Graph Indexing Based on Discriminative Frequent
Structure Analysis

Xifeng Yan

University of Illinois at Urbana-Champaign
Philip S. Yu

IBM T. J. Watson Research Center

Jiawei Han

University of Illinois at Urbana-Champaign

Graphs have become increasingly important in modelling complicated structures and schemaless
data such as chemical compounds, proteins, and XML documents. Given a graph query, it is de-
sirable to retrieve graphs quickly from a large database via indices. In this paper, we investigate
the issues of indexing graphs and propose a novel indexing model based on discriminative frequent
structures that are identified through a graph mining process. We show that the compact index
built under this model can achieve better performance in processing graph queries. Since dis-
criminative frequent structures capture the intrinsic characteristics of the data, they are relatively
stable to database updates, thus facilitating sampling-based feature extraction and incremental
index maintenance. Our approach not only provides an elegant solution to the graph indexing
problem, but also demonstrates how database indexing and query processing can benefit from
data mining, especially frequent pattern mining. Furthermore, the concepts developed here can
be generalized and applied to indexing sequences, trees, and other complicated structures as well.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems — Query process-
ing, Physical Design; G.2.1 [Discrete Mathematics]: Combinatorics — Combinatorial algorithms

General Terms: Algorithms, Experimentation, Performance

Additional Key Words and Phrases: Graph Database, Frequent Pattern, Index

This is a preliminary release of an article accepted by ACM Transactions on Database Systems.
The definitive version is currently in production at ACM and, when released, will supersede this
version.

Authors’ address: X. Yan, Department of Computer Science, University of Illinois at Urbana-
Champaign, Urbana, IL 61801, Email: xyan@cs.uiuc.edu; P. Yu, IBM T. J. Watson Research
Center, Hawthorne, NY 10532, Email: psyu@us.ibm.com; J. Han, Department of Computer Sci-
ence, University of Illinois at Urbana-Champaign, Urbana, IL 61801, Email: hanj@cs.uiuc.edu.
Copyright 2005 by the Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, to republish, to Post on servers, or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc.,
fax +1 (212) 869-0481, or permissions@acm.org.

© 2005 ACM 0362-5915/2005/0300-0001 $5.00

ACM Transactions on Database Systems, Vol. V, No. N, August 2005, Pages 1-077.

2 . Xifeng Yan et al.

1. INTRODUCTION

Indices play an essential role at efficient search and query processing in database
and information systems. Technology has evolved from single-dimensional to multi-
dimensional indexing, claiming a broad spectrum of successful applications, ranging
from relational database systems to spatiotemporal, time-series, multimedia, text-
and Web-based information systems. However, the traditional indexing approach
may encounter challenges in certain applications involving complex objects, such
as graphs. This is because a complex graph may contain an exponential number
of subgraphs. It is ineffective to build an index based on vertices or edges because
such features are non-selective and unable to distinguish graphs, while building
index structures based on subgraphs may lead to an explosive number of index
entries. To support fast access to graph databases, it is necessary to investigate
new methodologies for index construction.

The importance of graph data model has been recognized in various domains.
Take computer vision as an example, graphs can represent complex relationships,
such as the organization of entities in images, which can be used to identify objects
and scenes. In social network analysis, researchers use graphs to model social enti-
ties and their connections. In chemical informatics and bio-informatics, graphs are
used to model compounds and proteins. Commercial graph management systems,
such as Daylight [James et al. 2003] for compound registration, have already been
put to use in chemical informatics. Benefiting from such systems, researchers are
able to perform screening, designing, and knowledge discovery from compound and
molecular databases.

At the core of many graph-related applications, lies a common and critical prob-
lem: how to efficiently process graph queries and retrieve related graphs. In some
cases, the success of an application directly relies on the efficiency of the query
processing system. The classical graph query problem can be described as follows:
Given a graph database D = {g1, g2, ..., gn} and a graph query q, find all the graphs
in which q is a subgraph. 1t is inefficient to perform a sequential scan on the graph
database and check whether g is a subgraph of g;. Sequential scan is very costly be-
cause one has to not only access the whole graph database but also check subgraph
isomorphism. It is known that subgraph isomorphism is an NP-complete problem
[Cook].

Clearly, it is necessary to build graph indices in order to help processing graph
queries. XML query is a kind of graph query, which is usually built around path
expressions. Various indexing methods [Goldman and Widom 1997; Milo and Suciu
1999; Cooper et al. 2001; Kaushik et al. 2002; Chung et al. 2002; Shasha et al. 2002;
Chen et al. 2003] have been developed to process XML queries. These methods are
optimized for path expressions and semi-structured data. In order to answer ar-
bitrary graph queries, systems like GraphGrep and Daylight are proposed [Shasha
et al. 2002; James et al. 2003]. All of these methods take path as the basic indexing
unit. We categorize them as path-based indexing approach. In this paper, Graph-
Grep is taken as an example of path-based indexing since it represents the state of
the art technique for graph indexing. Its general idea is as follows: all the existing
paths in a database up to maxL edges are enumerated and indexed, where a path
is a vertex sequence, v1, V2, ..., Vk, S.t.,, V1 <1 < k—1, (v;,v;41) is an edge. It uses

ACM Transactions on Database Systems, Vol. V, No. N, August 2005.

Graph Indexing Based on Discriminative Frequent Structure Analysis : 3

the index to find every graph g; that contains all the paths (up to mazL edges) in

query q.
The path-based approach has two advantages:

(1) Paths are easier to manipulate than trees and graphs, and

(2) the index space is predefined: all the paths up to maxzL edges are selected.

In order to answer tree- or graph- structured queries, a path-based approach has
to break them into paths, search each path separately for the graphs containing
the path, and join the results. Since the structural information could be lost when
breaking such queries apart, it is likely that many false positive answers will be
returned. Thus, a path-based approach is not effective for complex graph queries.
The advantages mentioned above now become the weak points of path-based in-
dexing:

(1) Structural information is lost, and

(2) there are too many paths: the set of paths in a graph database sometimes is
huge.

The first weakness of the path-based approaches can be illustrated using the
following example.

ExAMPLE 1. Figure 1 is a sample chemical dataset extracted from an AIDS
antiviral screening database'. For simplicity, we ignore the bond type. Assume
we submit a query shown in Figure 2 to the sample database. Although graph
(c) in Figure 1 is the only answer, a path-based approach cannot prune graphs (a)
and (b) since both of them contain all the paths existing in the query graph: ¢,
¢c—c¢,c—c—c, and ¢ — ¢ — ¢ — c¢. In this case, carbon chains (up to length 3)
are not discriminative enough to tell the difference among the sample graphs. This

indicates that path may not be a good structure to serve as index feature.]
c—c _c Cor
c—c—-c—c \ TN / ¢
c—-c | /c—c\ ‘
c—c ¢ —C

Fig. 1. A Sample Database

Fig. 2. A Sample Query

Thttp://dtp.nci.nih.gov/docs/aids/aids_data.html.

ACM Transactions on Database Systems, Vol. V, No. N, August 2005.

4 . Xifeng Yan et al.

The second weakness shows that a graph database may contain too many paths
if its graphs are large and diverse. For example, by randomly extracting 10,000
graphs from the antiviral screening database, we find that there are around 100, 000
paths with length up to 10.

The above analysis motivates us to search for an alternative solution. “Can we
use graph structure instead of path as the basic index feature?” This study provides
a firm answer to this question. It shows that a graph-based index can outperform a
path-based one significantly. However, it is impossible to index all the substructures
in a graph database due to their exponential number. To overcome this difficulty,
we devise a novel indexing model based on discriminative frequent structures that
select the most discriminative structures to index.

Frequent structures are subgraphs that occur recurrently in a database. Given a
graph database D, |Dg| is the number of graphs in D where g is a subgraph. |D,|
is called (absolute) support. A graph g is frequent if its support is no less than a
minimum support threshold, minSup. The relationship between frequent patterns
and the underlying dataset is similar to that between phrases and documents in a
text database. When the vocabulary size is small, it is obviously more beneficial
to index phrases than individual words for efficient document retrieval. We believe
that frequent graph can serve as indexing feature in graph databases. One may raise
a fundamental problem: If only frequent structures are indezed, how to answer those
queries which only have infrequent ones? This problem can be solved by replacing
the uniform support constraint with a size-increasing support function, which has
very low support thresholds for small structures but high thresholds for large ones.
Therefore, for a query containing only an infrequent subgraph, the system can
return a complete answer set.

The number of frequent subgraphs may still be prohibitive. We develop a mech-
anism to scale down the number of frequent subgraphs to be indexed. We select
the most discriminative structures from the set of frequent structures. This idea
leads to the development of our new algorithm, gIlndex. Compared with path-based
indexing, gIndex can scale down the number of indexing features in the AIDS an-
tiviral screening database to 3,000, but improve query response time by 3 to 10
times on average. glndex also explores novel concepts to improve query search
time, including using the Apriori pruning and maximal discriminative structures
to reduce the number of subgraphs to be examined for index access and query
processing.

Frequent patterns are relatively stable to database updates, thereby making in-
cremental maintenance of index affordable. This feature provides a surprisingly
efficient solution on index construction: We can first mine discriminative frequent
structures from a sample of a large database, and then build the complete index
based on these structures by scanning the whole database once. This solution has
an obvious advantage when the database itself cannot be fully loaded in memory.
In that case, the mining of frequent patterns without sampling usually involves
multiple disk scans and thus becomes very slow.

In this paper, we thoroughly explore the issues of feature selection, index search,
index construction, and incremental maintenance. The contribution of this study
is not only at providing a novel and efficient solution to graph indexing, but also

ACM Transactions on Database Systems, Vol. V, No. N, August 2005.

Graph Indexing Based on Discriminative Frequent Structure Analysis : 5

at the demonstration of how data mining technology may help solving indexing
and query processing problems. This inspires us to further explore the application
of data mining in data management. The concepts developed here can also be
generalized and applied to indexing sequences, trees, and other complex structures.

The rest of the paper is organized as follows. Section 2 defines the preliminary
concepts and briefly analyzes the graph query processing problem. Discriminative
structure is introduced in Section 3. Section 4 introduces frequent structure and the
size-increasing support constraint. Section 5 formulates the algorithm and presents
the index construction and incremental maintenance processes. Our performance
study is reported in Section 6. Discussions on related issues are in Section 7, and
Section 8 summarizes our study.

2. GRAPH QUERY PROCESSING: FRAMEWORK AND COST MODEL

In this section, we introduce the preliminary concepts for graph query processing,
outline the query processing framework, and present the cost model. The analysis
of a graph indexing solution is given in the end of this section.

2.1 Preliminary Concepts

As a general data structure, labeled graph is used to model complex structured
and schemaless data. In labeled graph, vertices and edges represent entity and
relationship, respectively. The attributes associated with entities and relationships
are called labels. XML is a kind of directed labeled graph. The chemical compounds
shown in Figure 1 are undirected labeled graphs. In this paper, we investigate
indexing techniques for undirected labeled graphs. It is straightforward to extend
our method to process other kinds of graphs.

As a notational convention, the vertex set of a graph g is denoted by V(g), the
edge set by E(g), and the size of a graph by size(g), which is defined by |E(g)| in
this paper. A label function, [, maps a vertex or an edge to a label. A graph g is a
subgraph of another graph ¢’ if there exists a subgraph isomorphism from ¢ to ¢/,
denoted by g C ¢'. ¢’ is called a super-graph of g.

DEFINITION 1 SUBGRAPH ISOMORPHISM. A subgraph isomorphism is an injec-
tive function f : V(g) — V(g'), such that (1) Yu € V(g), f(u) € V(¢') and l(u) =
V(f(w), and (2) V(u,v) € E(g), (f(u), f(v)) € E(g") and I(u,v) = U(f(u), f(v)),
where | and I’ are the label function of g and g', respectively. f is called an embed-
ding of g in g'.

DEFINITION 2 GRAPH QUERY PROCESSING. Given a graph database D = {g¢1, g2,
...gn} and a graph query q, it returns the query answer set Dy = {gilq¢ C ¢i,9; €
D}.

ExaMpPLE 2. Figure 1 shows a labeled graph dataset. We will use it as our
running example. For the query shown in Figure 2, the answer set has only one
element: graph (c) in Figure 1. n

In general, graph query can be any kind of SQL statement applied to graphs.
Besides the topological condition, one may also use other conditions to perform
indexing. In this paper, we only focus on indexing graphs based on their topology.
The related query processing has the following characteristics:

ACM Transactions on Database Systems, Vol. V, No. N, August 2005.

6 : Xifeng Yan et al.

(1) Index on single attributes (vertex label or edge label) is not selective enough,
but an arbitrary combination of multiple attributes leads to an explosive num-
ber of index entries,

(2) query is relatively bulky, i.e., containing multiple edges, and

(3) sequential scan and test are expensive in a large database.

2.2 Framework for Graph Query Processing

The processing of graph queries can be divided into two major steps:

(1) Index construction, which is a preprocessing step, performed before real query
processing. It is done by a data mining procedure, essentially mining, evaluat-
ing, and selecting indexing features (i.e., substructures) of graphs in a database.
The feature set? is denoted by F. For any feature f € F', Dy is the set of graphs
containing f, Dy = {g;|f C gi,9; € D}. In real implementation, Dy is an id
list, i.e., the ids of graphs containing f. This structure is similar to the inverted
index in document retrieval.

(2) Query processing, which consists of three substeps: (1) Search, which enumer-
ates all the features in a query graph, ¢, to compute the candidate query answer
set, Cqg = ﬂf Dy (f Cqand f € F); each graph in C, contains all ¢’s features
in the feature set. Therefore, D, is a subset of Cy. (2) Fetching, which re-
trieves the graphs in the candidate answer set from disks. (3) Verification,
which checks the graphs in the candidate answer set to verify whether they
really satisfy the query. In a graph database, we have to verify the candidate
answer set to prune false positives.

Obviously, the index built on vertex label (e.g., atom type in Figure 1) is not
effective for fast search in a large graph database. Based on domain knowledge on
chemical compounds, we may choose basic structures like benzene ring, a ring with
six carbons, as an indexing feature. However, it is often unknown beforehand which
structures are valuable for indexing. In this paper, we propose using data mining
techniques to find them.

2.3 Cost Model

In graph query processing, the major concern is Query Response Time:
Tsearch + ‘Oq| * (Tio + ,Tiso_test)a (1)

where Tyeqrcn i the time spent in the search step, Tj, is the average I/O time
of fetching a candidate graph from the disk, and Tjs, test is the average time of
checking a subgraph isomorphism, which is conducted over query ¢ and graphs in
the candidate answer set.

The candidate graphs are usually scattered around the entire disk. Thus, T;, is
the I/O time of fetching a block on a disk (assume a graph can be accommodated
in one disk block). The value of Tjs, test does not change much for a given query.
Therefore, the key to improve the query response time is to minimize the size of the

2A graph without any vertex and edge is denoted by fu.fs is regarded as a special feature, which
is a subgraph of any graph. For completeness, F' must include fg.

ACM Transactions on Database Systems, Vol. V, No. N, August 2005.

Graph Indexing Based on Discriminative Frequent Structure Analysis : 7

candidate answer set as much as possible. When a database is large such that the
index cannot be held in the memory, Tscqrcn Will affect the query response time.

Since we have to find all the features in the index that are contained by a query,
it is important to maintain a compact feature set in the main memory. Otherwise,
the cost of accessing the index may be even greater than that of accessing the
database itself. Notice that the id lists of features will be kept on disk. In the next
two sections, we will begin our examination of minimizing the candidate answer set
|Cy| and the feature set |F|.

2.4 Problem Analysis

Since a user may submit various queries with arbitrary structures, it is space costly
to index all of them. Intuitively, the common structures of query graphs are more
valuable to index since they provide better indexing coverage. When the query log
is not available, we can index the common structures in a graph database.

DEFINITION 3 FREQUENCY. Given a graph set D = {g1,92, ...,gn} and a graph
f, the frequency of f in D is the percentage of graphs in D containing f, frequency(f)
_ 1Dyl

The graph indexing problem could be defined broadly as a “subgraph cover”
problem: given a set of query graphs, find a small subset that covers all of them,
in which each graph has at least one subgraph in the cover. If the cover set is
indexed, we can generate the candidate answer set for a query graph by accessing
its corresponding subgraph(s) in the index. Since small cover sets are preferred due
to their compact indices, the size of the cover set becomes an important criterion
in evaluating an indexing solution. A small cover set usually includes subgraphs
with high frequency.

In order to answer all kinds of queries through the approach outlined in Section
2.2, the index needs to have the “downward-complete” property on subgraph con-
tainment. That is, if a graph f with size larger than 1 is present in the index, at
least one of its subgraphs will be included in the index. Otherwise, a query formed
by its subgraphs cannot be answered through the index. Just having the frequency
and downward-complete requirements admits trivial solutions such as “index the
common node labels”. However, such solution does not provide the best perfor-
mance. The reason is that node labels are not selective enough for complex query
graphs. In the next section, we introduce a measure to select discriminative frag-
ments by comparing their selectivity with existing indexed fragments. Note that
we refer “fragment” to a small subgraph (i.e., structure) in graph databases and
query graphs.

In summary, a good indexing solution should have the following three require-
ments: (1) the indexed fragments should have high frequency; (2) the index needs
to have the “downward-complete” property; (3) the indexed fragments should be
discriminative. In the following discussion, we introduce our solution that can sat-
isfy these three requirements simultaneously by indexing discriminative frequent
fragments with the size-increasing support constraint.

ACM Transactions on Database Systems, Vol. V, No. N, August 2005.

8 : Xifeng Yan et al.

3. DISCRIMINATIVE FRAGMENT

According to the problem analysis presented in Section 2.4, among similar frag-
ments with the same support, it is often sufficient to index only the smallest com-
mon fragment since more query graphs may contain the smallest fragment (higher
coverage). That is to say, if f’, a supergraph of f, has the same support as f, it
will not be able to provide more information than f if both are selected as indexing
features. Thus f’ should be removed from the feature set. In this case, we say f’
is not more discriminative than f.

EXAMPLE 3. All the graphs in the sample database (Figure 1) contain carbon
chains: ¢ — ¢, c—c—c, and ¢ — ¢ — ¢ — ¢. These fragments ¢ — ¢, ¢ — ¢ — ¢, and
¢ — ¢ — ¢ — ¢ do not provide more indexing power than fragment c¢. Thus, they are
useless for indexing. [

So far, we have considered only the discriminative power between a fragment and
one of its subgraphs. This concept can be further extended to the combination of
its subgraphs.

DEFINITION 4 REDUNDANT FRAGMENT. Fragment x s redundant with respect
to feature set F' if D, is close to ﬂfeF/\fgx Dy.

Each graph in set ﬂfe Fafce Dy contains all 2’s subgraphs in the feature set F.
If D, is close to ﬂfeFAfgx Dy, it implies that the presence of fragment x in a graph
can be predicted well by the presence of its subgraphs. Thus, fragment x should not
be used as an indexing feature since it does not provide any benefit to pruning if its
subgraphs are being indexed. In such case, x is a redundant fragment. In contrast,
there are fragments which are not redundant, called discriminative fragments.

C
; N
c/c\ C\C/C\C/C \C C/

Fig. 3. Discriminative Fragments

DEFINITION 5 DISCRIMINATIVE FRAGMENT. Fragment x is discriminative with
respect to I if Dy is much smaller than (\pcpprc, Dy-

EXAMPLE 4. Let us examine the query example in Figure 2. As shown in Ex-
ample 3, carbon chains, ¢ —¢, ¢ —c—c¢, and ¢ — ¢ — ¢ — ¢, are redundant and should
not be used as indexing features in this dataset. The carbon ring (Figure 3 (¢)) is
a discriminative fragment since only graph (c) in Figure 1 contains it while graphs
(b) and (c¢) in Figure 1 have all of its subgraphs. Fragments (a) and (b) in Figure
3 are discriminative too. [

Since D, is always a subset of [FEFAFCa Dy, x should be either redundant or
discriminative. We devise a simple measure on the degree of redundancy. Let

ACM Transactions on Database Systems, Vol. V, No. N, August 2005.

Graph Indexing Based on Discriminative Frequent Structure Analysis : 9

fragments f1, fa,..., and f,, be indexing features. Given a new fragment z, the
discriminative power of x can be measured by
Pr(z|foys- s fom) Jor S 2,1 <o <. (2)
Eq. (2) shows the probability of observing = in a graph given the presence of
fors---, and f, . We denote 1/Pr(x|fs,,..., fo,.) by 7, called discriminative
ratio. The discriminative ratio can be calculated by the following formula:
[Da|

where D, is the set of graphs containing z and), Dy, is the set of graphs which
contain the features belonging to x. v has the following properties:

(1) v > 1.

(2) when v = 1, fragment x is completely redundant since the graphs indexed by
this fragment can be fully indexed by the combination of fragment f.,.

(3) when v > 1, fragment z is more discriminative than the combination of frag-
ments f,,. Thus, x becomes a good candidate to index.

(4) ~ is related to the fragments which are already in the feature set.

EXAMPLE 5. Suppose we set Y, = 1.5 for the sample dataset in Figure 1.
Figure 3 lists three of discriminative fragments (we shall also add fz, a fragment
without any vertex and edge, into the feature set as the initial fragment). There
are other discriminative fragments in this sample dataset. The discriminative ratio
of fragments (a), (b), and (c) is 1.5, 1.5, and 2.0, respectively. The discriminative
ratio of fragment (c) in Figure 3 can be computed as follows: suppose fragments
(a) and (b) have already been selected as index features. There are two graphs
in the sample dataset containing fragment (b) and one graph containing fragment
(c). Since fragment (b) is a subgraph of fragment (c), the discriminative ratio of
fragment (c) is 2/1 = 2.0.]

In order to mine discriminative fragments, we set a minimum discriminative
ratio ymin and retain fragments whose discriminative ratio is at least v;,;,. The
fragments are mined in a level-wise manner, from small size to large size.

4. FREQUENT FRAGMENT

A straightforward approach of mining discriminative fragments is to enumerate all
possible fragments in a database and then prune redundant ones. This approach
does not work when the fragment space is extremely large. Furthermore, a lot
of infrequent fragments do not have reasonable coverage at all. Indexing these
structures will not improve the query performance significantly. In this section, we
will show that mining discriminative frequent fragments provides an approximate
solution.

As one can see, frequent graph is a relative concept. Whether a graph is frequent
or not depends on the setting of minSup. Figure 4 shows two frequent fragments
in the sample database with minSup = 2. Suppose all the frequent fragments with
minimum support minSup are indexed. Given a query graph ¢, if ¢ is frequent,
the graphs containing ¢ can be retrieved directly since ¢ is indexed. Otherwise, g

ACM Transactions on Database Systems, Vol. V, No. N, August 2005.

10 : Xifeng Yan et al.

Fig. 4. Frequent Fragments

probably has a frequent subgraph f whose support may be close to minSup. Since
any graph with ¢ embedded must contain ¢’s subgraphs, Dy is a candidate answer
set for query ¢. If minSup is low, it is not expensive to verify the graphs in Dy.
Therefore, it is feasible to index frequent fragments for graph query processing.

A further examination helps clarify the case where query ¢ is not frequent in
a graph database. We sort all ¢’s subgraphs in the support decreasing order:
fi, fa,..., fn. There must exist a boundary between f; and f;y1 where [Dy,|
> minSup and |Dy, | < minSup. Since all the frequent fragments with minimum
support minSup are indexed, the graphs containing f; (1 < j < i) are known.
Therefore, we can compute the candidate answer set Cy by [<j<i Dy,, whose size
is at most |Dy,|. For many queries, |Dy,| is close to minSup. Hence the intersec-
tion of its frequent fragments, (), ;<; Dy, , leads to a small size of Cy. Therefore,
the cost of verifying C, is minimal when minSup is low. This is confirmed by our
experiments in Section 6.

The above discussion exposes our key idea in graph indexing: It is feasible to
construct high-quality indices using only frequent fragments. Unfortunately, for
low support queries (i.e., queries whose answer set is small), the size of candidate
answer set Cy is related to the setting of minSup. If minSup is set too high, the
size of C; may be too large. If minSup is set too low, it is too difficult to generate
all frequent fragments because there may exist an exponential number of frequent
fragments under low support.

Should we enforce a uniform minSup for all the fragments? Let’s examine a
simple example: a completely connected graph with 10 vertices, each of which has
a distinct label. There are 45 1-edge subgraphs, 360 2-edge ones, and more than
1,814,400 8-edge ones®. As one can see, in order to reduce the overall index size,
it is appropriate for the index scheme to have low minimum support on small
fragments (for effectiveness) and high minimum support on large fragments (for
compactness). This criterion on the selection of frequent fragments for effective
indexing is called size-increasing support constraint.

DEFINITION 6 FREQUENT PATTERN WITH SIZE-INCREASING SUPPORT. Given a
monotonically nondecreasing function, (1), pattern g is frequent under the size-
increasing support constraint if and only if |D,| > ¥(size(g)), and (1) is a size-
increasing support function.

By enforcing the size-increasing support constraint, we bias the feature selection
to small fragments with low minimum support and large fragments with high min-
imum support. Especially, we always set minSup to be 1 for size-0 fragment to

3For any m-vertex complete graph with different vertex labels, the number of size-k connected
subgraphs is greater than CXT1 x (k 4 1)!/2, which is the number of size-k paths (k < n).

ACM Transactions on Database Systems, Vol. V, No. N, August 2005.

Graph Indexing Based on Discriminative Frequent Structure Analysis : 11

ensure the completeness of the indexing. This method leads to two advantages: (1)
the number of frequent fragments so obtained is much less than that with the low-
est uniform minSup, and (2) low-support large fragments may be indexed well by
their smaller subgraphs; thereby we do not miss useful fragments for indexing. The
first advantage also shortens the mining process when graphs have big structures
in common.

20 20

support(%)
5 &

support(%)
5 &

4]
4l

] 0
00

%

fragmen? size (edgesﬁo fragmen? size (edgesl)o

(a) exponential (b) piecewise-linear

Fig. 5. Size-increasing Support Functions

EXAMPLE 6. Figure 5 shows two size-increasing support functions: exponential
and piecewise-linear. We select size-1 fragments with minimum support 6 and larger
fragments with higher support until we exhaust fragments up to size of maz L with
minimum support ©. A typical setting of and © is 1 and 0.1N, respectively, where
N is the size of the database. We have a wide range of monotonically nondecreasing
functions to use as (1). L]

Using frequent fragments with the size-increasing support constraint, we have a
smaller number of fragments to check their discriminative ratio. It is also interesting
to examine the relationship between low supported fragments and discriminative
fragments. A low supported fragment is not necessarily discriminative. For exam-
ple, assume there is a low supported structure with three connected discriminative
substructures. If this structure has the same support with one of its three substruc-
tures, it is not discriminative according to Definition 5.

5. GINDEX

In this section, we present the glndex algorithm, examine the index data structures,
and discuss the incremental maintenance of indices that supports insertion and
deletion operations. We illustrate the design and implementation of glndex in
five subsections: (1) discriminative fragment selection, (2) index construction, (3)
search, (4) verification, and (5) incremental maintenance.

5.1 Discriminative Fragment Selection

Applying the concepts introduced in Sections 3 and 4, glndex first generates all
frequent fragments with a size-increasing support constraint. Meanwhile, it distills
these fragments to identify discriminative ones. The feature selection proceeds in

ACM Transactions on Database Systems, Vol. V, No. N, August 2005.

12 . Xifeng Yan et al.

a level-wise manner, i.e., Breadth-First Search (BFS). Algorithm 1 outlines the
pseudo-code of feature selection.

Algorithm 1 Feature Selection

Input: Graph database D, Discriminative ratio v,,i,, Size-increasing support
function ¥(l), and Maximum fragment size mazxL.
Output: Feature set F'.

1: let F={fs}, Ds, =D, and | =0;

2: while [< maxL do

3 for each fragment =, whose size is [do

4: if z is frequent and discriminative* then
5 F=FuU{z}

6 l=1+1;

7: return F

5.2 Index Construction

Once discriminative fragments are selected, gIlndex has efficient data structures to
store and retrieve them. It translates fragments into sequences and holds them in a
prefix tree. Each fragment is associated with an id list: the ids of graphs containing
this fragment. We present the details of index construction in this section.

5.2.1 Graph Sequentialization. Substantial portion of computation involved in
index construction and searching is related to graph isomorphism checking. One
has to quickly retrieve a given fragment from the index. Considering that graph
isomorphism testing is hard (It is suspected to be in neither P nor NP-complete,
though it is obviously in NP); it is inefficient to scan the whole feature set to match
fragments one by one. An efficient solution is to translate a graph into a sequence,
called canonical label. If two fragments are the same, they must share the same
canonical label.

A traditional sequentialization method is to concatenate rows or columns of the
adjacency matrix of a graph into an integer sequence. However, adjacency matrix
is space inefficient for sparse graphs. In our implementation, we apply a graph
sequentialization method, called DFS coding [Yan and Han 2002; 2003], to store
graphs. Certainly, other canonical labeling systems can also be used in our index
framework.

ExXAMPLE 7. DFS coding can translate a graph into an edge sequence, which is
generated by performing a depth first search (DFS) in a graph. The bold edges
in Figure 6(b) constitute a DFS search tree. Each vertex is subscripted by its
discovery order in a DFS search. The forward edge set contains all the edges
in the DFS tree while the backward edge set contains the remaining edges. For
the graph shown in Figure 6(b), the forward edges are discovered in the order of

4Dy| > 9(size(x)) and |, Dy, 1/|Dz| 2 ymin, for fo; C @ and f,, € F.

ACM Transactions on Database Systems, Vol. V, No. N, August 2005.

Graph Indexing Based on Discriminative Frequent Structure Analysis : 13

Fig. 6. DFS Code Generation

(vo,v1), (v1,v2), (v1,v3). Now we put backward edges into the order as follows.
Given a vertex v, all of its backward edges should appear after the forward edge
pointing to v. For vertex vy in Figure 6(b), its backward edge (va, vp) should appear
after (v1,v2). Among the backward edges from the same vertex, we can enforce an
order: given v; and its two backward edges, (v;,v;), (vi,vx), if j < k, then edge
(v4,v;) will appear before edge (v;, vi). So far, we complete the ordering of edges in
a graph. Based on this order, a complete edge sequence for Figure 6(b) is formed:
((vo,v1), (v1,v2), (v2,v0), (v1,v3)). This sequence is called a DFS code.

We represent a labeled edge by a 5-tuple, (4,,1;,(; j),1;), where ; and [; are the
labels of v; and v; respectively and I(; ;) is the label of the edge connecting v; and
vj. Thus, the above edge sequence can be written as ((0, 1, X, a, X) (1, 2, X, a,
Z)(2,0,Z,b, X) (1,3, X, b,Y)). Since each graph can have many different DFS
search trees and each of them forms a DFS code, a lexicographic order is designed
in [Yan and Han 2002; 2003] to order DFS codes: the minimum DFS code among
g’s DFS codes is chosen as its canonical label. The readers are referred to [Yan and
Han 2003] for the details of the DFS coding. (]

In the next subsections, we will introduce how to store and search the sequen-
tialized graphs (e.g. the minimum DFS codes) of discriminative fragments.

5.2.2 gIndex Tree. Using the above sequentialization method, each fragment
can be mapped to an edge sequence (e.g., minimum DFS code). We insert the edge
sequences of discriminative fragments in a prefix tree, called gIndex Tree.

1
level 0
level 1
level 2 discriminative
O fragments

O intermediate node

Fig. 7. glndex Tree

ACM Transactions on Database Systems, Vol. V, No. N, August 2005.

14 . Xifeng Yan et al.

ExaMmpPLE 8. Figure 7 shows a glndex tree, where each node represents a se-
quentialized fragment (a minimum DFS code). For example, two discriminative
fragments f1 = (e1) and f3 = (e ez e3) are stored in the glndex tree (for brevity,
we use e; to represent edges in the DFS codes). Although fragment fo = (e eg) is
not a discriminative fragment, we have to store fs in order to connect the nodes f;
and f3. [

The glndex tree records all size-n discriminative fragments in level n (size-0
fragments are graphs with only one vertex and no edge; the root node in the tree
is fz). In this tree, code s is an ancestor of s’ if and only if s is a prefix of s'.
We use black nodes to denote discriminative fragments. White nodes (redundant
fragments) are intermediate nodes which connect the whole glndex tree. All leaf
nodes are discriminative fragments since it is useless to store redundant fragments
in leaf nodes. In each black node f;, an id list (I;), the ids of graphs containing
fi, is recorded. White nodes do not have any id list. Assume we want to retrieve
graphs which contain both fragments f; and f;, what we need to do is to intersect
Ii and]J

gIndex tree has two advantages: First, gindex tree records not only discriminative
fragments, but also some redundant fragments. This setting makes the Apriori
pruning possible (Section 5.3.1). Secondly, gIndex tree can reduce the number of
intersection operations conducted on id lists of discriminative fragments by using
(approximate) maximal fragments only (Section 5.3.2). In short, the search time
Tsearen Will be significantly reduced by using glndex tree.

5.2.3 Remark on glndex Tree Size. Upon examining the size of the gIlndex tree,
we find that the graph id lists associated with black nodes fill the major part of
the tree. We may derive a bound for the number of black nodes on any path from
the root to a leaf node. In the following discussion, we do not count the root as a
black node.

THEOREM 1. Given a graph database and a minimum discriminative ratio, for
any path in the gindez tree, the number of black nodes on the path is O(log,Ymn N),
where N is the number of graphs in the database.

Proof. Let fy, f1, ..., and fr_1 be the discriminative fragments on a path, where
fi C fir1, 0 < i <k —2. According to the definition of discriminative fragments,
|0; Dy;|/1Dg;| = Ymin, where 0 < j < i. Hence [Dy,| > Ymin|Dp| = ... >
e Dy, | Since |Dg,| < N/Ymin and |Dy, | > 1, we must have k < log, . N.
n
Theorem 1 delivers the upper bound on the number of black nodes on any path
from the root to a leaf node. Considering the size-increasing support constraint,
we have

N/Ymin 2 |Dg 4| Z (), (4)
where [is the size of fragment fr_1 (I >k —1).

EXAMPLE 9. Suppose the size-increasing support function (1) is a linear func-

tion: ﬁ x 0.01N, where maxL = 10. This means we index discriminative

fragments whose size is up to 10. If we set Y to be 2, from Eq. 4, we know

ACM Transactions on Database Systems, Vol. V, No. N, August 2005.

Graph Indexing Based on Discriminative Frequent Structure Analysis : 15

2% > fo;oé' It implies the maximum value of k, i.e., the number of black nodes on
any path in the glndex tree, is less than 8. [

Are there lots of graph ids recorded in the glndex tree? For the number of ids
recorded on any path from the root to a leaf node, the following bound is obtained:

1 1

R

k—1 1
DDl < (——+ N,

i=0 ’szn

where fy, f1,..., fx—1 are discriminative fragments on the path. If v, > 2,
Zf;ol |Dy,| < N. Otherwise, we have more ids to record. In this case, it is space
ineflicient to record Dy,. An alternative solution is to store the differential id list,
ie., ADy, =, Dy, — Dy,, where f, € F and f, C f;. Such a solution generalizes
a similar idea presented by Zaki and Gouda [2003] and handles multiple rather than
one id list. The implementation of differential id list will not be examined further
since it is beyond the scope of this study.

5.2.4 glIndex Tree Implementation. The glndex tree is implemented using a hash
table to help locating fragments and retrieving their id lists quickly; both black
nodes and white nodes are included in the hash table. This is in lieu of a direct
implementation of the tree structure. Nonetheless, the gIlndex tree concept is crucial
in determining the redundant (white) nodes which, as included in the index, will
facilitate the pruning of the search space.

With graph sequentialization, we can map any graph to an integer by hashing its
canonical label. We use ¢(g) to represent the label of a graph g, where ¢(g) could
be the minimum DFS code of g or defined by other labeling systems.

DEFINITION 7 GRAPHIC HASH CODE. Given a hash function h, a canonical la-
beling function ¢, and a graph g, h(c(g)) is called graphic hash code.

We treat the graphic hash code as the hash value of a graph. Since two iso-
morphic graphs g and ¢’ have the same canonical label, then h(c(g)) = h(c(g')).
Graphic hash code can help quickly locating fragments in the glndex tree. In our
implementation, the glndex tree resides in the main memory, the inverted id-lists
reside on disk and are cached in memory upon request.

5.3 Search

Given a query ¢, glndex enumerates all its fragments up to a maximum size and
locates them in the index. Then it intersects the id lists associated with these
fragments. Algorithm 2 outlines the pseudo-code of the search step. An alternative
is to enumerate features in the glndex tree first and then check whether the query
contains these features or not.

5.3.1 Apriori Pruning. The pseudo-code in Algorithm 2 must be optimized. It
is inefficient to generate every fragment in the query graph first and then check
whether it belongs to the index. Imagine how many fragments a size-10 complete
graph may have. We shall apply the Apriori rule: if a fragment is not in the gIndex
tree, we need not check its super-graphs any more. That is why we record some
redundant fragments in the glndex tree. Otherwise, if a fragment is not in the

ACM Transactions on Database Systems, Vol. V, No. N, August 2005.

16 : Xifeng Yan et al.

Algorithm 2 Search

Input: Graph database D, Feature set F', Query ¢, and Maximum fragment size
mazxL.

Output: Candidate answer set Cj,.

1: let Cy = D;

2: for each fragment x C ¢ and size(z) < mazL do
3: if € F then

4: Cy=CyN Dy;

)

: return C;

feature set, one cannot conclude that none of its super-graphs will be in the feature
set.

A hash table H is used to facilitate the Apriori pruning. As explained in Section
5.2.4, it contains all the graphic hash codes of the nodes shown in the gIndex tree
including intermediate nodes. Whenever we find a fragment in the query whose
hash code does not appear in H, we need not check its super-graphs any more.

5.3.2 Mazimal Discriminative Fragments. Operation C; = C; N D, is done
by intersecting the id lists of Cy; and D,. We now consider how to reduce the
number of intersection operations. Intuitively, if query ¢ has two fragments, f, C
fy, then Co\ Dy, N Dy, = Cq(Dy,. Thus, it is not necessary to intersect Cy
with Dy, . Let F(q) be the set of discriminative fragments (or indexing features)
contained in query q, i.e., F(q) = {fz|fx C qA fr € F}. Let F,(q) be the
set of fragments in F(q) that are not contained by other fragments in F(q), i.e.,
F(q) = {felfz € F(Q)7£fy78't~7fx C fy A fy € F(q)}. The fragments in Fy,(q)
are called mazimal discriminative fragments. In order to calculate Cy, we only
need to perform intersection operations on the id lists of maximal discriminative
fragments.

5.3.3 Inner Support. The previous support definition only counts the frequency
of a fragment in a graph dataset. Actually, one fragment may appear several times
even in one graph.

DEFINITION 8 INNER SUPPORT. Given a graph g, the inner support of subgraph
x is the number of embeddings of x in g, denoted by inner_support(x,g).

LEMMA 1. Ifg is a subgraph of G and fragment x C g, then inner_support(z,g) <
inner_support(z, G).

Proof. Let p, be an embedding of g in G. For any embedding of x in g, ps, pg© pa
is an embedding of x in G. Furthermore, given two different embeddings of z in g,
pe and pl, pg o pe and pg o pl are not the same. Therefore, inner_support(x,g) <
inner _support(x, Q). n

GraphGrep [Shasha et al. 2002] uses the above lemma to improve the filtering
power. In order to put the inner support to use, we have to store the inner support
of discriminative fragments together with their graph id lists, which means the
space cost is doubled. The pruning power of Lemma 1 is related to the size of

ACM Transactions on Database Systems, Vol. V, No. N, August 2005.

Graph Indexing Based on Discriminative Frequent Structure Analysis : 17

queries. If a query graph is large, it is pretty efficient using inner support.

5.4 Verification

After getting the candidate answer set Cy, we have to verify whether the graphs in
C, really contain the query graph. The simplest approach is to perform a subgraph
isomorphism test on each graph one by one. GraphGrep [Shasha et al. 2002] pro-
posed an alternative approach. It records all the embeddings of paths in a graph
database. Rather than doing real subgraph isomorphism testing, it performs join
operations on these embeddings to figure out the possible isomorphism mapping
between the query graph and the graphs in C,;. Considering there are lots of paths
in the index and each path may have tens of embeddings, we find that in some
cases it does not perform well. Thus, we only implement the simplest approach in
our study.

5.5 Insert/Delete Maintenance

In this section, we present our index maintenance algorithm to handle insert/delete
operations. For each insert or delete operation, we simply update the id lists of
involved fragments as shown in Algorithm 3. The index maintained in this way
is still of high quality if the statistics of the original database and the updated
database are similar. Here, the statistics mean frequent graphs and their supports
in a graph database. If they do not change, then the discriminative fragments will
not change at all. Thus, we only need to update the id lists of those fragments in
the index, just as Algorithm 3 does. Fortunately, frequent patterns are relatively
stable to database updates. A small number of insert/delete operations will not
change their distribution too much. This property becomes one key advantage of
using frequent fragments as indexing features.

Algorithm 3 Insert/Delete

Input: Graph database D, Feature set F', Inserted (Deleted) graph ¢ and its id gid,
and Maximum fragment size maxL.
Output: Updated graph indices.

1: for each fragment = C g and size(z) < mazL do
2: if z € F then

3: Insert:
insert gid into the id list of z;
4: Delete:

delete gid from the id list of z;
5: return,;

The incremental updating strategy leads to another interesting result: a single
database scan algorithm for index construction. Rather than mining discriminative
fragments from the whole graph database, one can actually first sample a small
portion of the original database randomly, load it into the main memory, mine
discriminative fragments from this small amount of data and then build the index

ACM Transactions on Database Systems, Vol. V, No. N, August 2005.

18 : Xifeng Yan et al.

(with Algorithm 3) by scanning the remaining database once. This strategy can
significantly reduce the index construction time, especially when the database is
large. Notice that the improvement comes from the efficient mining of the sample
database.

The index constructed by the above sampling method may have a different glndex
tree structure from the one constructed from scratch. First, in the sample database
a frequent fragment may be incorrectly labeled as infrequent and be missed from the
index. Secondly, the discriminative ratio of a frequent fragment may be less than
its real value and hence be pruned occasionally. Nevertheless, the misses of some
features will not affect the performance seriously due to the overlappings of features
in glndex. The strength of our index model does not rely on a single fragment, but
on an ensemble of fragments. We need not care the composition of the index too
much as long as it achieves competitive performance. Our empirical study shows
that the quality of index based on a small sample does not deteriorate at all in
comparison with the index built from scratch. In the following discussion we give
an analytical study on the error bound of frequency and discriminative ratio of a
fragment x given a sample database. Toivonen [1996] presents the frequency error
bound of itemsets, which can also be applied to graphs.

THEOREM 2. Given a fragment x and a random sample D of size n, if

1 2
n 2 ooin(s), (5)
the probability that | frequency(z, D) — frequency(x)| > € is at most 0, where
frequency (x, D) is the frequency of x in D.

Proof. [Toivonen 1996]. [
If we want to find the complete set of frequent fragments above the minimum

support threshold, we may set a lower support in order to avoid misses with a high

probability. A variation of the above theorem was developed for this purpose.

THEOREM 3. Given a fragment z, a random sample D of size n, and a probability
parameter &, the probability that x is a miss is at most § when

1 1
low_frequency < min_frequency — 1/ %ln(g), (6)

where low_frequency is the lowered minimum frequency threshold and min_frequency
is the requested minimum frequency threshold.

Proof. [Toivonen 1996]. L]

Theorem 3 shows that we may set a lower minimum support to solve the pattern
loss problem. However, it becomes a problem of less interest since the support
threshold is set flexibly and empirically in our solution. We do not witness great
performance fall for a slightly different minimum support setting. Next, we estimate
the error bound of discriminative ratio . Let 4 be the random variable that
expresses the discriminative ratio of an arbitrary sample D.

THEOREM 4. Given a fragment x, a set of features fo,, fosy- s fors foi C @,

ACM Transactions on Database Systems, Vol. V, No. N, August 2005.

Graph Indexing Based on Discriminative Frequent Structure Analysis : 19

1 <i<m, and a random sample D of size n, if

(2+¢3 4
> In(= 7
n — p€2 n(é)’ ()
the probability that |y — 4| > ey is at most &, where p is the frequency of x and v is
its discriminative ratio with respect to fo,, fos,---, and f,, ..

Proof. Let X be the total number of graphs in D containing x. X has the binomial
distribution B(n,p), E[X] = pn. The Chernoff bounds [Alon and Spencer 1992]
shows
Pr[(X —pn) > ad] < e~ /2pntat /20" (8)
Pri(X —pn) < —a] < e’ /2o (9)
where a > 0.
Substituting a with € E[X] = ¢/pn, we find
Pr((X —pn) > épn] < e~ P24 mn/2 _ (P =cpn/2,
Pr((X —pn) < —€pn] < e~ P2 = =< pn/2
Hence,
Pr{|X —pn| > €'pn] < 2¢(<° <" pn/2,

We set §' = 2¢(€°—<*pn/2_1f
2 2
= p(e? — 6/3)ln(§),
the probability that |X — E[X]| > ¢ E[X] is at most ¢&.
Let Y be the total number of graphs in D, each of which has fragments f,,, f.., ...,
and f,, . Applying the Chernoff bounds again, we note that if
2 2
=z (% — 6/za)ln(ﬁ)7
the probability that |Y — E[Y]| > ¢ E[Y] is at most §’, where ¢ is the probability
that a graph contains f,,, f,,,..., and f, . Since fragments f,,, fos, ..., fp,. are
subgraphs of x, ¢ > p. Therefore, if n > mln(%% with probability 1 — 24,
both X and Y have a frequency error less than ¢/. We have

. _EY] Y
TTTOTEXR X
BY] BYIi+e) . _EY] BEN0-¢
EX] E[X]1-¢) TS EX] T EX]A+e)
=4l < Ty (10)
Set € = 12f;, and § = 2¢’. Thus, if
2+¢€? 4
nz i) (1)

ACM Transactions on Database Systems, Vol. V, No. N, August 2005.

20 : Xifeng Yan et al.

the probability that the relative error of discriminative ratio is greater than e is at
most 4. [

€ | 1 | P | n

0.2 | 0.05 | 0.1 12,000
0.2 | 0.05 | 0.05 | 24,000
0.1 0.01 0.1 56,000
0.1 | 0.01 | 0.05 | 120,000

Table I. Sufficient Sample Size Given ¢, §, and p

Table I shows the sufficient sample size given some typical settings of parameters.
For example, we observed that the performance achieved with v,,;, = 2.0 is not
very different from the one with v, = 2.4 in the chemical database we tested (see
the experiment results on the sensitivity of discriminative ratio). It implies that
the system will still work well under a high error ratio, e.g., ¢ = 10% ~ 20%, and
a small sample.

Because of the sampling error, some valid fragments may not meet the minimum
support constraint or pass feature selection as stated above. However, since the
setting of the size-increasing support function and the minimum discriminative ratio
itself is empirical in our approach, such misses will not cause a problem. When the
patterns have very low supports, we have to scan the database to discover these
patterns, which may require a multi-pass algorithm.

Algorithm 4 Sampling based Index Construction

Input: Graph database D and Maximum fragment size maxL.
Output: Graph index I.

extract a sample D’ from D;
select a feature set F' from D’ (Algorithm 1);
build an index I on D’ using the features in F
for each graph g € D — D’ do

insert ¢ into the index I (Algorithm 3);
return [;

Once an index is constructed using a sample, the incremental maintenance algo-
rithm (Algorithm 3) will process the remaining graphs. Algorithm 4 depicts the
sample-based index construction procedure. Because the mining time spent on the
sample is limited, the time complexity of the sampling-based index construction is
O(¢N), where ¢ is the maximum cost of updating the index for one graph and N is
the number of graphs in the database. Observe that c is usually a large constant.
Thus, the sampling approach can build the index within time cost linear to the
database size. This result is confirmed by our experiments.

ACM Transactions on Database Systems, Vol. V, No. N, August 2005.

Graph Indexing Based on Discriminative Frequent Structure Analysis : 21

The quality of an index may degrade over time after lots of insertions and dele-

tions. A measure is required to monitor the indexed features which may be out-of-
[N Dyl

[Da]
some set of randomly selected query graphs, where f € F and f C x. This is the

ratio of the candidate answer set size over the actual answer set size. We monitor
the ratio based on sampled queries and check whether its average value changes over
time. A sizable increase of the value implies that the index has deteriorated, prob-
ably because some discriminative fragments are missing from the indexing features.
In this case, we have to consider recomputing the index from scratch.

date after updates. The effectiveness of glndex can be measured by

over

6. EXPERIMENTAL RESULT

In this section, we report our experiments that validate the effectiveness and effi-
ciency of the glndex algorithm. The performance of gIlndex is compared with that of
GraphGrep, a path-based approach [Shasha et al. 2002]. Our experiments demon-
strate that glndex achieves smaller indices and is able to outperform GraphGrep
in various query loads. The effectiveness of the index returned by the incremental
maintenance algorithm is also confirmed by our study: it performs as well as the
index computed from scratch provided the data distribution does not change much.

We use two kinds of datasets in our experiments: one real dataset and a series
of synthetic datasets (we ignore the edge labels). Most of our experiments were
conducted on the real dataset since it is the source of real demands.

(1) The real dataset we tested is that of an AIDS antiviral screen dataset contain-
ing chemical compounds. This dataset is available publicly on the website of
Developmental Therapeutics Program. As of March 2002, the dataset contains
43,905 classified chemical molecules.

(2) The synthetic data generator was provided by Kuramochi and Karypis [Ku-
ramochi and Karypis 2001]. The generator allows a user to specify the number
of graphs (D), their average size (T'), the number of seed graphs (S), the average
size of seed graphs (I), and the number of distinct labels (L).

All our experiments are performed on a 1.5GHZ, 1GB-memory, Intel PC running
RedHat 8.0. Both GraphGrep and glndex are compiled with gee/g++.

6.1 AIDS Antiviral Screen Dataset

The experiments described in this section use the antiviral screen dataset. We
set the following parameters in GraphGrep and glndex for index construction. In
GraphGrep, the maximum length of indexing paths is 10: GraphGrep enumerates
all possible paths with length up to 10 and indexes them. Another parameter in
GraphGrep, the fingerprint set size [Shasha et al. 2002], is set as large as possible
(10k). The fingerprint set consists of the hash values of indexing features. In our
experiments, we do not use the technique of fingerprint since it has similar effect on
GraphGrep and glndex: the smaller the fingerprint set, the smaller the index size
and the worse the performance. In glndex, the maximum fragment size maxL is
also 10; the minimum discriminative ratio ¥, is 2.0; and the maximum support
© is 0.1N. The size-increasing support function ¢(I) is 1 if I < 4; in all other

cases, (1) is ﬁ@ This means that all the fragments with size less than 4 are

ACM Transactions on Database Systems, Vol. V, No. N, August 2005.

22 . Xifeng Yan et al.

indexed. It should be noted that the performance is not sensitive to the selection
of 1(l). There are other size-increasing support functions which can be applied,
e.g., ﬁ@, (male)QG, and so on. We choose to have the same maximum size of
features in GraphGrep and glndex so that a fair comparison between them can be
done.

We first test the index size of GraphGrep and glndex. As mentioned before,
GraphGrep indexes paths while gIndex uses discriminative frequent fragments. The
test dataset, denoted by I'y, consists of N graphs that are randomly selected from
the antiviral screen database. Figure 8 depicts the number of features used in these
two algorithms with the test dataset size varied from 1,000 to 16,000. The curves
clearly show that the index size of glndex is at least 10 times smaller than that of
GraphGrep. They also illustrate two salient properties of glndex: its index size is
small and stable. When the database size increases, the index size of glndex does not
change much. The stability of the index is due to the fact that frequent fragments
and discriminative frequent fragments do not change much if the data have similar
distribution. In contrast, the index size of GraphGrep may increase significantly
because GraphGrep has to index all possible paths existing in a database (up to 10
edges in our experiments).

106 T T T T T T T
GraphGrep —+—
gindex --------

)
~
T
I

Number of features
=
(@)
[6)]
T

0 2 4 6 8 10 12 14 16
Database size (x1K)

=
Q
w

Fig. 8. Index Size

Having verified the index size of GraphGrep and glndex, we now check their
performance. In Section 2, we build a query cost model. The cost of a given query
is characterized by the number of candidate graphs we have to verify, i.e., the size of
candidate answer set C,. We average the cost in the following way: AVG(|Cy|) =

%. The smaller the cost, the better the performance. AVG(|D,|) is the

lower bound of AVG(|C,|). An algorithm achieving this lower bound actually
matches the queries in the graph dataset precisely. We use the answer set ratio,
AV G(|Cy|)JAVG(|Dy)), to measure the indexing strength. A ratio closer to 1 means
better performance.

We select I'19,000 as the performance test dataset. Six query sets are tested, each
of which has 1,000 queries: we randomly draw 1,000 graphs from the antiviral

ACM Transactions on Database Systems, Vol. V, No. N, August 2005.

Graph Indexing Based on Discriminative Frequent Structure Analysis : 23

14 T T T
= GraphGrep —+—
512 - glndex ---»--- -
=10 b .
o
o 8r 1
gl]
B
o 4T -
2oL /e |
Z -

O 1 1 1 1

5 10 15 20 25
Query size
Fig. 9. Low Support Queries

=12 F ' ' Grathrép — A
é" glndex ---x----
<10 | .
3
= 8 -
kS
B 6 .
B
o 4T 1
ol]
<

O 1 1 1 1

5 10 15 20 25
Query size

Fig. 10. High Support Queries

screen dataset and then extract a connected size-m subgraph from each graph
randomly. These 1,000 subgraphs are taken as a query set, denoted by Q,,. We
generate @4, Qs, Q12, @16, @20, and Q24. Each query set is then divided into two
groups: low support group if its support is less than 50 and high support group if its
support is between 50 and 500. We make such elaborate partitions to demonstrate
that gIndex can handle all kinds of queries very well, no matter whether they are
frequent or not and no matter whether they are large or not.

Figures 9 and 10 present the performance of GraphGrep and glndex on low
support queries and high support queries, respectively. As shown in the figures,
glndex outperforms GraphGrep nearly in every query set, except the low support
queries in query set Q4. GraphGrep works better on Q4 because queries in Q)4 are
more likely path-structured and the exhausted enumeration of paths in GraphGrep
favors these queries. Another reason is that the setting of ¢(l) in glndex has a
minimum support jump on size-4 fragments (from 1 to 632).

Figure 11 shows the performance according to the query answer set size (query

ACM Transactions on Database Systems, Vol. V, No. N, August 2005.

24 . Xifeng Yan et al.

3 10
°©
T 03

10
B
2 7

10
8
% 26" et
< 10 - _X*x*xx-* GraphGrep —+— 1
'% X gindex ------
8 L.~ . . Actua Match —x---

1 10 100 1000 10000

Query answer set size (|Dq)
Fig. 11. Performance on the Chemical Data

support), i.e., |Dgy|. X axis shows the actual answer set size while Y axis shows the
average size of the candidate answer set, |Cy|, returned by these two algorithms. We
also plot the size of query answer set: |D,|, which is the highest performance that
an algorithm can achieve. The closer |C,| to | Dy, the better the performance. The
performance gap between glndex and GraphGrep shrinks when the query support
increases. The underlying reason is that higher support queries usually have simpler
and smaller structures, where GraphGrep works well. When |D,| is close to 10, 000,
|Cy| will approach |D,| since 10, 000 is its upper bound in this test. Overall, glndex
outperforms GraphGrep by 3 to 10 times when the answer set size is below 1, 000.
Since glndex uses frequent fragments, at the first sight, one might suspect that
glndex may not process low support queries well. However, according to the above
experiments, glndex actually performs very well on queries which have low supports
or even no match in the database. This phenomena might be a bit counter-intuitive.
We find that the size-increasing support constraint and the intersection power of
structure-based features in glndex are the two key factors for this robust result.

_350 ———————————————
3 >(\ Averageof |Cq| ——
e 5 Number of features ---x---- P
Sa00 - %
gé b 10%
€ 250
: =
g 3
g 200 g
& z
8

150 L ! 1 1 I L I 1

1 15 2 25 3 35 4
Minimum discriminative ratio

Fig. 12. Sensitivity of Discriminative Ratio

ACM Transactions on Database Systems, Vol. V, No. N, August 2005.

Graph Indexing Based on Discriminative Frequent Structure Analysis : 25

Next, we check the sensitivity of minimum discriminative ratio v;,;,. The per-
formance and the index size with different ,,;, are depicted in Figure 12. In this
experiment, query set 12 is processed on dataset I'19,000. It shows that the query
response time gradually improves when 7,,;, decreases. Simultaneously, the index
size increases. In practice, we have to make a trade-off between the performance
and the space cost.

I glndex:'Search Cos't N

10 F gindex: Total Cost ---*----]

g ' Sequential Search %+]
C -

g 1r ;
= L

T 01}]
£ i

5 oof __

0.001 F]

10 15 20 25
Query size

Fig. 13. glndex Runtime

Figure 13 shows the candidate search cost (Tseqren) and the total cost (overall
query response time) per query in a database with 10,000 chemical compounds.
The figure also depicts the cost of brute-force search by scanning the database
sequentially. This experiment is done on various query sets, from Q4 to Q4. It
verifies that sequential subgraph isomorphism testing takes more time than can-
didate filtering, suggesting that an effective index should reduce the number of
candidate graphs as much as possible. Figure 13 also indicates the query response
time is closer to Tseqrcn When query graphs are bigger. This is reasonable since
fewer graphs will become candidates for big query graphs.

The scalability of glndex is presented in Figure 14. We vary the database size
from 2,000 to 10,000 and construct the index from scratch for each database. We
repeat the experiments for various minimum discriminative ratio thresholds. As
shown in the figure, the index construction time is proportional to the database size.
The linear increasing trend is pretty predicable. For example, when the minimum
discriminative ratio is set at 2.0, we find that the feature set mined by glndex
for each database has around 3,000 discriminative fragments. This number does
not fluctuate a lot across different databases in this experiment, which may explain
why the index construction time increases linearly. Since the size-increasing support
function (1) follows the database size, ¥(l) x © x N, the frequent fragment set
will be relatively stable if the databases have similar distribution.

Figure 14 also shows that the index construction time does not change too much
for a given database when the minimum discriminative ratio is above 2.0. We
find that the construction time consists of two parts, frequent graph mining and
discriminative feature selection. Given a database and a size-increasing support

ACM Transactions on Database Systems, Vol. V, No. N, August 2005.

26 : Xifeng Yan et al.

1000 ; . : : .

discriminativeratio 1.0 ——
900 - discriminativeratio 2.0 ---»---- |
800 - discriminativeratio 4.0 ----%---

700 b
600
500
400
300
200
100

Index construction time (in seconds)

2000 4000 6000 8000 10000
Database size

Fig. 14. Scalability: Index Construction Time
function, the cost of frequent graph mining remains constant. When the ratio is

below 2.0, the number of discriminative features does not vary much (see Figure
12). Thus, the overall computation time has little deviation.

T T
From scratch ——
Incremental ---%----

o o o
T T T

o o
T T

Candidate answer set size (|Cq|)
N % 53 9 3 3 Q

o

2000 4000 6000 8000 10000
Database Size

Fig. 15. Incremental Maintenance

The stability of frequent fragments leads to the effectiveness of our incremental
maintenance algorithm. Assume that we have two databases D and D’ = D +
>, D, where D;"’s are the updates over the original database D. As long as the
graphs in D and D;" are from the same reservoir, we need not build a separate
index for D’. Instead, the feature set of D can be reused for the whole dataset
D’. This remark is confirmed by the following experiment. We first take I's goo
as the initial dataset D, and add another 2,000 graphs into it and update the
index using Algorithm 3. We repeat such addition and update four times until the
dataset has 10,000 graphs in total. The performance of the index obtained from
incremental maintenance is compared with the index computed from scratch. We
select the query set @16 to test. Figure 15 shows the comparison between these

ACM Transactions on Database Systems, Vol. V, No. N, August 2005.

Graph Indexing Based on Discriminative Frequent Structure Analysis : 27

two approaches. It is surprising that the incrementally maintained index exhibits
similar performance. Occasionally, it even performs better in these datasets as
pointed by the small gap between the two curves in Figure 15.

5000 T T T T T T LT T
sampling ——
4500 non-sampling ---------

4000 - b

3500 [\ ,——_ -

3000 | ¥~ T 1

2500 b
2000 b
1500 b

1000 1 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Database size

Number of features

Fig. 16. Sampling: Index Size

ST LEme]
non-sampling ---------
Q0 r 1
85 1
80 1
75 N\ :
70F T—— T i
65 1
60 - 1
55 1

50 1 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Database size

Candidate answer set size (|Cq|)

Fig. 17. Sampling: Performance

This experiment also supports a potential improvement discussed in Section 5.5:
we can construct the index on a small portion of a large database, and then use
the incremental maintenance algorithm to build the complete index for the whole
database in one full scan. This has an obvious advantage when the database itself
cannot be fully loaded in memory. In that case, the mining of frequent graphs with-
out sampling usually involves multiple disk scans and becomes very slow [Savasere
et al. 1995; Toivonen 1996]. Using the sampling technique, the linear scalability
illustrated in Figure 14 can be retained for extremely large databases.

The next experiment will show the quality of indices built on samples. We select
T'10,000 as the test dataset and randomly draw 250, 500, 1,000, 2,000, 4,000, and

ACM Transactions on Database Systems, Vol. V, No. N, August 2005.

28 : Xifeng Yan et al.

8,000 graphs from I'1g oo to form samples with different size. Totally six indices
are built on these samples and are updated by the remaining graphs in the dataset.
Figures 16 and 17 depict the index size and the performance (average candidate
answer set size) of our sampling-based approach. The query set tested is Q16. For
comparison, we also plot the corresponding curves for the index built from I'1g 000
(the dotted lines in the figures). It demonstrates the index built from small samples
(e.g., 500 graphs) can achieve the same performance with the index built from the
whole dataset (10,000 graphs). This result proves the effectiveness of our sampling
method and the scalability of gIndex in large scale graph databases. Although the
convergence on the number of features happens only for large sampling fractions as
shown in Figure 16, the performance does not fluctuate dramatically with different
sample sizes.

6.2 Synthetic Dataset

In this section, we present the performance comparison on synthetic datasets. The
synthetic graph dataset is generated as follows: first, a set of S seed fragments is
generated randomly, whose size is determined by a Poisson distribution with mean
I. The size of each graph is a Poisson random variable with mean 7. Seed fragments
are then randomly selected and inserted into a graph one by one until the graph
reaches its size. More details about the synthetic data generator are available in
[Kuramochi and Karypis 2001]. A typical dataset may have the following setting:
it has 10,000 graphs and uses 1,000 seed fragments with 50 distinct labels. On
average, each graph has 20 edges and each seed fragment has 10 edges. This dataset
is denoted by D10kI1107'2051kL50.

=
O
°
N
¥ 100 ¢ :
8
o) I
3 I
SRELE o . 3
Tg ; x GraphGrep —+—
e [glndex ---»--—-]
S L g . Actual Match ----%----

1 10 ~ 100

Query answer set size (|Dq)

Fig. 18. Performance on a Synthetic Dataset

We first test a synthetic dataset D10k1107°505200L4 and 1,000 size-12 queries
(the queries are constructed using a similar method described in the previous sec-
tion). The maximum size of paths and fragments is set to 5 for GraphGrep and
gIndex, respectively. Figure 18 shows the average size of the candidate answer sets
with different support queries. As shown in Figure 18, gIlndex performs much better
than GraphGrep. When |D,| approaches 300, GraphGrep performs well too.

ACM Transactions on Database Systems, Vol. V, No. N, August 2005.

Graph Indexing Based on Discriminative Frequent Structure Analysis : 29

w

=
(@]

G'rathrlep —
glndex -------

Candidate answer set size (|Cy)
=
Q
N
T

6 7 8
Number of |abels
Fig. 19. Various Number of Labels

In some situations, GraphGrep and glndex can achieve similar performance.
When the size of query graphs is very large, the pruning based on the types of
node and edge labels could be good enough. In this case, whether using paths or
using structures as indexing features is not important any more. When the number
of distinct labels (L) is large, the synthetic dataset is much different from the AIDS
antiviral screen dataset. Although local structural similarity appears in different
synthetic graphs, there is little similarity existing among each graph. This char-
acteristic results in a simpler index structure. For example, if every vertex in one
graph has a unique label, we only need to index vertex labels. This is similar to
the inverted index technique (word - document id list) used in document retrieval.
In order to verify this conclusion, we vary the number of labels from 4 to 10 in the
dataset D10k1107'505200 and test the performance of both algorithms. Figure 19
shows that they are actually very close to each other when L is greater than 6.

’GEr GraphGrep ——
g .
@ 107 b
B
o
-
10 | -
oo}
=
o]
3

101 I 1 1 1 1 1 1

20 30 40 50 60 70 80 90 100

Average graph size (in edges)

Fig. 20. Various Graph Size

Figure 20 depicts the performance comparison on the dataset D10kI105200L4

ACM Transactions on Database Systems, Vol. V, No. N, August 2005.

30 : Xifeng Yan et al.

with various graph sizes. In this experiment, we test 1,000 12-edge query graphs. It
shows that gIndex can still outperform GraphGrep when the graph size increases.
We also tested other synthetic datasets with different parameters. Similar results
are also observed in these experiments.

glndex and GraphGrep have limitations on dense graph databases that have a
small number of labels. In this kind of database, the number of paths and frequent
fragments increases dramatically. It is very hard to enumerate all of them. Imagine
a graph becomes more and more dense, it is likely to contain any kind of query
structure, which will make candidate pruning ineffective. Fortunately, these graphs
are not of practical importance. Real graphs such as chemical compounds, protein
networks, and image models are usually very sparse and only have a limited number
of cycles.

7. DISCUSSION

In this section, we discuss the related work and the issues for further exploration.

7.1 Related Work

The problem of graph query processing has been addressed in various fields since
it is a critical problem for many applications. In content-based image retrieval, Pe-
trakis and Faloutsos [1997] represent each graph as a vector of features and index
graphs in high dimensional space using R-trees. Shokoufandeh et al. [1999] repre-
sent and index graphs by a signature computed from the eigenvalues of adjacency
matrix. Instead of casting a graph to a vector form, Berretti et al. [2001] propose
a metric indexing scheme which organizes graphs hierarchically according to their
mutual distances. The SUBDUE system developed by Holder et al. [1994] uses min-
imum description length to discover substructures that compress the database and
represent structural concepts in the data. SUBDUE is a structural pattern mining
software, not systematically optimized for graph query processing. In 3D protein
structure search, algorithms using hierarchical alignments on secondary structure
elements [Madej et al. 1995], or geometric hashing [Wolfson and Rigoutsos 1997],
have already been developed. There are other literatures related to graph retrieval
in these fields which we cannot enumerate here. In short, these systems are de-
signed for other graph retrieval tasks, such as exact or similar whole graph retrieval
[Petrakis and Faloutsos 1997; Shokoufandeh et al. 1999; Beretti et al. 2001] and 3D
geometric graph retrieval [Madej et al. 1995; Wolfson and Rigoutsos 1997]. They
are either inapplicable or inefficient to the problem studied in this paper.

In semistructured/XML databases, query languages built on path expressions
become popular. Efficient indexing techniques for path expression are initially
shown in DataGuide [Goldman and Widom 1997] and 1-index [Milo and Suciu
1999]. A(k)-index [Kaushik et al. 2002] further proposes k-bisimilarity to exploit
local similarity existing in semistructured databases. APEX [Chung et al. 2002]
and D(k)-index [Chen et al. 2003] consider the adaptivity of index structure to fit
the query load. Index Fabric [Cooper et al. 2001] represents every path in a tree as
a string and stores it in a Patricia trie. For more complicated graph queries, Shasha
et al. [Shasha et al. 2002] extend the path-based technique to do full scale graph
retrieval, which is also used in Daylight system [James et al. 2003]. Srinivasa et al.
[Srinivasa and Kumar 2003] build the index based on multiple vector spaces with

ACM Transactions on Database Systems, Vol. V, No. N, August 2005.

Graph Indexing Based on Discriminative Frequent Structure Analysis : 31

different abstract levels of graphs. However, no algorithm is considered to index
graphs using frequent structures, which is the emphasis of this study.

Washio and Motoda [2003] have a general introduction on the recent progress
of graph-based data mining. In frequent graph mining, Inokuchi et al. [2000], Ku-
ramochi and Karypis [2001], and Vanetik et al. [2002] propose Apriori-based algo-
rithms to discover frequent subgraphs. Yan and Han [2002; 2003] and Borgelt and
Berthold [2002] apply the pattern-growth approach to directly generate frequent
subgraphs. In this paper, we adopt a pattern-growth approach [Yan and Han 2002]
as the underlying graph mining engine because of its efficiency. Certainly, any kind
of frequent graph mining algorithm can be used in the implementation because
the mining engine itself will not influence our graph indexing results and query
performance.

In comparison with previous methods for indexing graphs, our approach suggests
a new direction. Most of the previous indexing methods treat data in one dimension
or a combination of dimensions uniformly, i.e., either index all of them or none of
them. For structural data, it is difficult to determine which dimension to select.
glndex performs selective indexing based on the analysis of data characteristics.
Since only some of the index entries will be selected and built, gIlndex substantially
reduces the total size of indices and alleviates the combinatorial explosion problem
in multi-dimensional indexing.

7.2 A New Perspective on the Applications of Frequent Pattern Mining

Frequent pattern mining was originally proposed for knowledge discovery and as-
sociation rule mining [Agrawal and Srikant 1994]. Research on frequent pattern
mining has been focused on how to develop efficient algorithms for mining frequent
patterns in large databases and how to identify interesting frequent patterns using
different measures. However, since frequent pattern information represents inher-
ent data characteristics, its application should not be confined to data mining only.
Through our study, we broaden the scope of the application of frequent pattern
mining and bring the usage of frequent patterns to a new perspective: frequent
patterns are used as basic building blocks for indexing and database management.
We show that due to the complexity of structured data like graphs, it is impossible
to index all the substructures, and discriminative frequent pattern analysis will lead
us to the development of compact but effective index structures. In this case, we
are not interested in whether an individual discriminative frequent pattern exposes
some knowledge. Instead, all of discriminative frequent patterns work together to
achieve impressive performance.

7.3 Extensions to Single Graph Indexing

Although gIndex is about indexing multiple graphs, it can naturally extend to
tackling the single graph indexing problem: Given a single large graph and a query
graph, the task is to discover all the subregions (or subgraphs) where the query
graph is embedded. Many applications have the demand of searching interesting
units in a massive graph such as biological network, social network and circuit.
Several issues have to be addressed in order to make the extension successful. First,
we need an algorithm to mine frequent structures in a single graph. Fortunately, the
solution is already available [Kuramochi and Karypis 2004]. Second, a positioning

ACM Transactions on Database Systems, Vol. V, No. N, August 2005.

32 : Xifeng Yan et al.

scheme should be devised to assign the positions for each structure in the graph,
which can facilitate the intersection operation (similar to () Dy in glndex). Note
that an efficient intersection operation is very critical to the performance since both
discriminative ratio computation and query processing rely on this operation. After
we obtain all discriminative features through feature selection, we may apply the
techniques developed in this paper to construct the indices and process the queries
in a single graph.

7.4 lIssues for Further Exploration

The indexing strategy proposed in this paper can be categorized into a new theme:
discriminative frequent pattern-based (DFP) indexing. It is radically different
from traditional indexing methods. It best fits those applications where single-
dimensional indexing is not selective, multi-dimensional indexing is explosive, query
is bulky, and search within complex objects is costly. We believe in such applica-
tions, the previous indexing methods encounter real challenges. There are lots of
unanswered questions calling for further exploration. We name a few as follows.

First, it is important to broaden the application domains and explore the bound-
ary of our approach. Obviously, we can apply DFP in sequence or tree databases.
Nevertheless, there are many applications where the traditional indexing approach
may still have its edge. For example, for gene network indexing, since genes are
highly selective and user queries in many cases are also not bulky (e.g., contain-
ing only several genes), it is likely that the traditional inverted indexing approach
will be a better choice. Another question is if the analyzed graphs have nearly no
common subgraphs or always have big structures in common, how well does gIndex
perform? The answer is positive as to indexing performance. However, it may
encounter difficulties in index construction since glndex intends to enumerate all
frequent patterns in big common structures. The recent work on closed frequent
graph mining [Yan and Han 2003] provides a solution by skipping the search space
efficiently.

Second, we have assumed all the features are of homogeneous type, such as
discriminative subgraphs, or discriminative subsequences. However, features can
be of heterogeneous type in some cases. For example, in graph mining, one may
consider not only subgraphs but also subsequences or subsets as features. In certain
applications, this may reduce the number of features to be indexed and further
enhance the efficiency of search.

Third, we considered only exact matching queries in graphs. However, in practice,
there are many applications where the approximate matching is desirable. For
example, in DNA sequence analysis, approximate matching on DNA subsequences
is expected since mutation, insertion, and deletion are normal in genome sequences.
Similar cases apply to image, video, chemical compound, and network flow analysis.
It is an interesting research problem to see how the DFP indexing approach should
be further developed for such applications.

8. CONCLUSIONS

Indexing complex and structured objects to facilitate the processing of nontrivial
queries is an important task in database applications. In this study, we analyze why
the traditional indexing approach may encounter challenges in these applications

ACM Transactions on Database Systems, Vol. V, No. N, August 2005.

Graph Indexing Based on Discriminative Frequent Structure Analysis : 33

and propose a new indexing methodology: discriminative frequent pattern-based
indexing. This new indexing methodology is based on frequent pattern mining and
discriminative feature selection. Our study on graph indexing shows that DFP leads
to compact index, better query processing efficiency, and easy maintenance due to
stable indexing structures. We believe our study may attract further exploration
of new methods for indexing complex objects by integration of sophisticated data
mining and data analysis techniques.

9. ACKNOWLEDGMENTS

The work was done in IBM T.J. Watson Research Center and University of Illinois
at Urbana-Champaign. The work of the first and third authors is supported in
part by the U.S. National Science Foundation NSF IIS-02-09199, the University
of Illinois, and an IBM Faculty Award. Any opinions, findings, and conclusions
or recommendations expressed in this paper are those of the authors and do not
necessarily reflect the views of the funding agencies. We would like to thank Rosalba
Giugno and Dennis Shasha for providing GraphGrep; and Michihiro Kuramochi and
George Karypis for providing the synthetic graph data generator. The authors are
grateful to anonymous reviewers for their constructive and helpful comments on
the initial versions of the paper.

REFERENCES

AGRAWAL, R. AND SRIKANT, R. 1994. Fast algorithms for mining association rules. In Proc. 1994
Int. Conf. on Very Large Data Bases (VLDB’9/). Santiago, Chile, 487-499.

ALON, N. AND SPENCER, J. 1992. The Probabilistic Method. John Wiley Inc., New York, NY.

BERETTI, S., BIMBO, A., AND VICARIO, E. 2001. Efficient matching and indexing of graph mod-
els in content-based retrieval. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 23, 1089-1105.

BORGELT, C. AND BERTHOLD, M. 2002. Mining molecular fragments: Finding relevant substruc-
tures of molecules. In Proc. 2002 Int. Conf. on Data Mining (ICDM’02). Maebashi, Japan,
211-218.

CHEN, Q., LM, A., AND ONG, K. 2003. D(k)-index: An adaptive structural summary for graph-
structured data. In Proc. 2008 ACM-SIGMOD Int. Conf. on Management of Data (SIG-
MOD’03). San Diego, CA, 134 — 144.

CHUNG, C., MIN, J., AND SHIM, K. 2002. Apex: An adaptive path index for xml data. In Proc.
2002 ACM-SIGMOD Int. Conf. on Management of Data (SIGMOD’02). Madison, WI, 121 —
132.

CoOOK, S. The complexity of theorem-proving procedures. In Proc. 8rd ACM Symp. on Theory
of Computing (STOC’71). Shaker Heights, OH.

COOPER, B., SAMPLE, N., FRANKLIN, M., HJALTASON, G., AND SHADMON, M. 2001. A fast index
for semistructured data. In Proc. 2001 Int. Conf. on Very Large Data Bases (VLDB’01).
Roma, Italy, 341-350.

GoOLDMAN, R. AND WIDOM, J. 1997. Dataguides: Enabling query formulation and optimization
in semistructured databases. In Proc. 1997 Int. Conf. on Very Large Data Bases (VLDB’97).
Athens, Greece, 436-445.

HOLDER, L., Cook, D., AND DJjoKO, S. 1994. Substructure discovery in the subdue system. In
Proc. AAAI’9 Workshop on Knowledge Discovery in Databases (KDD’9/). Seattle, WA, 169
— 180.

INOKUCHI, A., WASHIO, T., AND MoTODA, H. 2000. An apriori-based algorithm for mining frequent
substructures from graph data. In Proc. 2000 European Symp. Principle of Data Mining and
Knowledge Discovery (PKDD’00). Lyon, France, 13-23.

ACM Transactions on Database Systems, Vol. V, No. N, August 2005.

34 : Xifeng Yan et al.

JaMEs, C., WEININGER, D., AND DELANY, J. 2003. Daylight theory manual daylight version 4.82.
Daylight Chemical Information Systems, Inc.

KausHIK, R., SHENOY, P., BoHANNON, P., AND GUDES, E. 2002. Exploiting local similarity
for efficient indexing of paths in graph structured data. In Proc. 2000 Int. Conf. on Data
Engineering (ICDE’02). San Jose, CA, 129-140.

KuramocHI, M. AND KARyYPIS, G. 2001. Frequent subgraph discovery. In Proc. 2001 Int. Conf.
Data Mining (ICDM’01). San Jose, CA, 313-320.

KuramocHi, M. AND KARyPis, G. 2004. Finding frequent patterns in a large sparse graph. In
Proc. 2004 SIAM Int. Conf. on Data Mining (SDM’04). Orlando, FL.

MADEJ, T., GIBRAT, J., AND BRYANT, S. 1995. Threading a database of protein cores. Proteins 3-
2, 289-306.

MiLo, T. AND Suctu, D. 1999. Index structures for path expressions. Lecture Notes in Computer
Science 1540, 277-295.

PETRAKIS, E. AND FALOUTSOS, C. 1997. Similarity searching in medical image databases. Knowl-
edge and Data Engineering 9, 3, 435-447.

SAVASERE, A., OMIECINSKI, E.; AND NAVATHE, S. 1995. An efficient algorithm for mining associ-
ation rules in large databases. In Proc. 1995 Int. Conf. Very Large Data Bases (VLDB’95).
Zurich, Switzerland, 432—443.

SHASHA, D., WANG, J., AND GIUGNO, R. 2002. Algorithmics and applications of tree and graph
searching. In Proc. 21th ACM Symp. on Principles of Database Systems (PODS’02). Madison,
WI, 39-52.

SHOKOUFANDEH, A., DICKINSON, S., SIDDIQI, K., AND ZUCKER, S. 1999. Indexing using a spectral
encoding of topological structure. In Proc. IEEE Int. Conf. on Computer Vision and Pattern
Recognition (CVPR’99). Fort Collins, CO, 2491-2497.

SRINIVASA, S. AND KUMAR, S. 2003. A platform based on the multi-dimensional data model
for analysis of bio-molecular structures. In Proc. 2003 Int. Conf. on Very Large Data Bases
(VLDB’03). Berlin, Germany, 975-986.

TorvoNEN, H. 1996. Sampling large databases for association rules. In Proc. 1996 Int. Conf. on
Very Large Data Bases (VLDB’96). Bombay, India, 134-145.

VANETIK, N., GUDES, E., AND SHIMONY, S. E. 2002. Computing frequent graph patterns from
semistructured data. In Proc. 2002 Int. Conf. on Data Mining (ICDM’02). Maebashi, Japan,
458-465.

Wasnio, T. AND MoTobpa, H. 2003. State of the art of graph-based data mining. SIGKDD
FExplorations 5, 59-68.

WOoLFsON, H. AND RiGouTso0s, 1. 1997. Geometric hashing: An introduction. IEEE Computational
Science and Engineering 4, 10-21.

YAN, X. AND HAN, J. 2002. gSpan: Graph-based substructure pattern mining. In Proc. 2002 Int.
Conf. on Data Mining (ICDM’02). Maebashi, Japan, 721-724.

YAN, X. AND HAN, J. 2003. CloseGraph: Mining closed frequent graph patterns. In Proc. 2003
Int. Conf. on Knowledge Discovery and Data Mining (KDD’03). Washington, D.C., 286-295.

ZAKI, M. AND GouDA, K. 2003. Fast vertical mining using diffsets. In Proc. 2003 Int. Conf. on
Knowledge Discovery and Data Mining (KDD’03). Washington, DC, 326-335.

ACM Transactions on Database Systems, Vol. V, No. N, August 2005.

