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Abstract—Compressed sensing is an emerging field based
on the revelation that a small collection of linear projections
of a sparse signal contains enough information for recon-
struction. In this paper we expand our theory for distributed
compressed sensing (DCS) that enables new distributed cod-
ing algorithms for multi-signal ensembles that exploit both
intra- and inter-signal correlation structures. The DCS the-
ory rests on a new concept that we term thejoint sparsity
of a signal ensemble. We present a second new model for
jointly sparse signals that allows for joint recovery of multi-
ple signals from incoherent projections through simultane-
ous greedy pursuit algorithms. We also characterize theo-
retically and empirically the number of measurements per
sensor required for accurate reconstruction.

I. I NTRODUCTION

A core tenet of signal processing and information the-
ory is that signals, images, and other data often contain
some type ofstructure that enables intelligent representa-
tion and processing. Current state-of-the-art compression
algorithms employ a decorrelating transform such as an
exact or approximate Karhunen-Loève transform (KLT)
to compact a correlated signal’s energy into just a few
essential coefficients. Suchtransform coders [1] exploit
the fact that many signals have asparse representation in
terms of some basis, meaning that a small numberK of
adaptively chosen transform coefficients can be transmit-
ted or stored rather thanN ≫ K signal samples. For
example, smooth signals are sparse in the Fourier basis,
and piecewise smooth signals are sparse in a wavelet ba-
sis [1]; the coding standards MP3, JPEG, and JPEG2000
directly exploit this sparsity.

A. Compressed sensing (CS)

A new framework for single-signal sensing and com-
pression has developed recently under the rubric ofCom-
pressed Sensing (CS) [2, 3]. CS builds on the surprising
revelation that a signal having a sparse representation in
one basis can be recovered from a small number of pro-
jections onto a second basis that isincoherent with the
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first.1 In fact, for anN -sample signal that isK-sparse,2

roughlycK projections of the signal onto the incoherent
basis are required to reconstruct the signal with high prob-
ability (typically c ≈ 3). This has promising implications
for applications involving sparse signal acquisition. In-
stead of sampling aK-sparse signalN times, onlycK
incoherent measurements suffice, whereK can be orders
of magnitude less thanN . Moreover, thecK measure-
ments need not be manipulated in any way before being
transmitted, except possibly for some quantization. In-
terestingly, independent and identically distributed (i.i.d.)
Gaussian or Rademacher (random±1) vectors provide
a usefuluniversal measurement basis that is incoherent
with any given basis with high probability.

B. Distributed compressed sensing (DCS)

In this paper, we introduce new theory and algorithms
for distributed compressed sensing (DCS) that exploit
both intra-and inter-signal correlation structures. In a
typical DCS scenario, a number of sensors measure sig-
nals (of any dimension) that are each individually sparse
in some basis and also correlated from sensor to sensor.
Each sensorindependently encodes its signal by project-
ing it onto another, incoherent basis (such as a random
one) and then transmits just a few of the resulting coeffi-
cients to a collection point. Under the right conditions, a
decoder at the collection point canjointly reconstruct all
of the signals precisely.

The DCS theory rests on a concept that we term the
joint sparsity of a signal ensemble. We have introduced
a first model for jointly sparse signals and proposed cor-
responding joint reconstruction algorithms [4]. We have
also derived results on the required measurement rates for
signals that have sparse representations under each of the
models: while the sensors operate entirelywithout collab-
oration, we see dramatic savings relative to the number
measurements required for separate CS decoding.

1Roughly speaking,incoherence means that no element of one basis
has a sparse representation in terms of the other basis.

2By K-sparse, we mean that the signal can be written as a sum ofK
basis functions.
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In this paper, we extend our previous work by intro-
ducing a new joint sparsity model that is applicable to
many real world scenarios, including sensor networks for
smoothly varying signal fields. We also propose also spe-
cially tailored recovery algorithms that achieve perfor-
mance similar or better to that of our previous model. The
paper is organized as follows: Section II reviews the CS
theory. Section III presents our new joint sparsity model
and reconstruction algorithms, and Section IV analysis
and simulations. Finally, Section V concludes the paper.

II. COMPRESSEDSENSING

We briefly explain the Compressed Sensing (CS)
framework proposed in [2, 3] to make the paper self-
contained. Suppose thatx is a signal, and letΨ =
{ψ1, ψ2, . . . } be a basis ordictionary of vectors. When
we say thatx is sparse, we mean thatx is well approx-
imated by a linear combination of a small set of vectors
from Ψ. That is,x ≈

∑K
i=1

θni
ψni

whereK ≪ N ;
we say thatx isK-sparse in Ψ and callΨ the sparse ba-
sis. The CS theory states that it is possible to construct
anM × N measurement matrix Φ, whereM ≪ N , yet
the measurementsy = Φx preserve the essential infor-
mation aboutx. For example, letΦ be acK ×N random
matrix with i.i.d. Gaussian entries, wherec = c(N,K) is
an oversampling factor. Using such a matrix it is possi-
ble, with high probability, to recover any signal that is
K-sparse in the basisΨ from its image underΦ. For
signals that are notK-sparse butcompressible, mean-
ing that their coefficient magnitudes decay exponentially,
there are tractable algorithms that achieve not more than
a multiple of the error of the bestK-term approximation
of the signal.

Several algorithms have been proposed for recovering
x from the measurementsy, each requiring a slightly dif-
ferent constantc. The canonical approach [2, 3] uses lin-
ear programming to solve theℓ1 minimization problem

θ̂ = arg min
θ

‖θ‖1 subject to ΦΨθ = y.

This problem requiresc ≈ log2(1 + N/K) [4] but has
somewhat high computational complexity. Additional
methods have been proposed involving greedy pursuit
methods. Examples include Matching Pursuit (MP) and
Orthogonal Matching Pursuit (OMP), which tend to re-
quire fewer computations but at the expense of slightly
more measurements [5].

III. JOINT SPARSITY MODELS

In this section, we generalize the notion of a signal be-
ing sparse in some basis to the notion of an ensemble of
signals beingjointly sparse. We consider two different
joint sparsity models (JSMs) that apply in different situ-
ations. In these models, each signal is itself sparse, and

so we could use the CS framework from above to encode
and decode each one separately. However, there also ex-
ists a framework wherein ajoint representation for the
ensemble uses fewer total vectors.

We will use the following notation for signal ensem-
bles and our measurement model. Denote thesignals in
the ensemble byxj , j ∈ {1, 2, . . . , J}, and assume that
each signalxj ∈ R

N . We usexj(n) to denote sample
n in signal j, and we assume that there exists a known
sparse basis Ψ for R

N in which thexj can be sparsely
represented. The coefficients of this sparse representation
can take arbitrary real values (both positive and negative).
Denote byΦj themeasurement matrix for signalj; Φj is
Mj ×N and, in general, the entries ofΦj are different for
eachj. Thus,yj = Φjxj consists ofMj < N incoher-
ent measurements of xj . We will emphasize random i.i.d.
Gaussian matricesΦj in the following, but other schemes
are possible, including random±1 Bernoulli/Rademacher
matrices, and so on.

A. JSM-1: Sparse common component + innovations

In this model, all signals share acommon sparse com-
ponent while each individual signal contains a sparsein-
novation component; that is,

xj = z + zj , j ∈ {1, 2, . . . , J}

with z = Ψθz, ‖θz‖0 = K andzj = Ψθj , ‖θj‖0 = Kj.
Thus, the signalz is common to all of thexj and has
sparsityK in basisΨ.3 The signalszj are the unique
portions of thexj and have sparsityKj in the same basis.

A practical situation well-modeled by JSM-1 is a group
of sensors measuring temperatures at a number of outdoor
locations throughout the day. The temperature readings
xj have both temporal (intra-signal) and spatial (inter-
signal) correlations. Global factors, such as the sun and
prevailing winds, could have an effectz that is both com-
mon to all sensors and structured enough to permit sparse
representation. More local factors, such as shade, wa-
ter, or animals, could contribute localized innovationszj

that are also structured (and hence sparse). A similar sce-
nario could be imagined for a network of sensors record-
ing light intensities, air pressure, or other phenomena. All
of these scenarios correspond to measuring properties of
physical processes that change smoothly in time and in
space and thus are highly correlated.

B. JSM-2: Common sparse supports model

In this model all signals are constructed from the same
sparse set of basis vectors, but with different coefficients:

xj = Ψθj , j ∈ {1, 2, . . . , J},

3Theℓ0 norm‖θ‖0 merely counts the number of nonzero entries in
the vectorθ.



where eachθj is supported only on the sameΩ ⊂
{1, 2, . . . , N} with |Ω| = K. Hence, all signals areK-
sparse and are constructed from the sameK elements of
Ψ, but with arbitrarily different coefficients.

A practical situation well-modeled by JSM-2 is where
multiple sensors acquire the same signal but with phase
shifts and attenuations caused by signal propagation. In
many cases it is critical to recover each one of the sensed
signals, such as in many acoustic localization and array
processing algorithms. Another useful application for
JSM-2 is MIMO communication [6].

IV. RECONSTRUCTIONALGORITHMS

We have studied the JSM-1 model and proposed recon-
struction algorithms in [4]. In this paper we focus on the
analysis of the JSM-2 model.

Under the JSM-2 signal ensemble model, separate re-
covery viaℓ1 minimization would requirecK measure-
ments per signal. As we now demonstrate, the total num-
ber of measurements can be reduced substantially by em-
ploying specially tailored joint reconstruction algorithms
that exploit the common structure among the signals, in
particular the common coefficient support setΩ.

The algorithms we propose are inspired by con-
ventional greedy pursuit algorithms for CS (such as
OMP [5]). In the single-signal case, OMP iteratively con-
structs the sparse support setΩ; decisions are based on
inner products between the columns ofΦΨ and a resid-
ual. In the multi-signal case, more clues are available for
determining the elements ofΩ.

A. Recovery via One-Step Greedy Algorithm (OSGA)

When there are many correlated signals in the ensem-
ble, a simple non-iterative greedy algorithm based on in-
ner products will suffice to recover the signals jointly. For
simplicity but without loss of generality, we assume that
Ψ = IN (it can be absorbed by the measurement matrix)
and that an equal number of measurementsMj = M are
taken of each signal. We writeΦj in terms of its columns:
Φj = [φj,1, φj,2, . . . , φj,N ]. The algorithm follows:

1) Get greedy: Given all of the measurements, com-
pute the test statistics

ξn =
1

J

J∑

j=1

〈yj , φj,n〉
2 (1)

for n ∈ {1, 2, . . . , N} and estimate the common
coefficient support set by

Ω̂ = {n having one of theK largestξn}.

When the sparse, nonzero coefficients are sufficiently
generic (as defined below), we have the following sur-
prising result, which is proved in [7] .

Theorem 1: Let Ψ be an orthonormal basis forR
N , let

the measurement matricesΦj contain i.i.d. Gaussian en-
tries, and assume that the nonzero coefficients in theθj

are i.i.d. Gaussian random variables. Then withM ≥ 1
measurements per signal, OSGA recoversΩ with proba-
bility approaching one asJ → ∞.

In words, withfewer thanK measurements per sensor,
it is possible to recover the sparse support setΩ under the
JSM-2 model. Of course, this approach does not recover
theK coefficient values for each signal; that requiresK
measurements per sensor.

Theorem 2: Assume that the nonzero coefficients in
theθj are i.i.d. Gaussian random variables. Then the fol-
lowing statements hold:

1) Let the measurement matricesΦj contain i.i.d.
Gaussian entries, with each matrix having an over-
sampling factor ofc = 1 (that is,Mj = K for
each measurement matrixΦj). Then OSGA recov-
ers all signals from the ensemble{xj} with proba-
bility approaching one asJ → ∞.

2) LetΦj be a measurement matrix with oversampling
factor c < 1 (that is,Mj < K), for somej ∈
{1, 2, . . . , J}. Then with probability one, the signal
xj cannot be uniquely recovered by any algorithm
for any value ofJ .

The first statement is an immediate corollary of Theo-
rem 1; the second statement follows because each equa-
tion yj = Φjxj would be underdetermined even if the
nonzero indices were known. Thus, under the JSM-2
model, the one-step greedy algorithm asymptotically per-
forms as well as an oracle decoder that has prior knowl-
edge of the locations of the sparse coefficients.

Theorem 2 provides tight achievable and converse
bounds for JSM-2 signals, in the sense that the number of
measurements needed for success is only one greater than
the number that yields reconstruction failure. Our numer-
ical experiments show that OSGA works well even when
M is small, as long asJ is sufficiently large. However,
in the case of fewer signals (smallJ), OSGA performs
poorly; see Figure 1. We propose next an alternative re-
covery technique based on simultaneous greedy pursuit
that performs well for smallJ .

B. Recovery via iterative greedy pursuit

In practice, the common sparse support among theJ
signals enables a fast iterative algorithm to recover all of
the signals jointly. Tropp and Gilbert have proposed one
such algorithm, calledSimultaneous Orthogonal Match-
ing Pursuit (SOMP) [6], which can be readily applied in
our DCS framework. SOMP is a variant of OMP that
seeks to identifyΩ one element at a time. We dub the
DCS-tailored SOMP algorithmDCS-SOMP .
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Fig. 1. Reconstruction using OSGA for JSM-2. Theoretical (dashed)
versus experimental (solid) probability of error in recovering the support
setΩ in JSM-2 using OSGA for fixedN = 50, K = 5 and varying
number of measurementsM and number of signalsJ = 5, J = 20,
andJ = 100. The theoretical formulation is presented in [8].

To adapt the original SOMP algorithm to our setting,
we first extend it to cover a different measurement ba-
sisΦj for each signalxj . Then, in each DCS-SOMP it-
eration, we select the column indexn ∈ {1, 2, . . . , N}
that accounts for the greatest amount of residual energy
acrossall signals. As in SOMP, we orthogonalize the re-
maining columns (in each measurement basis) after each
step; after convergence we obtain an expansion of the
measurement vector on an orthogonalized subset of the
holographic basis vectors. To obtain the expansion coef-
ficients in the sparse basis, we then reverse the orthogo-
nalization process using the QR matrix factorization. The
algorithm is as follows:

1) Initialize: Set the iteration counterℓ = 1. For each
signal indexj ∈ {1, 2, . . . , J}, initialize the or-
thogonalized coefficient vectorŝβj = 0, β̂j ∈ R

M ;
also initialize the set of selected indicesΩ̂ = ∅.
Let rj,ℓ denote the residual of the measurementyj

remaining after the firstℓ iterations, and initialize
rj,0 = yj .

2) Select the dictionary vector that maximizes the
value of the sum of the magnitudes of the projec-
tions of the residual, and add its index to the set of
selected indices

nℓ = arg max
n=1,2,...,N

J∑

j=1

|〈rj,ℓ−1, φj,n〉|

‖φj,n‖2

,

Ω̂ = [Ω̂ nℓ].

3) Orthogonalizethe selected basis vector against the
orthogonalized set of previously selected dictionary

vectors

γj,ℓ = φj,nℓ
−

ℓ−1∑

t=0

〈φj,nℓ
, γj,t〉

‖γj,t‖2
2

γj,t.

4) Iterate: Update the estimate of the coefficients for
the selected vector and residuals

β̂j(ℓ) =
〈rj,ℓ−1, γj,ℓ〉

‖γj,ℓ‖2
2

,

rj,ℓ = rj,ℓ−1 −
〈rj,ℓ−1, γj,ℓ〉

‖γj,ℓ‖2
2

γj,ℓ.

5) Check for convergence:If ‖rj,ℓ‖2 > ǫ‖yj‖2 for
all j, then incrementℓ and go to Step 2; otherwise,
continue to Step 6. The parameterǫ determines the
target error power level allowed for algorithm con-
vergence. Note that due to Step 3 the algorithm can
only run for up toM iterations.

6) De-orthogonalize: Apply QR factorization on the
mutilated basis4 Φj,bΩ

= QjRj = ΓjRj . Since
yj = Γjβj = Φj,bΩ

xj,bΩ
= ΓjRjxj,bΩ

, wherexj,bΩ

is the mutilated coefficient vector, we can compute
the signal estimates{x̂j} as

θ̂j,bΩ
= R−1

j β̂j ,

x̂j = Ψθ̂j ,

whereθ̂j,bΩ
is the mutilated version of the sparse co-

efficient vector̂θj.
In practice, each sensor projects its signalxj via Φjxj

to producêcK measurements for somêc. The decoder
then applies DCS-SOMP to reconstruct theJ signals
jointly. We orthogonalize because as the number of iter-
ations approachesM the norms of the residues of an or-
thogonal pursuit decrease faster than for a non-orthogonal
pursuit.

Thanks to the common sparsity structure among the
signals, we believe that DCS-SOMP will succeed with
ĉ < c(S). Empirically, we have observed that a small
number of measurements proportional toK suffices for a
moderate number of sensorsJ . We conjecture thatK +1
measurements per sensor suffice asJ → ∞. Thus, in
practice, this efficient greedy algorithm enables an over-
sampling factor̂c = (K + 1)/K that approaches1 asJ ,
K, andN increase.

C. Simulations

We now present a simulation comparing separate CS
reconstruction versus joint DCS-SOMP reconstruction

4We define amutilated basis ΦΩ as a subset of the basis vectors from
Φ = [φ1, φ2, . . . , φN ] corresponding to the indices given by the set
Ω = {n1, n2, . . . , nM}, that is,ΦΩ = [φn1

, φn2
, . . . , φnM

]. This
concept can be extended to vectors in the same manner.
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Fig. 2. Reconstructing a signal ensemble with common sparse supports
(JSM-2). We plot the probability of perfect reconstructionvia DCS-
SOMP (solid lines) and independent CS reconstruction (dashed lines) as
a function of the number of measurements per signalM and the num-
ber of signalsJ . We fix the signal length toN = 50, the sparsity to
K = 5, and average over 1000 simulation runs. An oracle encoder that
knows the positions of the large signal expansion coefficients would use
5 measurements per signal.

for a JSM-2 signal ensemble. Figure 2 plots the proba-
bility of perfect reconstruction corresponding to various
numbers of measurementsM as the number of sensors
varies fromJ = 1 to 32. We fix the signal lengths at
N = 50 and the sparsity of each signal toK = 5.

With DCS-SOMP, for perfect reconstruction of all sig-
nals the average number of measurements per signal de-
creases as a function ofJ . The trend suggests that, for
very largeJ , close toK measurements per signal should
suffice. In contrast, with separate CS reconstruction, for
perfect reconstruction of all signals the number of mea-
surements per sensorincreases as a function ofJ . This
surprise is due to the fact that each signal will experi-
ence an independent probabilityp ≤ 1 of successful re-
construction; therefore the overall probability of complete
success ispJ . Each sensor must then compensate by mak-
ing additional measurements. This phenomenon further
motivates joint reconstruction under JSM-2.

V. CONCLUSIONS

In this paper we have developed a new joint sparsity
model that allows us to apply the DCS framework to a
wider class of real world settings. For this new model
(JSM-2), we have developed an efficient greedy algorithm
for joint signal recovery and observed that important col-
lective signal properties can be learned from as little as
one measurement per signal. We note that our theoretical
results are best-possible in the CS setting and cannot be
improved upon. There are many opportunities for appli-
cations and extensions of these ideas.

Application to sensor networks: The area that ap-
pears most likely to benefit immediately from the new
DCS theory is low-powered sensor networks, where en-
ergy and communication bandwidth limitations require
that we perform data compression while minimizing
inter-sensor communications [9]. DCS encoders work
completely independently; therefore inter-sensor commu-
nication is required in a DCS-enabled sensor network
only to support multi-hop networking to the data collec-
tion point. Moreover, the fact that typical sensor networks
are designed to measure physical phenomena suggests
that their data will possess considerable joint structure in
the form of inter- and intra-signal correlations.

Compressible signals:In practice natural signals are
not exactlyℓ0 sparse but rather can be better modeled as
ℓp sparse with0 < p ≤ 1. Roughly speaking, a signal in
a weak-ℓp ball has coefficients that decay asn−1/p once
sorted according to magnitude [3]. The key concept is
that the ordering of these coefficients is important. For
our new model, we can extend the notion of simultaneous
sparsity forℓp-sparse signals whose sorted coefficients
obey roughly the same ordering. This condition could
perhaps be enforced as anℓp constraint on the composite

signal
{∑

j |xj(1)|,
∑

j |xj(2)|, . . . ,
∑

j |xj(N)|
}

.
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