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Abstract. Disjunctive systems are a representation of L-domains.
They use sequents of the form X F Y, with X finite and Y pairwise
disjoint. We show that for any disjunctive system, its elements or-
dered by inclusion form an L-domain. On the other hand, via the
notion of stable neighborhoods, every L.-domain can be represented
as a disjunctive system. More generally, we have a categorical equiv-
alence between the category of disjunctive systems and the category
of L- domains. A natural classification of domains is obtained in
terms of the style of the entailment: when |X| = 2 and |Y| = 0
disjunctive systems determine coherent spaces; when |Y| < 1 they
represent Scott domains; when either | X| = 1 or |Y| = 0 the asso-
ciated cpos are distributive Scott domains; and finally, without any

restriction, disjunctive systems give rise to L.-domains.

1 Introduction

Discovered by Coquand [C090] and Jung [Ju90] independently, L-domains form

one of the maximal cartesian closed categories of algebraic cpos. Together with



the work of Smyth [Sm83] which shows that the SFP domains of Plotkin [P176]
is the largest cartesian closed category inside the w-algebraic cpos, we have a
better picture of good categories of domains that may be used in denotational
semantics of programming languages.

The primary contribution of this paper is to give a representation of L-
domains, based concretely on sets and relations. These concrete structures,
which are called disjunctive systems, provide a general framework encompassing
coherent spaces, Scott domains, and bifinite L-domains. Our representation
follows the idea of Scott [Sc82] in his work on information systems, and hence
it inherits the benefits of these structures.

Previous work has shown that Scott domains, SFP domains, and stable
domains can all be represented by structures similar to information systems
([LaWi84], [Sc82], [Zh90b], [Zh89]). The topic of this paper comes very naturally
along this line of research. It adds to our belief that good categories of domains
all have nice concrete representations.

A disjunctive system is a structure with sequents of the form X F Y on
propositions (tokens) about computation. These sequents generalize the usual
notion of sequents due to Gentzen: Although X is required to be finite (and
non-empty), ¥ need not be so. A sequent X F Y should read ‘conjunction of
X’s entails disjunction of Y’s’. The name ‘disjunctive’ originates from the work
of Johnstone [Jo77]. It reflects the condition that whenever we write X Y,
Y must be pairwise disjoint, in the sense that two distinct propositions in Y

always contradict each other. In terms of sequents, this is expressed by
Va,be Y. a# b= {a, b} F 0.

Perhaps exclusive-or is the most familiar example of ‘disjunctiveness’. How-
ever, situations like this arise frequently in computation. For example, although
a storage can hold different data, it can only store one datum at a time. Essen-
tially, anything which has to do with resources involves the notion of disjunc-

tiveness. Suppose a candy bar, a pack of cigarette, and a cup of coffee cost one



dollar each. With one dollar, you can buy a candy bar, a pack of cigarette, or
a cup of coffee. However, you can only buy one of them.

The notion of disjunctiveness has appeared already in different areas of the-
oretical study. It was considered in [Die76] and [Jo77] in the context of category
theory. When looking for a topological characterization of stable functions of
Berry [Be78], one naturally arrives at stable neighborhoods [Zh], [Zh90a], those
open sets which have the disjoint property (see Section 2).

Our purpose in considering disjunctive systems is to study concrete repre-
sentation of L-domains and its consequences. The concept of elements serves
as a bridge between disjunctive systems and domains. An element of a dis-
junctive system is a set x of propositions such that whenever X F Y for some
X C z, YNz is non-empty. Ordered by set inclusion these elements form a cpo,
with @ the bottom. We are going to show that disjunctive systems represent
L-domains, those algebraic cpos in which every principal ideal | = is a complete
lattice. This main result is expressed as the following two theorems, which is

generalized to the equivalence of the related categories in Section 6.

Theorem 1.1 For a disjunctive system A, the set of elements |A| ordered by

inclusion is an L-domain.
Theorem 1.2 FEvery L-domain can be represented by a disjunctive system.

To prove the first theorem a characterization of finite elements is needed.
They turn out to be those which are generated by a finite set of tokens relative
to a given element. The disjoint nature of the sequents makes it true that any
relative intersection of a collection of compatible elements is again an element.
Therefore, the greatest lower bound of any collection of elements exists within
every principal ideal. In fact this is the construction with which we get the
finite elements, as well as the least upper bounds of compatible sets.

To show that every L-domain can be represented by a disjunctive system, we
use the notion of stable neighborhoods. Stable neighborhoods were introduced

in [Zh89a] to give a topological characterization of stable functions. They are



those Scott open sets whose minimal points are pairwise incompatible. The
disjoint property of stable neighborhoods makes them natural candidates for
propositions of disjunctive systems. We show that there is an order preserv-
ing, 1-1 correspondence, between an L.-domain and the disjunctive system con-
structed from its stable neighborhoods.

Since disjunctive systems are based on a limited use of sets, they provide a
concrete approach to domains. What is more important is, however, that they
suggest an interesting classification of domains. Call a cpo an [m, n]-domain if
it is determined by a disjunctive system whose sequents are of the form X FY
with | X| < m and |Y| < n. Similarly, call a cpo an (m, n)-domain if it is
determined by a disjunctive system whose sequents are of the form X F Y with
|X| < m or |Y] <n. Note that to be able to express disjointness, X should be
allowed to have at least two elements. Note also that for technical advantage,
X is required to be non-empty. For convenience let x stand for no restriction.

By this classification, coherent spaces [Gi87] are exactly the [2, 0]-domains.
Other existing domains can also be classified in this way. We summarize the

classification by the following table.

Parameters | Domain Types

(2, 0] Coherent Spaces

[*, 1] Scott Domains

(2, 1) Distributive Scott Domains
(*, *) L-Domains

On the other hand, the classification of domains in this way brings forward
an extremely rich family of domains. Many interesting issues arise. For example:
What are the [3, 2]-domains? Do they form a cartesian closed category? Note
these are follow-up questions which we do not attempt to settle here. Whether
this classification generates any interesting category of domains or not remains
to be seen.

The general notion of sequent structures and non-deterministic information



systems were introduced in [Zh] and [DG90], respectively. The purpose of [Zh]
was to give a representation of SEFP domains (see also [Zh90b]), and the main
purpose of [DGI0] was to give a characterization of partial orders representable
by non-deterministic information systems. This paper uses a different structure
which is not contained in sequent structures or non-deterministic information
systems: instead of having - as a relation between finite subsets of tokens, we
need it to be a relation that relates a finite subset to any pairwise disjoint
subset. As mentioned at the end, whether this need is absolutely necessary is

unknown at the time this paper is finished.

2 L-Domains and Stable Neighborhoods

We assume the reader’s familiarity with some basic definitions of domain theory,
such as complete partial orders (cpos), finite elements, Scott open sets, algebraic
cpos, etc. With respect to a cpo D, we write 1T for the upper closed set (upper
set)

{de D|d3tfor somet e T},

where T is a subset of D. Similarly |7 stands for the set
{de D|dCtforsomet e T}.

In cases where T' = {z}, a singleton set, we just write T or |a.

The notion of minimal upper bounds are quite relevant here, so we recall
some related definitions. Let T' be a subset of a cpo D. An element d is said to
be a minimal upper bound of 1" if d dominates every element in T', and there
is no element strictly below d with this property. The set of minimal upper
bounds of T"is written as X7T'. We call XT complete if whenever d is an upper
bound of T', d is already bigger than some element of XT. A cpo D is said to

have property m if every subset has a complete set of minimal upper bounds.



For a given set T of a cpo, we define
U(T)=Tr,
UTHT) = {z | # € XS for some finite subset S C U"(T)},
UP(T) = Uso U™
Let D be an algebraic cpo (the non-algebraic ones do not seem to be inter-

esting). It is called an L-domain if for every @ in D, the principal ideal |« is a

complete lattice. The following characterization of L-domains is useful.

Theorem 2.1 (Jung) An algebraic epo D is an L-domain if and only if D has
property m and U = UL,

When we show that every L-domain can be represented as a disjunctive

system later in Section 4, stable neighborhoods are used.

Definition 2.1 Let D be a cpo. u is a stable neighborhood of D if it is a Scott-
open set of D such that u =TC, where C is a collection of finite elements of D
with the property

(Cl,CQ - C & Tclﬁ TCQ 7£ @) — C1 = Ca.

We write the set of stable neighborhoods of a cpo D as SN(D). In general,
SN(D) does not necessarily form a topology. It is not closed under finite in-
tersections, neither arbitrary unions. However, stable neighborhoods are closed

under disjoint unions.

Definition 2.2 Let D be a cpo. The set of minimal points of a Scott open set

u, written as pu, consists of m € u such that Ve Cm.z € u = = = m.

Clearly minimal points of a Scott open set are finite elements. Also, a Scott
open set u is a stable neighborhood if and only if pu is pairwise incompatible.
As a corollary of Theorem 2.1, we have a characterization of L-domains in terms

of stable neighborhoods.

Proposition 2.1 Let D be an algebraic cpo. D is an L-domain if and only if

the collection of stable neighborhoods on D is closed under finite intersections.



3 Disjunctive Systems
Definition 3.1 A disjunctive system is a pair
A= (A1)

where A is a set of tokens and & is a relation such that whenever X Y, X is
a non-empty finite subset of A and Y is a pairwise disjoint subset of A in the

sense that

Va,be Y. a# b= {a, b} F 0.
Note that the following additional axioms can be put on :

(Identity) alt a,
X'DOX XFY YCVY YeE#A
XY ’

(Weakening)

XFY,a o X'FY' YUY €#A

(Cut) X, X' FVY,V

Here # A is the collection of pairwise disjoint subset of A.

When these axioms are satisfied we call a disjunctive system normal. How-
ever, as far as the representation of domains is concerned, these axioms may
not be required. From the definition of elements given later, we will see that
if any of the axioms is violated, the associated propositions can not appear in
any element. In any case, every L-domain can be represented by a normal dis-
junctive system, as can be seen from the proof of Theorem 1.2. Additionally,
it seems neater not to require normality when dealing with the classification of
domains determined by disjunctive systems.

Note that when we write X F Y, X is always a non-empty, finite subsets
of propositions, and Y pairwise disjoint. Of course Y can be infinite, or even
uncountable, keeping in mind that our intended purpose is to recast various
kinds of domains in a general setting, including L-domains, which may have an

uncountable number of finite elements.



A disjunctive system determines a family of subsets of propositions called

its elements.

Definition 3.2 The elements |A| , of a disjunctive system A = (A, ) consist

of subsets x of propositions which are closed under entailment:
(XCa& XFY)=anY #£0.

Given an element x of a disjunctive system A, we have |[Y Nz| = 1 for
any entailment X F Y with X C x. This follows from the pairwise disjoint
nature of Y. Note for any disjunctive system A, we have ) €| A | . Although
this is easy to check, we had to take some care earlier for the definition of the
entailment relation. The requirement that X be non-empty in any entailment
X F Y is crucial. Imagine if § £ (§ were allowed in a disjunctive system A.
According to the definition of an element of a disjunctive system, | A | would
be empty, contradicting the expectation that (| A |, €) be a cpo. This is not
surprising because logically speaking, () F ) means true F false, resulting in an
inconsistent structure.

Noting that for disjunctive systems the least upper bound of a directed set

is the union of elements in that set, we have

Proposition 3.1 For a disjunctive system A,
(14], €)

is a complete partial order.

The following proposition is the key to the construction of finite elements

and the proof of the representation theorems.

Proposition 3.2 Let A be a disjunctive system, and let T be a compatible
subset of elements of A. Then N1 is an element of A.



Proof Since T' is compatible, there is some element = of A such that
VyeT. yCua.

Let X Y be an entailment in A such that X C N T. We have X C y for every
y in T'. But such y’s are elements of A. Therefore Y Ny =Y N # () for all y
in 7'. This implies Y NN T # 0.

O

Suppose P is any subset of an element . According to the previous propo-
sition,

(My | PCyCa&yc|Al}

is an element of A. We write [P], for such an element. Elements of the form

[P, with P finite are of special interest to us. They form the basis of a cpo
(14], <).

Proposition 3.3 Given a disjunctive system A, [P, is a finite element of
(|A], ©) for any finite subset P of an element x € |A|.

Proof Let S be a directed subset in the cpo (|A], C), and let

Pl cUs.

(Note that [|S = US when S is directed.) Clearly [P], = (P—‘US' Since
P CUS, PCzforsomez € S. Therefore

22 [Plys =[Pl

4 Representation Theorems

In this section we present the proofs of the two representation theorems men-

tioned in the introduction.



Proof of Theorem 1.1: Given a disjunctive system A, and P, (), subsets

of an element x of the disjunctive system, we have

[Pl U[QL. = [PUQ]..
It is then clear that
= J{[P]. | P is afinite subset of x},
with
{[P]. | P is a finite subset of a}

directed. Hence (|A|, C) is algebraic. It is an L-domain because by Proposition
3.2, any subset S of a principle ideal |z has a greatest lower bound, which is
the intersection of all elements in S. Again by Proposition 3.2, the least upper

bound of any subset S is the element

My IUSCyCa&yelAl}

Hence |z is a complete lattice.

Given an L-domain D, we can associate it with a disjunctive system
(D) = (A, F).

Here A is the collection of stable neighborhoods of D excluding D, and F 1is
given by
XkFY if X CUY,

with X finite and Y pairwise disjoint (in set theoretic terms).
We now show that every L-domain can be represented as a disjunctive sys-

tem.

Proof of Theorem 1.2: Let D be an L-domain. It is enough to prove
that



Define a mapping
v (D, E)— (4], ©)

by letting
o(d)={u|ueSN(D)\{D} & d € u}.

We show that ¢ is an order preserving isomorphism between (D, C) and (4], C

).
The non-trivial part is to show that ¢ is onto. Let « € |Z(D)| be a non-
bottom (otherwise p(L) = x). We show that (a =T ¢ for some ¢t € D. For any

u € x, we have
{uy F{Tplp € pu}.
Therefore, there is some py € pu such that Tpy € z, since = is an element of
Z(D). It follows that
Ne={Tpllpeal
However, {p |Tp € 2} is a directed set. To see this, let po, p1 € {p|Tp € x}.
The fact that D is an L-domain implies that X {pg, p1} is a complete set of

minimal upper bounds of {pg, p1}. Moreover, T {pg,p;} is again a stable
neighborhood, by Proposition 2.1. Hence

{Tpo, Tor} EA{Tp | p €™ {po, pr}}.

It follows that Tp € x for some p € X {pg, p;}. This p is an upper bound of pg
and p;.
Therefore

Nz =1t
where

t=UHpltpea}

From this we know that for any v € SN(D) containing ¢, v must belong to x

11



since
teu = (U{plTpea})cwu
— py € u for some Tpy €
=Tpo Cu
— {Tpo} F {u}
— u c .

In summary, all the above shows that @ = ¢(t) for some ¢t € D.

5 Classification of Domains

A disjunctive system is called [m, n] if all the sequents involved are of the form
X FY with | X| <m and |Y]| <n. It is (m, n) if the sequents are of the form
X FY with |[X| < m or |Y| < n. The corresponding cpos are called [m, n]-
domains or (m, n)-domains, respectively. To explain the notation better, note
that [m, n] suggests a ‘closed interval’, and (m, n) an ‘open interval’.
Consider a disjunctive systems (A, ), where all the entailments X F Y are

such that | X| =2 and |Y| = 0. Clearly x € |A] if and only if
Va, b € z. {a, b} I/ 0.
Therefore, the elements of such systems have the property that
(zeldl &yCa)=yeldl

Hence every such a disjunctive system represents a coherent space. Conversely,
it can be easily seen that every coherent space can be represented by a disjunc-

tive system of this kind. We have, therefore,
Proposition 5.1 The [2, 0]-domains are exactly coherent spaces.

Implied by the results of Scott [Sc82], we have

12



Proposition 5.2 The [, 1]-domains are exactly Scott domains.

Suppose (A, F) is a disjunctive system with the entailments of the form
X F Y such that either | X| =1 or |Y| = 0. What can be said about the cpo it
represents? It is a distributive Scott domain. Let T' be a compatible subset of
|A|. It can be seen that the union [JT must also be an element. Therefore the
elements ordered under inclusion is a Scott domain. It is distributive because
in this case the greatest lower bound of any collection of elements is just the
intersection of these elements.

Further more, any distributive Scott domain can be represented by a dis-
junctive system of this kind, even with the condition |Y| < 1 holding for all
entailments X F Y. The proof of this claim can be derived from [Zh89]. This

leads to the following proposition.
Proposition 5.3 The (2, 1)-domains are exactly distributive Scott domains.

Continuing in this line, we only need that the following relation < be well-
founded for a disjunctive system (A, F) to represent a dI-domain. For a, b € A,
a < bif a # b and for some Y containing b, a - Y. The well-foundedness of <,
however, does not seem to be expressible in terms of the types of disjunctive
systems as it stands: I suspect dl-domains are none of the [m, n]-domains or

(m, n)-domains.

6 Categorical Equivalence

This section introduces approximable mappings between disjunctive systems.
It then shows that the category of disjunctive systems with approximable map-
pings is equivalent to the category of L-domains.

For technical convenience we work with a particular kind of disjunctive sys-

tems — those which are normal (see Section 3) and expressive.

13



Definition 6.1 A normal disjunctive system (A, F) is called expressive if
{a} FY = JbeY. {a}t {b},
and for every finite subset X C A, there is some Y C A such that
XEY &VbeY. [Vae X. {b} F{a}].
We abbreviate the above statement as X — Y (note — is not symmetric).

Note that from Proposition 2.1 and the proof of Theorem 1.2 we know that
the expressiveness condition will not pose a restriction on the expressive power
of disjunctive systems. This will be confirmed again later in the categorical
equivalence theorem.

We now introduce morphisms on expressive disjunctive systems called ap-
proximable mappings. This makes expressive disjunctive systems a category.
Approximable mappings show how disjunctive systems are related to one an-
other and they correspond to continuous functions between the associated L-

domains.

Definition 6.2 Let A= (A, F4), B= (B, Fp) be expressive disjunctive sys-
tems. An approzimable mapping from A to B is a relation R C A x B which

satisfies

VS Clin R VXYY,
(1S —4 X &8 —pY) = Vae XIbe Y. aRb.

Here 71 and 7y are projections to the first and the second component, re-
spectively, and Cf" stands for ‘a finite subset of’.

Clearly, when a F @' we have ' — {a, a'}. Taking {(a’,V')} C R, X =
{a,d }, Y = {{'} in the previous definition, we have, for an approximable
mapping R,

atd &d RV = aRV.

14



Proposition 6.1 FExpressive disjunctive systems with approximable mappings

form a category, written as EDIS.

Proof We check that approximable mappings compose. Other axioms for
a category can be checked similarly. Let A, B and C be expressive disjunctive
systems and R : A — B and S : B — ( be approximable mappings. Let
R o S be the relational composition. We show that R o .S is an approximable
mapping. Suppose, for a finite set I, Ve € I. a; (RoS)¢;and {a; |t € [} —4 X,
{¢;|i €1} —¢ Z. Thereexists a u; € B such that a; Ru;, u; S¢; forany: € I.
Let {u; |7 € [} —p Y. The existence of such Y follows from the expressiveness
of B. Since R is an approximable mapping, Vp € Xdg € Y. p R ¢. But for each
g € Y we have ¢ S¢; for all ¢« € I. Therefore there exists some r € Z such that
qSr,since ¢ — q. Hence Vp € X3r € Z. p(Ro S)r.
O

Approximable mappings determine continuous functions via the construction

given in the following definition.

Proposition 6.2 Let R be an approximable mapping from A to B. Define
fr: |Al = |B] by
frz)={beB|Jacx.aRb}.

Then fr is a continuous function from |A| to |B|.

Proof The only difficulty is to show that fg is well-defined. Let = € |A|
and let R : A — B be an approximable mapping. To show fr(x) € |B]| let
Y C/" fp(a)and Y Fg Z. For each b € Y there is some a € x such that a Rb.
Write X for such a collection of a’s. Because A and B are expressive, there
are X', Y’ such that X —4 X’ and ¥ —p Y’. This means we have X C «
and X k4 X', which implies X’ Nz # 0. Now let ug € X’ N 2. By Definition
6.2 there is a vg € Y’ such that ug Rvg. Thus vy € fr(x). We must also have

vo Fp Z, which implies, by expressiveness, vy g ¢ for some ¢ € Z. Therefore

¢ € fr(x)N Z. Thus fris well-defined.

15
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To show that the category of expressive disjunctive systems and the category
of L-domains (which is written as L) are equivalent, we use one of MacLane’s
results ([Ma7l], pp 91). By this result, a functor F' determines an equivalence
of the categories if it is full and faithful, and each L-domain D is isomorphic to

F(A) for some expressive disjunctive system A.
Theorem 6.1 EDIS is equivalent to L.

Proof Let F': EDIS — L be the functor given by

F(A) =14

That each L-domain D is isomorphic to F'(A) for some expressive disjunctive
system A is shown in Theorem 1.2. It remains to show that [ is full and faithful.
First we show that £ is full. Let A and B be expressive disjunctive systems,
and f: F(A) — F(B) a continuous function. Define a relation R C A x B
by letting a Rb if b € f(@). We check that this relation is an approximable
mapping form A to B. Let {(a;, b;) | ¢ € [ } be a finite subset of R. Assume

{CLZ'|Z'€]}AAX

and

{biliel}—pY.

For any a € X, we have a - {a,} for every « € I. Thus we have b; € f(@;) C f(a)
for any ¢ € I. Now {b; |7 € [} Fg Y. Therefore f(@)NY # (. This means for
some b €Y, be f(a), or aRb.

We now show that the continuous function fr determined by the above R
is actually equal to f. Let « € |A|. Suppose b € fr(x). By definition there is
some a € x, a Rb. That is, b € f(@). Therefore b € f(x), by the monotonicity
of f. Thus fr(x) C f(x). On the other hand, let b € f(x). By the continuity

16



of f there is some a € x such that b € f(@). Hence a Rb and b € fr(x). This
means f(x) C fr(x). Hence f = fg.

Secondly, we show that [ is faithful. Suppose R,S : A — B are approx-
imable mappings such that fr = fs. Let a Rb. Then b € fs(@). This means
for some o' € @, @’ S'b, which implies a S'b. Therefore, R C S. By symmetry,

S C R and hence R = S.

7 Future Work

There are many interesting issues to be explored about disjunctive systems.

A sub-system relation can be introduced to disjunctive systems using the
method presented in [LaWi84], so that recursive equations can be solved by
using fixed-point constructions. Technically, we do not anticipate any difficulty
for such a treatment. The question is, however: what kind of equations do
we have? The equations usually involve constructions on disjunctive systems.
However, we have not dealt with constructions such as function space on the
category of expressive disjunctive systems. It is not clear to the author at this
moment how best function space can be introduced (that is the reason we have
not included a sub-system relation).

Secondly, there is the question of whether (*, *)-domains and (*, co)-domains
are the same (i.e., L-domains). On the surface, it looks like (%, co)-domains
should be the bifinite L-domains. Clearly, every bifinite L-domain can be rep-
resented by a (%, co)-disjunctive system. The other way round, however, is
not true: (#, oo)-disjunctive systems can represent more than just the bifinite
L-domains. Here is an example.

Example (Droste and Gobel) Let (A, ) be a disjunctive system with

A={a, b} U{1,2,3, -}

17



and the entailment relation given by

{a, 0} {1, 2},

{1} F{a}, {}F{b} forali>1,

{20 + 1} F {24}, {2042} F {24} foralli>1,
{20} F {20+ 1, 2042} forallt > 1, and

{2001, 20} F O foralli>1.

The elements determined by this disjunctive system are:
0, {a}, {0} and

i=Ha, b} U{2,4,---,,20 L2} U{2i L1} for i > 1, as well as

50 = {a, b} U {2i |i > 1}.

Ordered by set inclusion we get a cpo which is not bifinite. One can even have
an uncountable set of minimal upper bounds for a finite set of finite elements in
a (¥, o0)-domain. Given any non-empty set (), one can construct the following

(*, 0o)-disjunctive system. Let the token set be
{a, b} UQ x {0} UQ x {1}.
The entailment relation is specified by

{a, b} F{(q,0), (¢, 1)} forall ¢ € Q,
{(¢,0), (¢, D} F O for all g € Q.

There is a 1-1 correspondence between functions
f+@—H{0,1}

and elements

{a, b} U{(q, f(q)) | g € Q}.

18



Therefore, elements {a}, {b} have a set of minimal upper bounds with cardi-
nality the same as that of the power set of ().

All this suggests that maybe (*, co)-domains are L-domains. We have no
proof of this at the moment: the proof of Theorem 1.2 cannot be easily adapted
to the new situation. It seems some intrinsic construction must be used to get
a (*, oo)-disjunctive system for an L-domain. However, it would be even more
interesting if one could find an example of an L-domain which is not (*, co).

What, then, are the (*, co)-domains?

References

[BeT8] Berry, G., Stable models of typed A-calculi, Lecture Notes in Computer
Science 62 (1978).

[Die76] Diers, Y, Catégories Localisables, these de doctorat d’éetat, Paris VI
(1976).

[DGI0] Droste, M., and Gobel, R., Non-deterministic information systems and
their domains, Theoretical Computer Science, 75 (1990).

[Co89] Coquand, T., Categories of embeddings. Proceedings of the third an-

nual symposium on logic in computer science, (1988)
[Gi87] Girard, J.-Y., Linear Logic, Theoretical Computer Science 50 (1987).

[Gu85] Gunter, C., Profinite solutions for recursive domain equations, PhD the-

sis, Department of Computer Science, Carnegie-Mellon University, (1985).

[JoT7] Johnstone, P.T., A syntactic approach to Diers’ localizable categories,
Lecture Notes in Mathematics 753 (1977).

[Jo82] Johnstone, P.T., Stone spaces, Cambridge University Press (1982).

[Ju90] Jung, A., Cartesian closed categories of algebraic cpos, Theoretical Com-

puter Science 70 (1990)

19



[LaWi84] Larsen, K.G., Winskel, G., Using information systems to solve re-

cursive domain equations effectively, Lecture Notes in Computer Science

173 (1984).
[P176] Plotkin, G., A powerdomain construction, STAM J. Computing 5 (1976).

[Sc82] Scott, D. S., Domains for denotational semantics, Lecture Notes in

Computer Science 140 (1982).

[Sm83] Smyth, M.B., The largest cartesian closed category of domains, Theo-
retical Computer Science 27, (1983).

[Zh] Zhang, G.Q., Logic of Domains, Birkhaueser, Boston (1991).

[Zh89] Zhang, G.Q., DI-domains as information systems, [CALP-1989, Italy.

Revised version to appear in Information and Computation (1989).

[Zh90a] Zhang, G.Q., Stable neighborhoods, Theoretical Computer Science vol
93 (1992).

[Zh90b] Zhang, G.Q., A representation of SFP, to appear in Information and
Computation (1990).

[Zh91] Zhang, G.Q., A monoidal closed category of event structures, proceed-
ings of the 7-th conference on Mathematical Foundations of Programming

Semantics, Pittsburgh, (1991).

20



