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Chaos and Cryptography: Block Encryption Ciphers
Based on Chaotic Maps

Goce Jakimoski and Ljup̌co Kocarev, Senior Member, IEEE

Abstract—This paper is devoted to the analysis of the impact of
chaos-based techniques on block encryption ciphers. We present
several chaos based ciphers. Using the well-known principles in the
cryptanalysis we show that these ciphers do not behave worse than
the standard ones, opening in this way a novel approach to the de-
sign of block encryption ciphers.

Index Terms—Block encryption ciphers, chaos, cryptography,
S-boxes.

I. INTRODUCTION

I N THE last several years increasing efforts have been made
to use chaotic systems for enhancing some features of com-

municationssystems.Thehighlyunpredictableandrandom-look
natureofchaoticsignals is themostattractive featureofdetermin-
istic chaotic systems that may lead to novel (engineering) appli-
cations. Chaos and cryptography have some common features,
the most prominent being sensitivity to variables’ and parame-
ters’ changes. Shannon in his seminal paper [1] wrote: “In a good
mixing transformation functions are complicated, involving
all variables in a sensitive way. A small variation of any one (vari-
able) changes (the outputs) considerably.” An important differ-
encebetweenchaosandcryptography liesonthe fact thatsystems
used in chaos are defined only on real numbers [2], while cryp-
tography deals with systems defined on finite number of integers
[3]. Nevertheless, we believe that the two disciplines can benefit
from each other. Thus, for example, as we show in this paper, new
encryption algorithms can be derived from chaotic systems. On
the other hand, chaos theorymay also benefit from cryptography:
new quantities and techniques for chaos analysis may be devel-
oped from cryptography.

The aim of this paper is to deal with chaotic systems and
block encryption ciphers. Chaos has already been used to de-
sign cryptographic systems. An encryption algorithm that uses
the iterations of the chaotic tent map is proposed in [4] and
then generalized in [5]. Encryption algorithms based on multiple
iteration of a certain dynamical chaotic system coming from
gas dynamics models are presented in [6]. In [7] methods are
shown how to adapt invertible two-dimensional chaotic maps
on a torus or on a square to create new symmetric block encryp-
tion schemes. In [8] the author encrypts each character of the
message as the integer number of iterations performed in the
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logistic equation. While in conventional cryptographic ciphers
the number of rounds (iterations) performed by an encryption
transformation is usually less then 30, in [8] this number can
be as large as 65536, and is always larger then 250. Another
encryption algorithm based on synchronized chaotic systems is
proposed in [9]. The authors suggest each byte (consists of
bits) of a message to correspond (to be encrypted) with a dif-
ferent chaotic attractor. In [10] the authors assume that the mes-
sage to be sent is a binary file consisting of a chain of zeros and
ones and the sender and the receiver has previously agreed to
use the same-dimensional chaotic dynamical rule, which gen-
erates sequences of real numbers by iterating it.

A common atribute to all chaos-based block encryption al-
gorithms is that their security is not analyzed in terms of the
techniques developed in cryptanalysis. For example, the encryp-
tion algorithm proposed in [4] is cryptanalyzed in [11], showing
that the algrorithm can be broken using known-plaintext at-
tack. We recently analyzed [12] the performance and security
of chaos based encryption schemes proposed in [8]–[10]. The
analysis shows that the encryption rates these algorithms offer
are not competitive to the encryption rates of the standard cryp-
tographic algorithms, and, furthermore, the algorithms can be
easily broken using known-plaintext attacks.

In this paper we present several block encryption ciphers
based on chaotic maps. Our approach differs from others in
two ways. First, we use systematic procedure to create chaos
based ciphers. Two well-known chaotic maps, exponential
and logistic, defined on the unit interval by
and , respectively, are used for this purpose.
We show that with the proper choice of discretization and
parameters, that may play role of the key, it is possible to design
block encryption ciphers. Second, we cryptanalyze our ciphers,
showing that they are resistant to known attacks.

This is the outline of the paper. In Section II we describe the
general form of our block encryption algorithms. Section III ex-
plains some cryptographic tools that will be used in Section IV
to find when a chaotic map may produce a cipher that has accept-
ablevaluesofdifferential and linearapproximation probabilities.
In Section V we discuss different ways of using chaos based ci-
phers, and we close our paper with conclusion in Section VI.

II. DESCRIPTION OFBLOCK ENCRYPTION ALGORITHMS

Recall first that the most encryption ciphers have the form

(1)
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Fig. 1. Block diagram of encryption transformation (2).

where , are the plaintext and the cryptogram blocks with
length in bytes, respectively, is an dimensional vector,
and is the key-dependent encryption transformation. A few
classes of encryption transformations have been studied in the
literature: Feistel networks [13], including DES [3], LOKI [14],
CAST-128 [15], TWOFISH [16], unbalanced Feistel networks
examples being MacGuffin [17] and BEAR/LION [18], and
SP-networks (also called uniform transformations structures)
such as IDEA [19] and SAFER [20].

In this paper we study a class of block encryption ciphers that
can be described as follows. Let be a plaintext block of length
64bits( bytes).Wewrite for theeightbytesof
theblock , .Thecipherconsistsofrounds
of identical transformations applied in a sequence to the plaintext
block. Encryption transformation is given with

(2)

where , , , and
, and are the eight bytes of the subkeywhich

controls the th round; see Fig. 1. The functions have

the following form:

where ,and : , isamap
derivedfromachaoticmap.Theoutputblock
is input inthenextround,exceptinthelastround.Therefore,

istheciphertextblock(encryptedinformation).The
length of the ciphertext block is 64 bits (8 bytes) and is equal to
the lengthof theplaintextblock.Each roundiscontrolledbyone
8-byte subkey . There are subkeys totally and they are derived
fromthekeyinaprocedureforgeneratingroundsubkeys.Inallex-
ampleswestudybellow,has the formof

where isobtainedviadiscretizationofanonlinearmap,
with mixing property and robust chaos.

The decrypting structure undoes the transformations of the
encrypting structure: decryption rounds are applied to the ci-
phertext block to produce the original plaintext block .
The round subkeys are applied now in a reverse order. The de-
cryption round transformation is

(3)

with , , and .
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III. CRYPTANALYSIS

The central question in cryptography is what is security? This
question can be answered at two different levels: theoretical and
practical.

At theoretical level, the basic properties charactering a secure
object are “randomness increasing” and “computationally un-
predictable.” By object we wean pseudo-random number gen-
erator, one-way function, or block encryption algorithm. It is
well known that if one of the following objects exist: a secure
pseudo-random number generator, a secure one-way function,
and a secure block encryption algorithm, then all exist. Impagli-
azzoet al.[21] showed that secure pseudo random number gen-
erators (PRNG) exist if and only if secure one-way functions
exist. Finally, the statement that secure PRNG’s can be used to
construct secure private-key crypto-systems and vice versa is
proven in [22] and [23].

The rigorous definitions for “randomness-increasing” and
“computationally unpredictable” are far beyond the scope
of this paper and we refer the reader to [24]. The following
informal definition of computationally unpredictable for
pseudo-random number generators is due to Blumet al. [25].
We say that a pseudo-random number generator ispolyno-
mial-time unpredictableif and only if for every finite initial
segment of sequence that has been produced by such generator,
but with any element deleted from that segment, a probalistic
Turing machine can, roughly speaking, do not better in guessing
in polynomial time what the missing element is than by flipping
a fair coin. Yao proved that a pseudo-random number generator
is secure if and only if it is polynomial-time unpredictable.

The central unsolved question in the theory outlined above
is whether a secure object exists. A major difficulty in settling
the existence problem for this theory is summarized in the fol-
lowing heuristic unpredictability paradox [26]:if a determin-
istic function is unpredictable, then it is difficult to prove any-
thing about it, in particular, it is difficult to prove that is unpre-
dictable. Most of the results about unpredictability and crypto-
graphic security follow from certain assumptions concerning the
intractability of certain number-theoretical problems by proba-
bilistic polynomial-time procedures. For example, the statement
that the mod generator is unpredictable is proven under
so-called quadratic residuacity assumption; see [25] for details.

At the practical level cryptographic security of a crypto-
graphic object (for example, a block encryption algorithm)
can be checked up only by means of proving its resistance to
various kind of known attacks. In this section we describe two
basic attacks: differential [27] and linear cryptanalysis [28].
For extensions and generalizations of differential and linear
cryptanalysis we refer the reader to [31]–[35].

A. Differential Cryptanalysis

Differential cryptanalysis [27]–[29] is a chosen-plaintext at-
tack to find the secret key of an iterated cipher. It analyzes the
effect of the “difference” of a pair of plaintexts on the “differ-
ence” of succeeding round outputs in an-round iterated cipher.

An -round differential is a couple , where is the dif-
ference of a pair of distinct plaintexts and and where

is a possible difference for the resultingth outputs and .
The probability of an -round differential is the condi-
tional probability that is the difference of the ciphertext
pair after rounds given that the plaintext pair has difference

when the plaintexts and the round subkeys are inde-
pendent and uniformly distributed.

The basic procedure of a differential attack on a r-round iter-
ated cipher can be summarized as follows.

1) Find -round differential such that its prob-
ability is maximum, or nearly maximum.

2) Choose a plaintext uniformly at random and compute
so that the difference is . Submit and

for encryption under the actual key. From the resultant ci-
phertexts and , find every possible value (if any) of
the last-round subkey corresponding to the anticipated
difference . Add one to the count of the number of ap-
pearances of each such value of the last-round subkey.

3) Repeat Step 1 and Step 2 until some values ofare
counted significantly more often than others. Take this
most-often-counted subkey, or this small set of such sub-
keys, as the cryptanalyst’s decision for the actual subkey

.
For the complexity (number of encryptions needed) of this

attack holds

(4)

where and
is the block length.

Usually the most difficult step in the attack procedure de-
scribed above is the first step. When searching for -round
differential with maximum or nearly maximum probability, the
attacker exploits some “weakness” of the nonlinear transfor-
mations used in the cipher. Thus the nonlinear maps should be
chosen to have differential uniformity. The differential approx-
imation probability of a given map ( for short) is a mea-
sure for differential uniformity and is defined as

(5)

where is the set of all possible input values andthe number
of its elements. Actually, is the maximum probability of
having output difference , when the input difference is .

B. Linear Cryptanalysis

Linear cryptanalysis exploits a cipher’s weakness expressed
in terms of “linear expressions.” In Matsui’s terminology [30],
a linear expression for one round is an “equation” for a certain
modulo two sum of round input bits and round output bits as a
sum of round key bits. The expression should be satisfied with
probability much more (or much less) than 0.5 to be useful. A
generalization of this idea [35] is using a more general notion
of I/O sums.

An I/O sum for the th round is a modulo-two sum of a
balanced binary-valued functionof the round input and
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a balanced binary-valued function of the round output ,
that is

(6)

where denotes modulo-two addition and a balanced
binary-valued function is defined as a function that takes on the
value zero for exactly half of its arguments and the value one
otherwise.

I/O sums for successive rounds are linked if the output func-
tion of each round before the last coincides with the input
function of the following round. When successive are
linked, their sum

(7)

is called a multi-round I/O sum.
The imbalance of a binary-valued variable is the non-

negative real number . The imbalance is used
as a measure for the “effectiveness” of an I/O sum. The av-
erage-key imbalance of the I/O sum is the expectation
of the key dependent imbalances and is de-
noted as I(S(1, , r)). An I/O sum is effective if it has a large
average-key imbalance and is guaranteed if its average-key im-
balance is one.

Assuming that the attacker has access toplaintext/cipher-
text pairs with uniformly randomly chosen plaintexts the basic
procedure is as follows.

1) Find an effective I/O sum .
2) Set up a counter for each possible last-round key

and initialize all counters to zero.
3) Choose a plaintext pair .
4) For each possible value , evaluate

and if , increment by 1.
5) Repeat Steps 3 and 4 for all available plaintext/cipher-

text pairs.
6) Output all keys that maximize as can-

didates for the key actually used in the last round.

As in the differential cryptanalysis attack, the first step in
this procedure is the most difficult one. The existence of an ef-
fective I/O sum depends on the characteristics of the nonlinear
maps used in the cipher. The most commonly used character-
istic, when talking about linear cryptanalysis, is the linear ap-
proximation probability ( for short) and it is defined as

(8)

where denotes the parity of bit-wise product ofand , is
the set of all possible inputs and the number of its elements.
The linear approximation probability is square of the maximal
imbalance of the event: the parity of the input bits selected by
the mask is equal to the parity of the output bits selected by the
mask . Decreasing the yields to increasing the complexity
of the linear cryptanalysis attack.

IV. EXAMPLES

In this section we design ciphers using chaotic maps. We
choose two simple chaotic maps: quadratic (logistic)

(9)

and exponential

(10)

where and . It is well known that both maps
are chaotic.

A. Algorithm Based on Quadratic Function

We consider now the cipher (2) with the functiondefined
as

floor if
if

(11)

where floor , and
. The transformation is obtained from the logistic map

(9). In the first step, the logistic map is scaled so that input and
output values of the new map are in the interval [0, 256]. The
second step is discretization of the newly derived map.

The function is not one-to-one mapping. There are dis-
tinct elements of the set that are mapped to the
same value. Thus, the cardinality of the set of all possible output
values is less than 256. For example, the number of elements
that are mapped to the value 255 is 17. This property implies
that, when the input values are uniformly distributed, the output
values are not uniformly distributed, i.e., the function, “spoils”
the input uniform distribution. Actually, when all input values
are equally likely, the probability of having output value 255 is
17/256. This is significantly greater than 1/256. We used this
fact to amount a known plaintext attack. The complexity of the
attack was not greater than , which is far below the com-
plexity of the brute force attack.

The problem can be solved by using maps that produce
one-to-one mappings after discretization or replacing the
discretization procedure. Examples of both are given in the
subsections that follow.

B. Algorithm Based on Exponential Function

Let us consider a function of the following form:

if
if

(12)

where mod , and .
This function is derived from (10) by extending the output range
to the interval [0, 256] and discretization.is chosen so that it is
a natural number and a generator of the multiplicative group of
nonzero elements of the Galois field of order 257. There are 128
different values of . In this case the map performs one-to-one
transformation.

We check the values of the differential approximation proba-
bility and the linear approximation probability for all
possible values of. The differential approximation probability
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is for all and it appears for in (5).
The minimal value of the linear approximation probability is

. However, if we iterate the exponential func-
tion (12) two or three times, then and
for all .

C. Algorithm Based on th Iteration of the Logistic Map

In the previous example the discrete map was bijection due to
the choice to be a primitive element of the Galois field. In this
example the one-to-one map is determined using discretization
procedure that is different from the one used in the first example.
The procedure is as follows.

1) Divide the phase space into equal volume regions.
Assign the numbers to the regions so that one
number is assigned to exactly one region. If a point is in
the region we say that its magnitude is.

2) Randomly choose one starting point from each region and
determine its image after iterations of a chaotic map.

3) Find the set of starting points that have unique image.
Choose a subset that contains 256 elements ofand
determine the set of corresponding images.

4) Assign new magnitudes to the elements of
according to their old magnitudes. Do the same with the
elements of . If the new magnitude of the starting point
in is and the new magnitude of its image is, then we
say that . The map is one-to-one.

The finally constructed function depends on the way the mag-
nitudes are assigned in the first step, the chaotic map that is
iterated, the number of iterations, and the starting points. By
changing any one we can change the function. We stress that,
if the cardinality of the set is less than 256, the Step 3 is im-
possible. The number of regions is chosen so that the average
number of starting points that have unique image is slightly
greater than 256, when the chaotic map used in Step 2 is the
logistic map.

Let us now assume that the chaotic map has uniformly dis-
tributed ergodic invariant measure and the number of regions in
Step 1 is . The probability that given image is an image of
exactly one starting point is

when . Thus for large values of n the portion of images
that correspond to exactly one starting point is. If we want
to construct a map: the
number of regions should be slightly greater thanfor large
values of .

Table I shows a function constructed using the previously de-
scribed procedure. The numbering system used is hexadecimal.
The chaotic map, which was used in Step 2, is the logistic map.
We choose and . The cardinality of the
set is 259. The differential approximation probability of the
function is and the linear
approximation probability is .

The encryption cipher (2) is a product encryption cipher, i.e.,
it achieves the desired confusion and diffusion through repeat-
edly applying the encryption round transformation to the 64-bit

TABLE I
THE FUNCTION f OBTAINED FROM THE

LOGISTIC MAP USING THE PROCEDUREDESCRIBED IN THETEXT

block of plaintext. The number of rounds needed depends on the
nonlinear map used and the way it is involved in the cipher.

The encryption round can be represented by a weighted di-
rected graph with set of vertices corresponding
to the eight input bytes. If the output bytedepends on the input
byte , then the edge is an element of the set of edges of.
If the input byte affects the output byteafter it is transformed
by the function , the weight of the edge is 1. Otherwise,
the weight of the edge is 0. We define the distance
between the input byteand the output byte after rounds as
the maximal possible weight of the path with lengthbetween
the vertices and .

The encryption cipher (2) has the minimal distance
, when . For , the minimal

distance is 0. We choose the number of rounds to be . If
the attacker can unroll two rounds, the minimal distance would
be 16. Thus, the imbalance of any linear expression is not
greater than and the linear cryptanalysis attack
is impossible. Further, the encryption cipher is a Markov cipher
[36] and every input bit will “pass through” at least 16 nonlinear
transformations before affecting any output bit. Thus, we do not
believe that differentials with high probability exist. Statistical
tests showed that after rounds the maximum probability

is
. Therefore, this probability rapidly approaches its

uniform value .

D. Key Schedule

The key schedule is the means by which the key bits are
turned into round keys that the cipher can use. The mapping
that performs each rounddepends on the value of the round
subkey . The length of the round subkeys is 64 bits and they
are derived from the 128-bit key in a procedure as follows.
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We denote the bytes of the keys by , . The
key generation procedure is given with

(13)

where , , , and
. are 16 bytes of the constant. The

function assigns the 64-bit right half of the key to the
round subkey .

The structure of the key generation procedure is similar
to the encryption structure (2). The only difference is that
the length of the block is 128 bits and the round subkeys
are equal to the constant. The value of the constant is

and it is ran-
domly chosen.

V. USING CHAOS-BASED ENCRYPTION CIPHERS

A Feistel network is a method for transforming any function
(usually called the function) into a permutation. The fun-
damental building block of a Feistel network is thefunc-
tion: a key-dependent mapping of an input string onto an output
string. Each function usually has two parts: linear and non-
linear. Nonlinear part of the function is called -box: it is
a table-driven nonlinear substitution operation. Most common
linear functions used in the Fiestel networks are MDS matrices
[37] and/or pseudo-Hadamard transformations (PHT) [20]. A
maximum distance separable (MDS) code over a field is a linear
mapping from field elements to field elements, producing a
composite vector of elements, with the property that the
minimum number of nonzero elements in any non zero vector
is at least . Another mapping used to increase the difficulty
for cryptanalysys is simpleXORing the key material before the
first round and after the last round (this technique is known as
whitening [38]).

The ciphers we use here clearly belong to the class of Feistel
networks. The function in (2) plays role of the function in
the Fiestel networks. However, the functionsin (2) which are
derived from chaotic maps, can also be used only asboxes,
nonlinear parts of the function. In this paper we keep our
presentation as much simpler as possible; thus, for example, in
all examples we use . Instead, one
can use, for example

where denotes 3-bit left rotation. Although rotation has
performance impact in software and hardware implementation
of an cipher, and makes the cipher nonsymmetric, the rota-
tion may increase the difficulty for cryptanalyses. Another
extensions (generalizations) of our ciphers are also possible,
including those with linear MDS and PHT functions.

We have found that for a given chaotic map and for a given
discretization procedure, there exist more then one function
with good cryptographic properties (low values of DP and LP).
As an example, we mention that the second or third iteration of
the exponential function (12) generate 128 ciphers, for which

and . Thus, one may generalize the
procedure for encryption in a way that the functionis key-
dependent. For example, one can use the first seven bits of the
key byte to determine the value ofin (12) while the last bit
to determine how many times (two or three) the functionis
iterated.

We have extensively cryptanalyzed the class of ciphers de-
scribed in Sections IV-B and IV-C using second or third it-
eration of the exponential function (12) and rounds.
Conventional cryptanalysys allows an attacker to control both
the plaintext and the ciphertext inputs into the cipher. Since the
structure of the key generation procedure is similar to the en-
cryption structure (2), we allow the attacker to control also the
key schedule. This attack is known as related-key attack; our
ciphers seem to be resistant to such attacks. Therefore, we con-
jecture that there exists no more efficient attack to our ciphers
than brute force.

The ciphers we discuss here use blocks of length 64 bits.
We also consider 128-bit block ciphers based on chaotic maps.
Our preliminary results (not reported here) indicate that these
ciphers have also good cryptographic properties and therefore
may be used as encryption transformations.

One of the goals of the design of the block encryption ci-
pher was its easy implementation in software and hardware. The
cipher and the key schedule use only byte operations that can
be implemented on various processors. These operations can be
implemented in hardware as well. The mapin (2) can be real-
ized with a byte-in byte-out look-up table. Finally we note that
our ciphers can be used in all standard block-cipher chaining
modes, as one-way hash functions and pseudo-random number
generators.

VI. CONCLUSION

In this paper we have proposed a class of block encryption
ciphers based on chaos, using two well-known chaotic maps:
exponential and logistic. We have shown that these maps pro-
duce ciphers that have acceptable values of differntial and linear
approximation probabilities. The ciphers use only byte opera-
tions that can be easily implemented on various processors and
in hardware. As a result of extensive cryptanalysis we conjec-
ture that there exists no more efficient attack to our ciphers than
brute force.

The ciphers we have studied in this paper belong to the class
of Feistel networks. An essential part of every Feistel network is
an S-box: table-driven nonlinear substitution operation. S-boxes
are created either randomly or algorithmically. Here we have
proposed another way of creating S-boxes: by using chaotic
maps. It turns out that very simple chaotic maps and very simple
discretization procedure generate secure S-boxes, which is the
opposite to the case of randomly constructed S-boxes: they are
unlikely to be secure.1 . Therefore, we suggest that maybe there
exists more deeper connection between cryptography and chaos
theory, yet to be discovered. This and other questions related to
chaos and cryptography will be a subject to our future studies.

1For example, Khafre [38] uses S-boxes from the RAND tables [39] and it
is vulnerable to differential cryptanalysis. Or, DES variants with random fixed
S-boxes are very likely to be weak [40].
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