
YALE: Rapid Prototyping for Complex Data Mining Tasks

Ingo Mierswa
Artificial Intelligence Unit
Department of Computer

Science
University of Dortmund

ingo.mierswa@uni-
dortmund.de

Michael Wurst
Artificial Intelligence Unit
Department of Computer

Science
University of Dortmund

wurst@ls8.cs.uni-
dortmund.de

Ralf Klinkenberg
Artificial Intelligence Unit

Department of
Computer Science

University of Dortmund

ralf.klinkenberg@uni-
dortmund.de

Martin Scholz
Artificial Intelligence Unit
Department of Computer

Science
University of Dortmund

scholz@ls8.cs.uni-
dortmund.de

Timm Euler
Artificial Intelligence Unit
Department of Computer

Science
University of Dortmund

timm.euler@uni-
dortmund.de

ABSTRACT
KDD is a complex and demanding task. While a large num-
ber of methods has been established for numerous problems,
many challenges remain to be solved. New tasks emerge
requiring the development of new methods or processing
schemes. Like in software development, the development
of such solutions demands for careful analysis, specification,
implementation, and testing. Rapid prototyping is an ap-
proach which allows crucial design decisions as early as pos-
sible. A rapid prototyping system should support maximal
re-use and innovative combinations of existing methods, as
well as simple and quick integration of new ones.

This paper describes Yale, a free open-source environ-
ment for KDD and machine learning. Yale provides a rich
variety of methods which allows rapid prototyping for new
applications and makes costly re-implementations unneces-
sary. Additionally, Yale offers extensive functionality for
process evaluation and optimization which is a crucial prop-
erty for any KDD rapid prototyping tool. Following the
paradigm of visual programming eases the design of pro-
cessing schemes. While the graphical user interface supports
interactive design, the underlying XML representation en-
ables automated applications after the prototyping phase.

After a discussion of the key concepts of Yale, we illus-
trate the advantages of rapid prototyping for KDD on case
studies ranging from data pre-processing to result visualiza-
tion. These case studies cover tasks like feature engineer-
ing, text mining, data stream mining and tracking drifting

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’06, August 20–23, 2006, Philadelphia, Pennsylvania, USA.
Copyright 2006 ACM 1-59593-339-5/06/0008 ...$5.00.

concepts, ensemble methods and distributed data mining.
This variety of applications is also reflected in a broad user
base, we counted more than 40,000 downloads during the
last twelve months.

Track: Industrial Track

Categories and Subject Descriptors: I.5.2 [Computing
Methodologies]: Pattern Recognition

General Terms: Design, Experimentation

Keywords: KDD system, rapid prototyping, multimedia
mining, audio and text mining, data stream mining, data
pre-processing, result visualization, distributed data mining,
feature construction

1. INTRODUCTION
It is well known that knowledge discovery (KD) is a highly

complex process. Like software development, it requires
careful analysis, specification, implementation and testing.
Prototyping plays an important role in this process. On the
one hand, prototyping helps to identify adequate methods
and optimal parameters. This enables developers to make
crucial design decisions as early as possible in the knowl-
edge discovery process. Costly redesign at later stages can
be avoided. On the other hand, prototyping helps to control
several risks. Most importantly, the performance of the en-
visioned system can be estimated beforehand. This gives the
customer an impression of the final result and its limitations.
It also helps to clarify misunderstandings concerning the en-
visioned outcome. Another important aspect is to estimate
computation time and cost of the final system. Especially
for applications with tight constraints on these resources
(e.g. real time systems), such an estimation is essential in
order to decide to which extent knowledge discovery can be
applied.

A prototyping framework for knowledge discovery must
meet several requirements. First, it should be very flexible
with respect to methods for preprocessing and data analysis.
This implies that it must offer a very broad range of differ-

ent methods and that incorporating new methods is easy.
Also, it should be able to process different kinds of input
data, as time series or text data, without additional effort
for the user. Second, a rapid prototyping tool for knowledge
discovery must provide extensive functionality for evalua-
tion and optimization. Finally, prototyping tools must be
very easy to use. In particular, they should not require the
user to learn a complex formalism. Many prototyping tools
therefore employ the paradigm of visual programming.

The Yale system1 was developed to meet the above re-
quirements. Yale is an environment for machine learning
experiments and data mining supporting the paradigm of
rapid prototyping. Experiments can be made up of a large
number of arbitrarily nestable operators and their setup is
described by XML files which can easily be created with a
graphical user interface. Applications of Yale cover both
research and real-world data mining tasks.

2. BASIC CONCEPTS
Real-world knowledge discovery processes typically con-

sist of one or more data pre-processing, machine learning,
evaluation, and visualization steps. Hence, a data mining
platform should allow complex experiment designs, trans-
parent data handling, comfortable parameter handling and
optimization, flexible rearrangements, and extendibility. Fi-
nally, a rapid prototyping environment for knowledge discov-
ery must ensure that even complex experiments can easily
be designed. In this section we will discuss some of the basic
concepts of Yale which eases the design of new methods.

2.1 Modeling knowledge discovery processes
as operator trees

Knowledge discovery (KD) processes are often viewed as
sequential invocations of single methods. For example, after
loading the data, one might apply a preprocessing step fol-
lowed by an invocation of a classification learning method.
The result in this case is the learned model, which can be
applied on new and unseen data. A possible abstraction of
these single methods is the concept of operators. Each oper-
ator receives its input, performs a defined action and deliv-
ers some output. Hence, the sequential method invocations
correspond to an operator chain. Although this chain model
is sufficient for many basic knowledge discovery tasks, flat
chains are often insufficient to model complex KD processes.

A common approach for more complex experiment designs
is designing the operator combinations as directed graph.
Each vertex of the graph corresponds to a single operator.
If two operators are connected, the output of the first op-
erator should be used as input of the second. On the one
hand, designing knowledge discovery processes with help of
directed graphs is very powerful. On the other hand, it has
a main drawback: due to missing restrictions and necessary
topological sorting the design of experiments is often not
intuitive and automatic validations are harder to perform.

Yale offers a compromise between the simplicity of oper-
ator chains and the power of directed graphs by modeling
KD processes as operator trees. Similar to programming
languages, using operator trees allows concepts like loops,
conditions, or other meta application schemes. The leafs in
the operator tree correspond to simple steps in the mod-
eled process like learning a prediction model or applying a

1http://yale.sf.net

Figure 1: The operator tree for a complex data min-

ing experiment. The upper label denotes the opera-

tor instance name, the lower label the operator class

name.

preprocessing filter. Inner nodes of the tree correspond to
more complex or abstract steps in the process. This is of-
ten necessary if the children should be applied several times
like, for example, in loops. In general, inner operator nodes
define the data flow through their children. The root of the
tree corresponds to the whole experiment.

Figure 1 shows a nested KD process for feature selec-
tion using a genetic algorithm with an inner cross-validation
for evaluating candidate feature sets and an outer cross-
validation for evaluating the genetic algorithm as a feature
selector. This setup is modeled as an operator tree. The
data flow is the same as for depth first search (DFS) with
only one exception. If an inner operator node performs a
loop, the input and output objects might be passed more
than once to the children before the final output is gener-
ated and given to the next sibling of the parent.

Operators define their expected inputs and delivered out-
puts as well as their obligatory and optional parameters,
which enables Yale to automatically check the nesting of
operators, the types of the objects passed between the oper-
ators, and the mandatory parameters. This eases the design
of complex data mining experiments. Following the concept
of visual programming, users can easily create operator trees
with the help of a graphical user interface. Break points be-
fore or after operators can be used to check intermediate
results and the data flow. This eases both debugging and
interpreting the results.

Yale internally uses XML to describe the operator trees
which is easily readable by humans and machines. The XML
description of an experiment consists of nested tag elements

for all operators. Each operator element defines its instance
name and operator class via XML attributes and the param-
eters via inner tags. This XML experiment configuration
define an interchange format for data mining experiments
and also ensures the reproducibility of experiments. Since
default parameters do not need to be specified, the XML
description is a very concise representation of the operator
tree structure.

The XML experiment configurations can be used as a
scripting language for KD experiments. Each operator cor-
responds to a single step or function invocation like prepro-
cessing or model learning. In consequence, the data mining
step of other programs can easily be configured by alter-
ations of the basic XML scripts. This property was for ex-
ample used by the Network Media Organizer Nemoz

2.

2.2 Multi-layered data view concept
Yale’s most important characteristic is the ability to nest

operator chains and build complex operator trees. In order
to support this functionality the Yale data core acts like a
data base management system and provides a multi-layered

data view on a common data table which underlies all views.
The views on this table do not contain the data itself but
only references on rows or columns of this table. In case
of a data set, views on the rows of the table correspond to
subsets of the data, and views on the columns correspond
to the selected features used to represent the examples.

All views are maintained by a stack of views. For exam-
ple, the first view can select a subset of examples and the
second view can select a subset of features. The result is a
single view which reflects both views. The number of lay-
ered views is virtually not limited. Other supported views
include conditioned data set filters allowing only examples
fulfilling a given condition, missing value filters, weighting
views applying a weight on examples or features, or views
creating new attributes on the fly.

This multi-layered view concept is a very efficient way to
store different views on the same data table. This is espe-
cially important for automatic data preprocessing tasks like
feature generation or selection. In order not to unnecessarily
copy the data set or subsets of it, Yale manages views on
this table, so that only references to the relevant parts of the
table need to be copied or passed between operators. For
example, the population of an evolutionary operator may
consist of several data views - instead of several duplicates
of parts of the data set.

2.3 Data handling
No matter whether a data set is stored in memory, in

a file, or in a database, Yale internally uses special types
of data tables to access the data via an uniform external
interface. The data handling is hence transparent to the
operators. Yale achieves this transparent data handling by
supporting several types of data sources and hiding internal
data transformations and partitioning from the user or other
operators. Therefore, operators do not have to cope with the
actual data format or different data views.

In order to guide transformations of the feature space or
the automatic search for the best preprocessing, the user can
define additional meta data. Meta data include the type of
attributes or their unit according to the international system
of units (SI). This information is for example used by feature

2http://nemoz.sf.net

Figure 2: A 2D plot of the radius function deter-

mined with a Support Vector Clustering algorithm.

This operator is part of the Clustering plugin.

generation algorithms in order to prevent the aggregation of
features which do not have the same unit of measurement.
The definition of meta information is optional, Yale tries
to guess the correct data types automatically.

2.4 Built-in operators and extensions
A rapid prototyping environment for knowledge discov-

ery should already support a huge number of operations
and state of the art methods. For example, Figure 2 shows
the visualization of the result of a support vector clusterer.
Together with the available plugins, Yale provides more
than 400 operators. This set of operators include a wide
range of in- and output operators, (Arff, C4.5, csv, or sparse
formats, databases like Oracle, mySQL, or Postgres, and
other file formats like dBase, text and audio files etc.), ma-

chine learning operators (support vector machines, decision
tree and rule learners, lazy learners, bayesian learners, lo-
gistic regression, gaussian processes, meta learning tech-
niques, association rule mining algorithms and clustering
schemes etc.), data preprocessing operators (discretization,
example and feature filtering, normalization, sampling, di-
mensionality reduction, and additional and infinite value re-
plenishment filters etc.), feature space transformation oper-
ators (forward selection, backward elimination, genetic algo-
rithms, weight guided, feature weighting and relevance cal-
culation, feature construction and extraction etc.), evalua-

tion operators and meta optimization operators (parameter
optimization or experiment loops etc.). Of course, a wide
range of visualization tools like online plots of your data or
experiment results are also provided.

Although Yale provides this broad variety of operators
for different data mining tasks, it might sometimes be nec-
essary to implement a missing functionality. In order to im-
plement a new operator, the developer simply needs to define
the expected inputs, the delivered outputs, the mandatory
and optional parameters, and the core functionality of the
operator. Yale provides an exhaustive application program-
ming interface (API) with clean interfaces in order to allow
quick access to the main methods. The operator description

in XML allows Yale to automatically create corresponding
GUI elements. An easy-to-use plugin mechanism is provided
in order to add functionality in a modular way which allows
contributions by the Yale community that do not require
changes in the Yale core. Several plugins are available in
the download section of our web site.

Beside the graphical and the command line interface, Yale

can also be directly used from other programs. Clear pro-
gramming interfaces define an easy way of applying single
operators, operator chains, or complete operator trees on
input data. Both the command line version and a Java API
allow the invocation of Yale from programs without using
the GUI. Since Yale is entirely written in Java, it runs on
any major platform and operating system.

3. CASE STUDIES
In the next section, we present several case studies which

exemplify the basic design concepts of Yale and show their
relation to a broad variety of knowledge discovery tasks.

3.1 Case study 1: Ensemble learning on large
databases

For many data mining applications, the predictive perfor-
mance of a model can be improved drastically by considering
several base learners in parallel. The use of ensemble meth-
ods is especially appealing if the available amount of train-
ing data is huge, which is true for most real-world knowledge
discovery tasks. As a consequence of the super-linear run-
time of most learning algorithms, learning from all the data
is often too costly. A common work-around is to learn an
ensemble from a single subsample. This often yields sub-
optimal results, because it does not take full advantage of
the available training data.

For large-scale data mining, Yale offers a direct JDBC
interface to relational databases. This eases the induction
of base models from subsamples of tractable size. Moreover,
due to the nestable operators, the induction of individual
base models, each based on a separate database subsample,
is possible with negligible efforts. This strategy prevents
overfitting and circumvents the problems of scalability with-
out waisting precious information during model building.

A strong point of Yale in the context of ensemble meth-
ods is the fact that all predictions and associated confidences
are handled the same way as regular features are, but with-
out losing their predictive semantics during cross-validations
and similar operations. Hence, if required, predictions and
associated confidence values may be used as regular base fea-
tures for subsequent learning steps. This facilitates stacking,
the optimization of base model weights for boosting, and it
eases the integration of novel ensemble methods as Yale

operators for prototypical evaluation.
During the last years a variety of ensemble algorithms has

been evaluated using the Yale framework. The Bayesian
Boosting operator can optionally start from a given pre-
viously constructed ensemble, e.g. the result of a previous
operator or a model read from file, and use it to weight
the data at hand according to its current predictive perfor-
mance. It then augments the ensemble by adding additional
base models as required for the task. This way an ensemble
of heterogeneous base learners can be constructed.

Apart from classification, the task of sequential subgroup
discovery for given prior knowledge has recently been ad-
dressed successfully [18].

3.2 Case study 2: Text mining and tracking
drifting concepts

Text mining covers a wide range of topics both in terms of
methods and applications. Yale and its plugins offer tools
to tackle many of them. This includes e.g. information fil-
tering of news texts for the automated generation of person-
alized news from multiple sources, the automated sorting
of documents or web pages into pre-defined categories, or
e-mail routing, i.e. the automatic forwarding of e-mail mes-
sages to the most appropriate person or department in a
company or organization.

Text mining usually starts with data pre-processing. Tex-
tual data often is unstructured, e.g. free text in natural lan-
guage, or semi-structured, like e.g. in HTML documents,
i.e. pages in the World Wide Web, or in XML documents.
Many machine learning methods are designed for example
sets with examples in an attribute value vector representa-
tion. Hence the text data needs to be pre-processed, e.g.
by transforming the free text in documents into document
vectors in the vector space model [17]. In the vector space
model (bag of words model), the order of the words in a
document is ignored. Each word occurring in a document is
considered as an attribute, and the frequency of this word in
a particular document is taken as the value of this attribute
for this document. Very frequent and hence uninformative
words (stop words) like articles, prepositions, etc. are often
removed. Afterwards, these term frequency (TF) values are
often weighted to down-weight frequent words, e.g. by mul-
tiplying the term frequency values with the logarithm of the
inverse document frequency (IDF) [16].

The Word Vector Tool plugin3 for Yale provides oper-
ators for pre-processing operations as stop word removal,
word stemming, document vector generation, term weight-
ing, etc. It allows to integrate sets of texts into Yale oper-
ator chains just like any other kind of example sets that can
be described by attribute value pair vectors.

A particular problem for text mining are drifting concepts.
Text data might be collected over an extended period of time
and the target concept to be learned from the data stream
may change. An important example is personalized informa-
tion filtering, i.e. the adaptive classification of documents
with respect to a dynamic user interest.

The concept drift plugin for Yale enables Yale to per-
form data stream mining and concept drift tracking. This
plugin provides operators to simulate data streams and con-
cept drift on arbitrary data sets as well as to handle real
concept drift on real-world data. The methods range from
totally ignoring the drift, learning with complete or no mem-
ory of old examples, and using time windows of fixed or
adaptive size [9]. It also provides other example selection
and weighting strategies [8] as well as variants of advanced
boosting-like ensemble methods for handling concept drift
[19] derived from those described in the previous section.

Yale allows the seamless integration of all the aforemen-
tioned steps from text data pre-processing via data stream
simulation and handling, classifier learning, and concept
drift tracking to operator chain and parameter variation and
optimization as well as result visualization. The Word Vec-
tor Tool and the concept drift plugin are the basis for many
other text mining applications, e.g. text clustering or key-
word extraction.

3http://wvtool.sf.net/

3.3 Case study 3: Distributed data mining and
feature construction

Distributed computing plays an important role in the data
mining process for several reasons. First, Data Mining of-
ten requires huge amounts of resources in storage space and
computation time. To make systems scalable, it is impor-
tant to develop mechanisms that distribute the work load
among several sites in a flexible way. Second, data is often
inherently distributed into several databases, making a cen-
tralized processing of this data very inefficient and prone to
security risks.

The Yale distributed data mining plugin allows to per-
form distributed data mining experiments in a simple and
flexible way. The experiments are not actually executed on
distributed network nodes. The plugin only simulates this.
Simulation makes it easy to experiment with diverse network
structures and communication patterns. Optimal methods
and parameters can be identified efficiently before putting
the system into use. The network structure can for example
be optimized as part of the general parameter optimization.
While this cannot replace testing the system in an actual
network, it makes the development stage much more effi-
cient. This follows the general philosophy of Yale as rapid
prototyping tool for large scale data mining applications.

Yale was used for prototyping the distributed multime-
dia organization system Nemoz

4. Choosing the right rep-
resentations of examples and hypotheses is essential to en-
able successful multimedia mining. Feature construction is
an approach to find such a representation independently of
the underlying learning algorithm. Unfortunately, the con-
struction of features usually implies searching a very large
space of possibilities and is often computationally demand-
ing. Therefore, we proposed an approach to feature con-
struction that is based on transferring information between
different data mining tasks [11]. Tasks are stored together
with a corresponding set of constructed features in a dis-
tributed case base. The case base is then used to constrain
and guide the feature construction for new tasks. This is
achieved by a new representation model for data mining
tasks and a corresponding highly efficient distance measure.
This approach is unique as it enables us to apply feature
construction not only on a large scale, but also in scenarios
in which communication cost plays an important role.

This kind of simulation is a good example for the power
of the Yale data model. Different nodes share the same
underlying database with different views. Hence, data and
attribute information does not need to be replicated. Shar-
ing examples and attributes among nodes is simply accom-
plished by “selecting” them. A freely definable cost matrix
allows to account communication cost and time in a very
flexible way. The same holds for the network structure.

3.4 Case study 4: Feature selection for unsu-
pervised learning

The aim of cluster analysis is to group data points into
natural clusters of similar data points. Such natural clusters
describe the original data space in a structured way. They
can be however covered by noisy features, sparsity or redun-
dant features. Feature space transformation is therefore an
important preprocessing step for many clustering tasks. In
a current project, we explore possibilities to apply feature

4http://nemoz.sf.net

selection and transformation to unsupervised learning [12].
Feature space transformation for unsupervised learning is

inherently a multi-objective optimization problem. On the
one hand, the quality of the resulting clusters should be im-
proved. On the other hand, we want to preserve as much
of the original data space as possible, such that the discov-
ered clusters are a valid representation of the original data.
We use the capabilities of Yale to apply multi-objective
feature space optimization as wrapper approach and com-
bine it with several clustering algorithms as well as feature
selection and construction schemes. All points of the result-
ing Pareto set describe optimal solutions concerning cluster
quality and minimal transformation of the original data.

Multi-objective optimization requires usually a large num-
ber of individuals and generations. Yale enables such large
scale experiments as the internal data management does not
duplicate any data points. Again, the individual feature sets
are merely different views on the same data.

3.5 Additional applications
Other applications of Yale include the prediction of pa-

rameters for chemical processes [5] and learning the pre-
processing of time series data [10]. The natural language
processing and text mining architecture Gate [4] has an in-
ternal Machine Learning API which will be based on Yale

in a future version. MusicMiner
5 is a music browser which

extracts the necessary audio features by using the value se-
ries plugin of Yale.

4. RELATED WORK
A look at the KDnuggets software directory6 reveals that

a host of commercial data mining tools exists but only a few
are freely available on an open source basis. Among the com-
mercial tools, leading mining suites such as SPSS Clemen-
tine7 and others usually offer a flat workflow-oriented view
on the operations, using no nestable operators, and includ-
ing a fairly limited range of standard learning algorithms.
Tasks such as cross validation, parameter optimization or
automatic feature selection are rarely directly supported.
This situation is similar concerning the free software, but
here at least developers may choose to extend the function-
ality since the source code is available.

Probably the most well-known open source data mining
package is Weka [20], a collection of Java implementations
of machine learning algorithms. All Weka algorithms are di-
rectly and seamlessly available in Yale. Other open source
projects can be classified according to whether they provide
a GUI with an integrated data flow model (such as Weka or
Tanagra8), or consist of programming libraries like ADaM9.

The preparation of data is supported in Yale by numer-
ous feature selection and construction operators. However,
Yale is applied to a single input data table. The Mining-
Mart software [13, 6] can be used to combine data from sev-
eral tables, or to prepare large data sets inside a relational
database instead of main memory as in Yale. MiningMart
provides operators that ease the integration with Yale.

Yale’s XML-based experiment storage format can be seen

5http://musicminer.sf.net
6http://www.kdnuggets.com/software/
7http://www.spss.com/clementine/
8http://chirouble.univ-lyon2.fr/∼ricco/tanagra/
9http://datamining.itsc.uah.edu/adam/

as a language to model data mining processes which is inter-
preted by the Yale system. A number of other approaches
use modeling languages for the mining process. MiningMart
(see above) uses M4 which includes, besides modeling the
mining process, a two-layered data meta model and can be
stored both in a relational database or in XML files [7, 6].
KDDML [15] has been developed as a middleware language
for the support of KDD applications. Elements in KDDML
are operators with functional semantics; this allows to nest
operators like in Yale, though Yale uses procedural se-
mantics. Similarly, modeling languages for KDD processes
have also been developed in research on KDD over grids; see
[3] for an overview of this area. Two XML-based languages
being developed in this context are DPML [1] and DSCL
[2]. The XML-based syntax used by Yale is suitable for
distributed processing as well; this is a direction for future
work. Finally, the new PMML version 3.010 [14] includes fa-
cilities to model data transformations executed on a data set
before mining. PMML is not process-oriented but provides
a standard to describe machine-learned models in XML. Fu-
ture work will integrate PMML import and export facilities
into the Yale environment.

5. CONCLUSION
This paper presented Yale, a prototyping tool for com-

plex KD tasks. Yale offers a wide variety of different al-
gorithms and methods, which can be flexibly combined and
arbitrarily nested. KD processes are represented as operator
trees. This enables users to easily incorporate loop facilities
into their KD experiments. Loops are essential for many
tasks like parameter optimization, feature selection, or ap-
plying iterative learning schemes as boosting. Yale provides
an internal data management system that allows arbritrary
views on the data, without duplicating it. This is essential
for large scale feature construction and the simulation of dis-
tributed data mining. This data management also keeps the
data handling as transparent as possible to end users as well
as to operator developers. Finally, Yale is easy to extend
and many plugins already exist that enrich its base func-
tionality. These plugins currently cover text, audio, time
series, and multimedia processing, data stream simulation
and concept drift handling, clustering, and distributed data
mining.

Yale is currently used in more than 20 countries world-
wide for research and development as well as real-world ap-
plications in companies as well as for research and teaching
at universities. During the last twelve months, there were
more than 40,000 downloads from the Yale web page11 and
more than 160,000 web page visits. Encouraged by this in-
terest in our framework, we hope that in the future even
more people will find Yale useful for their professional and
academic work.

6. REFERENCES
[1] S. AlSairafi, F.-S. Emmanouil, M. Ghanem, N. Giannadakis,

Y. Guo, D. Kalaitzopoulos, M. Osmond, A. Rowe, J. Syed, and
P. Wendel. The Design of Discovery Net: Towards Open Grid
Services for Knowledge Discovery. High-Performance
Computing Applications, 17(3):297–315, 2003.

[2] P. Brezany, I. Janciak, A. Wöhrer, and A. M. Tjoa. GridMiner:
A Framework for Knowledge Discovery on the Grid – from a

10http://www.dmg.org/pmml-v3-0.html
11http://yale.sf.net

Vision to Design and Implementation. In Proceedings of the
Cracow Grid Workshop, Cracow, Poland, 2004.

[3] M. Cannataro, A. Congiusta, C. Mastroianni, A. Pugliese,
D. Talia, and P. Trunfio. Grid-Based Data Mining and
Knowledge Discovery. In N. Zhong and J. Liu, editors,
Intelligent Technologies for Information Analysis. Springer,
Berlin, Germany, 2004.

[4] H. Cunningham, K. Humphreys, R. Gaizauskas, and Y. Wilks.
Software infrastructure for natural language processing. In
Proceedings of the Fifth Conference on Applied Natural
Language Processing (ANLP-97), pages 237–244, San
Francisco, CA, USA, 1997. Morgan Kaufmann Publishers Inc.
http://gate.ac.uk/.

[5] G. Daniel, J. Dienstuhl, S. Engell, S. Felske, K. Goser,
R. Klinkenberg, K. Morik, O. Ritthoff, and H. Schmidt-Traub.
Advances in Computational Intelligence – Theory and
Practice, chapter Novel Learning Tasks, Optimization, and
Their Application, pages 245–318. Springer, 2002.

[6] T. Euler. Publishing Operational Models of Data Mining Case
Studies. In Proceedings of the Workshop on Data Mining
Case Studies at the 5th IEEE International Conference on
Data Mining (ICDM), pages 99–106, Houston, Texas, USA,
2005.

[7] J.-U. Kietz, A. Vaduva, and R. Zücker. MiningMart:
Metadata-Driven Preprocessing. In Proceedings of the
ECML/PKDD Workshop on Database Support for KDD,
September 2001.

[8] R. Klinkenberg. Learning drifting concepts: Example selection
vs. example weighting. Intelligent Data Analysis (IDA),
Special Issue on Incremental Learning Systems Capable of
Dealing with Concept Drift, 8(3):281–300, May 2004.

[9] R. Klinkenberg and T. Joachims. Detecting concept drift with
support vector machines. In P. Langley, editor, Proceedings of
the Seventeenth International Conference on Machine
Learning (ICML), pages 487–494, San Francisco, CA, USA,
2000. Morgan Kaufmann.

[10] I. Mierswa and K. Morik. Automatic feature extraction for
classifying audio data. Machine Learning Journal, 58:127–149,
2005.

[11] I. Mierswa and M. Wurst. Efficient feature construction by
meta learning – guiding the search in meta hypothesis space.
In Proc. of the Internation Conference on Machine Learning,
Workshop on Meta Learning, 2005.

[12] I. Mierswa and M. Wurst. Information preserving
multi-objective feature selection for unsupervised learning. In
Proc. of the Genetic and Evolutionary Computation
Conference (GECCO ’06), 2006. submitted.

[13] K. Morik and M. Scholz. The MiningMart Approach to
Knowledge Discovery in Databases. In N. Zhong and J. Liu,
editors, Intelligent Technologies for Information Analysis,
chapter 3, pages 47–65. Springer, Berlin, Germany, 2004.

[14] S. Raspl. PMML Version 3.0—Overview and Status. In
R. Grossman, editor, Proceedings of the Workshop on Data
Mining Standards, Services and Platforms at the 10th ACM
SIGKDD Int. Conf. on Knowledge Discovery and Data
Mining (KDD), pages 18–22, 2004.

[15] A. Romei, S. Ruggieri, and F. Turini. KDDML: A Middleware
Language and System for Knowledge Discovery in Databases.
In Proceedings of the 13th Italian Symposium on Advanced
Database Systems (SEBD), June 2005.

[16] G. Salton and C. Buckley. Term weighting approaches in
automated text retrieval. Information Processing and
Management, 24(5):513–523, 1988.

[17] G. Salton, A. Wong, and C. S. Yang. A vector space model for
automatic indexing. Communications of the ACM (CACM),
18(11):613–620, November 1975.

[18] M. Scholz. Sampling-Based Sequential Subgroup Mining. In
R. L. Grossman, R. Bayardo, K. Bennett, and J. Vaidya,
editors, Proceedings of the 11th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD
’05), pages 265–274, Chicago, Illinois, USA, August 2005.
ACM Press.

[19] M. Scholz and R. Klinkenberg. Boosting Classifiers for Drifting
Concepts. Intelligent Data Analysis (IDA), Special Issue on
Knowledge Discovery from Data Streams, 2006. Accepted for
publication.

[20] I. H. Witten and E. Frank. Data mining: Practical machine
learning tools and techniques with Java implementations.
Morgan Kaufmann, San Francisco, CA, USA, 2000.
http://www.cs.waikato.ac.nz/ml/weka/.

