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Abstract

This paper investigates the approximation behaviour of the K1oczy–Hirota (KH) interpolative fuzzy con-
trollers. First, in accordance with the remarks in (Fuzzy Sets and Systems 125(1) (2002) 105), it is pointed
out that it is a fuzzy generalization of the Shepard operator. Shepard operator has thoroughly studied by
approximation theorist since the mid-1970s. Exploiting the aforementioned relationship, we establish analog
results on the approximation rate of KH controllers. The optimal order and class of approximation (saturation
problem) are determined for certain values of the exponent �. Corresponding results on the modi8ed alpha-cut
based interpolation method, being an improvement of the KH interpolator, are also provided. The results o9er
trade-o9 facilities between approximation accuracy and the number of rules. As a consequence, the necessary
and su;cient number of rules can be determined for a prescribed accuracy.
c© 2002 Elsevier B.V. All rights reserved.
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1. Introduction

Recently, it was pointed out [28] that a special version of the interpolative fuzzy K1oczy–Hirota
(KH) interpolator (see details in Section 2.1) is universal approximator in the sense that it is able
to approximate any continuous function on a compact domain with arbitrary accuracy with respect
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to the Lp norm p∈ [1;∞]. In the same paper it was remarked without any proof that the KH
interpolator can be considered as a fuzzy generalization of the Shepard interpolator (Section 2.2).
Now we show their exact connection in Section 3.

Universal approximation theorems on soft computing techniques (see e.g. [4,17,30] for fuzzy
systems, and [6,9] for neural nets) have been usually criticized due to their solely existential nature
[11,29]. In the recent past, there arose an e9ort to give constructive proofs, or to determine the
number of “building blocks” (antecedents or rules in fuzzy, hidden neurons in neural terminology)
as a function of the accuracy (see e.g. [3,16,20,32,33]). See [29] for a survey on this topic. Naturally,
to obtain such results one has to restrict somehow the set of continuous functions, usually requiring
some smoothness conditions on the approximated function. In approximation theory, the optimal
order of convergence is called the saturation order, and the subset of continuous functions which
can be approximated with the speci8ed order is termed the saturation class. Hitherto, saturation
classes and orders have not been determined for soft computing techniques.

The approximation result for KH controllers published in [28] is purely existential, no trade-o9
between the number of the rules and the accuracy was determined. In this paper, we make up
this de8ciency, and derive theorems for the approximation rate of KH controllers based on their
relationship with Shepard operator (Section 4).

2. Preliminaries

2.1. The KH interpolator

The fuzzy rule based interpolation technique (or brieKy: fuzzy interpolation) was proposed to
provide an inference mechanism suitable for rule bases containing gaps. The 8rst method was in-
troduced in [12], and is termed KH interpolation. It creates the conclusion using its �-cuts based
on the extension principle and the resolution principle. For every � value of the important level set
(e.g., for triangular and trapezoidal shaped membership function that is 0 and 1), it determines the
conclusion as

B∗
�C =

∑n
i=1 Bi�C1=dC(A∗

�C; Ai�C)∑n
k=1 1=dC(A∗

�C; Ak�C)
; (1)

where Ai and Bi (i= 1; : : : ; n) denote the antecedents neighbouring the observation A∗, and the
corresponding consequents fuzzy sets, respectively. C ∈{L; U}, where L and U refer to the lower and
upper extreme of the �-cut. Finally, the function dC :R×R→ [0;+∞) is an appropriate lower/upper
distance function (cf. [13]). If n= 2, the approach is termed linear interpolation.

For the applicability of the method the involved fuzzy sets should ful8l the following ordering:

Ai ≺X A∗ ≺X Ai+1; Bi ≺Y Bi+1; (2)

where ≺X and ≺Y are proper partial orderings on the multidimensional input and the one-dimensional
output space, respectively. These relations mean that the observation should be Kanked by antecedents
from both sides (no extrapolation is allowed), and a similar ordering should exist for the correspond-
ing consequents.
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In [28], the stabilized version of the KH interpolation is introduced, when we take
�th power of the distance function requiring that the exponent � cannot be smaller than N , the
dimension of the antecedents

B∗
�C =

∑n
i=1 Bi�C1=d�C(A∗

�C; Ai�C)∑n
k = 1 1=d�C(A∗

�C; Ak�C)
(�¿ N ) (3)

Now, we recall the universal approximation theorem of the stabilized KH approach [28].

De�nition 1. Let RN ⊃�= [a1; b1]× · · ·×[aN ; bN ], further let {�n}∞n=1 be a sequence of 8nite subsets
of � with #�n = n. If

∀� ¿ 0∃n0 ∀! ∈ � ∀n¿ n0 :
∣∣∣∣#(�n ∩ !)

#�n
− |!|

|�|
∣∣∣∣¡ � (4)

then the set �n are uniformly distributed on the domain �. Here #(�n ∩!) denotes the cardinality
of the 8nite set (�n ∩!) and |!| is the Lebesque measure of !.

Theorem 2. Consider the Lp norm ‖·‖p with p∈ [1;∞], the domain RN ⊃�= [a1; b1]× · · ·×[aN ; bN ]
and a continuous function f :�→R, then for all x∈� the expression

lim
n→∞ K�

n (f; x) := lim
n→∞

n∑
k=1

f(x(n)
k )

1=‖x − x(n)
k ‖�p∑n

j=1 1=‖x − x(n)
j ‖�p

(5)

is equal to f(x), where measurement points x(n)
k are uniformly distributed on � in the sense of

(4), and �¿N .

Observe that when N = 1 (5) yields (3) with some apparent substitutions: xk for Ai�C , f(xk) for
Bi�C; x for A∗

�C and |x − xk |p for dC(A∗
�C; Ai�C).

Without the loss of generality, in the next we suppose that Q�= [0; 1], because with a proper
linear transformation every compact domain can be mapped into each other. From now, we mean
the stabilized KH interpolator (3) on the term “KH interpolator”.

Let we brieKy summarize here the state-of-the-art of fuzzy rule based interpolation. The original
KH method was criticized by several authors because it does not always give directly interpretable
conclusion. To alleviate partly or completely this shortcoming various approaches were proposed:
among others the so-called solid cutting method [1], the use of approximate reasoning in vague
environment [18,19], the modi8ed alpha-cut based interpolation (MACI) method [26], and a method
that aims at preserving the relative fuzziness of the conclusion [8,14]. The approach described
in [31] shows advantageous properties if the input is multi-dimensional. Recently, an axiomatic
characterization of fuzzy rule based interpolation was worked out [10]. For an overview see e.g.
[15] or the comparative work [21].
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2.2. The Shepard operator

The Shepard interpolation method was 8rst introduced in [22] for arbitrarily placed bivariate data
as

S0(f; x; y) =



f(xi; yi) if (x; y) = (xi; yi) for some i;∑n

i=0 f(xi; yi)=d�i∑n
i=0 1=d�i

otherwise;
(6)

where measurement points xi; yi (i= 0; : : : ; n) are irregularly spaced on the domain of f∈R2 →R; �
¿0, and di = [(x − xi)2 + (y − yi)2]1=2 is the Euclidean distance from the ith knot point (xi; yi).
This function can be used typically when a surface model is required to interpolate scattered spatial
measurements (e.g. in pattern recognition, geology, cartography, earth sciences, Kuid dynamics and
many others).

Beside the application oriented investigation of Shepard’s method such as [2], an increasing interest
has arisen from mathematical researchers to examine the approximation property of formula (6). For
a more general analysis of these properties, operator (6) was reformulated in the more suitable and
more concise form as

S�n (f; x) =
∑n

i=0 f(xi)(x − xi)−�∑n
i=0 (x − xi)−� ; � ¿ 0; n = 1; 2 : : : (7)

for an arbitrary f∈C[0; 1], where xi (i= 0; : : : ; n), in general, denotes the nodes of the equidistant
distribution of the domain [0; 1]. We recall that 8xing the domain to the interval [0; 1] does not
mean any restriction.

The possible use of rational functions of type (7) as approximating means was 8rst
discovered by J. Bal1azs. (After his name this operator is often termed Bal1azs–Shepard operator in
the literature of approximation theory.) The main advantages of rational function interpolator (7)
compared to traditional polynomial or trigonometrical approximators is that it always converges
to the approximated function independently from the selection of knot points xi. The properties
of operator (7) were widely investigated by mostly Hungarian and Italian mathematicians; see
e.g. [5,7,23–25].

3. The fuzziness of the approximation

As it was shown in [28], for a 8xed �∈ [0; 1] and C ∈{L; U} the input–output function of the (sta-
bilized) KH interpolator, K�

n (f; x) coincides with the Shepard operator. Therefore, we can consider
the family of K�

n (f; x) functions as a generalization of the S�n (f; x). Here, 8rst we aim at clarifying
what is nature of this generalization, how the approximated functions for various � and=or C values
di9er. It is obvious, that the family of KH functions tailor the same approximated function, if all
the involved fuzzy sets are crisp. In the next, we investigate how the conclusion depends on the
fuzziness of the antecedents and consequents.
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First, let us only assume that the modulus of continuity of the approximated function f : [0; 1]→R
is known

!(f; n−1) = max
x;y∈[0;1]

|x−y|6n−1

|f(x) − f(y)|: (8)

Due to the uniform distribution (4) of the knot points we can estimate the di9erence of the adjacent
knot points by n−1.

Therefore, we can estimate the support of a consequent fuzzy set, or in other words, its fuzziness
by quantity de8ned in (8):

n
max
i=1

(supp(Bi)) 6 !(f; n−1): (9)

Note, that this is a very rough estimation. We can sharpen it easily under certain circumstances to
be discussed later.

Let us estimate now the di9erence of two K�
n (f; x) operators. The largest di9erence appears when

the minimum and the maximum of the support are calculated. That is when �= 0 is 8xed, and C =L
and C =U , respectively.

Let

K (n)
1 =

∑n
i=1(inf Bi0)(n)1=d�((inf A∗

0)
(n); (inf Ai0)(n))∑n

j=1 1=d�((inf A∗
0)(n); (inf Aj0)(n))

K (n)
2 =

∑n
i=1 (supBi0)(n)1=d�((supA∗

0)
(n); (supAi0)(n))∑n

j=1 1=d�((supA∗
0)(n); (supAj0)(n))

be the two farthest points of the interpolated conclusion. The superscript (n) refers to the knot point
system consisting of n points. Then

lim
n→∞ |K (n)

1 − K (n)
2 |6

∣∣∣∣∣
∑n

i=1(inf Bi0)(n)1=d�((inf A∗
0)

(n); (inf Ai0)(n))∑n
j=1 1=d�((inf A∗

0)(n); (inf Aj0)(n))

−
∑n

i=1((inf Bi0)(n) + !(f; n−1))1=d�((supA∗
0)

(n); (supAi0)(n))∑n
j=1 1=d�((supA∗

0)(n); (supAj0)(n))

∣∣∣∣∣
6

∣∣∣∣∣
∑n

i=1(inf Bi0)(n)1=d�((inf A∗
0)

(n); (inf Ai0)(n))∑n
j=1 1=d�((inf A∗

0)(n); (inf Aj0)(n))

−
∑n

i=1(inf Bi0)(n)1=d�((supA∗
0)

(n); (supAi0)(n))∑n
j=1 1=d�((supA∗

0)(n); (supAj0)(n))

∣∣∣∣∣+ !(f; n−1)

6!(f; n−1): (10)

As n−1 converges to zero, and the knot points are uniformly distributed, the support of antecedents
and observation fuzzy sets should also vanish due to the condition of their ordering (cf. (2)).
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Therefore, the two expressions of distance become identical, hence the absolute value of the di9erence
of the fractions vanishes. Note, that the support of the consequents does not necessarily vanishes as
n−1 tends to zero.

The obtained result means that the maximal di9erence between two operators in a family of
Shepard type approximations is bounded by the modulus of continuity of the approximated functions,
and this value can be theoretically arbitrary large. Observe that the result only depends on the
estimated support size (9). However, it is not very reasonable to model a signi8cant change in
the approximated function with only one consequent fuzzy set. Therefore, the rough estimation of
(9) and (10) can be improved, if we suppose that antecedents and consequents are fuzzy numbers
modelling the measured input–output samples of the approximated function. In this case we can set
the consequents’ maximum support length to !, being e.g. the margin of error of the measuring tool

n
max
i=1

(supp(Bi)) 6 !: (11)

With analog reasoning as in (10), we can get

lim
n→∞ |K (n)

1 − K (n)
2 |6 !:

Based on the previous thoughts we can state the following

Proposition 3. Under the conditions of Theorem 2, the fuzziness of the conclusion of the stabilized
KH interpolator is bounded by the maximum fuzziness of the consequent fuzzy sets, if n, the
number of knot points tends to ∞.

It means that the fuzziness of the conclusion is estimated from above by the maximum fuzziness
of consequent fuzzy sets, i.e. we can select the number of knot points in such a way that the
estimate is valid with an error of order at last O(n−1). This error margin is estimated based on the
uniform distribution of knot points on the unit interval, and this is usually incomparably smaller
than !(f; n−1).

As it was already remarked, the KH operator does not always give directly interpretable fuzzy
conclusion. This problem was investigated by several researchers, and alternative solutions and meth-
ods were proposed [1,18,19,8,14]. Among those, the MACI method [26] is the most advantageous,
because it eliminates the abnormality problem and maintains the low computational requirements
of the KH method. Moreover, its generalized version also possesses the universal approximation
property [26,27].

The general MACI method tailors the conclusion as a 8nite sum of KH interpolators. Formally,
using the denotation of (5)

lim
n→∞(MACI(k))�n


 k∑

j=1

fj; x


 =

k∑
j=1

n∑
i=1

fj(x(n)
ij )

1=‖x − x(n)
ij ‖�p∑n

‘=1 1=‖x − x(n)
‘j ‖�p

�¿ N; (12)

where fj (j= 1; : : : ; k) are the functions approximated by the KH interpolators.
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It was shown in [2], the fuzziness of the conclusion determined by the MACI method is usually
larger than the one created by the KH interpolator, due to the construction of the conclusion. In
consequence, it is not surprising that the conclusion is more fuzzy even if the number of rules tends
to in8nity.

Proposition 4. Let k be the number of KH interpolators needed to create MACIs conclusion,
approximating the functions fi with !i accuracy (i= 1; : : : ; k). Further, let conditions of The-
orem 2 hold. Then the conclusion’s fuzziness is less than

∑k
i=1 |!i|, if the number of knot points

tends to ∞.

The proof is straightforward, it employs the result of Proposition 3 and combines it with the
triangle inequality.

Because of Propositions 3 and 4, theorems for Shepard operators are convertible for the KH (or
MACI) interpolators, bearing in mind that all derived results have an uncertainty factor (or fuzziness)
due to the fuzziness of the consequents.

4. Main results

The approximation property and the saturation problem of the Shepard operator were investigated
for various � values in [5,23–25]. Here we recall the proof of Szabados [25], which gives a complete
analysis for all �¿1. When �¡1, the operator does not converge for all f(x)∈C[0; 1], so it is of
no interest for our investigations.

Theorem 5 (Szabados [25]). The approximation order of the operator S�n (f; x) is

‖f(x) − S�n (f; x)‖ =




O(!(f; n−1)) if � ¿ 2;

O(n1−�)
∫ 1

1=n
t−�!(f; t) dt if 1 ¡ �6 2;

O(log−1 n)
∫ 1

1=n
t−�!(f; t) dt if � = 1;

(13)

for any f∈C[0; 1].

Proof. Let us suppose equispaced knot points systems on the unit interval, i.e.

xi =
i
n
; {xi}(n) = {xi|i = 0; : : : ; n}: (14)

Further, let xj ∈{xi}(n); j= 0; : : : ; n be the closest knot point to an arbitrary x∈ [0; 1], x =∈{xi}(n)

∣∣∣∣x − j
n

∣∣∣∣ = min
06i6n

∣∣∣∣x − i
n

∣∣∣∣
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(if this de8nition is not unique take any of the two possibilities). Then

|f(x) − S�n (f; x)|6
∑n

i=0 |f(x) − f(i=n)| · |x − i=n|−�∑n
i=0 |x − i=n|−� :

The order of the denominator is evidently(
n∑
i=0

∣∣∣∣x − i
n

∣∣∣∣
−�
)−1

= O(n−� log−�1=�� n) (�¿ 1); (15)

so

|f(x) − S�n (f; x)|6
∣∣∣∣f(x) − f

(
j
n

)∣∣∣∣+ O(n−� log−�1=�� n)

∑
i 	=j

∣∣∣∣f(x) − f
(
i
n

)∣∣∣∣ ·
∣∣∣∣x − i

n

∣∣∣∣
−�

6!
(
f;

1
2n

)
+ O(n−� log−�1=�� n)

∑
i 	=j

( |j − i| − 1=2
n

)−�

!
(
f;

|j − i| − 1=2
n

)

6!(f; n−1) + O(n−� log−�1=�� n)
n∑
i=1

(
i
n

)−�

!
(
i
n

)
: (16)

Because !(f; k=n)6k!(f; 1=n), for �¿2 we have

|f(x) − S�n (f; x)|6!(f; n−1)

{
1 + O(n−�)

n∑
i=1

i1−�

n−�

}

= O(!(f; n−1)):

If 16�62, then

|f(x) − S�n (f; x)|6 !(f; n−1) + O(n1−� log−�1=�� n)
∫ 1

1=n
t−�!(f; t) dt;

whence the last two statements of the theorem follows.

The theorem gives some immediate results on the saturation problem. For its precise characteri-
zation we need the following de8nition.

De�nition 6. A function f : [0; 1]→R is called Lipschitz continuous with Lipschitz coe;cient �
(notation: f∈Lip �) if

|f(x) − f(y)|6�|x − y| for all x; y∈ [0; 1]: (17)
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From Theorem 5 it is obvious that if f(x)∈Lip 1 and �¿2, then the saturation order is

‖f(x) − S�n (f; x)‖ = O(n−1): (18)

In fact, as it is proved in [23], (18) holds if and only if f(x)∈Lip 1. Furthermore,

‖f(x) − S�n (f; x)‖ = o(n−1) (19)

if and only if f(x) = const. Thus the saturation problem is completed for �¿2.
If �= 2, even with f(x)∈Lip 1 Theorem 5 gives only

‖f(x) − S�n (f; x)‖ = O
(

log n
n

)
: (20)

This result can be improved to O(n−1) under stronger restriction on f(x):

Theorem 7 (Szabados [25]). If f′(x)∈ [0; 1] and∫ 1

0
t−1!(f′; t) dt ¡ ∞ (21)

further

f′(0) = f′(1) = 0 (22)

then

‖f(x) − S2
n (f; x)‖ = O(n−1): (23)

It is also shown that we need both conditions, so expressions (21)–(22) on f(x) cannot be
weakened. This is because, e.g. f(x) = x satis8es (21) but not (22), and on the other hand

f(x) =
x(1 − x)

log(x(1 − x))

satis8es (22) but not (21), and (23) does not hold for either function. However, the saturation
problem is not solved for �= 2, because the converse result of Theorem 7, that is (23) implies
conditions (21) and (22), has not been proved yet.

Even less is known for the 16�62 case, when only best error estimates are obtained. From
Theorem 5,

O(n1−�); 1 ¡ � ¡ 2 and O(log−1 n); � = 1 (24)

provided that∫ 1

0
t−�!(f; t) dt ¡ ∞ (25)

holds.
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The results of Theorems 5 and 7 can be carried over directly for KH and MACI interpolators
under the following conditions:

(1) The approximated function f is univariate, i.e. the input universe of the interpolator is one
dimensional.

(2) The knot points are equispaced on the unit interval (14).

The second condition can be weakened, and changed to uniform distribution, since (4) ensures
asymptotically the same behaviour, which yield that expression (15) and estimate (16) remain valid
in the proof of Theorem 5, if we substitute the equispaced system (14) by (4).

Corollary 8. The KH interpolator (5) saturates with order O(n−1) on the class of the functions
f(x)∈Lip 1, if �¿2, the knots point system satis<es (4), and the input is one dimensional.

Proof. Because of f(x)∈Lip 1

!(f; n−1) = max
x;y∈[0;1]

|x−y|6n−1

|f(x) − f(y)|6 1
n

thus (10) can be estimated as

|K (n)
1 − K (n)

2 | = O(n−1):

Hence, as each member of the family of K�
n (�¿2) saturate on the class of Lip 1 with order O(n−1)

and the di9erence between the family members are also in order O(n−1), then the saturation order
of the whole family is O(n−1) with the class Lip 1.

Analog result holds for MACI interpolators:

Corollary 9. The MACI interpolator being a <nite sum of KH interpolators (5) saturates with
order O(n−1) on the class of the functions f(x)∈Lip 1, if �¿2, the knots point system satis<es
(4), and the input is one dimensional.

The proof is analog with the previous one, thus omitted.
The following statements are derived from Theorem 7.

Corollary 10. The best approximation order of the KH interpolator K�
n (f; x) (16�62) is

‖f(x) − K�
n (f; x)‖ =




O(n−1) if � = 2;

O(n1−�) if 1 6 � ¡ 2;

O(log−1 n) if � = 1

on the class of the functions f(x)∈Lip 1, if f(x) further satis<es conditions (21) and (22) for
�= 2, and condition (25) for 16�¡2, and furthermore if the knots point system is in accordance
with (4), and the input is one dimensional.
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Corollary 11. The best approximation order of the MACI interpolator, being a <nite sum of KH
interpolators K�

n (f; x) (16�62),

‖f(x) − MACI�n(f; x)‖ =




O(n−1) if � = 2;

O(n1−�) if 1 6 � ¡ 2;

O(log−1 n) if � = 1

on the class of the functions f(x)∈Lip 1, if f(x) further satis<es conditions (21) and (22) for
�= 2, and condition (25) for 16�¡2, and furthermore, under the uniform distribution of the knot
points (4), and with one dimensional input.

The proofs are similar as in Corollary 8.
The results obtained so far in this paper contribute to the investigation of the approximation

behaviour of fuzzy inference methods. The saturation order and class of an operator determine the
optimal order of convergence, or in other words, the best achievable approximation speed by the
given operator. In our results the approximation error is determined in terms of the modulus of
continuity. This construction o9ers a natural way to determine the necessary and su=cient number
of rules for the approximation of a given function. If the required number of rules is known in terms
of accuracy we can simply do trade-o9 between them: if we prefer higher accuracy in approximation
the number of rules should be set based on Corollary 10 or 11; if we search for the best achievable
approximation for a given rule set its order is also determined by the above expressions.

Let us assume that modulus of continuity w.r.t. to the approximated function is known or estimated
in terms of the number of knot points. Therefore, given a uniformly distributed knot point set, its
density uniquely determines the value of !(f; n−1), because it also sets the number of rules, n, as
the location of knot points determines the core of fuzzy sets (see also the remark after Theorem 2).
Thus, the density of the distribution de8nes the order of approximation error through the modulus
of continuity by Corollary 10 or 11 for KH and MACI method, respectively. Vice versa, given a
prescribed accuracy, we can calculate the order of the su;cient number of rules based on the modulus
of continuity. This value coincides with the necessary number of rules, because Corollaries 8 and
9 circumscribes the conditions of the best achievable approximation. Naturally, these considerations
hold if the conditions of Corollaries 8 and 9 are satis8ed.

In comparison with related works [3,20,32,33] this paper sets out a new direction in universal
approximation 8eld of soft computing techniques. While hitherto only upper bounds for the su;cient
number of rules were determined or estimated, we give estimations also for the necessary number
of rules and determine the optimal order of convergence and the corresponding class of functions.

5. Conclusion

In this paper we derived approximation rates for the KH interpolator and for its modi8cation the
MACI method. The achieved results exploited the connection of Shepard and KH interpolators. We
determined for �¿2 the saturation class and order for KH interpolator, and we got best approximation
error estimates for 16�62 case. Analog results for MACI method were also outlined. The results
o9er trade-o9 facilities between the number of rules and best possible accuracy.
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