integrating Schema Mapping and ETL. In ICDE, pages 1307–1316, 2008.

[10] R. Fagin, P. Kolaitis, R. Miller, and L. Popa. Data Exchange: Semantics and
Query Answering. TCS, 336(1):89–124, 2005.

[11] R. Fagin, P. Kolaitis, and L. Popa. Data Exchange: Getting to the Core. ACM
TODS, 30(1):174–210, 2005.

[12] F. Fortin. The Graph Isomorphism Problem. Technical report, Department of
Computer Science, University of Alberta, 1996.

[13] X. Gao, B. Xiao, D. Tao, and X. Li. A Survey of Graph Edit Distance. Pattern
Analysis & Application, 13:113–129, 2010.

[14] Gartner. Magic Quadrant for Data Integration Tools.
http://www.gartner.com/technology/, 2011.

[15] G. Gottlob and A. Nash. Efficient Core Computation in Data Exchange. J. of
the ACM, 55(2):1–49, 2008.

[16] L. M. Haas. Beauty and the Beast: The Theory and Practice of Information
Integration. In ICDT, pages 28–43, 2007.

[17] R. Hull and M. Yoshikawa. ILOG: Declarative Creation and Manipulation of
Object Identifiers. In VLDB, pages 455–468, 1990.

[18] R. Kimball and J. Caserta. The Data Warehouse ETL Toolkit. Wiley and Sons,
2004.

[19] D. MacKay. Information Theory, Inference, and Learning Algorithms.
Cambridge University Press, 2003.

[20] T. A. Majchrzak, T. Jansen, and H. Kuchen. Efficiency evaluation of open
source etl tools. In SAC, pages 287–294, 2011.

[21] B. Marnette, G. Mecca, and P. Papotti. Scalable data exchange with functional
dependencies. PVLDB, 3(1):105–116, 2010.

[22] B. Marnette, G. Mecca, P. Papotti, S. Raunich, and D. Santoro. ++SPICY: an
opensource tool for second-generation schema mapping and data exchange.
PVLDB, 4(11):1438–1441, 2011.

[23] G. Mecca, P. Papotti, and S. Raunich. Core Schema Mappings. In SIGMOD,
pages 655–668, 2009.

[24] R. J. Miller, L. M. Haas, and M. A. Hernandez. Schema Mapping as Query
Discovery. In VLDB, pages 77–99, 2000.

[25] L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernandez, and R. Fagin. Translating
Web Data. In VLDB, pages 598–609, 2002.

[26] M. A. Roth, H. F. Korth, and A. Silberschatz. Extended Algebra and Calculus
for Nested Relational Databases. ACM TODS, 13:389–417, October 1988.

[27] G. Rull Fort, F. C., E. Teniente, and T. Urpí. Validation of Mappings between
Schemas. Data and Know. Eng., 66(3):414–437, 2008.

[28] L. Seligman, P. Mork, A. Halevy, K. Smith, M. J. Carey, K. Chen, C. Wolf,
J. Madhavan, A. Kannan, and D. Burdick. OpenII: an Open Source Information
Integration Toolkit. In SIGMOD, pages 1057–1060, 2010.

[29] A. Simitsis, P. Vassiliadis, U. Dayal, A. Karagiannis, and V. Tziovara.
Benchmarking etl workflows. In TPCTC, pages 199–220, 2009.

[30] B. ten Cate, L. Chiticariu, P. Kolaitis, and W. C. Tan. Laconic Schema
Mappings: Computing Core Universal Solutions by Means of SQL Queries.
PVLDB, 2(1):1006–1017, 2009.

[31] C. J. Van Rijsbergen. Information Retrieval. Butterworths (London, Boston),
1979.

[32] L. Wyatt, B. Caufield, and D. Pol. Principles for an etl benchmark. In TPCTC,
pages 183–198, 2009.

https://www.researchgate.net/publication/221103559_Schema_mapping_verification_the_spicy_way?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/221103559_Schema_mapping_verification_the_spicy_way?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/221103559_Schema_mapping_verification_the_spicy_way?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/220430961_Efficient_core_computation_in_data_exchange?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/220430961_Efficient_core_computation_in_data_exchange?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/220998792_Efficiency_evaluation_of_open_source_ETL_tools?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/220998792_Efficiency_evaluation_of_open_source_ETL_tools?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/220998792_Efficiency_evaluation_of_open_source_ETL_tools?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/220998792_Efficiency_evaluation_of_open_source_ETL_tools?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/221309638_Schema_Mapping_as_Query_Discovery?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/221309638_Schema_Mapping_as_Query_Discovery?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/221309638_Schema_Mapping_as_Query_Discovery?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/2845165_Translating_Web_Data?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/2845165_Translating_Web_Data?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/2845165_Translating_Web_Data?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/220225490_Extended_Algebra_and_Calculus_for_Nested_Relational_Databases?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/220225490_Extended_Algebra_and_Calculus_for_Nested_Relational_Databases?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/220789377_Principles_for_an_ETL_Benchmark?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/220789377_Principles_for_an_ETL_Benchmark?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/220789377_Principles_for_an_ETL_Benchmark?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/220654831_A_survey_of_graph_edit_distance?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/220654831_A_survey_of_graph_edit_distance?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/220538757_Comparing_and_evaluating_mapping_systems_with_STBenchmark?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/220538757_Comparing_and_evaluating_mapping_systems_with_STBenchmark?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/220538371_Scalable_Data_Exchange_with_Functional_Dependencies?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/220538371_Scalable_Data_Exchange_with_Functional_Dependencies?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/220538371_Scalable_Data_Exchange_with_Functional_Dependencies?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/223935788_Validation_of_mappings_between_schemas?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/223935788_Validation_of_mappings_between_schemas?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/223935788_Validation_of_mappings_between_schemas?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/221213616_OpenII_An_Open_Source_Information_Integration_Toolkit?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/221213616_OpenII_An_Open_Source_Information_Integration_Toolkit?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/221213616_OpenII_An_Open_Source_Information_Integration_Toolkit?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/221212694_Core_schema_mappings?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/221212694_Core_schema_mappings?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/221212694_Core_schema_mappings?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/2566500_Data_Exchange_Semantics_and_Query_Answering?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/2566500_Data_Exchange_Semantics_and_Query_Answering?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/221310049_Approximate_Matching_of_Hierarchical_Data_Using_pq-Grams_--_Slides?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/221310049_Approximate_Matching_of_Hierarchical_Data_Using_pq-Grams_--_Slides?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/232614768_Orchid_Integrating_Schema_Mapping_and_ETL?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/232614768_Orchid_Integrating_Schema_Mapping_and_ETL?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/220538641_STBenchmark_Towards_a_benchmark_for_mapping_systems?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/220538641_STBenchmark_Towards_a_benchmark_for_mapping_systems?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/220538641_STBenchmark_Towards_a_benchmark_for_mapping_systems?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/220538641_STBenchmark_Towards_a_benchmark_for_mapping_systems?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/220789390_Benchmarking_ETL_workflows?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/220789390_Benchmarking_ETL_workflows?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/220789390_Benchmarking_ETL_workflows?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/220789390_Benchmarking_ETL_workflows?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/200034162_ILOG_Declarative_Creation_and_Manipulation_of_Object_Identifiers?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/200034162_ILOG_Declarative_Creation_and_Manipulation_of_Object_Identifiers?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/221322452_Beauty_and_the_Beast_The_Theory_and_Practice_of_Information_Integration?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/221322452_Beauty_and_the_Beast_The_Theory_and_Practice_of_Information_Integration?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/220538287_Spicy_an_Open-Source_Tool_for_Second-Generation_Schema_Mapping_and_Data_Exchange?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/220538287_Spicy_an_Open-Source_Tool_for_Second-Generation_Schema_Mapping_and_Data_Exchange?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/220538287_Spicy_an_Open-Source_Tool_for_Second-Generation_Schema_Mapping_and_Data_Exchange?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/220538287_Spicy_an_Open-Source_Tool_for_Second-Generation_Schema_Mapping_and_Data_Exchange?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/2762637_The_Graph_Isomorphism_Problem?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/2762637_The_Graph_Isomorphism_Problem?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/2922471_Data_Exchange_Getting_to_the_Core?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/2922471_Data_Exchange_Getting_to_the_Core?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/221213000_Model_management_20_Manipulating_richer_mappings?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/221213000_Model_management_20_Manipulating_richer_mappings?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/228620439_Simpack_A_generic_java_library_for_similarity_measures_in_ontologies?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/228620439_Simpack_A_generic_java_library_for_similarity_measures_in_ontologies?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/228620439_Simpack_A_generic_java_library_for_similarity_measures_in_ontologies?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/220695762_InformationTheory_Inference_and_Learning_Algorithms?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz
https://www.researchgate.net/publication/220695762_InformationTheory_Inference_and_Learning_Algorithms?el=1_x_8&enrichId=rgreq-d09e98d1a444f98d47ed49149b1549a6-XXX&enrichSource=Y292ZXJQYWdlOzI2MjQwNTAyNztBUzo5OTUzMjYyMDY5NzYxM0AxNDAwNzQxODM1NTUz

