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Abstract—Compressed sensing is an emerging field basedfirst. In fact, for anN-sample signal that i& -sparsé,
on the revelation that a small collection of linear projectons  roughly cK projections of the signal onto the incoherent
of a sparse signal contains enough information for recon- pagis are required to reconstruct the signal with high prob-

struction. In this paper we expand our theory for distributed . . . O L2
compressed sensing (DCS) that enables new distributed cod- ability (typically ¢ = 3). This has promising implications

ing algorithms for multi-signal ensembles that exploit boh ~ for applications involving sparse signal acquisition. In-
intra- and inter-signal correlation structures. The DCS the- stead of sampling & -sparse signalV times, onlycK

ory rests on a new concept that we term thqoint sparsity  jncoherent measurements suffice, whirean be orders
of a signal ensemble. We present a second new model forof magnitude less tha®v. Moreover, thecK measure-

jointly sparse signals that allows for joint recovery of muli- ¢ d not b inulated i bef bei
ple signals from incoherent projections through simultane ments need not beé manipulated in any way betore being

ous greedy pursuit algorithms. We also characterize theo- transmitted, except possibly for some quantization. In-
retically and empirically the number of measurements per terestingly, independent and identically distributedd()
sensor required for accurate reconstruction. Gaussian or Rademacher (randerh) vectors provide
a usefuluniversal measurement basis that is incoherent
|. INTRODUCTION with any given basis with high probability.

A core tenet of signal processing and information the; . _ . .
ory is that signals, images, and other data often contzl?h Distributed compressed sensing (DCS)

some type oftructure that enables intelligent representa- In this paper, we introduce new theory and algorithms
tion and processing. Current state-of-the-art comprassit®r distributed compressed sensing (DCS) that exploit
a|gorithms emp|oy a decorre|ating transform such as mth intra-and inter—signal correlation structures. In a
exact or approximate Karhunen-Loéve transform (KLTlypical DCS scenario, a number of sensors measure sig-
to compact a correlated signal’s energy into just a fe{gls (of any dimension) that are each individually sparse
essential coefficients. Sudtansform coders [1] exploit in some basis and also correlated from sensor to sensor.
the fact that many signals havesgarse representation in Each sensoindependently encodes its signal by project-
terms of some basis, meaning that a small nunibesf ing it onto another, incoherent basis (such as a random
adaptively chosen transform coefficients can be transm@€) and then transmits just a few of the resulting coeffi-
ted or stored rather thalv > K signal samples. For cients to a collection point. Under the right conditions, a
example, smooth signals are sparse in the Fourier basigcoder at the collection point camintly reconstruct all
and piecewise smooth signals are sparse in a wavelet Bathe signals precisely.

sis [1]; the coding standards MP3, JPEG, and JPEG2000The DCS theory rests on a concept that we term the

directly exploit this sparsity. joint sparsity of a signal ensemble. We have introduced
_ a first model for jointly sparse signals and proposed cor-
A. Compressed sensing (CS) responding joint reconstruction algorithms [4]. We have

A new framework for single-signal sensing and comalso derived results on the required measurement rates for
pression has developed recently under the rubrianf-  signals that have sparse representations under each of the
pressed Sensing (CS) [2, 3]. CS builds on the surprisingmodels: while the sensors operate entisgihout collab-
revelation that a signal having a sparse representationgiation, we see dramatic savings relative to the number
one basis can be recovered from a small number of pireasurements required for separate CS decoding.
jections onto a second basis thatifsoherent with the

1Roughly speakingincoherence means that no element of one basis
This work was supported by NSF-CCF, NSF-NeTS, ONR, antias a sparse representation in terms of the other basis.

AFOSR. Web: dsp.rice.edu/cs. 2By K-sparse, we mean that the signal can be written as a sukh of
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In this paper, we extend our previous work by introso we could use the CS framework from above to encode
ducing a new joint sparsity model that is applicable tand decode each one separately. However, there also ex-
many real world scenarios, including sensor networks figts a framework wherein point representation for the
smoothly varying signal fields. We also propose also spensemble uses fewer total vectors.
cially tailored recovery algorithms that achieve perfor- We will use the following notation for signal ensem-
mance similar or better to that of our previous model. Thales and our measurement model. Denotestheals in
paper is organized as follows: Section Il reviews the Cthe ensemble by;, j € {1,2,...,J}, and assume that
theory. Section Ill presents our new joint sparsity modelach signal;; € RY. We usez;(n) to denote sample
and reconstruction algorithms, and Section IV analysisin signal j, and we assume that there exists a known
and simulations. Finally, Section V concludes the papesparse basis ¥ for RY in which thez; can be sparsely

Il. COMPRESSEDSENSING represented. The coefficients of this sparse represemtatio

We briefly explain the Compressed Sensing (C%an take arbitrary real values (both positive and negative)
It=

framework proposed in [2,3] to make the paper se
contained. Suppose that is a signal, and letl =

enote byd; the measurement matrix for signalyj; ®; is
M; x N and, in general, the entries &f are different for
{41,12, ...} be a basis odictionary of vectors. When eachj. Thus,y; = ®;z; consists ofM; < N incoher-
; . ent measurements of x;. We will emphasize random i.i.d.
we say thate is sparse, we mean that is well approx- . ) ; X
. ; N Gaussian matriceB; in the following, but other schemes
imated by a linear combination of a small set of vectors ) . . .
. K ~are possible, including randotnl Bernoull/Rademacher
from ¥. Thatis,z ~ ) ;" 0,,¢n, WhereK < N, -
. <1 s matrices, and so on.
we say thatr is K-sparsein ¥ and call¥ the sparse ba-
sis. The CS theory states that it is possible to constru&t JSM-1: Sparse common component + innovations
anM x N measurement matrix ®, whereM < N, yet In this model, all signals sharecammon sparse com-
the measurements = &z preserve the essential infor-nonent while each individual signal contains a spanse
matlc_)n a_bom_qu. For example, Ie@ beacK x N rando_m novation component; that s,
matrix with i.i.d. Gaussian entries, whare= ¢(N, K) is _
anoversampling factor. Using such a matrix it is possi- wj =242, je{l2....J}
ble, with high probability, to recover any signal that isvith = = ¥6., ||6.|o = K andz; = ¥8;, ||6;]0 = K.
K-sparse in the basi& from its image unde®. For Thus, the signak is common to all of ther; and has
signals that are nok-sparse butompressible, mean- sparsity K in basis¥.®> The signalsz; are the unique
ing that their coefficient magnitudes decay exponentiallgprtions of ther; and have sparsit; in the same basis.
there are tractable algorithms that achieve not more thanA practical situation well-modeled by JSM-1 is a group
a multiple of the error of the bedt-term approximation of sensors measuring temperatures at a number of outdoor
of the signal. locations throughout the day. The temperature readings
Several algorithms have been proposed for recovering have both temporal (intra-signal) and spatial (inter-
z from the measuremenis each requiring a slightly dif- signal) correlations. Global factors, such as the sun and
ferent constant. The canonical approach [2, 3] uses linprevailing winds, could have an effecthat is both com-
ear programming to solve thg minimization problem mon to all sensors and structured enough to permit sparse
representation. More local factors, such as shade, wa-
This problem requires ~ log,(1 + N/K) [4] but has ter, or animals, could contribute localized innovatians
. : . - hat are also structured (and hence sparse). A similar sce-
somewhat high computational complexity. Add|t|ona$ . . .
. . nario could be imagined for a network of sensors record-
methods have been proposed involving greedy PUrSthY light intensities, air pressure, or other phenomenk. Al
methods. Examples include Matching Pursuit (MP) an 99 - arp X P ’

Orthogonal Matching Pursuit (OMP), which tend to Y these scenarios correspond to measuring properties of

quire fewer computations but at the expense of slightglhys'cal Processes that change smoothly in time and in
pace and thus are highly correlated.
more measurements [5].

6= argmein |61 subjectto ®TH =y.

B. JSM-2: Common sparse supports model

In this model all signals are constructed from the same

_ Inthis section, we generalize the notion of a signal by, 5 se set of basis vectors, but with different coefficients
ing sparse in some basis to the notion of an ensemble of

signals beingointly sparse. We consider two different z; =00;, je{l,2,....J},

jOi_nt sparsity models (JSMs) that gpply_in_diﬁerent situ- 3The £y norm ||0]|o merely counts the number of nonzero entries in
ations. In these models, each signal is itself sparse, anéevector.

IIl. JOINT SPARSITY MODELS



where eachd; is supported only on the sam@ C Theorem1: Let ¥ be an orthonormal basis f&", let
{1,2,...,N} with |2] = K. Hence, all signals ar&- the measurement matric&s contain i.i.d. Gaussian en-
sparse and are constructed from the sdtnelements of tries, and assume that the nonzero coefficients irfthe
W, but with arbitrarily different coefficients. are i.i.d. Gaussian random variables. Then with> 1

A practical situation well-modeled by JSM-2 is wheraneasurements per signal, OSGA recovensith proba-
multiple sensors acquire the same signal but with phalsiity approaching one ag — oc.
shifts and attenuations caused by signal propagation. Inin words, withfewer than K measurements per sensor,
many cases it is critical to recover each one of the sensié possible to recover the sparse supportsander the
signals, such as in many acoustic localization and arrd$M-2 model. Of course, this approach does not recover
processing algorithms. Another useful application fahe K coefficient values for each signal; that requifés
JSM-2 is MIMO communication [6]. measurements per sensor.

Theorem2: Assume that the nonzero coefficients in
thed; are i.i.d. Gaussian random variables. Then the fol-

We have studied the JSM-1 model and proposed recdowing statements hold:
struction algorithms in [4]. In this paper we focus on the 1) Let the measurement matricds; contain i.i.d.

IV. RECONSTRUCTIONALGORITHMS

analysis of the JSM-2 model. Gaussian entries, with each matrix having an over-
Under the JSM-2 signal ensemble model, separate re- sampling factor ofc = 1 (that is, M; = K for
covery via¢; minimization would require /X measure- each measurement matilx). Then OSGA recov-

ments per signal. As we now demonstrate, the total num-  ers all signals from the ensemble; } with proba-

ber of measurements can be reduced substantially by em-  bility approaching one ag — oc.

ploying specially tailored joint reconstruction algoritb 2) Let®; be a measurement matrix with oversampling

that exploit the common structure among the signals, in  factorc¢ < 1 (thatis, M; < K), for somej €

particular the common coefficient support Set {1,2,...,J}. Then with probability one, the signal
The algorithms we propose are inspired by con- x; cannot be uniquely recovered by any algorithm

ventional greedy pursuit algorithms for CS (such as  for any value of/.

OMP [5]). In the single-signal case, OMP iteratively con- The first statement is an immediate corollary of Theo-

structs the sparse support $&t decisions are based onrem 1; the second statement follows because each equa-

inner products between the columnsd¥ and a resid- tion y; = ®,z; would be underdetermined even if the

ual. In the multi-signal case, more clues are available foonzero indices were known. Thus, under the JSM-2

determining the elements ©¥. model, the one-step greedy algorithm asymptotically per-

forms as well as an oracle decoder that has prior knowl-
A. Recovery via One-Step Greedy Algorithm (OSGA) edge of the locations of the sparse coefficients.

When there are many correlated signals in the ensem-Theorem 2 provides tight achievable and converse
ble, a simple non-iterative greedy algorithm based on iRounds for JSM-2 signals, in the sense that the number of
ner products will suffice to recover the signals jointly. Fofneasurements needed for success is only one greater than
simplicity but without loss of generality, we assume thdhe number that yields reconstruction failure. Our numer-
¥ = Iy (it can be absorbed by the measurement matriial experiments show that OSGA works well even when
and that an equal number of measuremeijs= M are M is small, as long ad is sufficiently large. However,
taken of each signal. We writg; in terms of its columns: in the case of fewer signals (smal), OSGA performs
O, = [¢j1,0j2,--.,¢;n]. The algorithm follows: poorly; see Figure 1. We propose next an alternative re-

1) Get greedy: Given all of the measurements, com€OVery technique based on simultaneous greedy pursuit

pute the test statistics that performs well for smalV.

J
1
gn = j Z<yja ¢j,n>2 (1)
j=1
forn € {1,2,...,N} and estimate the common

B. Recovery via iterative greedy pursuit

In practice, the common sparse support amongithe
signals enables a fast iterative algorithm to recover all of
- the signals jointly. Tropp and Gilbert have proposed one

coefch tent suppc?rt set by such algorithm, calle@multaneous Orthogonal Match-
{2 = {n having one of thex" largestt., }. ing Pursuit (SOMP) [6], which can be readily applied in

When the sparse, nonzero coefficients are sufficienty;r DCS framework. SOMP is a variant of OMP that
generic (as defined below), we have the following sukeeks to identify2 one element at a time. We dub the
prising result, which is proved in [7] . DCS-tailored SOMP algorithdCS-SOMP .
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Number of Measurements per Signal, M continue to Step 6. The parametatetermines the

Fig. 1. Reconstruction using OSGA for JSM-2. Theoretical (dashed) target error power level allowed for algomhm con-
versus experimental (solid) probability of error in recawg the support vergence. Note that due to Step 3 the algorithm can
set2 in JSM-2 using OSGA for fixed = 50, K = 5 and varying 0n|y run for up toM iterations.

number of measuremenld and number of signals = 5, J = 20, . R
and.J = 100. The theoretical formulation is presented in [8]. 6) De-orthogonalize: Apply QR factorization on the

mutilated basf‘scbw = Q;R; = T;R;. Since
y; =18 = Q:c =T R L5 60 Where:c 0
To adapt the original SOMP algorithm to our setting, is the mutilated coe{‘nment vector we can compute
we first extend it to cover a different measurement ba-  the signal estimate§r; } as
sis ®; for each signal:;. Then, in each DCS-SOMP it- §- = R'B
eration, we select the column indexe {1,2,...,N} 3.9 7
that accounts for the greatest amount of residual energy z; = U,

acrossall signals. As in SOMP, we orthogonalize the re- N
maining columns (in each measurement basis) after each Whereej o Is the mutilated version of the sparse co-
step; after convergence we obtain an expansion of the iont 7

P; 9 P efficient vecton), .

measurement vector on an orthogonalized subset of thg | practice, each sensor projects its sigmpl/ia@ .
J

holographic basis vectors. To obtain the expansion co% producecK’ measurements for sonie The decoder
ficients in the sparse basis, we then reverse the orthogl(l) 5n applies DCS-SOMP to reconstruct thesignals
nalization process using the QR matrix factorization. T']Slntly. We orthogonalize because as the number of iter-
algorithm is as follows: ations approache®/ the norms of the residues of an or-
1) Initialize: Set the iteration countér= 1. For each thogonal pursuit decrease faster than for a non-orthogonal
signal indexj € {1,2,...,J}, initialize the or- pyrsuit.
thogonalized coefﬂment vecto@ =0, ﬁ_] e RM; Thanks to the common sparsity structure among the
also initialize the set of selected indic8s = . signals, we believe that DCS-SOMP will succeed with
Let r; , denote the residual of the measuremgnt ¢ < c(S5). Empirically, we have observed that a small
remaining after the first iterations, and initialize number of measurements proportionakasuffices for a
ri0 = Yj. moderate number of sensafsWe conjecture thak” + 1
2) Selectthe dictionary vector that maximizes themeasurements per sensor sufficefas-» co. Thus, in
value of the sum of the magnitudes of the projegractice, this efficient greedy algorithm enables an over-
tions of the residual, and add its index to the set slampling facto = (K + 1)/K that approachesas.J,

selected indices K, andN increase.
[(rje-1, djn)l C. Smulations
= ,NZ ljnllz We now present a simulation comparing separate CS

N : | reconstruction versus joint DCS-SOMP reconstruction
Q = Q nye|.
4We define anutilated basis ®, as a subset of the basis vectors from

3) Orthogonalizethe selected basis vector against th§ — {[ill f; o iﬁ}}cﬁ{{:tsgoggng t[((’bthe (;;‘d'ces ol fyTtEii set
3o = niy Png s s M

orthogonalized set of previously selected dictionargpncept can be extended to vectors in the same manner.



---------- Application to sensor networks: The area that ap-

1 pears most likely to benefit immediately from the new

DCS theory is low-powered sensor networks, where en-
ergy and communication bandwidth limitations require

that we perform data compression while minimizing

1 inter-sensor communications [9]. DCS encoders work
1 completely independently; therefore inter-sensor commu-
nication is required in a DCS-enabled sensor network

© o o o
o N ©
> .
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o
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0.4r 8
only to support multi-hop networking to the data collec-
0.3r b . . .
tion point. Moreover, the fact that typical sensor networks
02r | are designed to measure physical phenomena suggests
0.1 1 that their data will possess considerable joint structare i
0 Aol 32 ‘ the form of inter- and intra-signal correlations.
0 5 10 15 20 25 30 35 C ibl H Is:] ti t | si |
Number of Measurements per Signal, M ompressible signals:In practice natural signals are

Fig. 2. Reconstructing a signal ensemble with common sparse susppcPOt exactly@) Sparse but rather can be bgtter mf)de'e_d as
(JSM-2). We plot the probability of perfect reconstructivia DCS- £, sparse witl) < p < 1. Roughly speaking, a signal in
SOMP (solid lines) and independent CS reconstruction (thbhes) as g weak-¢,, ball has coefficients that decay as 1/p once
a function of the number of measurements per sigraénd the num- ted P di t itude I31. The k ti
ber of signalsJ. We fix the signal length toV = 50, the sparsity to SOf€d accor _'ng 0 magnitude [ ] _e ) ey concept is
K = 5, and average over 1000 simulation runs. An oracle encodgr tithat the ordering of these coefficients is important. For
knows the positions of the large signal expansion coeffisigmuld use o r new model. we can extend the notion of simultaneous
5 measurements per signal. . ' . ..
sparsity for/,-sparse signals whose sorted coefficients
obey roughly the same ordering. This condition could
for a JSM-2 signal ensemble. Figure 2 plots the probgerhaps be enforced as gnconstraint on the composite
b|I|tybof perffect reconstrt:]c;;on cc;]rrespor:)dmgfto varlougigna|{zj lz;(1)], Zj 1z;(2)], ..., Zj |z (V)]
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