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Chaos and Cryptography: Block Encryption Ciphers
Based on Chaotic Maps

Goce Jakimoski and Ljugm Kocarey Senior Member, IEEE

Abstract—This paper is devoted to the analysis of the impact of logistic equation. While in conventional cryptographic ciphers
chaos-based techniques on block encryption ciphers. We presentthe number of rounds (iterations) performed by an encryption
several chaos based ciphers. Using the well-known principles in the transformation is usually less then 30, in [8] this number can

cryptanalysis we show that these ciphers do not behave worse than .
the standard ones, opening in this way a novel approach to the de- be as large as 65536, and is always larger then 250. Another

sign of block encryption ciphers. encryption algorithm based on synchronized chaotic systems is
Index Terms—Block encryption ciphers, chaos, cryptography, proposed in [9]. The authors suggest each byte (congsﬁs Of.
S-boxes. bits) of a message to correspond (to be encrypted) with a dif-

ferent chaotic attractor. In [10] the authors assume that the mes-
sage to be sent is a binary file consisting of a chain of zeros and
ones and the sender and the receiver has previously agreed to
N THE last several years increasing efforts have been madie the samé-dimensional chaotic dynamical rule, which gen-
to use chaotic systems for enhancing some features of coerates sequences of real numbers by iterating it.
munications systems. The highly unpredictable and random-lookA common atribute to all chaos-based block encryption al-
nature of chaotic signalsis the most attractive feature of determiporithms is that their security is not analyzed in terms of the
istic chaotic systems that may lead to novel (engineering) apgkchniques developed in cryptanalysis. For example, the encryp-
cations. Chaos and cryptography have some common featutigs) algorithm proposed in [4] is cryptanalyzed in [11], showing
the most prominent being sensitivity to variables’ and paramiat the algrorithm can be broken using known-plaintext at-
ters’ changes. Shannonin his seminal paper [1] wrote: “In a gotatk. We recently analyzed [12] the performance and security
mixing transformation . . functions are complicated, involving of chaos based encryption schemes proposed in [8]-[10]. The
allvariables in a sensitive way. A small variation of any one (varinalysis shows that the encryption rates these algorithms offer
able) changes (the outputs) considerably.” An important diffedfe not competitive to the encryption rates of the standard cryp-
ence between chaos and cryptography lies onthe fact that systéegsaphic algorithms, and, furthermore, the algorithms can be
used in chaos are defined only on real numbers [2], while crypasily broken using known-plaintext attacks.
tography deals with systems defined on finite number of integersin this paper we present several block encryption ciphers
[3]. Nevertheless, we believe that the two disciplines can bendfaised on chaotic maps. Our approach differs from others in
from each other. Thus, for example, as we show in this paper, nswp ways. First, we use systematic procedure to create chaos
encryption algorithms can be derived from chaotic systems. ®ased ciphers. Two well-known chaotic maps, exponential
the other hand, chaos theory may also benefit from cryptograplayd logistic, defined on the unit interval by — «” mod 1
new quantities and techniques for chaos analysis may be dewsldz — 4z(1 — z), respectively, are used for this purpose.
oped from cryptography. We show that with the proper choice of discretization and
The aim of this paper is to deal with chaotic systems ar@rameters, that may play role of the key, itis possible to design
block encryption ciphers. Chaos has already been used to ldisck encryption ciphers. Second, we cryptanalyze our ciphers,
sign cryptographic systems. An encryption algorithm that useBowing that they are resistant to known attacks.
the iterations of the chaotic tent map is proposed in [4] and This is the outline of the paper. In Section Il we describe the
then generalized in [5]. Encryption algorithms based on multipggeneral form of our block encryption algorithms. Section Ill ex-
iteration of a certain dynamical chaotic system coming froglains some cryptographic tools that will be used in Section IV
gas dynamics models are presented in [6]. In [7] methods dedind when a chaotic map may produce a cipher that has accept-
shown how to adapt invertible two-dimensional chaotic magble values of differential and linear approximation probabilities.
on atorus or on a square to create new symmetric block encrypSection V we discuss different ways of using chaos based ci-
tion schemes. In [8] the author encrypts each character of fleers, and we close our paper with conclusion in Section VI.
message as the integer number of iterations performed in the
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Fig. 1. Block diagram of encryption transformation (2).

whereB,, B, are the plaintext and the cryptogram blocks witlthe following form:
length L in bytes, respectivelys is an L dimensional vector,
andE is the key-dependent encryption transformation. A few Ti= s wio2)
classes of encryption transformations have been studied in Wieerej = 1,...,7,andf:M — M,M = {0,...,255}isamap
literature: Feistel networks [13], including DES [3], LOKI [14],derived from achaotic map. The outputbldék= x; o, - . ., %; 7
CAST-128 [15], TWOFISH [16], unbalanced Feistel networkisinputinthe nextround, exceptinthelastround. Therefdres
examples being MacGuffin [17] and BEAR/LION [18], andz.. o, ...,z 7istheciphertextblock (encryptedinformation). The
SP-networks (also called uniform transformations structurdehgth of the ciphertext block is 64 bits (8 bytes) and is equal to
such as IDEA [19] and SAFER [20]. the length of the plaintext block. Each rouiidcontrolled by one

In this paper we study a class of block encryption ciphers th@tbyte subkey;. There are subkeys totally and they are derived
can be described as follows. LB be a plaintext block of length fromthekeyinaprocedure forgeneratingroundsubkeys. Inallex-
64 bits L = 8bytes). Wewritez; o, .. ., x; 7 forthe eightbytesof ampleswe study bellow,hastheformof = g(z1 @z b ... &

theblockB;, B, = «; 0, ..., ;7. Thecipherconsists efrounds xz; & z;) whereg is obtained viadiscretization ofanonlinear map,
ofidentical transformations applied in a sequence to the plaintexth mixing property and robust chaos.
block. Encryption transformation is given with The decrypting structure undoes the transformations of the
encrypting structure: decryption rounds are applied to the ci-
Tigtl = i1k DB fr—1[Tic1,1, - Timl km1, Zie1 k—1] phertext blockB, to produce the original plaintext block,.

(2) The round subkeys are applied now in a reverse order. The de-

cryption round transformation is
wherei =1,...,7k=1,...,8, fo = 2,0, 28 = 29 andwzy =
z1, andz; o,. .., 2; 7 are the eight bytes of the subkeywhich
controls theith round; see Fig. 1. The functioifs, .. ., f- have withk =1,....8, fo = 20, 23 = ¢ andzg = z1.

i1k = Tigt1 ® fr—1[®wicin, .o T k-1, Zick—1] (3)
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[ll. CRYPTANALYSIS is a possible difference for the resultiiity outputsB; and B; .
o _ _ _ The probability of ani-round differential(c, 3) is the condi-

The_ central questionin cryptogra}phy iswhat is security? Thinal probability that3 is the differenceA B; of the ciphertext
question can be answered at two different levels: theoretical gswlr after: rounds given that the plaintext pair has difference
practical. ABy = « when the plaintexts and the round subkeys are inde-

Attheoretical level, the basic properties charactering a secyendent and uniformly distributed.
object are “randomness increasing” and “computationally un- The basic procedure of a differential attack on a r-round iter-
predictable.” By object we wean pseudo-random number geated cipher can be summarized as follows.
erator, one-way function, or block encryption algorithm. It is 1) Find (r — 1)-round differential«, 3) such that its prob-
well known that if one of the following objects exist: a secure ability is maximum, or nearly maximum.
pseudo-random number generator, a secure one-way functionp) choose a plaintex, uniformly at random and compute
and a secure block encryption algorithm, then all exist. Impagli- B3 so that the difference\ B, is «. SubmitB, and B
azzoet al.[21] showed that secure pseudo random number gen-  for encryption under the actual key. From the resultant ci-
erators (PRNG) exist if and only if secure one-way functions  phertextsi, andB?, find every possible value (if any) of
exist. Finally, the statement that secure PRNG's can be used to  the |ast-round subkey, corresponding to the anticipated
construct secure private-key crypto-systems and vice versa is difference/3. Add one to the count of the number of ap-
proven in [22] and [23]. pearances of each such value of the last-round subkey.

The rigorous definitions for “randomness-increasing” and 3) Repeat Step 1 and Step 2 until some values,ofire
“computationally unpredictable” are far beyond the scope  counted significantly more often than others. Take this
of this paper and we refer the reader to [24]. The following  most-often-counted subkey, or this small set of such sub-

informal definition of computationally unpredictable for keys, as the cryptanalyst’s decision for the actual subkey
pseudo-random number generators is due to Bitiral. [25]. 2.
We say that a pseudo-random number generatgolgno-  For the complexity (number of encryptions needed) of this

mial-time unpredictablef and only if for every finite initial attack holds
segment of sequence that has been produced by such generator,
but'with any'element deleted from' that segment, a'probalis'tic Comp(r) > 2/( . 1 ) @)
Turing machine can, roughly speaking, do not better in guessing 2m—1
in polynomial time what the missing element is than by flipping
a fair coin. Yao proved that a pseudo-random number generddfl€r€pmax = maxq maxg P(AB,_; = |ABy = ) andm
is secure if and only if it is polynomial-time unpredictable. i the block length. _

The central unsolved question in the theory outlined aboveUsually the most difficult step in the attack procedure de-
is whether a secure object exists. A major difficulty in settlin§CfiPed above is the first step. When searchinger 1)-round
the existence problem for this theory is summarized in the fdfifferential with maximum or nearly maximum probability, the
lowing heuristic unpredictability paradox [26F a determin- attapker explo'lts some “weakness” of thg nonlinear transfor-
istic function is unpredictable, then it is difficult to prove anyMations used in the cipher. Thus the nonlinear maps should be
thing about it, in particular, it is difficult to prove that is unpre- €hosen to have differential uniformity. The differential approx-
dictable Most of the results about unpredictability and cryptomation probability of a given mag (D P for short) is a mea-
graphic security follow from certain assumptions concerning tif&/re for differential uniformity and is defined as
intractability of certain number-theoretical problems by proba- .
bilistic polynomial-time procedures. For example, the statemenDP; = max <#{x €X|f(@) & iz & Az) = Ay})
that thez2 mod NV generator is unpredictable is proven under Azr0,Ay 2
so-called quadratic residuacity assumption; see [25] for details. ()

At the practical level cryptographic security of a crypto- i o
graphic object (for example, a block encryption algorithnWhereX is the set of all possible input values &fdthe number

can be checked up only by means of proving its resistancedb!tS elements. ActuallyD Py is the maximum probability of
various kind of known attacks. In this section we describe twVing output differencely, when the input difference iz

basic attacks: differential [27] and linear cryptanalysis [28]. )
For extensions and generalizations of differential and linegr Linear Cryptanalysis
cryptanalysis we refer the reader to [31]-[35]. Linear cryptanalysis exploits a cipher's weakness expressed
in terms of “linear expressions.” In Matsui's terminology [30],
a linear expression for one round is an “equation” for a certain
modulo two sum of round input bits and round output bits as a
Differential cryptanalysis [27]-[29] is a chosen-plaintext atsum of round key bits. The expression should be satisfied with
tack to find the secret key of an iterated cipher. It analyzes tpeobability much more (or much less) than 0.5 to be useful. A
effect of the “difference” of a pair of plaintexts on the “differ-generalization of this idea [35] is using a more general notion
ence” of succeeding round outputs invaround iterated cipher. of I/O sums.
An ¢-round differential is a coupléx, 3), wherec is the dif- An 1/0 sumS@ for theith round is a modulo-two sum of a
ference of a pair of distinct plaintexfs, and By and where?  balanced binary-valued functigh of the round inpuB;_; and

A. Differential Cryptanalysis
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a balanced binary-valued functign of the round outputB;, IV. EXAMPLES

that is In this section we design ciphers using chaotic maps. We

‘ choose two simple chaotic maps: quadratic (logistic)
SO = fi(Bim1) @ 9:i(By) (6)
-/i'n+l = 4-%71(1 - -/i'n) (9)
whereg = X OR denotes modulo-two addition and a balanced
binary-valued function is defined as a function that takes on tR&d exponential
value zero for exactly half of its arguments and the value one .
otherwise. Tpy1 = a” (mod 1) (10)
I/0 sums for successive rounds are linked if the output func-, - .
tion g; 1 of each round before the last coincides with the inpt‘;’i’hereaj € [0,1] anda > 1. Itis well known that both maps
function f; of the following round. Whem successives® are '€ chaotic.

linked, their sum A. Algorithm Based on Quadratic Function

Sr) S@ — 0 (Bo) & q,(B 7 We consider now the cipher (2) with the functigrdefined
@ go(Bo) ® 9,(B)) ) as
is called a multi-round I/O sum. Fly;) = floor [y;(256 — y;)/64], ?f y; < 256 (11)
The imbalancé (V) of a binary-valued variabl¥ is the non- ’ 255, if y; =256

negative real numbe2P[V = 0] — 1|. The imbalance is used . _
as a measure for the “effectiveness” of an /O sum. The ayhereg; = floor[y;(256 —y;)/64], andy; = o1 S z>... &
erage-key imbalance of the I/O su#~) is the expectation ¥J @® z;. The transformation is obtained from the logistic map
of the key dependent imbalanciss 4+ |z()) and is de- (9). In the first step, the logistic map is scaled so that input and
noted as I(S(L,. ., r)). An I/O sum is effective if it has a large CUtPUt values of the new map are in the interval [0, 256]. The
average-key imbalance and is guaranteed if its average-key fcONd step is discretization of the newly derived map.
balance is one. The functionf is not one-to-one mapping. There are dis-
Assuming that the attacker has accesd/tplaintext/cipher- tinct elements of the s¢D, 1,...., 255} that are mapped to the

text pairs with uniformly randomly chosen plaintexts the basﬁ,alme V‘T’“”Ie- Trms, tget_)garltzjlnahty of tlhe fﬁt of all EOSS']PIel outputt
procedure is as follows. values is less than . For example, the number of elements

) ) ) that are mapped to the value 255 is 17. This property implies

1) Find an effective I/0 sung (- _1); ~that, when the input values are uniformly distributed, the output
2) Setup a counter(z,] for each possible last-round k&Y  \5yes are not uniformly distributed, i.e., the functifirispoils”

and initialize all counters to zero. the input uniform distribution. Actually, when all input values
3) Choose a plaintext pa{Bo, B,). ) are equally likely, the probability of having output value 255 is
4) For each possible valug, evaluateB,; = E;"(B;) 17/256. This is significantly greater than 1/256. We used this

and if go(Bo) @ g,—1(B-—1) = 0, incremenic[Z.] by 1. fact to amount a known plaintext attack. The complexity of the
5) Repeat Steps 3 and 4 for &ll available plaintext/cipher- attack was not greater tha3°, which is far below the com-

text pairs. ) o ) plexity of the brute force attack.
6) Output all keys:, that maximize/c[Z,] — (N/2)| ascan- ~ The problem can be solved by using maps that produce
didates for the key actually used in the lastround.  one-to-one mappings after discretization or replacing the

As in the differential cryptanalysis attack, the first step inliscretization procedure. Examples of both are given in the
this procedure is the most difficult one. The existence of an efubsections that follow.
fective I/O sum depends on the characteristics of the nonlinear
maps used in the cipher. The most commonly used charact®r-Algorithm Based on Exponential Function

istic, when talking about linear cryptanalysis, is the linear ap- | et us consider a function of the following form:
proximation probability £ P for short) and it is defined as

Flys) = {ayi mod 257, if g; < 256 (12)
LP; = ma <#{x€X|xoa:f(x)ob}—2"1>2 70 if 5; = 256
' = max — ~
a,b#0 -t wherey; = a¥ mod257,andy; = 21 G x2 ® ... Bx; D 2.

(8)  This function is derived from (10) by extending the output range
to the interval [0, 256] and discretizatianis chosen so that itis

wherea e b denotes the parity of bit-wise product@oéndb, X is  a natural number and a generator of the multiplicative group of
the set of all possible inputs att the number of its elements. nonzero elements of the Galois field of order 257. There are 128
The linear approximation probability is square of the maximalifferent values of:. In this case the map performs one-to-one
imbalance of the event: the parity of the input bits selected tyansformation.
the mask: is equal to the parity of the output bits selected by the We check the values of the differential approximation proba-
maskb. Decreasing thé P; yields to increasing the complexity bility D P; and the linear approximation probability”; for all
of the linear cryptanalysis attack. possible values af. The differential approximation probability
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is DP; = 1/2 for all o and it appears foAz = 128 in (5). TABLE |

The minimal value of the linear approximation probability is MT:PEUFSLIJIIJ\IS-!—IJSI’E\‘P];OEEETJSEBEFSZ%YBESIIEN S
LP; =0.118164. However, if we iterate the exponential func-

tion (12) two or three times, thebP < 22 andDP < 27
for all a. 0 1 2 3 4 5 6 7 8 9 a b ¢ d e f
60 c4 56 52 88 17 82 ac 28 96 4f 4a ff 20 b5 6a
92 8 bc a7 b2 9a ee 70 35 el 25 61 9d a4 9c 47
b7 7d 2f 24 ¢7 Te ¢5 8 77 14 8 cc fd 8a ef 36
76 2¢c 12 11 2a 29 a8 b8 22 84 ¢3 €9 e6 e2 15 57
e 3¢ 69 ce 05 d4 cd fa 30 8 dd 75 o a0 Oc 55
Of 41 f3 6f ea d2 a2 65 23 89 81 39 ed 93 ba 6b
a9 b0 1f f7 34 43 1b 08 04 fc Ob aa 73 94 eb 8e
¢2 d6 53 48 18 27 8 5b 5d d0 ec f4 f5 31 4b ab
4e 97 79 bb 13 b6 5e 8b 10 50 49 1d 6 99 00 68
3f 95 ad e7 e8 87 8 51 64 le d9 e5 5a da de f0
Of 46 fl 1c 71 e3 09 ab dc 9 bf 40 80 3b 45 02
a6 42 dl ed d7 fe 16 9 63 72 0 78 b4 67 26 03

3) Find the sefS of starting points that have unique image ¢ |91 54 07 90 38 21 62 3d d8 ca 7f bl 0a d5 44 al
Choose a subset that contains 256 elements gfand 0d c0 2 2 b9 59 6c 66 b3 74 32 bd df 58 6d 37
determine the seB of corresponding images. e|3 2d db 6e 9 la c6 06 5 a3 2b 19 7c fb 7b af

4) Assign new magnitudes, . .., 255 to the elementsofft  f|be 0e 8 5¢c 33 7a ¢l 4d cb 8 91 4c d3 ae 3e 98
according to their old magnitudes. Do the same with the
elements ofB. If the new magnitude of the starting point
in Ais¢ and the new magnitude of its imagejighen we

C. Algorithm Based oivth Iteration of the Logistic Map

In the previous example the discrete map was bijection due
the choice: to be a primitive element of the Galois field. In this
example the one-to-one map is determined using discretizat
procedure that is different from the one used in the first examp
The procedure is as follows.

1) Divide the phase space into+ 1 equal volume regions.
Assign the numbers, ..., n to the regions so that one
number is assigned to exactly one region. If a pointis i
the regioni we say that its magnitude is

2) Randomly choose one starting point from each region a
determine its image afte¥ iterations of a chaotic map.

= e e 2 - ]

[= I e T

block of plaintext. The number of rounds needed depends on the

say thatf (i) = j. The mapf is one-to-one. ) a : .
! : onlinear map used and the way it is involved in the cipher.
The finally constructed function depends on the way the mag' The encryption round can be represented by a weighted di-

nitudes are assigned in the first step, the chaotic map that is . . .
iterated, the number of iterations, and the starting points. B cted graplt; with set of vertice0, 1. ., 7} corresponding

. td the eight input bytes. If the output bytelepends on the input
changing any one we can change the funcfiokVe stress that, bytes, then the edgéi. j) is an element of the set of edges(@f

if the cardinality of the sef is less than 256, the Step 3 is im- ! ) . o
possible. The number of regions is chosen so that the aver | %Eénfpl:]tc%tr? a‘,{ﬁ?ts;.hifgﬁ#;??aﬂ?r !Llitg;]s;?\:vmsid
number of starting points that have unique image is slight unction/, Welg 96, j) is 1. IS€,

greater than 256, when the chaotic map used in Step 2 is L Swe|ght of.the edg@,j) s 0. We define the distanat (i, j)

logistic map. etweeq the mput' bytzeaqd the output byt@_aftern rounds as
Let us now assume that the chaotic map has uniformly di A \r,near?[(i:;rzg;l ggzjlble weight of the path with lengthetween

tributed ergodic invariant measure and the number of regions'i he encryptién cipher (2) has the minimal distance

Step 1 isw + 1. The probability that given image is an image of L
exa?:tly OnJer startingppoint is y 9 9 9 min; ; d,(¢,7) = n — 2, whenn > 1. Forn = 1, the minimal

distance is 0. We choose the number of rounds te &e20. If
"1 n 1" n 1" the attacker can unroll two rounds, the minimal distance would
Z n [HJF J = [H—JFJ —1/e be 16. Thus, the imbalance of any linear expression is not
i=1 greater tharl.P;® = 27%* and the linear cryptanalysis attack
whenn — oco. Thus for large values of n the portion of image$s impossible. Further, the encryption cipher is a Markov cipher
that correspond to exactly one starting point js. If we want [36] and every input bit will “pass through” at least 16 nonlinear
to construct a mag: {0,...,m — 1} — {0,...,m — 1} the transformations before affecting any output bit. Thus, we do not
number of regions should be S||ght|y greater thaa for |arge believe that differentials with hlgh prObab”lty exist. Statistical
values ofm. tests showed that aftér= 4 rounds the maximum probability
Table | shows a function constructed using the previously dB{Azx,;|Azoi, Azom = 0,m € {0,...,7},m # 4)is
scribed procedure. The numbering system used is hexadecimal.- 2~°. Therefore, this probability rapidly approaches its
The chaotic map, which was used in Step 2, is the logistic maffliform value2~®.
We chooseNV = 1000 andn = 767. The cardinality of the
setS is 259. The differential approximation probability of theP- Key Schedule
function f is 27> < DP; = 12/256 < 27* and the linear ~ The key schedule is the means by which the key bits are
approximation probability iLP; = 27%. turned into round keys that the cipher can use. The mapping
The encryption cipher (2) is a product encryption cipher, i.ehat performs each rounddepends on the value of the round
it achieves the desired confusion and diffusion through repeatibkeyz;. The length of the round subkeys is 64 bits and they
edly applying the encryption round transformation to the 64-hitre derived from the 128-bit kelf, in a procedure as follows.
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We denote the bytes of the ke by K; ;,7 =0,...,15. The LP < 275 andDP < 2% Thus, one may generalize the

key generation procedure is given with procedure for encryption in a way that the functipns key-
dependent. For example, one can use the first seven bits of the
Kipr1=Ki 14® fic1[Kic11,- - Kic1 j—1, k1] key byte to determine the value ofin (12) while the last bit
2 = RH(K;) (13) to determine how many times (two or three) the functjois
iterated.
wherei = 1,...,r, k=1,...,16, fo = co, K; 16 = K; 0 and We have extensively cryptanalyzed the class of ciphers de-
Ki1r = K;1. co, ..., c15 are 16 bytes of the constaatThe Scribed in Sections IV-B and IV-C using second or third it-

function RH assigns the 64-bit right half of the ke; to the eration of the exponential function (12) and= 20 rounds.
round subkey;. Conventional cryptanalysys allows an attacker to control both

The structure of the key generation procedure is similthe plaintext and the ciphertext inputs into the cipher. Since the

to the encryption structure (2). The only difference is thatructure of the key generation procedure is similar to the en-
the length of the block is 128 bits and the round subke yption structure (2), we allow the attacker to control also the
are equal to the constant The value of the constant isKeY schedule. This attack is known as related-key attack; our

45 £83 fd1e01a638099¢1d2 f74ae61d04;, and it is ran- ciphers seem to be resistant to such attacks. Therefore, we con-
jecture that there exists no more efficient attack to our ciphers
than brute force.
The ciphers we discuss here use blocks of length 64 bits.
We also consider 128-bit block ciphers based on chaotic maps.
A Feistel network is a method for transforming any functio®ur preliminary results (not reported here) indicate that these
(usually called theF' function) into a permutation. The fun-ciphers have also good cryptographic properties and therefore
damental building block of a Feistel network is tiiefunc- may be used as encryption transformations.
tion: a key-dependent mapping of an input string onto an outputOne of the goals of the design of the block encryption ci-
string. EachF function usually has two parts: linear and nonpher was its easy implementation in software and hardware. The
linear. Nonlinear part of thé” function is calledS-box: it is cipher and the key schedule use only byte operations that can
a table-driven nonlinear substitution operation. Most commdie implemented on various processors. These operations can be
linear functions used in the Fiestel networks are MDS matricéBplemented in hardware as well. The mam (2) can be real-
[37] and/or pseudo-Hadamard transformations (PHT) [20]. ixed with a byte-in byte-out look-up table. Finally we note that
maximum distance separable (MDS) code over afield is a line2utr ciphers can be used in all standard block-cipher chaining
mapping frome field elements td field elements, producing a modes, as one-way hash functions and pseudo-random number
composite vector of + b elements, with the property that thegenerators.
minimum number of nonzero elements in any non zero vector
is at least + 1. Another mapping used to increase the difficulty VI. CONCLUSION
fpr cryptanalysys is simplgoring the k_ey mate_nal pefore the In this paper we have proposed a class of block encryption
first round and after the last round (this technique is known as : . )
oo Ciphers based on chaos, using two well-known chaotic maps:
whitening [38]).
The ciphers we use here clearly belong to the class of Feisg
networks. The functiorf in (2) plays role of thet” function in
the Fiestel networks. However, the functighs (2) which are

c =
domly chosen.

V. USING CHAOS-BASED ENCRYPTION CIPHERS

éPonentiaI and logistic. We have shown that these maps pro-
tce ciphers that have acceptable values of differntial and linear
approximation probabilities. The ciphers use only byte opera-
: ; tions that can be easily implemented on various processors and
derived from chaotic maps, can also be used onl§ awxes, in hardware. As a result of extensive cryptanalysis we conjec-

nonlmear_parts of tha _funct|on. In th'.s p.aper we keep OUl ire that there exists no more efficient attack to our ciphers than
presentation as much simpler as possible; thus, for example, In

all examples we usg; = z; ®z2 @ ... x; @ z;. Instead, one btite force.
P % = S0P BT B2 ’ The ciphers we have studied in this paper belong to the class
can use, for example

of Feistel networks. An essential part of every Feistel network is
an S-box: table-driven nonlinear substitution operation. S-boxes
are created either randomly or algorithmically. Here we have

. . . roposed another way of creating S-boxes: by using chaotic
wh(:re &« 3 d_enotef _3-b|tfleft rotatlgnr; Ag[hOUQh roltatlon PE,: aps. It turns out that very simple chaotic maps and very simple
pfer orm_arrl]ce |mp§c |nkso tvr\]/are_arr: ardware Imtp err;ﬁn AUQRcretization procedure generate secure S-boxes, which is the
of an cipher, and makes the cipher nonsymmetric, the rOE?[Sposite to the case of randomly constructed S-boxes: they are
tion may Increase t[he.dn‘flculty for pryptanalyses. AnOth.ernIiker to be securé. Therefore, we suggest that maybe there
gxtle rés_lontsh (gene.rtilllgatlona[)osf ou(rj gar_;_efrs a{.e also possﬂﬂ%sts more deeper connection between cryptography and chaos
Inciuding those with finear an unctions. theory, yet to be discovered. This and other questions related to

.We havg found that for a given phaonc map and for a IV¥lhaos and cryptography will be a subject to our future studies.
discretization procedure, there exist more then one fungtion

with good cryptographic properties (low values of DP and LP). _
A | - hat th d hird i . 1For example, Khafre [38] uses S-boxes from the RAND tables [39] and it

hal examp.e, b m_ent'on that the secon O_rt Ir 'terat'or! Q% uinerable to differential cryptanalysis. Or, DES variants with random fixed
the exponential function (12) generate 128 ciphers, for whichboxes are very likely to be weak [40].

Yy = (11 < 3) P (r2 <K 3)...) Pz, Pz
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