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Abstract

We investigate stationary spatially localized hexagon patterns of the two-dimensional Swift–Hohenberg

equation in the parameter region where the trivial state and regular hexagon patterns are both stable.

Using numerical continuation techniques, we trace out the existence regions of fully localized hexagon

patches and of planar pulses which consist of a strip filled with hexagons that is embedded in the trivial

state. We find that these patterns exhibit snaking: for each parameter value in the snaking region, an

infinite number of patterns exist that are connected in parameter space and whose width increases with-

out bound. Our computations also indicate a relation between the limits of the snaking regions of planar

hexagon pulses with different orientations and of the fully localized hexagon patches. To investigate

which hexagons among the one-parameter family of hexagons are selected in a hexagon pulse or front,

we derive a conserved quantity of the spatial dynamical system that describes planar patterns which are

periodic in the transverse direction and use it to calculate the Maxwell curves along which the selected

hexagons have the same energy as the trivial state. We find that the Maxwell curve lies within the

snaking region as expected from heuristic arguments.

Keywords: Localized patterns, hexagons, spots, Turing bifurcation, Swift-Hohenberg equation
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1 Introduction

Localized stationary structures play an important role in many biological, chemical and physical processes
(see, for instance, the textbooks [45, 72, 74]). Such structures have been observed in a variety of experiments
ranging from vertically vibrated granular materials [38, 89], liquid crystals [15], binary-fluid convection [8, 65],
autocatalytic chemical reactions such as the Belousov–Zhabotinsky system [31, 90], electrochemical systems
[1, 6], and localized micro-structures in solidification [48] to nonlinear optical devices [63, 77, 86]. Localized
patterns have also been found in many nonlinear models such as those derived from magnetohydrodynamics
[12], flame fronts [39], lasers [56], vibrated granular materials [36, 88], neural networks [54, 55], and cellular
buckling [47] as well as in the Swift–Hohenberg equation [26, 28, 29, 44, 80], which often serves as a paradigm
for general pattern-forming systems [30, 37].

In this paper, we consider stationary solutions of the Swift–Hohenberg equation [30, 85]

ut = −(1 + Δ)2u − μu + νu2 − u3 (1.1)
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Figure 1: (a) Localized stationary spots and hexagon patches of (1.1) for (μ, ν) = (0.5, 2.2). (b) Localized

stationary spots and stripes of (1.5) for (μ, ν) = (2.5, 4). Both images are color plots of stationary solutions

u(x, y), with x plotted horizontally and y vertically, where the values of u(x, y) are represented by colors as

indicated in the color bars shown to the right of the color plots: the color plots in the remainder of this paper

are produced in the same fashion.
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Figure 2: A partial bifurcation diagram of localized stationary patterns in the 1D Swift–Hohenberg equation

(1.1) is shown for ν = 1.6 (other solution branches are given in Figure 8 below). Dotted blue lines indicate

(temporally) unstable solutions, while solid blue lines denote stable solutions. At each fold along the snake, a

pair of new rolls is formed in the pulse. The left and right fold bifurcations approach the vertical asymptotes

μ1 = 0.181 and μ2 = 0.211, and the Maxwell point is μM = 0.2.

where x ∈ R for the 1D version and (x, y) ∈ R
2 in the planar case. We focus on the region ν ≥ 0 since

the case ν < 0 is then recovered upon replacing u by −u. The trivial state u = 0 is stable for μ > 0
and destabilizes at μ = 0 with respect to perturbations that have nonzero finite spatial wavelength. At
μ = 0, hexagons bifurcate in a transcritical bifurcation from u = 0 for each ν > 0, while rolls bifurcate in a
subcritical pitchfork bifurcation from u = 0 provided ν > νr :=

√
27/38 [44]. While the bifurcating hexagons

and rolls are initially unstable for μ > 0, they stabilize in a subsequent saddle-node bifurcation, leading to
bistability between the nontrivial patterns and the trivial state for μ > 0. The bistability of trivial and
patterned states opens up the possibility of finding fully localized stationary patches of hexagons or rolls
such as those shown in Figure 1. It is patterns of this type that we shall focus on in this paper.

We first review briefly the situation in 1D and refer to §2 for a more extensive discussion. In one space
dimension, the Swift–Hohenberg equation exhibits localized structures as shown in Figure 2. The patterns
shown there are connected in parameter space, and their width increases as we move up on the bifurcation
curve: this scenario is referred to as snaking [92]. There are several interesting questions one may ask about
the patterns shown in Figure 2: can we predict for which values of μ these structures exist, and can we
determine a priori which periodic pattern is selected to form the localized structure?

We begin with the second question: the steady-state equation

− (1 + ∂2
x)2u − μu + νu2 − u3 = 0 (1.2)
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of the 1D Swift–Hohenberg equation exhibits, in the relevant parameter region, a one-parameter family of
periodic patterns for each fixed (μ, ν). To decide which one of these makes up the core of the localized
structure, we consider a front that connects the trivial state to a periodic pattern: this front corresponds
to a heteroclinic orbit of the ordinary differential equation (1.2) that connects u = 0 to a periodic orbit. It
turns out that the ODE (1.2) admits the first integral

H(u) = uxxxux − u2
xx

2
+ u2

x +
(1 + μ)u2

2
− νu3

3
+

u4

4
(1.3)

so that the value [H(u)](x) of H along a solution u(x) of (1.2) does not change as a function of x. In
particular, if we evaluate H along our front, we find that H must vanish along the limiting periodic pattern
as it vanishes at u = 0. Generically, H will vanish only at finitely many periodic orbits in the family of
periodic patterns and will therefore serve as a selection principle that involves only the periodic patterns.

We now address the first question, namely for which parameter values stationary fronts exist. We recall that
the Swift–Hohenberg equation (1.1) posed on R

d with 1 ≤ d ≤ 3 is a gradient system,

ut = −∇E(u),

in H2(Rd), where the energy functional E is given by

E(u) =
∫

Rd

[
[(1 + Δ)u]2

2
+

μu2

2
− νu3

3
+

u4

4

]
dx, x ∈ R

d (1.4)

and the gradient ∇E(u) = δE
δu (u) of E with respect to u is computed in L2(Rd). In particular, E decreases

strictly in time along solutions of (1.1) unless the solution is stationary. We record that the existence of
the first integral H given above is actually a consequence of the translation invariance of the integrand
of E . While we cannot evaluate the energy functional along periodic patterns as they are not localized
whence the integral in (1.4) may not exist, we may, however, define a local energy by integrating over one
spatial period of the underlying periodic pattern. We may then expect, on a heuristic level, that stationary
interfaces between the trivial state and the periodic pattern can exist only when their local energies coincide:
otherwise, one of the states would invade the other one to decrease energy, thus leading to moving fronts.
This gives a heuristic criterion that allows us to determine for which values of μ stationary fronts can exist:
for each μ, compute the periodic pattern u∗(μ) for which H(u∗(μ)) = 0, calculate its local energy E(u∗(μ)),
and then find μ so that E(u∗(μ)) = 0. The corresponding parameter value μM is referred to as the Maxwell
point. It was first pointed out by Pomeau [73] that stationary fronts should exist not only at the Maxwell
point μ = μM but in an entire interval that contains μM where fronts are pinned or locked. Consequently, we
expect to find localized roll patches in an entire interval, and this is what happens in Figure 2. The specific
pinning mechanism leading to Figure 2 was elucidated in [26, 52, 92] and will be discussed in §2.

We now turn to the planar Swift–Hohenberg equation (1.1). Several numerical observations of localized
spots and hexagon patches of (1.1) have been documented in the literature [26, 44, 78]. Localized square
patterns have also been observed in the Swift–Hohenberg equation when an additional nonlinear gradient
term is added [44, 79]. In addition, localized stripes and spots have been found in the cubic-quintic Swift–
Hohenberg equation

ut = −(1 + Δ)2u − μu + νu3 − u5. (1.5)

Close to our approach is the paper [63] in which a complex Ginzburg–Landau equation with a saturable
nonlinearity was studied in a cavity-soliton context. In [63], the steady-state equation was solved numerically
as a boundary-value problem, and the bifurcation diagram was traced out for various localized patterns,
including hexagon patches, using continuation techniques. However, the authors continued solutions only up
to the first fold and not beyond.

The aim of this paper is to investigate hexagon fronts and fully localized hexagon patches in the 2D Swift–
Hohenberg equation (1.1). We have three main results. The first is the construction of a conserved quantity
H for the 2D Swift–Hohenberg equation: the existence of H is a consequence of Noether’s theorem since the
integrand of the energy functional E is invariant under translations, i.e. does not depend explicitly on x.
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Figure 3: Color plots of two stationary fronts are shown for the planar Swift–Hohenberg equation (1.1):

both fronts connect hexagons to the trivial state along the horizontal x-direction, are periodic in the vertical

y-direction, and differ in the way in which their interfaces are aligned in a fixed hexagonal lattice.
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Figure 4: Part of the bifurcation curve corresponding to localized hexagon patches of (1.1) with ν = 1.6 is

shown. Color plots of representative solutions are shown in panels 1-4. The entire snaking curve and color

plots of the associated stationary solutions can be viewed in this [movie].

Proposition 1 (Conserved quantity for the 2D Swift–Hohenberg equation) If u(x, y) is a smooth
solution of the planar Swift–Hohenberg equation (1.1) which is spatially periodic with period � in the y-
variable, then the quantity

H(u) =
∫ �

0

[
uxxxux − u2

xx

2
+ u2

x +
(1 + μ)u2

2
− νu3

3
+

u4

4
− u2

xy − u2
y +

u2
yy

2

]
dy (1.6)

does not depend on x.

As in the 1D case, the first integral H provides a selection principle for hexagons: if we find a planar front
that connects hexagons to the trivial state and is periodic in the transverse direction, see Figure 3, then
H must vanish when evaluated along a single hexagon in the far field of the front. This selection principle
together with the local energy E will allow us to compute Maxwell points for the planar Swift–Hohenberg
equation (1.1). Our second result shows that, for each fixed ν > 0, and all sufficiently small μ > 0, there is
a unique small-amplitude hexagon pattern along which H vanishes. We refer to §3.3 for a stronger result.

Proposition 2 (Existence of hexagons with H = 0) For each fixed ν > 0, there is a number μ0 > 0 so
that the planar Swift–Hohenberg equation (1.1) admits a unique small-amplitude hexagon solution u∗(μ) that
satisfies H(u∗(μ)) = 0 for each μ ∈ (0, μ0). These hexagons satisfy u∗(0) = 0, have wavenumber κ∗(μ) with
κ∗(0) = 1, and depend smoothly on μ.

Our third result is a comprehensive numerical study of localized hexagon patches in the planar Swift–
Hohenberg equation (1.1). Instead of giving a detailed list of these results, which can be found in §5, we
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focus here on the observation that these localized structures snake:

Observation 1 (Snaking of localized hexagon patches) Localized hexagon patches of the Swift–Hohen-
berg equation exist and snake in a wedge-shaped region in the (μ, ν)-parameter plane. The shape of the
hexagon patches changes along the snaking curve: their interfaces resemble planar hexagon fronts with dif-
ferent orientations with respect to a fixed hexagonal lattice; see Figures 3 and 4. The saddle-node bifurcations
of the localized hexagon patches are aligned with saddle-nodes of planar hexagon fronts which are shown as
vertical lines in Figure 4.

The remainder of this paper is organized as follows. We begin in §2 with a review of snaking in one
space dimension as this case motivated our paper to a large extent. We also review known results about
regular hexagons and planar hexagon fronts. In §3, we discuss selection principles for hexagons and prove
Propositions 1 and 2. We outline in §4 the numerical algorithms that we used to compute planar hexagon
fronts and localized hexagon patches and comment on their implementation. Our main results can be found
in §5, where we discuss fully localized hexagon and rhomboid patches. We end in §6 with conclusions and a
discussion.

Throughout this paper, we use color plots to illustrate the profiles of stationary planar patterns and refer
to the caption of Figure 1 for an explanation of what these plots represent. Two-parameter bifurcation
diagrams are always drawn using (μ, ν2) rather than (μ, ν) which makes the diagrams more legible.

2 Review of 1D snaking and planar hexagons

2.1 Snaking in one space dimension

Recall the steady-state equation

− (1 + ∂2
x)2u − μu + νu2 − u3 = 0, x ∈ R (2.1)

of the 1D Swift–Hohenberg equation (1.1). Equation (2.1) has two important features that we shall exploit:
it is invariant under the reflection x �→ −x and admits the first integral H given in (1.3).

At μ = 0, the trivial state u = 0 undergoes a pitchfork bifurcation to even spatially periodic patterns with
period 2π or wavenumber κ = 1. These patterns bifurcate supercritically with μ < 0 when ν < νr :=

√
27/38

and subcritically with μ > 0 when ν > νr. To accommodate the switch from super- to subcritical at ν = νr,
a fold of periodic patterns with wavenumber κ = 1 emerges from (μ, ν) = (0, νr) into the positive half-plane
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Figure 5: Panel (i) contains the numerically computed fold bifurcation curve of 1D rolls of (2.1) with

wavenumber κ = 1 [solid green] and the Maxwell curve [dotted grey] along which rolls with H = 0 and

E = 0 exist. The schematic picture in panel (ii) indicates that, for fixed ν > νr, rolls exist for any wavenum-

ber κ close to one. Panels (iii) and (iv) contain numerical bifurcation diagrams of the rolls that satisfy H = 0

for ν = 1.6: shown are the amplitude and the wavelength l = 1/κ (so that l = 1 corresponds to a period of

2π). The Maxwell point E = 0 occurs on the upper branch where rolls are stable.
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as shown in Figure 5(i). In fact, even periodic patterns bifurcate for any wavenumber κ close to one along
a curve of pitchfork bifurcations, as indicated in Figure 5(ii) for a fixed ν > νr.

We are interested in standing localized structures such as those shown in Figure 2. As argued in §1, the
Maxwell curve predicts parameter regions where these structures may exist [11, 68, 70]: recall that Maxwell
points are found by calculating, for each given (μ, ν), the periodic roll pattern uper(μ, ν) that has vanishing
first integral H = 0 and subsequently adjusting the parameters so that the energy E(uper(μ, ν)), computed
over one period of uper, vanishes as well. This can be done numerically, and the result [17, 19] is the Maxwell
curve shown in Figure 5(i) which emerges from the codimension-two point (0, νr) where the bifurcation to
rolls changes from super- to subcritical. We give two arguments that show that the Maxwell curve can
emerge only from this point. First, small-amplitude rolls are unstable at subcritical bifurcations, while they
bifurcate for μ < 0 at supercritical bifurcations: in neither case can we find stable rolls for μ > 0 that co-exist
with the stable trivial state. Alternatively, the normal form at pitchfork bifurcations is μw − aw3 = 0, and
the associated energy E(w) = μw2/2 − aw4/4 does not vanish at the bifurcating state when a �= 0.

Around the Maxwell curve, a pinning region exists where stable localized patterns can be found [73]. We
shall now briefly review two different approaches that explain why this pinning region is present and why
snaking occurs.

Asymptotics beyond all orders. Near the codimension-two point (μ, ν) = (0, νr) with νr =
√

27/38,
the snaking behavior in (1.1) can be explained by the interaction between the underlying periodic state
and the slowly varying envelope which forms the localized structure. On the level of amplitude equations,
the fast scale of the underlying periodic pattern is ignored, and these amplitude equations then predict
that stationary pulses exist only at the Maxwell point. In the works [11, 13], the fast scale was formally
re-introduced at lowest order into the amplitude equation and the effect on locking and pinning analysed.
This approach predicts an exponentially small width of the order exp(−π/|ν − νr|2) of the locking region
in the parameter μ when ν > νr is fixed with |ν − νr| 	 1, but does not capture the precise asymptotic
behavior in ν. A consistent asymptotic analysis beyond all orders was recently carried out in [25, 52] which
gives the precise asymptotic behavior of the width of the locking region in the parameter μ as a function of ν

as ν approaches νr. Multiple scale expansions that capture the different scaling regimes near the bifurcation
point and the Maxwell curve in one step, albeit without addressing terms beyond all orders, were introduced
earlier in [16, 17]; in addition, the wavelength correction along the Maxwell curve was calculated in [17,
(3.27)].

Dynamical-systems geometry. The second approach we shall discuss is of a more geometric nature and
due to [26, 92]. We rewrite the fourth-order steady-state equation (2.1) as the first-order system

Ux = F (U ;μ, ν), U = (u, ux, uxx, uxxx) ∈ R
4 (2.2)

where we regard x as the time-like evolution variable. Recall that (2.2) has the first integral H from (1.3). The
reflection invariance x �→ −x of (2.1) means that (2.2) is reversible with reverser RU := (u,−ux, uxx,−uxxx):
if U(x) is a solution, so is RU(−x). Reversible solutions U(x) of (2.2), which by definition satisfy U(0) ∈
FixR, correspond to even solutions u(x) of (2.1).

The trivial state u = 0 and the even periodic patterns uper(x) of (2.1) correspond to the equilibrium U = 0
and reversible periodic orbits Uper(x), respectively, of (2.2). If the trivial state u = 0 and the rolls uper(x)
are temporally stable with respect to the Swift–Hohenberg equation, then the corresponding solutions U = 0
and Uper(x) of (2.2) are hyperbolic. If, for instance, U = 0 was not hyperbolic, then the matrix FU (0;μ, ν)
would have a purely imaginary eigenvalue iω, and u(x, t) = eiωx would satisfy the linearization of (1.1)
about u = 0, which contradicts temporal stability. A similar argument applies to purely imaginary Floquet
exponents of Uper(x), which are related to the dispersion relation of uper(x): if the rolls uper(x) are spectrally
stable, then the periodic orbit Uper(x) will have only two Floquet exponents at zero; see [66, 67, 82, 83] and
[81, §3.4.2] for further details. In summary, we can identify the localized patterns uloc(x) shown in Figure 2
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Figure 6: The left-most panel shows the Maxwell curve in the (μ, ν2)-parameter space, while the center-left

panel shows the bifurcation diagram for a fixed value of ν. The three pictures in the center-right panel

illustrate the geometry of the stable and unstable manifolds of the equilibrium U = 0 and the periodic orbit

Uper in a two-dimensional Poincare section [see text for further details]: the tangles in the unstable and stable

manifolds of U = 0 are caused by the expansion and contraction near the periodic orbit and are therefore

more pronounced near the periodic orbit. The localized pattern shown in the right-most panel corresponds to

the intersection Uloc of the stable and unstable manifolds of U = 0 near the periodic orbit Uper.
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Figure 7: As we move upwards on the snaking curve, μ first increases and then decreases. Geometrically,

the localized structure moves from one branch of the invariant manifolds through a saddle-node bifurcation

to the adjacent branch. In doing so, it moves closer to the periodic orbit: thus, it spends more ‘time’ x near

Uper and therefore broadens in space. As a result, its norm increases which explains the structure of the

snaking curve. Besides saddle-node bifurcations, the localized structures also undergo pitchfork bifurcations

which result in two asymmetric structures explained further in the text and in Figure 8.
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Figure 8: The left and center panels contain the bifurcation diagrams of asymmetric localized structures that

bifurcate at pitchfork bifurcations from even localized structures [20, 22]: solutions along the curved branches

are even with minima [blue] or maxima [red] at x = 0, while solutions along the horizontal ladders [black]

are asymmetric. Panels 1-3 contain the graphs of selected solution profiles u(x).
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FixR

Fix R̃

Figure 9: Shown is the dynamics of the linearized Poincaré map near the periodic orbit Uper. On the left,

the parameter μ is close to the pitchfork bifurcation in FixR that creates an asymmetric localized structure

Uasym(0) [red bullet]. As μ is increased, we assume that W u(0) is moved to the left and, correspondingly, by

reversibility, W s(0) is moved upwards. Following their intersection Uasym(0), which occurs along the branches

plotted with dashes, we observe that it ends at a second pitchfork bifurcation in Fix R̃. Thus, the asymmetric

localized structures connect, in parameter space, even solutions with a minimum at x = 0 to even solutions

with a maximum at x = 0. The points Uasym(0) stay on the same horizontal and vertical segments of the

invariant manifolds, and their distance from Uper(0) does therefore not change much: in particular, their

L2-norm cannot change by too much, which explains why the ladders are approximately horizontal. [movie].

with homoclinic orbits of (2.2) that lie in the intersections of the stable and unstable manifolds of U = 0
which come close to the hyperbolic periodic orbit Uper(x).

To visualize this situation better, we restrict (2.2) to the three-dimensional invariant zero level set H−1(0)
of the first integral H. Next, we choose a two-dimensional Poincaré section Σ in the three-dimensional
set H−1(0) at the point Uper(0) on the periodic orbit Uper(x). The fixed-point space FixR of the reverser
R becomes a line in the section Σ which can be used to identify symmetric orbits: note that the phase
diagrams will be symmetric under the reverser R. We now make the assumption that the unstable manifold
of U = 0 intersects the stable manifold of the periodic orbit Uper(x) transversely in the section Σ and that
the parameter μ moves these manifolds transversely through each other1 as shown in Figure 6. Numerical
computations in [42] confirmed this assumption in the snaking regime of a reversible system of two coupled
second-order equations. Figure 6 illustrates the resulting geometry which explains why the existence region
of localized structures is an interval in parameter space. The end points of the intervals correspond to
parameter values where fronts that connect the trivial state to the patterned state disappear in saddle-node
bifurcations. Figure 7 explains in more detail why the localized structures get broader as we move up along
the snaking curve.

As can be seen from Figure 7, the reflection symmetry x �→ −x of the Swift–Hohenberg equation has
another interesting consequence: each saddle-node bifurcation of an even localized structure is accompanied
by a pitchfork bifurcation at which two asymmetric structures bifurcate. In the Swift–Hohenberg equation,
these asymmetric states and the associated bifurcation diagrams were recently computed numerically in
[20, 22], and we reproduce their numerical computations in Figure 8. As shown in Figure 8, the asymmetric
structures connect two different families of even localized structures in parameter space. We give now a brief
heuristic explanation of this phenomenon and refer to [10] for a rigorous approach. Here and in [10], we
assume that the parameter μ unfolds the intersection of W u(0) and W s(Uper) as indicated in Figure 6 and
that the resulting bifurcation diagram of even localized structures is as shown in Figure 8. Each symmetric

1Due to reversibility, the same is then true for the stable manifold of U = 0 and the unstable manifold of Uper(x)
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Figure 10: The middle panel contains the numerically computed fold curves of localized rolls of (2.1) associ-

ated with the folds labelled (1) and (2) in the left panel: the two fold curves collide in a cusp bifurcation. The

right panel contains a schematic illustration of the sheet of localized rolls: fold curves of localized rolls will

collide pairwise in cusps, and we believe that the sequence of cusps approaches the codimension-two point

(0, νr) along the Maxwell curve.

periodic orbit Uper(x) intersects the fixed-point space FixR precisely twice, and the two intersection points
correspond to maxima and minima of uper. Even localized structures arise as intersections of the unstable
manifold W u(0) with FixR either near the maximum or the minimum of Uper. In the Swift–Hohenberg
equation, numerical evidence suggests that both these structures exist; see Figure 8. To capture them, we
can work with two different Poincaré sections Σmax and Σmin, placed at the maximum and minimum, or
else work with a second reverser R̃ := ΠRΠ−1 near the section Σ := Σmin where Π : Σmax → Σmin is the
first-return map induced by the flow of (2.2). We choose the latter approach as it allows us to visualize the
entire dynamics in one section. We straighten out the invariant manifolds of Uper and use the linearized
Poincaré map near the symmetric orbit Uper. Using the assumptions made above on the unfolding of the
intersections with respect to the parameter μ, we obtain the diagrams shown in Figure 9 which reproduce
the numerically observed ladder structure geometrically.

We now turn to a discussion of the shape of the snaking region in the (μ, ν)-parameter space. Figure 6
indicates that snaking occurs in an interval in μ that is bounded by fold bifurcations of heteroclinic orbits
which connect U = 0 to the rolls Uper(x). To demarcate the snaking region in (μ, ν)-space, we should
therefore continue these fold bifurcations in parameter space, which is a difficult numerical task as we would
need to find simultaneously periodic solutions, their Floquet eigenfunctions, and the heteroclinic orbits at
a structurally unstable saddle-node bifurcation (see [53] for a recent numerical approach to this problem).
Instead, we continue fold bifurcations of localized rolls in the parameters (μ, ν). As shown in Figure 10,
these fold curves do not reach the codimension-two point (μ, ν) = (0, νr) but instead collide pairwise in cusp
bifurcations. Continuing fold curves of localized rolls therefore gives a good approximation of the snaking
region which fails, however, near the codimension-two point.

2.2 Regular hexagonal patterns

We briefly review known results on the existence and stability of regular hexagons ([33, 40, 41, 49]; see also
[35, §2] for a review), which can be tiled to cover the entire plane.

The planar Swift–Hohenberg equation

ut = −(1 + Δ)2u − μu + νu2 − u3, x = (x, y) ∈ R
2 (2.3)

is equivariant under the action of the Euclidean symmetry group E(2) which consists of rotations, transla-
tions, and reflections of the plane. Thus, we may seek stationary solutions to this equation that are invariant
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Figure 11: Shown are color plots of regular hexagons on the lattice L together with the lattice vectors l1, l2,

and l3 in panel (a) and with two lines with Bravais–Miller indices 〈10〉 and 〈11〉 in panel (b).

under a given fixed subgroup of E(2). We focus on hexagons with wavenumber κ = 1 and consider therefore
the planar hexagonal lattice L

L = {n1l1 + n2l2 + n3l3 ∈ R
2; n1, n2, n3 ∈ Z},

where

l1 = 2π

(
1,

1√
3

)
, l2 = 2π

(
0,− 2√

3

)
, l3 = 2π

(
−1,

1√
3

)
;

see Figure 11. It is convenient to retain the lattice vector l3 even though it is redundant. Hexagons are
time-independent solutions u(x) of (2.3) which are invariant under the subgroup D6 of E(2) and which are
L-periodic so that

u(x + l) = u(x) ∀l ∈ L, ∀x ∈ R
2.

To find hexagons, it is convenient to use the dual lattice L∗ defined via

L∗ = {n1k1 + n2k2 + n3k3 ∈ R
2; n1, n2, n3 ∈ Z}

with

k1 = (−1, 0), k2 =

(
1
2
,

√
3

2

)
, k3 =

(
1
2
,−

√
3

2

)

which allows us to represent L-periodic solutions of (2.3) by the Fourier series

u(x, t) =
∑

k∈L∗
ûk(t)eik·x.

We now restrict our attention to hexagons that bifurcate from u = 0. Linearizing (2.3) about u = 0 gives the
linear operator −(1+Δ)2−μ. Posed on appropriate spaces of L-periodic functions, the first instability occurs
at μ = 0 where an eigenvalue of algebraic multiplicity six, with eigenfunctions exp(±ikj · x) for j = 1, 2, 3,
crosses into the right half-plane. On the resulting six-dimensional center manifold, we can parametrize
solutions as

u(x, t) = A1(t)e−ix + A2(t)ei(x+
√

3y)/2 + A3(t)ei(x−√
3y)/2 + h(A1, A2, A3, A1, A2, A3;μ, ν) + c.c., (2.4)

where the function h represents the higher-order contributions to the center manifold. The flow on the
center manifold can be calculated for |μ| 	 1 and |ν| 	 1 by evaluating the Swift–Hohenberg equation on
the elements of the center manifold and projecting the resulting expression back onto the center eigenspace2.
The result is

Ȧ1 = −μA1 + α1A2A3 + α2A1|A1|2 + α3A1(|A2|2 + |A3|2) + r(A1, A2, A3)

Ȧ2 = −μA2 + α1A1A3 + α2A2|A2|2 + α3A2(|A1|2 + |A3|2) + r(A2, A3, A1) (2.5)

Ȧ3 = −μA3 + α1A2A1 + α2A3|A3|2 + α3A3(|A2|2 + |A1|2) + r(A3, A1, A2)
2If ν is small, then the function h is not needed for the calculation of the cubic terms of the reduced vector field: the

coefficients in (2.5) for arbitrary ν can be found in [44]
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A

μ

bistability

saddle
node

E =0

Figure 12: The bifurcation diagram of hexagons with critical wavenumber κ = 1 in the Swift–Hohenberg

equation is shown for fixed 0 < ν � 1. Solid lines correspond to stable patterns, while dotted lines correspond

to unstable ones. The hexagons undergo a saddle-node bifurcation at amplitude A = ν/15 + O(ν2) when

μ = ν2/15 + O(ν3). The energy E vanishes only for μ = μE given in (2.9) for the hexagons with amplitude

A = 4ν/45 + O(ν2) on the upper branch.

plus the complex conjugated equations of six ODEs for the complex amplitudes Aj , where the coefficients
αj are real and given by

α1 = 2ν + O(|μ|(|μ| + |ν|)), α2 = −3 + O(|μ| + |ν|), α3 = −6 + O(|μ| + |ν|),
and the remainder term r(z) = O(|z|4) is of higher order. Equivariance of the Swift–Hohenberg equation and
invariance of the hexagonal lattice with respect to rotations by π/3, reflections, and translations manifest
themselves in the equivariance of the reduced system with respect to the transformations

σ : (A1, A2, A3) �→ (A3, A1, A2)

ρ : (A1, A2, A3) �→ (A1, A3, A2)

τa : (A1, A2, A3) �→ (eia1A1, e−i(a1+
√

3a2)/2A2, ei(−a1+
√

3a2)/2A3),

respectively. Hexagons are invariant under D6 and therefore lie, in particular, in the one-dimensional inter-
section of the fixed-point spaces of σ2 and σ3, which is given by A := A1 = A2 = A3 ∈ R. As an intersection
of fixed-point spaces, the line A1 = A2 = A3 ∈ R is invariant under (2.5), and hexagons can therefore be
found as nontrivial equilibria of the differential equation

Ȧ = −μA + 2νA2 − 15A3 + O((|μ| + |ν|)(|μ| + |A|)|A|2 + |A|4) (2.6)

which exist for
μ = 2νA − (15 + O(|ν| + |A|))A2. (2.7)

The stability of these hexagons with respect to L-periodic perturbations is calculated by considering the
linearization of (2.5) about the hexagons [23, 40]. The resulting bifurcation diagram of hexagons is plotted
for ν > 0 in Figure 12; other solution branches corresponding to mixed modes, which bifurcate in secondary
bifurcations, and rolls exist but are not shown in Figure 12. The hexagons with A > 0 shown in Figure 12
are up-hexagons: our focus is on μ, ν > 0 and we shall therefore encounter only up-hexagons in the rest of
this paper. When ν < 0, the bifurcation diagram in Figure 12 does not change except that A is reflected via
A �→ −A: in this case, localized hexagon patterns consist of down-hexagons though the bifurcation diagrams
shown in the remainder of the paper would not change due to the symmetry (u, ν) �→ (−u,−ν).

We now calculate the energy E(u) given in (1.4) along the hexagon branch (2.7). Substituting

u(x, y) = 2A
[
cos(x) + cos((x +

√
3y)/2) + cos((x −

√
3y)/2)

]
into (1.4) and integrating over the fundamental domain [0, 4π] × [0, 4π/

√
3], we find that the energy of the

hexagons with wavenumber κ = 1 is given by

E =
8π2A3

√
3

(4ν − 45A) + O((|ν| + |A|)A4) (2.8)

11



which vanishes precisely when A = 4ν/45 + O(ν2), which corresponds to the parameter curve

μE =
8ν2

135
+ O(ν3). (2.9)

For fixed ν > 0, the energy (2.8) along the bifurcating hexagons is strictly larger than zero for 0 < |A| 	 1.

Throughout this section, we considered only hexagons with wavenumber κ = 1. Hexagons with wavenumbers
κ close to one bifurcate for μ = −(1− κ2)2, and these can be captured by an analogous analysis upon using
the arguments (κx, κy) in place of (x, y) in the right-hand side of (2.4).

2.3 Planar hexagon fronts

We now discuss planar stationary hexagon fronts that connect hexagons to the trivial state. As illustrated
in Figure 3, these fronts can have different orientations with respect to the hexagonal lattice L, which can
be classified using the Bravais–Miller index [5]:

Definition 1 (Bravais–Miller index) Fix the hexagonal lattice L. The Bravais–Miller index 〈n1 n2 n3〉
of a line in the plane is given by the reciprocals nj of the intercepts of the line with the lines Rlj generated
by the lattice vectors lj (assigning the reciprocal nj = 0 if the line does not intersect Rlj). Negative indices
−n with n > 0 are conventionally written as n := −n. Since n1 +n2 +n3 = 0, we may write the index using
only two indices: our choice is 〈n1 n2〉, and we refer to Figure 11(b) for examples.

If a hexagon front has a straight interface, we assign the Bravais–Miller index of its interface to it. Two
examples of Bravais–Miller indices are given in Figure 11(b), and the corresponding hexagon fronts are
shown in Figure 3. We shall present more detailed numerical results for the existence of fronts with these
orientations later in the paper.

For μ close to zero, stationary fronts between hexagons and the trivial state can be found using a formal
multi-scale expansion as carried out in [60], though we note that this approach cannot capture the expected
pinning and locking of these fronts. To construct stationary 〈10〉 fronts, we substitute the ansatz

u(x, y) = ε
(
A1(εx)e−ix + A2(εx)

[
ei(x+

√
3y)/2 + ei(x−√

3y)/2
]

+ c.c.
)

into (2.3), set μ = ε2μ̃ and ν = εν̃, and expand in powers of ε. To leading order, we obtain the system

0 = 4∂2
XA1 − μ̃A1 + 2ν̃A

2

2 − 3A1|A1|2 − 12A1|A2|2 (2.10)

0 = ∂2
XA2 − μ̃A2 + 2ν̃A1A2 − 9A2|A2|2 − 6A2|A1|2

where the nonlinearity on the right-hand side comes from (2.5) upon setting A2 = A3. A similar ODE can
be derived for 〈11〉 fronts and, in fact, for fronts of any given orientation [60].

Stationary fronts with index 〈10〉 that connect the trivial state to hexagons with wavenumber κ = 1 cor-
respond to heteroclinic orbits of (2.10) that connect (A1, A2) = (0, 0) to the hexagon solutions (A1, A2) =
(Ã, Ã) where A = εÃ is an equilibrium of (2.6). Equation (2.10) admits the first integral

H(A1, A2) = 2|∂XA1|2 + |∂XA2|2 − μ̃

( |A1|2
2

+ |A2|2
)

(2.11)

+ν̃(A1A
2

2 + A1A
2
2) −

3
4
|A1|4 − 6|A1|2|A2|2 − 9

2
|A2|4

which is constant along solutions of (2.10). In particular, heteroclinic orbits between (0, 0) and (Ã, Ã) can
exist only when H(Ã, Ã) = H(0, 0) = 0 which gives the condition

H(Ã, Ã) = −3μ̃

2
Ã2 + 2ν̃Ã3 − 45

4
Ã4 = 0
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that we need to solve for Ã. Using (2.7) and interpreting the results in the original unscaled parameters, we
arrive at the condition

μM =
8ν2

135
+ O(ν3) (2.12)

along which H vanishes at the bifurcating hexagons with wavenumber κ = 1. Equation (2.9) shows that the
energy E vanishes at the same hexagons for the same parameter values, to the order in which we computed
them. Thus, the curve defined by (2.12) gives the Maxwell curve, which provides a heuristic criterion for the
existence of planar fronts but does not account for pinning and locking phenomena.

The analysis reviewed here is valid only in the limit (μ, ν) → 0 and does not address the wavenumber
selection as we fixed κ = 1. In §3, we will construct a conserved quantity H which defines the Maxwell curve
for general parameter values and prove Proposition 3 on the selection of hexagons that satisfy H = 0. In
§5.2, we shall compare the predictions made by the Maxwell curve (2.12) and its extension from §3 with
numerical computations for the full 2D Swift–Hohenberg equation.

3 Spatial dynamics, and selection principles for hexagons

In this section, we prove Propositions 1 and 2.

3.1 Proof of Proposition 1

Proposition 1 states that if u(x, y) is a bounded solution of the planar stationary Swift–Hohenberg equation

− (1 + Δ)2u − μu + νu2 − u3 = 0, (x, y) ∈ R
2 (3.1)

which is spatially periodic with period � in the y-variable, then the quantity

H(u) =
∫ �

0

[
uxxxux − u2

xx

2
+ u2

x +
(1 + μ)u2

2
− νu3

3
+

u4

4
− u2

xy − u2
y +

u2
yy

2

]
dy (3.2)

does not depend on x. This can, of course, be verified directly by computing the derivative of (3.2) with
respect to x and using (3.1), and we omit this straightforward calculation.

Instead, we outline how the first integral H can be derived in the first place from the translation invariance
of the Lagrangian associated with (3.1) and refer to [2, 3] and [24, Ch. 15] for a general abstract approach.
We start with a general energy functional3

E(u) =
∫

Rd

L(u(x),∇u(x),Δu(x)) dx, x = (x1, . . . , xd) ∈ R
d

where L(q, p, r) : R × R
d × R → R is a given smooth function that does not depend explicitly upon x. The

Euler–Lagrange equation associated with the energy functional E reflects the extremum condition ∇E(u) =
δE
δu (u) = 0, where the gradient with respect to u is calculated in the L2-scalar product, and is given by

Lq(u,∇u,Δu) −∇ · Lp(u,∇u,Δu) + ΔLr(u,∇u,Δu) = 0, x = (x1, . . . , xd) ∈ R
d, (3.3)

where the partial derivatives Lq, Lp and Lr of the function L(q, p, r) are evaluated at (u(x),∇u(x),Δu(x)).
Assume now that u(x) is a smooth solution of the Euler–Lagrange equation (3.3). We compute

d
dx1

[L(u,∇u,Δu)] = Lqux1 + Lp · ∇ux1 + LrΔux1

(3.3)
= (∇ ·L p − ΔLr)ux1 + Lp · ∇ux1 + LrΔux1

= ux1∇ ·L p + ∇ux1 · Lp + LrΔux1 − (ΔLr)ux1

= ∇ · (ux1Lp) + ∇ · (Lr∇ux1 − ux1∇Lr).

Thus, we have established the existence of a conservation law for the Euler–Lagrange equation.
3In §3.1, we use L exclusively for the Lagrangian; in all other sections, this letter refers to the hexagonal lattice
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Lemma 1 Assume that u(x) is a smooth solution of the Euler–Lagrange equation (3.3) associated with the
Lagrangian L(q, p, r), then the conservation law

∂x1L(u,∇u,Δu) −∇ · [ux1Lp(u,∇u,Δu) + Lr(u,∇u,Δu)∇ux1 − ux1∇Lr(u,∇u,Δu)] = 0 (3.4)

is satisfied for all x ∈ R
d.

We now return to the planar Swift–Hohenberg equation (3.1) which is the Euler–Lagrange equation associated
with the energy functional

E(u) =
∫

R2
L(u,∇u,Δu) dxdy

for the Lagrangian

L(q, p, r) :=
(q + r)2

2
+

μq2

2
− νq3

3
+

q4

4
(3.5)

where (q, p, r) ∈ R × R
2 × R. Lemma 1 asserts that (3.4) is met for any smooth solution u(x, y) of (3.1). If

we further assume that u(x, y) is periodic with period � in y, then we can integrate (3.4) in y over [0, �] and
use periodicity in y to find that the equation

∂x

∫ �

0

[L(u,∇u,Δu) − uxLp1(u,∇u,Δu) − Lr(u,∇u,Δu)uxx + ux∂xLr(u,∇u,Δu)] dy = 0

is met for all x, where we write p = (p1, p2). In particular, along such solutions,

∫ �

0

[L(u,∇u,Δu) − uxLp1(u,∇u,Δu) − Lr(u,∇u,Δu)uxx + ux∂xLr(u,∇u,Δu)] dy

does not depend on x. Substituting the expression for L from (3.5), we find that the integral above coincides
with the expression (3.2) for H as claimed.

3.2 Spatial dynamics

As in the 1D situation, the quantity H(u) given in (3.2) determines which hexagons can be connected by a
stationary planar front to the trivial state. We use spatial dynamics to gain further insight into why snaking
should occur for stationary planar fronts. We focus on fronts that connect hexagons to the trivial state and
that are spatially periodic along the interface.

Thus, assume that u(x, y) is a smooth solution of (3.1) which is periodic in y with positive minimal period
�. We define the wavenumber

κ =
2π

�

and introduce the rescaling φ = κy. With this rescaling, φ ∈ [0, 2π] corresponds to y ∈ [0, �], and the planar
Swift–Hohenberg equation (3.1) becomes

∂4
xu + 2κ2∂2

x∂2
φu + κ4∂4

φu + 2(∂2
xu + κ2∂2

φu) + (1 + μ)u − νu2 + u3 = 0. (3.6)

Exploiting that we are now interested in solutions with period 2π in φ, we write this equation as a first-order
system in x and obtain

Ux = A(μ, κ)U + N (U ; ν), U ∈ U (3.7)

where

A(μ, κ) =

⎛
⎜⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1

−κ4∂4
φ − 2κ2∂2

φ − (1 + μ) 0 −2 − 2κ2∂2
φ 0

⎞
⎟⎟⎟⎠ , N (U ; ν) =

⎛
⎜⎜⎜⎝

0
0
0

νU2
1 − U3

1

⎞
⎟⎟⎟⎠

14



and U(x) = U(x)(ϕ) is, for each fixed x, a function of ϕ that lies in U := H3(S1)×H2(S1)×H1(S1)×L2(S1),
where S1 is the interval [0, 2π] with the end points identified. Equation (3.7) is reversible with respect to
the reverser

RU = R(U1, U2, U3, U4)t = (U1,−U2, U3,−U4)t,

which corresponds to reflections in x, and admits the first integral

H(U ;μ, ν, κ) =
∫ 2π

0

[
U2U4 − U2

3

2
+ U2

2 +
(1 + μ)U2

1

2
− νU3

1

3
+

U4
1

4
(3.8)

−κ2(∂φU2)2 − κ2(∂φU1)2 +
κ4(∂2

φU1)2

2

]
dφ

which is simply (3.2) with y rescaled and (u, ux, uxx, uxxx) replaced by U . Even though the system (3.7)
is ill-posed, in the sense that (3.7) may not have a solution for a given initial condition, we can still apply
the theory developed in [71, 82, 83] to show that stable and unstable manifolds of equilibria and periodic
orbits of (3.7) exist. These manifolds are infinite-dimensional, but the results in [10, 71, 83] imply that the
geometric situation for (3.7) is analogous to the 1D situation.

The existence of the first integral H implies that if there is a heteroclinic orbit of (3.7) that connects
U = 0 to a periodic orbit, then H must vanish along the heteroclinic orbit and on the periodic orbit. In
particular, if we seek stationary fronts between the trivial state and regular hexagons, then for each fixed
(μ, ν) there will typically be a unique regular hexagon, with a uniquely selected wavenumber κ, that satisfies
the condition H = 0. Under appropriate existence and transversality assumptions on the heteroclinic orbits
that correspond to such fronts, we can use spatial dynamics to prove the existence of transverse homoclinic
orbits, corresponding to planar hexagon pulses with the same selected hexagonal wavenumber, and of complex
snaking bifurcation diagrams, and we refer to [10] for details.

For fully localized hexagon patches such as those shown in Figures 1(a) and 4, spatial dynamics may not
work: while we can view the radial variable as the evolution variable, it is not clear how appropriate
function spaces can be set up that allow for the increasingly finer hexagon structure in the angular variable.
Nevertheless, we may formally move along the radial direction from the center of a localized hexagon patch
towards infinity, and consider the interface between regular hexagons and the trivial state at the patch
boundary: if this boundary becomes approximately planar as the patch grows, as seems to be the case for
the hexagons patches that we present later in this paper, then we should expect, on a formal level, that
the selection principle for hexagon fronts applies to localized patches too: the existence region of localized
hexagon patches should therefore be centered around the Maxwell curve of the planar hexagon fronts between
trivial state and regular hexagons. Furthermore, the hexagons inside the hexagon patch should satisfy H = 0,
which selects their wavenumber.

So far, we have focused on planar hexagon fronts between the trivial state and regular hexagons as these
are relevant for localized hexagon patches. However, other stationary planar hexagon fronts exist, and we
outline now how they arise and what their spatial profiles look like. Assume that we found a transversely
constructed heteroclinic orbit of (3.7) between regular hexagons and the trivial state for the parameter values
(μ0, ν0) and the wavenumber κ0. If we vary the wavenumber κ near κ0 while keeping (μ0, ν0) fixed, then the
assumed transversality implies that the heteroclinic orbit will persist. However, this orbit will now connect
the trivial state to frustrated hexagons that have minimal period � = 2π/κ in the y-direction but are slightly
compressed or expanded in the x-direction to accommodate the condition H = 0 on the new cross-section
[0, �]. The planar hexagon fronts constructed in this fashion live on the domain R × [0, �] with periodic
boundary conditions in the y-variable. Periodic boundary conditions allow us to view these fronts as planar
hexagon fronts on the domains R × [−n�, n�] for arbitrary positive integers n on the plane: the resulting
fronts connect the trivial state to frustrated hexagon patterns that are periodic with minimal period � in the
transverse y-direction. The corresponding Maxwell curves will depend on � (or κ), and we therefore obtain
an entire family of Maxwell curves.
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3.3 Regular hexagons

We prove Proposition 2 which states that, for each fixed ν, there is a unique branch of regular hexagons
which bifurcate from u = 0 at μ = 0 along which the first integral H from (3.2) vanishes. The wavelength
of these selected hexagons may vary along the branch and therefore needs to be treated as an unknown
which will adjust itself to satisfy the constraint H = 0. This is a special case of the more general problem
of finding solutions to Hamiltonian systems with prescribed Hamiltonian [9, 14, 18, 69, 75, 76]. Indeed, we
prove Proposition 2 by applying the following general bifurcation theorem:

Theorem 3.1 ([9, Theorem 2.2]) Let X , Y and Z be Banach spaces. Let ψ ∈ Z∗, F ∈ Cω(X × R
2,Y),

and H ∈ Cω(X × R
2,Z), and consider the equation(

F(u, μ, κ)
ψ(H(u, μ, κ))

)
= 0, (3.9)

where u ∈ X and (μ, κ) ∈ R
2. We assume that u = 0 is a solution of (3.9) for all (μ, κ) with Hu(0, μ, κ) ≡ 0.

Furthermore, assume that Fu(0, μ0, κ0) ∈ L(X ,Y) is Fredholm4 with index zero with N(Fu(0, μ0, κ0)) = Rû �=
{0}. We write X = Rû ⊕ X̂ , Ŷ := R(Fu(0, μ0, κ0)), Y = Rv̂ ⊕ Ŷ and denote by P : Y → Ŷ the projection
along v̂. We assume now that ψ(Huu(0, μ0, κ0)[û, û]) = 0 and that the operator D ∈ L(X̂ ×R

2, Ŷ ×R
2) given

by

D :=

⎛
⎜⎝ PFu(0, μ0, κ0) PFuμ(0, μ0, κ0)[û, 1] PFuκ(0, μ0, κ0)[û, 1]

0 (1 − P )Fuμ(0, μ0, κ0)[û, 1] (1 − P )Fuκ(0, μ0, κ0)[û, 1]
ψ(Huu[û, ·]) ψ(Huuμ[û, û, 1]) ψ(Huuκ[û, û, 1])

⎞
⎟⎠ (3.10)

is an isomorphism. Under these assumptions, (0, μ0, κ0) is a bifurcation point for (3.9), and there is an
interval I containing 0 and a unique analytic branch (u, μ, κ)(s) of solutions of (3.9), defined for s ∈ I,
which satisfies (u, μ, κ)(0) = (0, μ0, κ0) and ‖u(s) − sû‖X = O(s2) as s → 0.

We now set up an appropriate framework that allows us to appeal to the preceding theorem to prove
Proposition 2. We first rescale (x, y) by setting x = X/κ and y = Y/κ. In the rescaled variables, the
Swift–Hohenberg equation is given by

(1 + κ2Δ)2u + μu − νu2 + u3 = 0.

We are interested in regular hexagons and therefore seek, as in §2.2, solutions with D6-symmetry. In addition,
we require that solutions are centered at the origin to reduce the multiplicity of solutions. Thus, we set

X =
{

u ∈ C4(R2, R); u(X, Y ) = u(X, Y + 4π/
√

3) = u(X + 2π, Y + 2π/
√

3),

u(X,Y ) = u((X +
√

3Y )/2, (−
√

3X + Y )/2) ∀(X, Y )
}

Y =
{

u ∈ C0(R2, R); u(X, Y ) = u(X, Y + 4π/
√

3) = u(X + 2π, Y + 2π/
√

3),

u(X,Y ) = u((X +
√

3Y )/2, (−
√

3X + Y )/2) ∀(X, Y )
}

Z = C0(R, R)

and define

F(u, μ, κ) := (1 + κ2Δ)2u + μu − νu2 + u3

H(u, μ, κ) :=
∫ 4π√

3

0

[
κ4

(
uXXXuX − u2

XX

2

)
+ κ2u2

X +
(1 + μ)u2

2
− νu3

3
+

u4

4

−κ4u2
XY − κ2u2

Y +
κ4u2

Y Y

2

]
dY

ψH(u, μ, κ) := H(u, μ, κ)
∣∣
X=0

.

4A linear operator L is called Fredholm if its null space N(L) is finite-dimensional, its range R(L) is closed, and the range

R(L) has finite codimension. In this case, the Fredholm index is defined to be the difference dimN(L) − codim R(L)
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The required regularity assumptions are then met, and it is clear that u = 0 is a solution for all (μ, κ) with
Hu(0, μ, κ) ≡ 0. We calculate the derivatives

Fu(0, μ, κ)[v] = (1 + κ2Δ)2v + μv

Fuμ(0, μ, κ)[v] = v

Fuκ(0, μ, κ)[v] = 4κ3Δ2v + 2κΔv

Huu(0, μ, κ)[v, w] =
∫ 4π√

3

0

[κ4(vXwXXX + vXXXwX − vXXwXX) + 2κ2vXwX + (1 + μ)vw

−2κ4vXY wXY − 2κ2vY wY + κ4vY Y wY Y ] dY

Huuμ(0, μ, κ)[v, w] =
∫ 4π√

3

0

vw dY

Huuκ(0, μ, κ)[v, w] =
∫ 4π√

3

0

[4κ3(vXwXXX + vXXXwX − vXXwXX) + 4κvXwX

−8κ3vXY wXY − 4κvY wY + 4κ3vY Y wY Y ] dY.

The analysis reviewed in §2.2 implies that we should pick (μ0, κ0) = (0, 1) for which Fu(0, 0, 1) has a one-
dimensional null space spanned by

û(X,Y ) = cos(X) + cos((X +
√

3Y )/2) + cos((X −
√

3Y )/2).

We may set v̂ := û and use the L2-inner product on the fundamental periodicity domain [0, 4π]× [0, 4π/
√

3]
to define complements X̂ and Ŷ of Rû in X and Y, as Fu(0, 0, 1) is symmetric with respect to this inner
product.

Substituting these expressions, we find that Huu(0, 0, 1)[û, û] = 0. Furthermore, we find that the operator
D defined in (3.10) is given by

D =

⎛
⎜⎝ PFu(0, 0, 1) 0 0

0 1 2
� 4π

√
3 −8π

√
3

⎞
⎟⎠ ∈ L(X̂ × R

2, Ŷ × R
2).

In particular, this operator is invertible, and we obtain the following result, which is formulated again in the
original spatial variables:

Proposition 3 (L-periodic hexagons with H = 0) Fix any ν, then there exists an interval I ⊂ R and a
unique branch s �→ (u, μ, κ)(s) of nontrivial L-periodic hexagons of the Swift–Hohenberg equation (3.1) with
zero constraint (3.8) and aspect ratio κ(s), which are defined and smooth for s ∈ I. Moreover, (u, μ, κ)(0) =
(0, 0, 1) and∥∥∥[u(s)](x, y) − s

[
cos(κ(s)x) + cos(κ(s)(x +

√
3y)/2) + cos(κ(s)(x −

√
3y)/2)

]∥∥∥
C4

= O(s2) (3.11)

as s → 0.

For ν > 0, (2.7) and (3.11) imply that μ(s) > 0 for all sufficiently small s > 0, as claimed in Proposition 2.

4 Numerical algorithms

In this section, we describe the numerical algorithms, and their implementation, that we used to compute
regular hexagons, planar hexagon pulses, and localized hexagon patches.

Though we will rely on continuation methods for most of our computations, we shall also occasionally employ
an initial value problem solver, which we discuss first. Afterwards, we outline the computation of regular
hexagons and the associated hexagon Maxwell curve. This information will guide us as to where we may
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find hexagon pulses and localized hexagon structures in the Swift–Hohenberg equation. We then move on
to the computation of planar hexagon pulses that are periodic in the transverse direction. Last, we present
the numerical methods for the computation of localized hexagon patches: these methods are designed to
take advantage of the D6-symmetry of localized structures and allow us to compute localized structures that
extend over large spatial regions. The computations of localized hexagon patches were also repeated with
other methods to check the reliability of the numerical results.

The actual computations were carried out on finch, a dual core 2.7 GHz PowerPC G5 with 4GB of RAM, and
phoenix, a server with two 3GHz dual core Xeon processors with 8GB of RAM, both running Mac OS 10.4.

4.1 The initial value problem solver

To quickly find solutions of the Swift–Hohenberg equation, investigate the stability of patterns with respect to
small symmetry-breaking perturbations, and confirm the solutions obtained from our other numerical solvers,
we employ an initial value problem solver for the Swift–Hohenberg equation (1.1), which we shall now discuss
briefly. First, we use the 2D Fourier transform to reduce the initial value problem on a rectangular box with
periodic boundary conditions to a system of ODEs. The resulting ODE system is truncated at a sufficiently
large Fourier mode and solved in time using the first-order exponential time-stepping algorithm developed
in [27]. We implemented this solver in matlab. Computations are done on domains of size 60 × 60 with
256 × 256 and 512 × 512 Fourier modes. Typical time steps are 0.01 and 0.001.

4.2 Regular hexagons and Maxwell curves

To find regular hexagons, we proceed initially as in §3.3. It has been shown in [61, 62] that regular hexagons
can be computed in a rectangular box with Neumann boundary conditions provided the ratio of the lengths
of the sides of the rectangle is an integer multiple of

√
3. Thus, we introduce new independent coordinates

X = κx and Y = κy and use the rescaled Swift–Hohenberg equation

F(u;μ, ν, κ) = (1 + κ2Δ)2u + μu − νu2 + u3 = 0, (X, Y ) ∈ Ωhex (4.1)

on the computational domain Ωhex = (0, 4π) × (0, 4π/
√

3) with Neumann boundary conditions; see Fig-
ure 13(a).

For the computation of Maxwell curves, we add the constraints

H(u;μ, ν, κ) =
∫ 4π√

3

0

[
−κ4(uXX)2

2
+

(1 + μ)u2

2
− νu3

3
+

u4

4
− κ2(uY )2 +

κ4(uY Y )2

2

]
X=0

dY = 0, (4.2)

which ensures that the first integral H vanishes, and

E(u;μ, ν, κ) =
∫

Ωhex

[
[(1 + κ2Δ)u]2

2
+

μu2

2
− νu3

3
+

u4

4

]
dX dY = 0, (4.3)

which enforces zero energy. Note that several terms in the original expression (3.2) for H vanish on account
of the Neumann conditions uX(0, Y ) = uXXX(0, Y ) = 0. The choice of our computational domain means
that we accurately compute the energy of two full hexagons in (4.3); see Figure 13(a).

We expect that the equation F(u;μ, ν, κ) = 0 has a locally unique regular zero u for each fixed (μ, ν, κ) in
appropriate regions5 in parameter space. We can also use (4.1) together with the constraints (4.2)-(4.3) in
a numerical continuation framework where we expect to find a curve of solutions (u, μ, ν, κ) that depend on
a one-dimensional arclength parameter s. Since the resulting Maxwell curves do not exhibit any folds in the
parameter μ, we can, in fact, compute this curve by stepping in the parameter μ.

For the actual computations, we evaluate derivatives using spectral differentiation as in [87, §3] and compute
the integrals in the constraints (4.2)-(4.3) using the periodic trapezoid rule [87, §12]. We now briefly outline

5For instance, for μ close to zero due to the results in §2.2; see also Proposition 3
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how this is done in our context. We choose the mesh Xi = 4πi/N and Yj = 4πj/N
√

3 for i, j = 1, . . . N

and write uij = u(Xi, Yj) on this mesh. A convenient way for evaluating first-order derivatives and the
Laplacian is via Kronecker products: if A is an m × n matrix and B is a p × q matrix, then the Kronecker
product A⊗B is an mp× nq matrix which consists of m× n blocks where each block is a p× q matrix: the
(i, j)th block is given by aijB. Introducing the step size h = 2π/N , the spectral differentiation matrices for
functions of one variable are given by

DN = toeplitz

[
0,

(
(−1)j

2 tan(jh/2)

)
j=1,...,N−1

]

for the first derivative and by

D
(2)
N = toeplitz

[
− π2

3h2
− 1

6
,

(
− (−1)j

2 sin2(jh/2)

)
j=1,...,N−1

]

for the second derivative [87, §3], where toeplitz[v] denotes the symmetric Toeplitz matrix (a matrix whose
entries are constant along each diagonal) formed by the row vector v ∈ R

N . Using Kronecker products, we
can now set up the N2 × N2 differentiation matrices for u(X, Y ) which are given by

DX,N = I ⊗
(

1
4

)
DN , DY,N =

(√
3

4

)
DN ⊗ I, ΔN = I ⊗

(
1
4

)2

D
(2)
N +

(√
3

4

)2

D
(2)
N ⊗ I

corresponding, respectively, to the first-order derivatives ∂X and ∂Y and to the Laplacian Δ.

The above procedure results in a finite-dimensional system. We solve this system in matlab using the
nonlinear Newton trust-region solver fsolve. For (μ, ν) close to zero, we choose

u(X, Y ) = A[cos(X) + cos((X +
√

3Y )/2) + cos((X −
√

3Y )/2)]

as an initial guess, where a good approximation for the amplitude A can be obtained from normal-form
theory by solving (2.7). matlab’s Newton trust-region solver has the advantage of often achieving global
convergence even when starting from poor initial guesses. We have frequently obtained better convergence
by solving initially only the Swift–Hohenberg equation, without the integral constraints (4.2)-(4.3), with
κ = 1 and ν fixed. Afterwards, using this solution as initial data, we solve the Swift–Hohenberg equation
together with one or both of the integral constraints by including one or two of the parameters κ and ν

as unknowns. Once we have a solution to (4.1)-(4.3), we continue it in μ by stepping in the parameter μ

and solving (4.1)-(4.3) for (u, ν, κ) for each fixed μ. We use 18 · 18 = 324 interpolation points in the box
Ωhex = (0, 4π) × (0, 4π√

3
) and compute solutions within an absolute tolerance of 10−4. The entire Maxwell

curve was computed in a couple of minutes.

4.3 Numerical continuation of planar hexagon pulses

In this section, we discuss the computation of stationary planar hexagon pulses with Bravais–Miller indices
〈10〉 and 〈11〉 such as those shown in Figure 3. The interfaces in these solutions are vertical, and the overall
patterns are periodic in the transverse y-direction and reflection symmetric.

Hence, we will focus on computing stationary solutions u(x, y) of the planar Swift–Hohenberg equation that
are periodic in the y-direction and are symmetric under reflections in x and y so that u(−x, y) = u(x, y) =
u(x,−y) for all (x, y). These solutions therefore satisfy

(1 + Δ)2u + μu − νu2 + u3 = 0, (x, y) ∈ Ω (4.4)

on Ω = (0, �x) × (0, �y) with Neumann boundary conditions

ux|{x=0,�x} = uxxx|{x=0,�x} = uy|{y=0,�y} = uyyy|{y=0,�y} = 0 (4.5)
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(a) (b) (c)

�x

�y

Figure 13: Regular hexagons are computed with Neumann boundary conditions on the domain Ωhex shown

in panel (a). Reflection-symmetric planar hexagon pulses are defined on the domain shown in panel (b) with

Neumann conditions in the horizontal x-direction and periodic boundary conditions in the vertical y-direction.

Panel (c) illustrates the computational domain Ω = (0, �x) × (0, �y) with Neumann conditions.

on ∂Ω, see Figure 13. We need to choose �x large enough to avoid boundary effects (we used �x = 50), while
�y is chosen in such a way as to accommodate hexagon interfaces with 〈10〉 or 〈11〉 orientation: we pick
�y = 4πn/

√
3 for interfaces with index 〈10〉 and �y = 2πn for interfaces with index 〈11〉. The choice of n ∈ N

allows us to compute patterns for several wavelengths in the vertical y-direction.

Fixing the length �y of the domain in the y-direction may frustrate the hexagons: since regular hexagons
can no longer choose their wavenumber freely to satisfy the constraint H = 0, the patterned state will
typically consist of frustrated hexagons that have a fixed period �y/N in the y-variable for some integer N to
accommodate the fixed length in the y-direction, while their wavelength in the x-direction adjusts itself to
satisfy the constraint H = 0; the resulting frustrated hexagons are therefore slightly compressed or elongated
in the x-direction and no longer D6-symmetric. We could add the constraint (4.2) and allow �y to vary so
that regular hexagons always fit into the domain. Since we have found that the regular hexagons for which
H = 0 have wavenumbers κ very close to κ = 1, we believe that the effect of fixing �y on the selected patterns
is negligible. However, the snaking limits of the planar hexagon pulses may coincide better with the snaking
limits of the localized hexagon patches had we elected to allow �y to vary.

To solve (4.4)-(4.5) numerically, we used a 13-point finite difference stencil for the spatial discretization. We
implemented the resulting system in the continuation framework paracont [7], a module built on top of the
continuation module loca of the package trilinos which is written and maintained by Sandia Laboratories
[43]. Since trilinos does not currently offer a direct solver for loca that works on parallel processors, we
employed a multi-level preconditioner on a coarse level so that an exact sparse linear solve is done. The
computations were carried out on the domain Ω = (0, �x) × (0, �y) with �x = 50. We used �y = 20π/

√
3 for

〈10〉 pulses and �y = 10π for 〈11〉 pulses, and worked with both 128 × 256 and 256 × 256 mesh points for
both computations.

We remark that localized pulses on long cylinders (0, �x) × S1 have been computed previously in the von
Karman–Donnell equations, a coupled system of elliptic PDEs that describe equilibria of axially compressed
cylindrical shells [46, 59]. The approach adopted there was to carry out a Fourier decomposition in the
angular direction leading to a large system of ordinary differential equations that were solved with the
boundary-value solver auto97.

4.4 Numerical continuation of localized hexagon patches

We now turn to the computation and continuation of planar localized hexagon patches such as the ones
presented in Figures 1(a) and 4. We focus on the computation of patterns with D6-symmetry. Since we
found that sparse Cartesian meshes give a preference to D4-symmetric square patterns, we discretize the
planar Swift–Hohenberg equation in polar coordinates. In particular, we found that a spectral Fourier
discretization in the angular coordinate combined with an adaptive collocation mesh in the radial coordinate
appears to be a very efficient method for computing localized hexagon patches.

In the following, we will outline our approach for computing localized patterns with an arbitrary D2k-
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symmetry6. Restricting ourselves to solutions with D2k-symmetry allows us to compute them on the first
quadrant Ω = {x, y > 0} with Neumann boundary conditions which is advantageous for various reasons.
First, it factors out, in a natural fashion and without the need of introducing additional constraints, the
continuous translation and rotation symmetries in E(2) of the Swift–Hohenberg equation whose presence
would otherwise yield a singular Jacobian which is problematic for Newton solvers. Second, computing
solely on the first quadrant greatly reduces the size of the discretized system. Third, as already mentioned,
we can center localized solutions at the origin and compute efficiently in polar coordinates. The main
disadvantage of computing on the first quadrant is that temporal stability cannot be deduced and bifurcations
to D2k+1 patterns cannot be detected. Overall, we believe that the advantages outweigh the disadvantage of
potentially failing to detect instabilities during continuation as these can often be identified a posteriori by
direct numerical simulations.

We therefore consider the stationary planar Swift–Hohenberg equation

(1 + Δr,θ)2u + μu − νu2 + u3 = 0 (4.6)

written in polar coordinates (r, θ) ∈ (0,∞) × [0, 2π) where

Δr,θu = urr +
ur

r
+

uθθ

r2
.

Polar coordinates are singular at r = 0, and we need to find appropriate boundary conditions at the origin
to remove this singularity. To do this, we follow [84]. Assuming that u is a sufficiently localized solution, we
multiply (4.6) by another localized function v and subsequently integrate over (r, θ) to arrive at the weak
formulation∫ 2π

0

∫ ∞

0

[
ΔuΔv − 2∇u∇v + (1 + μ)uv − νu2v + u3v

]
r dr dθ (4.7)

=
∫ 2π

0

∫ ∞

0

[(
(rur)r

r
+

uθθ

r2

) (
(rvr)r

r
+

vθθ

r2

)
− 2

(
urvr +

uθvθ

r2

)
+ (1 + μ)uv − νu2v + u3v

]
r dr dθ = 0

of (4.6). The boundary conditions at r = 0 which make the bilinear form (4.7) meaningful are

ur|(0,θ) = (rur)r|(0,θ) = uθ|(0,θ) = uθr|(0,θ) = uθθ|(0,θ) = (uθθ)r|(0,θ) = 0 ∀θ ∈ [0, 2π).

Since (rur)r = rurr + ur, the conditions above reduce to

ur(0, θ) = uθθ(0, θ) = uθθr(0, θ) = 0 ∀θ ∈ [0, 2π). (4.8)

We now expand u(r, θ) in a Fourier series which we truncate at order N ∈ N to get a finite-dimensional
system. Thus, we set

u(r, θ) =
N∑

n=−N

an(r)e−inθ, (4.9)

where N is the truncation order, and an(r) is complex-valued for each n. The Laplacian becomes

Δr,θu =
N∑

n=−N

[
∂2

ran +
∂ran

r
− n2an

r2

]
e−inθ.

Substituting these expressions, we find that the truncated planar Swift–Hohenberg equation (4.6) can be
written as

∂4
ran +

2∂3
ran

r
− ∂2

ran

r2
+

∂ran

r3
− 2n2∂2

ran

r2
+

2n2∂ran

r3
− 4n2an

r4
+

n4an

r4
(4.10)

+2
(

∂2
ran +

∂ran

r
− n2an

r2

)
+ (1 + μ)an − ν

∑
p+q=n

apaq +
∑

p+q+s=n

apaqas = 0,

6This method can be extended to localized D2k+1-symmetric patterns but we do not go into the details here
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while the boundary conditions (4.8) at the origin reduce to

∂ra0

∣∣
r=0

= ∂3
ra0

∣∣
r=0

= 0

an

∣∣
r=0

= ∂ran

∣∣
r=0

= 0 ∀n �= 0.

Solutions u(r, θ) with D2k symmetry are invariant under the reflection θ �→ −θ and the rotation θ �→ θ − π

so that
u(r, θ) = u(r,−θ) and u(r, θ) = u(r, θ − π)

for all (r, θ). These identities imply that

an = a−n and an = (−1)nan ∀n

for the coefficients an(r) of the Fourier representation (4.9) of u. The first of these two conditions implies
that we need to compute the coefficients an only for n ≥ 0, while the second condition implies that all odd
Fourier coefficients a2n+1 must vanish identically. The two summations in (4.10) can then be simplified by
noting that

∑
p+q=n

apaq =
N∑

p=−N

a|p|a|n−p|

∑
p+q+s=n

apaqas =
N∑

p=−N

N∑
q=−N

a|p|a|q|a|n−p−q|.

So far, we have considered solutions with an arbitrary D2k-symmetry. From now on, we restrict ourselves to
solutions with D6-symmetry such as hexagons. Such solutions are in addition invariant under rotations by
an angle of π/3, which is equivalent to requiring that

an = einπ/3an ∀n.

The only nonzero modes that can satisfy this constraint are those for which n = 6m for some m ∈ Z.
Hence, for the purpose of computing localized D6-symmetric solutions, we need to consider only the Fourier
modes a6m(r): note that the space spanned by these modes is the fixed-point space under the D6-action,
and therefore invariant under the evolution of (4.10). Thus, we set

Am(r) := a6m(r) |m| ≤ M

with N = 6M and write (4.10) as the first-order system

∂rAm = Bm

∂rBm = Cm

∂rCm = Dm (4.11)

∂rDm = −2Dm

r
+

Cm

r2
− Bm

r3
+

2(6m)2Cm

r2
− 2(6m)2Bm

r3
+

4(6m)2Am

r4
− (6m)4Am

r4

−2
(

Cm +
Bm

r
− (6m)2Am

r2

)
− (1 + μ)Am

+ν
M∑

p=−M

A|p|A|m−p| −
M∑

p=−M

M∑
q=−M

A|p|A|q|A|m−p−q|

with boundary conditions

∂rA0

∣∣
r=0

= D0

∣∣
r=0

= 0

Am

∣∣
r=0

= Cm

∣∣
r=0

= 0 ∀m �= 0 (4.12)

Am

∣∣
r=R

= Bm

∣∣
r=R

= 0 ∀m
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where R indicates the radial domain (0, R) on which we compute solutions.

Both the domain truncation parameter R and the Fourier truncation parameter M must be set to suitably
large values to ensure that the Neumann boundary conditions at r = R do not influence the localized patterns
and to make sure that the Fourier modes can resolve the angular dependence of the computed patterns. Close
to (μ, ν) = 0, the localized patterns are small in amplitude but are also well spread out: this requires both R

and M to be large. Specifically, we expect that the number of Fourier modes required to resolve a localized
hexagon patch corresponds roughly to the number of hexagon rings one wishes to interpolate: if we wish to
compute a hexagon patch of radius R, then it will have approximately R hexagons, or more, located on its
interface. To resolve these R hexagons, we need at least M ≈ R Fourier modes in the angular variable, and
this is indeed what we find in our numerical computations.

A major problem is acquiring good initial data for continuation. We use two different methods for preparing
good initial guesses for the boundary-value problem (4.11)-(4.12). The first method is to use an initial value
problem solver and find a stable stationary localized hexagon patch by direct numerical simulations: as we
can first compute the Maxwell curve, we do know where to look for stable hexagon patches. Our experience
was, however, that convergence to stationary solutions tends to be very slow. Instead, we have found that
it is better to discretize the boundary-value problem (4.11)-(4.12) in the radial variable using a Chebyshev
decomposition with an infinite mapping in the radial coordinate r that bunches the collocation points near
the origin as in [57]. We then use matlab’s Newton trust-region solver fsolve starting from initial data of
the form

u(x, y) = a sech(b
√

x2 + y2)
[
cos(x) + cos((x +

√
3y)/2) + cos((x −

√
3y)/2)

]
,

where a is chosen to be close to or greater than the maximum height of a single hexagon cell and b determines
the size of the localized hexagon patch. This procedure gives excellent convergence results and allowed us
to obtain accurate starting data for subsequent continuation in parameters.

As already mentioned, initial data for hexagon patches were computed using matlab’s Newton trust-region
solver. To continue these solutions, we implemented the boundary-value problem (4.11)-(4.12) in auto07p

[34]. Within auto07p, we computed the L2-norm of solutions by appending an additional equation together
with another parameter that corresponds to the value of the L2-norm of a solution; we exclude this additional
equation from the calculation of the pseudo-arclength. The Jacobian of the right-hand side of (4.11) was
supplied in analytic form to speed up the computation. We use standard auto07p tolerances and choose
the collocation mesh size ntst between 200 and 400. The radial domain truncation parameter R was set to
R = 80, 100, 200, while the number of angular Fourier modes is taken to be M = 20, 30, 40. The computation
of the full hexagon snake took up to one day on phoenix.

Hexagon patches have been computed previously in [63] in the context of nonlinear optics. In fact, the
authors there computed and continued several different localized states and traced out the beginning of
the snaking diagram. They discretized the underlying PDE on an equidistant mesh, used the fast Fourier
transform for evaluating the spatial derivatives, and solved the resulting large system of algebraic equations
using Newton’s method. This method tends to be computationally expensive (their computations required
the use of 300 servers with 500MHz processors) since the mesh requires a large number of modes even in the
tails of the localized pattern.

5 Localized hexagon and rhomboid patches: Numerical results

In this section, we present our numerical results. We emphasize that the computational domains of numerical
solutions are typically much larger than the domains visible in the figures presented below as we frequently
cropped images to highlight the features of the localized patterns.

23



0 0.1 0.2 0.3 0.4

-16

-12

-8

0

μ

E(u)

(c)

0 0.1 0.2 0.3 0.4-0.5

0

0.5

1

μ

E(u) (d)

(b)

0 0.1 0.2 0.3 0.4

1

1.04

1.08

1.1

μμ0 0.1 0.2 0.3
0

0.4

0.8

1.2

u(0)
(a)

Figure 14: We computed regular hexagons with H = 0 as solutions of (4.1)-(4.2) with ν = 1.6. Stable

hexagons are plotted in solid lines, unstable ones in dashed lines. We plot the amplitude u(0, 0) at the origin

in panel (a), the wavelength l = 1/κ of the hexagons in (b), and the energy E(u) along the branch in (c)-(d).

The Maxwell point E(u) = 0 occurs at μ = μM = 0.3224 on the stable branch. Compared with the trivial

state, stable regular hexagons have less energy to the left and higher energy to the right of the Maxwell point.

Panel (e) contains a color plot of the regular hexagons u(x, y) on the domain [0, 4πl] × [0, 4πl/
√

3] at the

Maxwell point.
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Figure 15: In panel (a), we plot the Maxwell curve along which the regular hexagons of (4.1) satisfy the

constraints H = 0 and E = 0 from (4.2) and (4.3), respectively: the numerical result is dashed, while the

analytic prediction μ = μM = 8ν2/135, valid in the limit ν → 0, is plotted as a solid line. Panel (b) gives

the wavelength l = 1/κ of the corresponding hexagons.
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5.1 Regular hexagons and Maxwell curves

We first compute regular hexagons of the planar Swift–Hohenberg equation that satisfy H = 0 as solutions
to (4.1)-(4.2) with ν = 1.6. As discussed in §3, only these hexagons can be connected to the trivial state by a
stationary planar front. The bifurcation diagram shown in Figure 14(a) is qualitatively similar to that found
in §2.2 in the normal-form analysis for |ν| 	 1: regular hexagons bifurcate off the trivial solution at μ = 0
and are initially unstable but regain stability in a saddle-node bifurcation. Figure 14(b) contains a plot of
the wavelength l := 1/κ of the hexagons with H = 0 as μ is varied. The energy E(u) of these hexagons,
computed over two hexagons, is shown in Figure 14(c)-(d) as a function of μ. In particular, the Maxwell
point, where E = 0, occurs at μ = μM = 0.3224, and we plot the computed hexagon at the Maxwell point
in Figure 14(e). We remark that the dependence of the wavelength and the energy on the parameter μ is
qualitatively similar for hexagons and 1D rolls; see Figure 5(iii)-(iv) or [19, Figure 2] for results on rolls.

Next, we solve (4.1)-(4.3) for (u, μ, ν, κ) which gives the hexagon Maxwell curve along which hexagons with
zero energy E = 0 and zero first integral H = 0 exist. As discussed in §3, this curve serves as a guide to where
hexagon fronts and pulses as well as fully localized hexagon patches can be expected. In Figure 15, we plot
both the hexagon Maxwell curve in (μ, ν)-parameter space and the dependence of the wavelength l = 1/κ

of the selected hexagons on the parameter μ. As predicted by the theory outlined in §2.3, the Maxwell
curve emerges from the codimension-two point (μ, ν) = (0, 0) and agrees well with the analytic prediction
μM = 8ν2/135 given in (2.12). The wavelength of the hexagons increases along the Maxwell curve. We
remark that, for 0 ≤ μ ≤ 0.6, the Maxwell curve agrees well with the curve obtained from setting E = 0
and allowing arbitrary values for H while keeping κ = 1 fixed (we do not show a comparison of these curves
though).

As shown in Figure 14(d), stable regular hexagons have less energy than the trivial state to the left of the
Maxwell curve and higher energy to its right. Thus, we expect that hexagons will invade the trivial state for
μ sufficiently far to the left of the Maxwell curve, while the trivial state will invade hexagons for μ sufficiently
far to its right.

5.2 Planar hexagon pulses: Bifurcation diagram for ν = 1.6

Throughout this section, we fix ν = 1.6 and recall that the hexagon Maxwell point is given by μ = 0.3224.

We compute planar hexagon pulses of the Swift–Hohenberg equation with Bravais–Miller indices 〈10〉 and
〈11〉. Example plots of these solutions for μ = 0.31 are given in Figure 3. Since we fixed the computational
domain in these computations, all hexagons are slightly compressed by the same fraction in the y-direction
instead of being fully D6-symmetric: each vertical slice u(x, ·) of the planar hexagon pulse u(x, y) must
satisfy H = 0 for each x, and since regular hexagons cannot adjust their wavelength in the y-direction to

1
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0.28 0.32 μ

‖u‖2
2

Figure 16: The left panel contains the bifurcation diagram of planar 〈10〉 hexagon pulses, while two selected

profiles at the labelled parameter values are shown in the right two panels.
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accommodate this condition due to the fixed domain dimension, the selected patterns are slightly frustrated
hexagons. The frustrated hexagons are still periodic in both the x- and the y-direction but their wavelengths
in the x- and y-direction are no longer in a

√
3 : 1 ratio as those of regular hexagons.

Upon varying μ, we find that planar 〈10〉 hexagon pulses snake as shown in Figure 16. Upon passing through
a pair of fold bifurcations, the pulses acquire an additional full column of hexagons and thereby widen in
the horizontal x-direction. As outlined in §3.2, we can consider the planar Swift–Hohenberg equation as a
dynamical system in an unbounded direction provided we restrict ourselves to a bounded cross-section in
the remaining spatial variable. To explain the snaking of planar 〈10〉 pulses, we treat the x-variable as our
time-like variable and restrict y to a bounded interval with Neumann boundary conditions. As can be seen
from Figure 17(i), a planar hexagon pulse corresponds to a homoclinic orbit of the trivial state U = 0 which
passes close to a periodic orbit in the x-dynamics that is formed of hexagons. Thus, we are in the situation
discussed in §2.1 and §3.2 and expect snaking to set in [10]. As already alluded to in §3.2, the scenario we
just described persists if we change the height of the y-interval: the selected hexagons will become slightly
frustrated and, accordingly, the Maxwell point may change slightly, but the resulting planar hexagon pulses
will continue to snake.

As shown in Figure 18(a), planar 〈10〉 pulses undergo additional pitchfork bifurcations near each fold. Fig-
ure 18(b)-(c) shows that the patterns bifurcating at the pitchfork bifurcations are almost-planar hexagon
pulses: at onset, either one or two hexagon cells appear in new columns to the left and right at the center of
the 〈10〉 pulse. As we move along the bifurcating branch, the almost-planar hexagon pulses begin to snake
and, at each fold, additional pairs of hexagon cells are added symmetrically above and below the already
added hexagon cells until the entire column is filled. At this point, the branch of almost planar pulses ter-
minates in a second pitchfork bifurcation at the planar 〈10〉 hexagon pulses. Almost-planar hexagon pulses
undergo only a finite number of folds due to the finite height of the computational domain. Similar to the
case of planar pulses, the left and right fold bifurcations of almost-planar hexagon pulses line up. To explain
the snaking of almost planar pulses, we consider the y-variable as our time-like variable and restrict x to
a large bounded interval with Neumann boundary conditions; see Figure 17(ii). In this spatial-dynamics
interpretation, an almost-planar hexagon pulse corresponds to a homoclinic orbit of a periodic orbit that
passes close to a second periodic orbits as y increases. Each periodic orbit in the y-dynamics consists of
a localized hexagon pulse in the x-variable with a different number of hexagons in its center. Homoclinic
orbits between periodic orbits will snake in the same fashion as the homoclinic orbits between equilibria that
we discussed in §2.1.

We now turn to a discussion of planar 〈11〉 hexagon pulses which also snake, see Figure 19, and exhibit
pitchfork bifurcation to almost planar 〈11〉 pulses as shown in Figure 20. The almost-planar 〈11〉 hexagon
pulses undergo only two folds since the computational domain allows only eight hexagons in the y-direction:
there would be more folds if the height �y of the computational domain used in Figure 13 was larger.

Figure 21 contains the bifurcation diagrams of both planar 〈10〉 and 〈11〉 hexagon pulses. This figure shows
that the orientation of the hexagon pulse has a significant effect on the width of the snaking region. The
different vertical lines along which the folds line up will play an important role later when we discuss fully
localized hexagon patches. We believe that there are many other hexagon pulses with orientations different
from 〈10〉 and 〈11〉. The other planar hexagon pulses will have larger Bravais–Miller indices, and we expect
heuristically that these interfaces have higher energy. These pulses can be computed in exactly the same
fashion as the 〈10〉 and 〈11〉 pulses, but we have not carried out these computations at present. The
existence of infinitely many planar hexagon pulses with different orientation can also be inferred from an
energy argument. At the Maxwell point, a single hexagon cell has zero energy and so any combination of the
hexagon cells that lie on the hexagon lattice can be used to create differently orientated pulses. We expect
the resulting pulses to pin or lock to produce snaking regions similar to those found for 〈10〉 and 〈11〉 pulses.

Finally, we briefly address the nature of the pitchfork bifurcations to almost-planar hexagon pulses that
occur near each fold bifurcation. We begin with the fold bifurcation: the eigenfunction v0(x, y) associated
with the fold eigenvalue λ = 0 is periodic in the y-variable with minimal period � = 4π/

√
3 for 〈10〉 and
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Figure 17: Panel (i) contains a color plot of a planar 〈10〉 hexagon pulse. We view x as the evolution variable

which is used to evolve y-slices forward and backward: the left y-slice corresponds to an equilibrium of the

resulting spatial dynamical system in x (the profile in the y-slice does not change when x is varied nearby),

while the y-slice in the hexagon region corresponds to a periodic orbit (the profile changes periodically in x

when the y-slice is moved to the left and right). Thus, we can interpret a planar 〈10〉 hexagon pulse as a

homoclinic orbit that passes close to a periodic orbit which is formed of hexagons, and we therefore expect

snaking on account of the results in §2.1 and §3.2. Panel (ii) contains a color plot of an almost-planar

hexagon pulse. Here, we view y as the evolution variable which propagates x-slices up- and downwards. The

two indicated x-slices correspond to two different periodic orbits: their profiles change periodically when y

is varied, but the horizontal extent of the hexagon regions is different for the two profiles. We can therefore

interpret an almost-planar hexagon pulse as a homoclinic orbit in the y-dynamics which connects the periodic

orbit at top and bottom to itself and which passes near a second periodic orbit. The results in §2.1 and §3.2
imply again that snaking should occur.
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Figure 18: In panel (a), the bifurcation diagrams of planar 〈10〉 hexagon pulses [blue] and the bifurcating

almost-planar pulses [red] are shown, where stable pulses are indicated by solid lines and unstable ones by

dashed lines. Panels (b)-(c) are color plots of two different almost-planar hexagon pulses for μ = 0.3 along

the smaller red snaking diagram. In panel (d), we plot the energy E(u), computed as an integral over the

entire computational domain, along the branches.
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Figure 19: The left panel contains the bifurcation diagram of planar 〈11〉 hexagon pulses. Two selected

profiles are shown on the right.
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Figure 20: The bifurcation diagrams of planar 〈11〉 hexagon pulses [blue] and the bifurcating almost-planar

pulses [red] are plotted in panel (a). Panel (b) is a color plot of an almost planar 〈11〉 pulse for μ = 0.309.
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Figure 21: The bifurcation diagrams of planar hexagon pulses with Bravais–Miller indices 〈10〉 (in red) and

〈11〉 (in blue) are shown. The 〈10〉 pulse snakes between the limits μ1 = 0.267 and μ2 = 0.3454, while the

〈11〉 pulse snakes between μ3 = 0.2964 and μ4 = 0.3364. The stability of the branches alternates between

unstable [dashed] and stable [solid] at each fold.
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(a) (b) (c)

Figure 22: Shown are color plots of a planar 〈10〉 hexagon pulse at a fold bifurcation in (a), the associated

fold eigenfunction in (b), and the pitchfork eigenmode that leads to almost-planar hexagon pulses in (c).

� = 4π for 〈11〉 pulses. Now consider the planar pulse on the entire plane and apply Floquet–Bloch theory,
see for instance [67, Theorem 2.1]: we find a one-parameter family λ(γ) of eigenvalues, defined for all γ

sufficiently close to zero, whose eigenfunctions are of the form v(x, y; γ)eiγy, where v(x, y; γ) has period � in
the y-variable. For γ = 0, we recover the fold eigenvalue λ(0) = 0 with eigenfunction v(x, y; 0) = v0(x, y).
Next, we consider domains of height N� in the y-direction for large integers N � 1 with periodic boundary
conditions in y: this is the situation shown in Figure 16. The eigenfunctions we found on the plane fit into
this domain provided γ = γn := 2πn/N� for integers n ≥ 0. The smallest nonzero value of γ is γ1 = 2π/N�:
the associated eigenvalue λ(γ1) = O(1/N) is close to zero for N � 1, and its eigenfunction

v(x, y; γ1)eiγ1y = [v0(x, y) + O(1/N)]e2πiy/N�

is a harmonic modulation of the fold eigenfunction in the y-direction. Figure 22 shows a 〈10〉 hexagon pulse
and the associated fold and pitchfork eigenfunctions on a domain with N = 6: the pitchfork eigenfunction
is indeed a cosine modulation of the fold eigenfunction with maximal period in y as claimed.

5.3 Localized hexagon patches

In this section, we discuss our results for localized hexagon patches of the planar Swift–Hohenberg equa-
tion (1.1). We shall also report on numerical results for localized radial pulses7. We focus first on two
different representative slices ν = 0.9 and ν = 1.6 of the bifurcation diagram in (μ, ν)-parameter space, be-
fore we consider the full diagram in (μ, ν)-space and comment on the special value ν = 1.049 that separates
regions of qualitatively similar behavior.

5.3.1 Bifurcation diagram for 0 < ν < 1.049

We first consider the region where 0 < ν < 1.049 and illustrate our results in Figure 23 for ν = 0.9. We find
localized radial pulses, localized hexagon patches, and regular hexagons. All these solutions bifurcate from
u = 0 at μ = 0 and are initially unstable. Regular hexagons stabilize in a fold bifurcation and later cross into
the left half-plane μ < 0. Localized radial pulses gain stability with respect to radial perturbations at the
first fold bifurcation but continue to be unstable with respect to hexagonal perturbations. They cross with
nonzero amplitude into the left half-plane, where they turn into non-localized target patterns. The unstable
localized hexagon patches appear to begin to snake for μ ≈ 0.065, but we were only able to continue through
the first fold. The Maxwell point of regular hexagons for ν = 0.9 is μ = μM ≈ 0.07.

5.3.2 Bifurcation diagram for 1.049 < ν < 2.23

In Figure 24, we summarize the bifurcation diagram for ν = 1.6, where localized hexagon patches have
previously been found in [78] via direct numerical simulations. The localized hexagon patches that arise
in this parameter region tend to be highly localized, and the numerical methods described in §4 should
therefore work particularly well. Other previous direct numerical simulations have shown that temporally

7Existence results for these localized radial solutions are proved in [58]
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Figure 23: Localized radial pulses (i), localized hexagon patches (ii), and regular hexagons (iii) with wavenum-

ber κ = 1 of the planar Swift–Hohenberg equation (1.1) with ν = 0.9 are shown in panel (a). Dashed solu-

tions and regular hexagons with open bullets are unstable, while regular hexagons with filled bullets are stable.

Note that neither branch (i) nor (ii) terminates at the branch (iii) of regular hexagons [see text for details].

Panel (b) contains a color plot of a localized hexagon patch for μ = 0.02.

(b)

(c)

0.05μ0   

0.25
max u

0   0.05 0.1 0.15 0.2 0.25 0.35
0

0.5

1

μ

m
ax

u

(a)

(b)

(c)

(i)

(ii)

(iii)
(d)

Figure 24: Localized radial pulses (i), localized hexagon patches (ii), and regular hexagons (iii) with wavenum-

ber κ = 1 of the planar Swift–Hohenberg equation (1.1) with ν = 1.6 are shown in panel (a); the area near

the origin is enlarged in panel (d). Dashed solutions and regular hexagons with open bullets are unstable,

while solutions along solid lines and regular hexagons with filled bullets are stable. Panels (b) and (c) are

color plots of localized hexagon patches for μ = 0.25 near the bifurcation off the radial pulse (b) and for

μ = 0.3 on the snaking curve (c).

stable localized radial pulses exist in this region of parameter space: our numerical continuation methods
will corroborate these findings and establish a strong link between localized radial and hexagonal structures.

As shown in Figure 24, radial pulses bifurcate off the trivial solution at μ = 0 and are initially unstable with
respect to radial and hexagonal perturbations. Also bifurcating at μ = 0 are unstable localized hexagon
patches which disappear in a subcritical pitchfork bifurcation of the radial pulse at μ ≈ 0.015: from this
point onward, the radial pulses are unstable only with respect to radial perturbations. Subsequently, the
radial pulses stabilize in a saddle-node bifurcation at μ ≈ 0.276 and later on, for μ ≈ 0.15, undergo a second
subcritical bifurcation to unstable localized hexagon patches. The radial pulses continue on and begin to
snake. The unstable localized hexagon patches that bifurcate at the second pitchfork bifurcation of the radial
pulses gain stability in a fold bifurcation at μ ≈ 0.325 and begin to snake around the hexagon Maxwell point
μM ≈ 0.3222. While snaking, the localized hexagon patches become wider until they fill the entire domain.
In addition to these localized patterns, unstable regular hexagons also bifurcate from the trivial solution at
μ = 0 and stabilize in a fold bifurcation at μ ≈ 0.37. As can be seen from Figure 24(a), the localized hexagon
patterns snake close to the regular hexagons.
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Figure 25: The snaking curves of radial pulses [left in red] and fully localized hexagon patches [right in blue]

are plotted for ν = 1.6. Radial solutions are computed on a disk of radius R = 100: the fold asymptotes

of 1D rolls are indicated by vertical grey lines, and the Maxwell point of 1D rolls occurs at μM = 0.2. The

localized hexagon patches are computed with M = 19 angular Fourier modes on a domain of radius R = 80:

the fold asymptotes of planar 〈10〉 and 〈11〉 hexagon pulses are plotted as vertical grey lines, and the hexagon

Maxwell point occurs for μM ≈ 0.3222. The hexagon snaking curve and the associated solution profiles can

be viewed in this [movie].
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Figure 26: The center panel contains part of the bifurcation diagram of localized hexagon patches for ν = 1.6.

Stable and unstable solutions are plotted in solid and dashed lines, respectively. The vertical lines in grey

correspond to the fold limits of planar 〈10〉 and 〈11〉 hexagon pulses. The red and green regions indicate where

temporal self-completion, as shown in Figure 31(b) and (c), does or does not occur, respectively. Panels 1-4

contain color plots of the hexagon patches at the inner and outer left folds.

31



We focus now on the snaking behavior of localized hexagon patches. The bifurcation curves of localized
radial and hexagon patterns are shown in Figure 25. In particular, we see that the snaking of localized
hexagon patches is qualitatively very different from the snaking of the radial pulses and, in fact, also from
the snaking of planar hexagon fronts whose diagram is shown in Figure 21. Indeed, the fold bifurcations
of radial pulses and planar hexagon pulses occur near two well-defined limiting values, while the folds of
localized hexagon patches align themselves along at least three distinct vertical asymptotes.

The spatial shapes of the fully localized hexagon patches along the snaking curve can be viewed in the
accompanying movie. It is clear from the movie that the localized hexagon structures change in a complicated
fashion as the parameter μ is varied, and we shall now discuss some of the features visible in the movie in
more detail and attempt to identify the underlying mechanisms.

In Figure 26, we plot a few selected spatial profiles along a small segment of the bifurcation curve. We
note that localized structures alternately lose and regain stability at consecutive folds. Moving along the
bifurcation branch from panel (1) to panel (4) in Figure 26, we see that the localized structure acquired
an additional ring of hexagons and thus grew from four to five rings. The process of adding rings is much
more complicated than simply adding a new full ring at each fold. First, as shown in panel (2), a single
hexagon is added at the center of each side: note that the faces of the resulting localized structure resemble
the planar 〈11〉 hexagon pulses encountered in §5.2 and that the addition of the single hexagon occurs at
a fold that aligns itself with the snaking curve of 〈11〉 pulses. Next, in panel (3), hexagons are added
symmetrically to either side of the centered hexagon cell created previously in panel (2): this happens again
near an inner fold. The final step is to add an additional pair of hexagons symmetrically to either side of the
previously created hexagons to complete the row: this occurs near the fold corresponding to a 〈10〉 pulse.
The faces of the “super-hexagon” structure in panels (1) and (4) resemble planar hexagon pulses with 〈10〉
orientation. In summary, as the snake in Figure 26 is traversed, new hexagon cells emerge symmetrically on
each face, starting at the center of each face. This cellular growth is reminiscent of the bifurcation diagram
of almost-planar 〈10〉 pulses shown in Figure 18.

Figure 27 contains a sequence of pictures of localized hexagon structures further up on the snaking curve
to illustrate the transition from a localized structure with nine hexagon rings to a pattern with ten rings.
Comparing panels (1) and (2), we find that two new hexagon cells appear in the center of each face: there are
two new hexagon cells, rather than just one, as the number of hexagons in the outer-most row in Figure 27(1)
is odd, rather than even as for the 4-ring structure in Figure 26. While cells are added in the center, the
corners of the super-hexagon structure recede and disappear, which did not happen for 4-ring structures. In
panel (3), the diagonal faces resemble planar 〈11〉 pulses which move forward to complete the super-hexagon
visible in panel (7) as we move along the bifurcation curve. The removal of the six cells in the corners of the
super-hexagon in panels (1)-(2) leads to a reduction of the L2-norm of the localized structures which creates
the apparent self-intersections of the bifurcation curve visible in Figure 25.

The results discussed above indicate that localized hexagon patches expand initially by adding one or two
new hexagon cells at the center of each face. In Figure 28, we compare the bifurcation curves of almost-
planar 〈10〉 hexagon pulses with one and two cells to the relevant segments of the snaking curve of localized
hexagon patches. The parameter values for the first two folds along the bifurcation curves agree well, but the
bifurcation curves of almost-planar pulses and localized hexagon patches separate soon after. On a heuristic
level, we believe that hexagon patches do not grow by adding full rows because it costs too much energy to
grow hexagons at the corners where two adjacent faces join up. This belief is supported by the observation
that the corner hexagons actually recede as visible in panels (1)-(2) of Figure 27. Thus, even though cells
initially emerge at the centers of each face, the overall growth mechanism is clearly more global, which is
why the bifurcation curves of the almost-planar 〈10〉 hexagon pulses agree with the snaking curve of hexagon
patches only initially.

We believe that infinitely many planar hexagon fronts with different Bravais–Miller indices play a role in
forming the bifurcation diagram shown in Figure 25 though we were not able to go up far enough on the
bifurcation curve to identify additional vertical asymptotes that may belong to planar hexagons with different
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Figure 27: Color plots of localized hexagon patches at the left-most folds are shown to illustrate the growth

from a 9-ring hexagon patch to a 10-ring patch. The computations are done on a domain of radius R = 100

with M = 40 angular Fourier modes.
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Figure 28: In the middle panel, we plot part of the hexagon snake from Figure 25 and overlay the snaking

curves of almost planar 〈10〉 hexagon pulses for which initially one cell (i) or two cells (ii) emerge at the

center. We rescaled the vertical coordinate of the snaking curves of the almost planar pulses linearly to allow

a comparison with the hexagon data. The remaining panels show color plots of localized hexagon patches

[left] for parameter values indicated by bullets in the middle panel and representative almost-planar pulses

[right] on the curves (i) and (ii).
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Figure 29: We plot a rotated planar 〈11〉 hexagon pulse in panel (i) and an almost planar 〈10〉 hexagon pulse

in panel (ii). The circles enclose incomplete hexagon structures: along the next fold in the snaking curve,

the missing hexagon in the circle will be filled in.
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Figure 30: Plotted are the wavelengths l = 1/κ of the regular hexagons for which H = 0 [red bullets] and

of the hexagon cells located at the center of the localized hexagon patches [blue dots] as functions of μ for

ν = 1.6. The wavelength l = 1 corresponds to a spatial period of 2π.

(a) (b) (c)

Figure 31: We illustrate the temporal evolution of localized hexagon structures in the Swift–Hohenberg equa-

tion (1.1) with ν = 1.6. The initial condition is shown in panel (a). The solutions at time t = 100 are shown

in panel (b) for μ = 0.27 inside the red region of Figure 26 and in panel (c) for μ = 0.3 inside the green

region of Figure 26.

indices. It is remarkable though that all rightmost folds seem to line up near the asymptote coming from
the planar 〈11〉 hexagon pulse. Most of these folds seem to involve structures that resemble either planar
〈11〉 or almost-planar 〈10〉 pulses. On a heuristic level, it appears that growing these structures involves the
same mechanism, and we illustrate this further in Figure 29. However, hexagons emerge along the entire
interface of a planar 〈11〉 pulse, while only a single hexagon is added to an almost-planar 〈10〉 structure.

In §3.2, we showed that regular hexagon cells in a stationary planar hexagon front satisfy H = 0 for the
conserved quantity H that we defined in (3.8). The condition H = 0 selects the wavenumber of these
hexagons. In §3.2, we stated our belief that this selection criterion for the wavenumber should also apply
to localized hexagon patches. In Figure 30, we compare the wavenumbers of regular hexagons for which
H = 0 with the wavenumbers of the hexagon cells at the center of localized hexagon patches. We find
that the wavenumbers of the center hexagon cells in localized hexagon patches get closer to the predicted
wavenumbers as we move up on the snaking curve.

The different vertical asymptotes visible in Figure 26 have interesting consequences for the temporal dynamics
of the Swift–Hohenberg equation. As indicated in Figure 26, we divide the μ-parameter space into two
intervals, shown in red and green, depending on whether we are to the left or right of the folds that are
aligned with the left-most asymptote of the planar 〈11〉 hexagon pulse. These regions seem to be intimately
linked with different self-completion behaviors of localized hexagon patches. We choose the pattern shown in
Figure 31(a) as our initial condition and solve the planar Swift–Hohenberg equation. For μ in the red region,
to the left of the left-most 〈11〉 fold, the solution evolves in time towards the completed super-hexagon shown
in Figure 31(b): since 〈11〉 pulses do not exist in this parameter region, the pattern evolves in time so that
all interfaces are 〈10〉 pulses. In contrast, for μ in the green region to the right of the left-most 〈11〉 fold, the
solution converges in time to a localized hexagon patch that is not D6-symmetric: stable 〈11〉 pulses exist in
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this region, and the interface of the pattern finds it easier to evolve towards a 〈11〉 pulse rather than a 〈10〉
pulse. Phrased in terms of the bifurcation diagram of Figure 26, the solution moves upward to the stable
D6-symmetric pattern on the hexagon bifurcation curve for parameters in the red region. In contrast, the
solution evolves to an asymmetric hexagon patch for parameters in the green region: it appears as if the
asymmetric patterns block the evolution towards symmetric patches. We conjecture that these asymmetric
hexagon patches may bifurcate from D6-symmetric hexagon patches in a planar version of ladders, similar
to those observed in one space dimension in [19, 20, 22] which we reproduced in Figure 8.

5.3.3 Bifurcation diagram in (μ, ν)-parameter space

Using numerical continuation, we have also traced out partial bifurcation diagrams for localized patterns of
the planar Swift–Hohenberg equation in the parameters (μ, ν). These results are summarized in Figure 33
and presented in schematic form in Figure 32.

Regular hexagons exist above the green curve in Figure 33(a). We find that localized hexagon patches
seem to bifurcate from the trivial state u = 0 along the entire positive ν-axis into the positive quadrant
μ > 0. Hexagon patches also bifurcate from localized radial spots along a pitchfork bifurcation curve, where
symmetry is broken from O(2) to D6. Overall, we obtain a connected surface along which localized hexagon
patches exist: see Figure 32 for a schematic picture and Figures 23 and 24 for numerical computations.
Localized spots are stable in a wedge delimited by the fold and pitchfork bifurcation curves that emerge
from the mode interaction point (μ, ν) = (0.048, 1.049) (ν2 = 1.1) in Figure 33(a).

Localized hexagon patches snake in a wedge-like region which is aligned with the hexagon Maxwell curve and
appears to extend all the way to the origin, where the bifurcation to regular hexagons changes from super- to
subcritical, as outlined in Figure 32(b). In Figure 33(c), we show four numerically continued fold bifurcation
curves of localized hexagon patches which disappear in two cusp bifurcations. For ν ≤ 0.9, localized hexagon
patches are spread out so far and fold bifurcations occur so close to each other that we were not able to
continue beyond the first fold: these numerical difficulties prevented us from further probing the sequence
of fold and cusp bifurcations. Spots also snake, and we show in Figure 33(a) the region delimited by the
first two fold bifurcation curves along their snaking curve together with the cusp at which the fold curves
collide and disappear. Again, we expect that the snaking region of spots extends along the Maxwell curve
associated with 1D rolls to the codimension-two point (μ, ν) = (0,

√
27/38) where the bifurcations to rolls

changes from super- to subcritical.

In Figure 26, we observed that the left-most snaking limit of the hexagon patches coincides with the left-most
fold of the planar 〈10〉 hexagon pulses. To illuminate this feature further, we show in Figure 34 the snaking
region of fully localized hexagon patches and, for comparison, the snaking regions of planar 〈10〉 and 〈11〉
hexagon pulses in panels (a) and (b), respectively. For μ < 0.35, the left-most fold curve of the 〈10〉 pulses
aligns itself with the left-most boundary of the hexagon patches, while the right-most fold curve of the 〈11〉
pulses aligns itself with the right-most boundary of the hexagon patches.

We see in Figure 33 that a cusp forms at (μ, ν2) ≈ (0.4205, 5.4173) on the upper fold curve on the wedge
belonging to localized hexagon patches. This upper cusp is similar to that found in [19, 20, 22] for 1D
structures and indicates that a new Maxwell curve crosses into the snaking region. We plot a localized
hexagon patch further up on the upper fold curve for (μ, ν2) = (0.7, 6.2355) in Figure 35(a): note that
the individual hexagon cells on the outer ring are elongated. For comparison, we plot in Figure 35(b) the
localized hexagon patch at the lower cusp at (μ, ν2) = (0.0738, 0.8612).

5.4 Localized rhomboid patches

We also investigated fully localized rhomboid patches. These solutions have an interior cellular hexagonal
structure but, as shown in Figure 36(b), the overall patch does not possess hexagonal symmetry: the
underlying cellular pattern is shifted by half a spatial period so that the center of the localized patch does
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Figure 32: Schematic illustrations of the bifurcation diagram of localized hexagon patches are shown.

Panel (a) shows the sheet of localized radial spots (i) which undergo pitchfork bifurcations to localized hexagon

patches along the yellow curve (ii). In panel (b), localized hexagon patches (iii) bifurcate from u = 0 at μ = 0

and from spots along the pitchfork bifurcation curve (ii). The hexagon patches begin to snake (iv) near the

hexagonal Maxwell curve (shown in dotted grey) in an infinite sequence of fold bifurcations that disappear

closer to the origin in a sequence of cusps. See Figure 33(c) for the corresponding numerical results.
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Figure 33: This figure summarizes our numerical results for radial and hexagonal patterns in the planar Swift–

Hohenberg equation (1.1). Dashed grey curves correspond to 1D roll and 2D hexagonal Maxwell curves, the

green curve corresponds to the disappearance of regular hexagons with wavenumber κ = 1 in a fold bifurcation,

and red curves correspond to fold bifurcations of localized radial spots. The existence region of stable spots is

shown in yellow in panel (a). Panels (a)-(c) also indicate the snaking regions of spots and localized hexagon

patches that are delimited by the first pair of fold bifurcations of these patterns: as discussed in the main text,

we expect that there is a sequence of fold curves which disappear in a sequence of cusps that accumulate at

the origin, so that the full snaking regions are expected to extend along the two Maxwell curves all the way to

the ν-axis. Panel (c) contains four such fold bifurcation curves of localized hexagon patches that are aligned

along the hexagon Maxwell curve and which disappear at two cusp bifurcations. Panel (c) also contains the

pitchfork bifurcation curves of localized hexagon patches from spots in yellow and the fold bifurcation curve

of spots in red: these curves meet at the mode interaction point (μ, ν2) = (0.048, 1.1) (ν = 1.049).

36



0 0.2 0.4 0.6
0

1

2

3

4

5

6 (b)

μ

ν2

0 0.2 0.4 0.6
0

1

2

3

4

5

6

μ

ν2
(a)

Figure 34: Comparison of the snaking region of localized hexagon patches [blue] and the snaking regions

of planar 〈10〉 hexagon pulses [red] in panel (a) and 〈11〉 hexagon pulses [red] in panel (b). The hexagon

Maxwell curve is also shown [dashed grey].
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Figure 35: Panels (a) and (b) contain color plots of localized hexagon patches for (μ, ν2) = (0.7, 6.2355) and

(μ, ν2) = (0.0738, 0.8612), respectively.
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Figure 36: Panel (a) contains the bifurcation diagram of localized rhomboid patches for ν = 1.6, while the

rhomboidal structure itself is shown as a color plot in panel (b) for μ = 0.2817. The vertical lines are the

asymptotes of the fold bifurcations of 〈10〉 and 〈11〉 hexagon pulses shown in Figure 26. The computations

were carried out on a square domain with dimensions 80 × 80.
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not coincide with the center of an interior hexagon. Unlike localized hexagon patches, localized rhomboids
bifurcate from a pair of localized hexagons, which in turn bifurcate from the trivial state. Hexagon pairs,
triplets, and rhomboids consisting of four hexagons have previously been computed in [63]. The snaking
diagram of the localized rhomboid patches, shown in Figure 36(a), appears to be qualitatively similar to the
snaking diagram of localized hexagon patches shown in Figure 25. There seem to be roughly three snaking
limits: the left-most limit corresponds to the completion of a super-rhomboid, shown in Figure 36(b), while
the other two snaking limits correspond to the emergence of individual hexagons along the sides of the
localized structure as in the case of hexagon patches. Further up the snake, the left-most folds get closer to
the folds of the planar 〈10〉 hexagon pulses. Similar to the case of hexagon patches, the bifurcation curves
of localized rhomboids intersect as individual corner cells are suppressed, leading to a decrease of the overall
L2-norm. We computed the localized rhomboids on a large square box with Neumann boundary conditions
rather than with polar coordinates as we did for localized hexagon patches: in particular, we are confident
that the damping of the corner cells is not due to boundary conditions or numerical errors.

We believe that the localized hexagon and rhomboid patches are connected in parameter space by bifurcation
curves of asymmetric patterns similar to those found in [19, 21] for 1D structures. These ladders will
effectively shift the cellular pattern between the localized hexagon and rhomboid patches.

6 Conclusions and discussion

Summary. We briefly summarize our main findings. First, we provided a selection principle for hexagons
that can appear as asymptotic states in planar fronts that connect to the trivial state u = 0. Any such
hexagon must satisfy H = 0 where the function H is a first integral of the spatial dynamical system that
describes solutions u(x, y) of the Swift–Hohenberg equation that are periodic in the transverse y-direction.
The expression (1.6) of H was derived from a conservation law that arises, via Noether’s theorem, due to
the translation symmetry of the Lagrangian of the energy (1.4) of the Swift–Hohenberg equation. Using a
theorem proved in [9], we also showed that a unique branch of regular hexagons along which H = 0 bifurcates
from the trivial state at μ = 0: these hexagons have a uniquely selected wavelength.

In §3.2, we gave a spatial-dynamics formulation of solutions of the Swift–Hohenberg equation that are
periodic in one of the two spatial variables. This formulation implies that planar hexagon pulses, such as
those shown in Figures 16 and 19, will exist in open regions of parameter space provided they are transversely
constructed, a condition we expect to hold generically. This indicates that snaking should occur for planar
hexagon pulses, and we found numerically in §5.2 that snaking does indeed occur for hexagons pulses with two
different orientations, namely with Bravais–Miller indices 〈10〉 and 〈11〉. We also computed and continued
almost-planar hexagon pulses which bifurcate from the planar hexagon pulses in pitchfork bifurcations near
each fold bifurcation: these almost-planar pulses appear prominently in the snaking diagram of localized
hexagon patches.

Heuristically, we expect that the snaking regions are centered around the hexagon Maxwell curve which
corresponds to the curve in (μ, ν)-parameter space along which hexagons exist that satisfy H = 0 and
that have the same energy, E(0) = 0, as the trivial state u = 0. Indeed, only when the trivial state
and the hexagons have roughly the same energy can we expect that stationary interfaces between them
exist; otherwise, one of the states will invade the other one to reduce the overall energy. Our numerical
computations confirmed this heuristic picture and showed furthermore that the Maxwell curve emerges from
the codimension-two point where the bifurcation to hexagons changes from super- to subcritical, as it is
there that we can expect regions of bistability to exist.

Our main numerical findings consist of the continuation results of localized hexagon and rhomboid patches
in the Swift–Hohenberg equation. Our computations suggest that infinitely many hexagon and rhomboid
patches co-exist in open parameter regions. The localized hexagon patches lie on the same solution branch
and increase in width as we move along the branch. Strikingly, the hexagon patches do not grow by adding
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a full ring of hexagons at each fold, but instead seem to follow, at least initially, the almost-planar hexagon
pulses with indices 〈10〉 and 〈11〉 that we computed in §5.2. Overall, we found a rich snaking structure with
several, possibly infinitely many, vertical asymptotes for fold bifurcations of localized structures, compared
with only two asymptotes for planar hexagon pulses and 1D structures. We identified three asymptotes as
arising from fold bifurcations of planar hexagon pulses with indices 〈10〉 and 〈11〉. However, we did not
identify an overarching mechanism that predicts how hexagon patches might grow as we move up further
along the branch.

We also investigated self-completion of asymmetric hexagon patches and found evidence that self-completion
occurs only to the left of the snaking region of the 〈11〉 fronts. The self-completion study was motivated
by results in [4, 6] where this process was addressed by using interaction theory for localized spots. The
alternative explanation put forward here is based on the existence regions of planar hexagon fronts with
different orientations. Though we do not have any conclusive evidence, we do not believe that the hexagon
structures found in our paper can be viewed as bound states of localized spots: Figure 24, for instance,
shows that localized hexagon patches can exist well outside the existence region of localized spots.

Finally, we mention that Figure 33 contains various results on localized radial structures. In particular, the
branch of localized hexagon patches that bifurcates from the trivial state at (μ, ν) = 0 and later begins to
snake splits, for larger values of ν, into two branches which begin or end at pitchfork bifurcations of localized
radial structures. We refer to [58] for a more detailed analytical and numerical study of these radial spots.

Open problems. We now outline what we believe to be interesting questions for further research on
multi-dimensional localized patterns and refer to [50] for another recent list of open problems in this area.

A major goal is to uncover the mechanism that underlies the snaking behavior of localized hexagon patches
and to prove that it does occur in the Swift–Hohenberg equation. Currently, there do not seem to be any
methods available that can be used to carry out such a comprehensive analysis. Thus, we discuss first a
number of more modest open problems that may give better insight into certain aspects of hexagon snaking.

Snaking of planar hexagon pulses seems more amenable to an analytic approach. On a formal level, asymp-
totics beyond all orders has recently been used in [25, 52] to predict the snaking width for the 1D structures
shown in Figure 2 near the codimension-two point (μ, ν) = 0. The idea behind this approach is to look more
closely into the derivation of the amplitude equations (2.10) which govern the existence of 1D pulses. In the
standard derivation, anisotropic terms that depend on the small scale x, rather than the large scale X = εx,
are neglected. In [25, 52], these terms and their effect on the remaining modes through the nonlinearity are
taken into account, and an analysis of the resulting exponentially small coupling terms between rolls and the
1D pulse gave an extremely accurate prediction for the snaking region in the 1D setting. The same approach
may perhaps work in the planar case to capture the interaction terms between small-scale hexagons and
large-scale hexagon pulses with different Bravais–Miller indices.

The energy functional of the Swift–Hohenberg equation may also help to illuminate snaking of hexagon
pulses. Our numerical results indicate that the widths of the snaking regions of planar hexagon pulses
depends on the orientation of their interfaces, i.e. on their Bravais–Miller indices, and it may be possible
to capture this effect through an appropriate interfacial energy. Along the same lines, the growth of cells
along an interface for almost-planar hexagon pulses appears qualitatively similar to the growth of interface
boundaries in polycrystalline structures. Numerical studies of polycrystalline structures in [64] via two-
dimensional Ising models have shown that the orientation of interfaces in hexagonal lattices has a significant
effect on the propagation speed of these interfaces. In the context of the Swift–Hohenberg equation, the
speeds of planar 〈10〉 and 〈11〉 fronts outside the pinning region may be similar to those seen in Ising models.

Another approach to understanding snaking of planar hexagon pulses is to assume that there exists a generic
planar hexagon front for a certain value of μ which disappears, as μ decreases or increases beyond a certain
threshold, via a saddle-node bifurcation as indicated in Figure 6. Instead of using geometric methods to
prove that this results in snaking of planar hexagon pulses, an analytic result via Lin’s method could be used
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to generalize the intuitive picture given in Figure 6 for two-dimensional Poincaré sections to the infinite-
dimensional spatial-dynamics setting of §3.2. This analysis has recently been carried out in [10], where it
was also shown that it captures asymmetric ladder structures.

While an analysis of snaking of hexagon patches seems currently out of reach, it may be possible to say more
about the underlying mechanisms by carrying out more comprehensive numerical studies. The numerical
methods we have used significantly reduce the computational cost required to compute fully localized 2D
patterns by using an adaptive mesh and by taking into account the symmetry of localized hexagon patches.
However, the computation of larger patterns requires a less expensive way of computing hexagon patches.
We believe that implementing triangular finite elements in trilinos should result in a significant speed-up.
In addition, we do not expect that the core region of hexagon patches changes much as the patterns grow.
Thus, it might be possible to work with an annular region as computational domain where the boundary
conditions on the inner boundary are chosen to ensure compatibility with previously computed hexagon
patches. This should lead to a further reduction of the size of the system.

Other localized 2D patterns. Last, we comment on other localized planar structures.

In [78], fully localized stripe patches were observed in the cubic-quintic Swift–Hohenberg equation

ut = −(1 + Δ)2u − μu + νu3 − u5. (6.1)

These patterns, reproduced in Figure 1(b), are clearly anisotropic. To describe them, one could use, as in
[32], the Newell–Whitehead–Segel equation

4
(

∂X − i
2
∂2

Y Y

)2

A = εA − |A|2A + |A|4A

for the envelope function A(X, Y ) of stripes that are parallel to the y-direction, where (X, Y ) = (ε1/2x, ε1/4y).
This equation admits localized fronts A1(X) and A2(Y ) with different spatial widths. The front A1(X)
occurs at the 1D Maxwell point found in the normal-form analysis of the one-dimensional cubic-quintic
Swift–Hohenberg equation (6.1): this front corresponds to an “equilibrium to periodic orbit” connection
for the associated spatial dynamical system, and we therefore expect snaking and the growth of additional
rolls along the x-direction as an equation parameter is varied. The front A2(Y ) in the Y -direction, on the
other hand, corresponds to an “equilibrium to equilibrium” connection, and we do not expect snaking to
occur; instead, we expect that the bifurcation curve converges, in an oscillatory fashion, to a single vertical
asymptote [51]. This latter behavior is precisely what was observed in [78] in numerical simulations of fully
localized stripe patterns.

Another interesting Swift–Hohenberg model is

ut = −(1 + Δ)2u − μu + νu3 − u5 + α∇ · [|∇u|2∇u].

The last term in the above equation gives preference to patterns with square symmetry, and localized patches
of squares have indeed been found in direct numerical simulations [44, 79]. We expect that these patches
exhibit snaking and predict that localized square patches of square shape grow by adding new cells starting
from the middle of each face.

Localized pentagonal structures have also been observed numerically in [91, Figure 10(a)-(b)] in a model
of driven optical cavities. Our numerical methods could be extended easily to compute and continue these
structures by expanding u as a Fourier series

u(r, θ) =
∑
n∈Z

an(r)e5niθ

using five-fold symmetric terms. Pentagons do not tile the plane, so the question of snaking for localized
pentagons would be interesting.
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