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ABSTRACT

Recently potent combination antiviral therapies, which consist of reverse transcriptase inhibitor

(RTI) drugs and protease inhibitor (PI) drugs, can rapidly suppress HIV below the limit of

detection. Two phases of plasma viral decay after initiation of treatment were observed from

clinical studies. Some researchers have suggested that the viral decay rates may reflect the po-

tency (efficacy) of antiviral therapies. In this paper we model the effect of RTI drugs and PI

drugs as inhibition rates of cell infection and infectious virus production, respectively, based on

the biological mechanisms of these two different types of drugs. Through rigorous mathematical

derivation, we show that the two viral decay rates are monotone functions of the treatment

effects of these antiviral therapies. Approximation formulas for the relationships between viral

decay rates and treatment effects are constructed. Computer simulations show that the approx-

imation formulas approximate the true values very well. These formulas may be used to study

what factors really affect the viral decay rates. The results in this paper provide a theoretical

justification for using both viral decay rates for evaluation of treatment efficacy of antiviral

therapies.
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1. INTRODUCTION

Modeling the interaction of the human immunodeficiency virus (HIV) with its host cells

can be traced back to a decade ago [1, 2, 3, 4]. Most of these earlier models were developed

to explain biological phenomena observed from clinical studies, via computer simulations.

In the last four years, simplified version of these HIV dynamic models were directly applied

to clinical data and important biological parameters of HIV and its host cells were obtained

[5, 6, 7, 8]. This led to a new understanding of the pathogenesis of HIV infection. Recently

highly active antiretroviral therapies (HAART), which consist of reverse transcriptase

inhibitor (RTI) drugs and potent protease inhibitor (PI) drugs, can rapidly suppress HIV

in plasma below detectable levels. Two phases of plasma viral decay rates were observed

from clinical studies [8, 9, 10]. Some researchers suggested that the viral decay rates

may reflect the potency (efficacy) of antiviral therapies [11, 12, 13]. Although Essunger

et al. [11] showed that the first viral decay rate is directly related to treatment efficacy,

relationships between biphasic viral decay rates and treatment efficacies in two infected

cell compartments have not been studied in detail.

In this paper we intend to study the effect of potency (efficacy) of antiviral therapies on

biphasic viral decays by modeling viral dynamics. In Section 2, we describe a basic viral

dynamic model and a model with antiviral treatment. We study the relationships between

viral decay rates and treatment effects in Section 3. Section 4 gives some discussions on

evaluation of treatment efficacy using viral decay rates. We summarize our conclusions

and provide further discussions in Section 5. Some technical proofs are deferred to the

appendices.

2. VIRAL DYNAMIC MODELS

Perelson et al. [8] have modeled two phases of plasma viral decay assuming that there

are two major HIV-infected cell compartments: productively infected cells and long-lived
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infected cells. Other virus compartments such as latently infected cells may also exist, but

these compartments cannot be identified from plasma viral load measurements [8] and we

will not consider them in our model. The following variables are considered in our model:

(1) uninfected target cells, such as T cells and macrophages; (2) productively infected

cells, infected cells which are actively producing virus; (3) long-lived infected cells, such

as macrophages, that are chronically infected and long-lived; (4) infectious virus, virus

that are functional and capable of infecting target cells; (5) noninfectious virus, virus that

are dysfunctional and cannot infect target cells. We denote the concentration of these

cells and virus by T, T1, T2, VI, and VNI , respectively. The basic viral dynamic model

which is modified from Perelson et al. [7, 8] is described as follows.

Infectious HIV virions (VI) may infect target cells (T ) and turn them into infected

cells at a rate of kTVI. Among these infected cells, we assume α1 to be the proportion

of productively infected cells (T1) and α2 to be the proportion of long-lived infected cells

(T2). The infected cells, T1 and T2, may die at rates δ1 and δ2 after producing an average

of N1 and N2 virions per cell during their lifetimes, respectively. Due to replication errors,

the majority of virions produced from infected cells are dysfunctional (noninfectious) and

can not infect target cells [14]. We denote η0 as the proportion of noninfectious virus

in the total virus pool before the intervention of antiviral drugs, and denote c as the

clearance rates of free virions. The basic viral dynamic model before treatment can be

written as follows:

d
dt

T1 = α1kTVI − δ1T1

d
dt

T2 = α2kTVI − δ2T2

d
dt

VI = (1 − η0)(N1δ1T1 + N2δ2T2) − cVI

d
dt

VNI = η0(N1δ1T1 + N2δ2T2) − cVNI .

(1)

Notice that we may separate the target cells T into T cells and long-lived cells (such as

macrophages) as Perelson et al. [8] did. This separation will produce equivalent math-

ematical results, but the biological difference should be noted. The second infected cell
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compartment (T2) may also be considered as the latently infected cells and may be mod-

eled as in Perelson et al. [8]. But these alternatives will lead to similar mathematical

results. Some experimental evidence shows that infected cells may produce virus continu-

ously during their lifetime. In this case, the viral production rate, N1δ1T1 or N2δ2T2, may

be replaced by a constant. However, this replacement will not change our mathematical

results.

Place of Figure 1

The process of HIV replication and the intervention of antiviral drugs are shown in

Figure 1. RTI drugs (including non-nucleoside RTI drugs and nucleoside analogues) are

designed to prevent the conversion of HIV RNA to DNA in the early stage of HIV replica-

tion. Thus RTI drugs block the conversion (infection) of uninfected cells to actual infected

cells (cells that can produce virus). We assume that RTI drugs reduce the infection rates

in the two infected cell compartments, T1 and T2, by factors (1− γ1) and (1− γ2), respec-

tively. PI drugs are designed to intervene in the last stage of the virus replication cycle

to prevent HIV from being properly assembled, and thus cause the newly produced virus

to be noninfectious. Hence the effect of PI drugs is to reduce the proportion of infectious

virus (VI) in the newly produced virus. We assume that PI drugs reduce the proportions

of infectious virus produced from productively infected cells (T1) and long-lived infected

cells (T2) by factors (1−η1) and (1−η2), respectively. Thus, the viral dynamic model after
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initiation of antiviral therapy which consists of both RTI and PI drugs can be written as

d
dt

T1 = (1 − γ1)α1kTVI − δ1T1

d
dt

T2 = (1 − γ2)α2kTVI − δ2T2

d
dt

VI = (1 − η0)[(1 − η2)N2δ2T2 + (1 − η1)N1δ1T1] − cVI

d
dt

VNI = (η0 + (1 − η0)η2)N2δ2T2 + (η0 + (1 − η0)η1)N1δ1T1 − cVNI .

(2)

The overall treatment effects in the two infected cell compartments, T1 and T2, can

then be defined as e1 = 1 − (1 − γ1)(1 − η1) and e2 = 1 − (1 − γ2)(1 − η2), respectively.

If e1 = 0, the treatment has no effect for blocking virus replication from productively in-

fected cells; if e1 = 1, the treatment completely blocks virus replication from productively

infected cells. Similarly e2 = 0 means no effect and e2 = 1 means complete inhibition of

virus replication from the second compartment, long-lived infected cells. Also notice that

ei is a monotone increasing function of ηi and γi (i = 1, 2). As mentioned above, RTI

and PI drugs intervene the viral replication at different stages. Factor, (1 − γi) can be

interpreted as the with/without RTI-drug treatment ratio of cell infection and (1 − ηi)

as the with/without PI-drug treatment ratio of viral production from each infected cell.

Using the multiplication rule, factor (1 − γ1)(1 − η1) will be the with/without RTI-PI-

combination treatment ratio of total viral production in the whole viral replication cycle.

Thus, e1 = 1 − (1 − γ1)(1 − η1) and e2 = 1 − (1 − γ2)(1 − η2) will be the overall inhi-

bition rates of viral production due to RTI-PI-combination treatments in two different

infected cell compartments. If a treatment is potent in the first compartment (produc-

tively infected cells), one may conceive that it is also potent in the second compartment

(long-lived/latently infected cells). This means that γ1, η1, and e1 may be positively cor-

related with γ2, η2, and e2 in general. However, we cannot eliminate the possibility that

some drugs may work well in the first compartment, but not in the second compartment,

and vice versa.

If we assume the concentration of target cells (T ) to be constant as in Perelson et al.
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[7, 8], we can solve the above system of differential equations and obtain the following

closed-form solution for total virus (see Appendix A):

V (t) = VI(t) + VNI(t) = P0e
−d0t + Pce

−ct + P1e
−d1t + P2e

−d2t. (3)

In fact, the assumption of constant T is reasonable in many situations, and simulation

studies show that the slight recovery of target T cells during treatment has little effect on

our results [15].

As noticed by Perelson et al. [7] and Herz et al. [16], there exists a small ‘shoulder’ in

plasma virus during the first few days of potent antiviral treatment. This small ‘shoulder’

may be caused by two reasons: (i) pharmacological and intracellular delay; and (ii) the

virus released from previous infection cycles which is indicated by terms P0e
−d0t+Pce

−ct in

equation (3). The small ‘shoulder’ will disappear after 2 or 3 days of treatment [7, 15, 16].

Then the viral load follows a rapid exponential decay which is dominated by the term

P1e
−d1t. The decay becomes slower after several weeks which is mainly due to the term

P2e
−d2t in the model (3). In practice, viral load may not be measured frequently during

the ‘shoulder’ in most AIDS clinical trials. The viral load data after the ‘shoulder’ can

be nicely approximated by a bi-exponential model [15]

V (t) = P1e
−d1t + P2e

−d2t, t ≥ tc, (4)

where tc is the time that the ‘shoulder’ disappears (usually 2 or 3 days). This bi-

exponential model describes the observed biphasic decay of plasma virus very well [8, 15].

Also, in the next section we show (Figure 2) that this bi-exponential model approximates

the complete model (3) almost perfectly in our simulation studies.
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3. RELATIONSHIPS BETWEEN VIRAL DECAY RATES AND TREATMENT

EFFECTS

3.1 VIRAL DECAY RATES AS MONOTONE FUNCTIONS OF TREATMENT EFFECTS

The parameters in the bi-exponential model (4) are complicated nonlinear functions

of the biological parameters in (2) (see Appendix A). To yield simpler biological inter-

pretation of the parameters, d1, d2, P1 and P2 in (4), the treatment effects were often

considered as perfect, i.e., e1 = e2 = 1, and the pretreatment steady-state assumption

was made [7, 8]. In this case, d1 = δ1 and d2 = δ2 are respectively the clearance rates

of the first compartment T1 (productively infected cells) and the second compartment T2

(long-lived infected cells), and P1 and P2 can also be represented by simple functions of

biological parameters in (2) [7, 8, 15].

However, the perfect treatment assumption is not realistic in practice. It is impossible

to completely shut down viral replication after initiation of antiviral therapy. In this

situation, the two decay rates, d1 and d2, are no longer exactly δ1 and δ2, the clearance

rates of T1 and T2. The following theorem gives the key relationships between the viral

decay rates and the treatment effects.

Theorem 1 In the solution (3), assuming δ2 < δ1 < c, we have the following results:

(a) For all 0 ≤ e1, e2 < 1, the three apparent viral decay rates satisfy the following

relationship

d2 < δ2 < d1 < δ1 < c < d0

(b) For any fixed e2, d1 and d2 are monotone increasing functions of e1 while d0 is a

monotone decreasing function of e1. For any fixed e1, d2 is a monotone increasing function

of e2 while d0 and d1 are monotone decreasing function of e2.

Proof: see Appendix B.
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3.2 APPROXIMATION FORMULAS

Theorem 1 establishes the monotone relationships between the viral decay rates and

the treatment efficacies. However, simple analytic relationships are needed to study

how viral decay rates relate to treatment effects and other factors. Based on the fact,

c >> d1 >> d2, observed from clinical studies [7, 8, 17], we can approximate d1 and d2 by

ignoring small terms with order O( δ1
c
) and O( δ2

δ1
). To obtain our approximation formulas

for d1 and d2, first we need to establish that the d0 and d1 are of the same order as c and

δ1 respectively. We sketch the derivation of the approximation formulas as follows (some

technical parts are included in Appendices).

(i) d0 ≈ c.

Denote r1 = (1− η0)N1α1kT and r2 = (1− η0)N2α2kT as viral production rates from

the two infected cell compartments, T1 and T2, respectively (Appendix A). If we assume

that the system is in a quasi-steady state before treatment, then we have r1 + r2 = c,

i.e., total viral production equals total viral clearance. Notations d0(e1, e2), d1(e1, e2) and

d2(e1, e2) are used to indicate that the parameters d0, d1 and d2 are functions of treat-

ment efficacies, e1 and e2. If e1 = e2 = 0, we can easily show that d2(0, 0) = 0 and

d0(0, 0) < c + δ1 by directly calculating the eigenvalues of matrix A in Appendix A. The-

orem 1 then implies that 0 = d2(0, 0) ≤ d2 < δ2 < d1 < δ1 < c < d0 ≤ d0(0, 0) < c + δ1.

The result, c ≤ d0 < c+δ1 indicates that d0 ≈ c by ignoring the small term of order O( δ1
c
).

(ii) d1 is of the same order as δ1.

Since d2 < δ2, we have d1(e1,e2)−δ2
d1(e1,e2)−d2(e1,e2)

≤ 1. Using this fact and the results from (10)

and (14) in Appendix B, the d1 is bounded from below by

δ1 + δ1r1

∫ 1

x=e1

1

−c
dx = δ1 − δ1

r1

c
(1 − e1). (5)

Also from the quasi-steady state condition, r1 + r2 = c, we have r1 < c. Hence we obtain

8



d1 > δ1 − δ1(1 − e1) = e1δ1. Since e1δ1 < d1 < δ1, the d1 is of the same order as δ1 if e1 is

not too small.

(iii) Approximation of d1 and d2.

From the result of above (ii) and δ2 > d2 (Theorem 1), we have d1−δ2
d1−d2

= 1 + O( δ2
δ1

).

Then we can see that the differences between d1 and its lower bound (5) are small terms

of order O( δ2
δ1

) and O( δ1
c
). If we ignore these small terms, we obtain,

d1 = δ1 − δ1
r1

c
(1 − e1).

Similarly, from equation (21) in Appendix C and by ignoring the small terms of order

O( δ2
δ1

) and O( δ1
c
), we can obtain,

d2 = δ2 + δ2r2

∫ 1
x=e2

1
−c

δ1
δ1−δ1

r1

c
(1−e1)

dx

= δ2 − δ2
r2

c
1−e2

1−
r1

c
(1−e1)

.

(iv) Further simplification.

Clinical studies [8, 17] show that productively infected cells (T1) dominate long-lived

infected cells (T2) in producing virus. The production ratio of T2 versus T1, r2/r1, was

estimated to be less than 10% [8, 17]. Hence by ignoring a term of order (r2/c)
2 < 1%,

the above formula for d2 can be further simplified to

d2 = δ2 − δ2
r2

c

1 − e2

e1
.

If we can ignore the small terms of order r2/c < 10%, the approximation formula of

d1 can be further simplified to

d1 = e1δ1. (6)

This is the result obtained by Essunger, et al. [11].
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In summary, we have

d1 = [1 − r1

c
(1 − e1)]δ1, (7)

d2 = (1 − r2

c

1 − e2

e1
)δ2, (8)

where r1 = (1− η0)N1α1kT and r2 = (1− η0)N2α2kT are the viral production rates from

compartments T1 and T2 before antiviral treatment. From these results, we can see that

the two viral decay rates are functions of the treatment effects, e1 and e2; the clearance

rates of the two compartments, δ1 and δ2; and the initial viral production/clearance ratio

of the two compartments, r1/c and r2/c.

3.3 SIMULATION STUDIES ON THE APPROXIMATION MODEL AND FORMULAS

Approximation formulas (7) and (8) are obtained by ignoring small terms in calculating

the eigenvalues of the coefficient matrix of the viral dynamic model. The approximation

model (4) is obtained by ignoring the earlier shoulder of the viral load trajectory after

treatment. To evaluate these approximation formulas, we conducted simulation studies

using the parameters listed in Table 1. These parameter values were obtained from

published literature or estimated from clinical data. When we varied the parameters in

Table 1 in some reasonable ranges, the simulation results were quite similar.

Place of Table 1

First we numerically solved the differential equations (2) with the parameters in Ta-

ble 1 and obtained total viral load V (t) = VI(t) + VNI(t), t = t1, t2, . . . , tn. To see how

good the approximation of bi-exponential model (4) is, we fitted the data of V (t) from

numerical solutions of (2) for t ≥ 2 days to the bi-exponential model using the nonlinear

10



least squares method [15]. We plot the results for two simulation cases in Figure 2. The

first is a potent treatment case (γ1 = 0.5, γ2 = 0.3, η1 = 0.8, η2 = 0.6, e1 = 0.9, e2 = 0.72);

another case is a weak treatment (γ1 = γ2 = η1 = η2 = 0.1, e1 = e2 = 0.19). The cross (+)

in Figure 2 is the simulated result from Model (4). We can see that the approximation of

model (4), even with estimation error, is almost perfect in both simulation cases.

Place of Figure 2

To evaluate the approximation formulas (7) and (8), we first calculated d1 and d2

using formulas (7) and (8) with the true parameter values in above two cases. For the

stronger treatment case (e1 = 0.9, e2 = 0.72), the approximation error is extremely small

(1.5% for d1 and 0.0% for d2). Even for the weak treatment case (e1 = e2 = 0.19), the

approximation error is still reasonable (2.3% for d1 and 11.1% for d2). We also plugged

these approximate values of d1 and d2 in the bi-exponential model (4) to estimate total

viral load V (t) (parameters P1 and P2 were taken to be the same as estimated above).

The estimated V (t) is also plotted in Figure 2 (indicated by ◦). The approximation is

fairly decent. To investigate the behavior of the approximation formulas (7) and (8)

for different combinations of e1 and e2, we obtained the true values of d1 and d2 by

calculating the eigenvalues of matrix A in Appendix A numerically and the approximate

values of d1 and d2 from formulas (7) and (8) for a large range of e1 and e2 combinations.

For comparisons, the true values of d1 and d2 and the estimates of d1 and d2 from our

approximation formulas are plotted in Figure 3. We can see that the approximation of d1

is pretty good within our simulation ranges of e1 and e2 (the error is less than 10%). The

approximation of d2 is also reasonable except for some very weak treatment cases (small e1

cases). We also notice that, the stronger the treatment is, the better the approximation.
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This is not surprising, since our approximation formulas are obtained by ignoring the

small terms when the treatment is strong.

Place of Figure 3

4. EVALUATION OF TREATMENT EFFICACY USING VIRAL DECAY RATES

The results in Section 3 provide a theoretical justification for using both viral decay

rates to evaluate efficacy of antiviral therapies. If a treatment (say A) is more potent in

blocking virus replication compared to Treatment B, Theorem 1 shows that both phases

of viral decays should be faster in patients with Treatment A. Thus, antiviral potency of

treatments can be assessed by comparing their viral decay rates.

The approximation formulas (7) and (8) in Section 3.2 provide analytic relationships

between treatment effects and viral decay rates. These results illustrate more clearly how

the change in treatment efficacies lead to changes in the viral decay rates. As we argued

previously [8, 17], r1

c
≥ 0.9 and r2

c
≤ 0.1. We take r1

c
= 0.9, r2

c
= 0.1, δ1 = 0.44 and

δ2 = 0.032 as an example[17] and depict the the relationships between the two viral decay

rates and treatment effects in Figure 4.

Place of Figure 4

The first viral decay rate, d1, is a linear function of treatment efficacy (e1) in the

productively infected cell compartment (Figure 4a). If the treatment is assumed perfect
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in the productively infected cell compartment, i.e., e1 = 1, we can see, from the formula

(7), that the first viral decay rate is exactly the clearance rate of productively infected cells,

i.e., d1 = δ1. As mentioned above, if we assume that r1

c
≈ 1, then d1 ≈ e1δ1. This result

was used to define a relative efficacy (RE) of two treatments (say A and B) by Essunger

et al. [11], i.e., the RE of treatment A versus B is defined as RE = dA
1 /dB

1 = eA
1 /eB

1 . We

can see that this definition only considered the productively infected cell compartment.

Formula (8) shows that the second decay rate, d2, can be affected by treatment effects

in both compartments, e1 and e2. A nonlinear relationship between d2 and e1 is shown in

Figure 4b. But the strong nonlinearity occurs only in the region of e1 < 0.3, which may

be unlikely for the potent cocktail anti-HIV therapies. From Figure 4c, we can see a linear

relationship between d2 and e2. We notice that, from Figure 4, if the treatment effects

are strong enough, say, e1 > 0.5 and e2 > 0.5, then the treatment has little effect on the

second viral decay rate d2 (less than (100 × r2

c
)% ≤ 10%). But for weak treatments, the

effect of e1 and e2 on d2 is significant. Thus the second viral decay rate d2 does provide

information to distinguish between potent and weak treatments.

Based on the results from previous sections, we propose evaluating the potency (effi-

cacy) of two antiviral treatments by comparing the viral decay rates between two random-

ized treatment arms. In clinical studies, randomization will ensure that the parameters

r1/c, r2/c, δ1 and δ2 are homogeneous for two treatment arms. In this case, any difference

found in viral decay rates between two arms is due to treatment effects. Thus, the larger

the viral decay rates are, the more potent the antiviral treatment is. To compare the

viral decay rates, some statistical methods need to be further explored. Some preliminary

results on the statistical issues are reported in Ding and Wu [18]. Both simulation results

and real clinical data analysis showed that the viral decay rates, d1 and d2, are appropriate

to be used for assessing the potency of antiviral therapies in clinical applications [18].
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5. CONCLUSIONS AND DISCUSSIONS

We have shown that the two viral decay rates of plasma virus during the early stage

of antiviral treatment are directly related to the treatment potency for inhibiting virus

replication in vivo. We propose evaluating the antiviral efficacy of treatments using viral

decay rates in the biphasic HIV dynamic model, particularly for Phase I/II clinical studies

where it is very important to assess antiviral activities of a new therapy in a timely manner.

We also notice that only treatment effect in productively infected cell compartment (e1)

is related to the first phase decay rate (d1). However, treatment effects (e1 and e2) in

both compartments considered in this paper are related to the second phase decay rate

(d2). Thus, the second phase decay rate may be more important to long-term treatment

success [19]. However, since current antiviral therapies are so potent as to suppress viral

load below detection limit of assays very rapidly, it is very difficult to estimate the second

phase decay rate unless more sensitive viral load assays are available and more frequent

measurements during the second phase are taken [19].

In this paper, we considered that latently infected cell compartment was similar to

that of long-lived infected cell compartment. We did not distinguish them in our models.

However, if we model the activation of latent cells into productively infected cells which

is similar to that in Perelson et al. [8], the results are quite similar to the models used in

this paper (data not shown). In this paper, we assumed that the treatment effects were

constants over the treatment time. However, this may not be true in the real world. In

fact, the treatment effects may vary as the concentration of antiviral drugs varies during

dose intervals. The constant treatment effects in our model can be treated as average

effects. Also in practice, patients’ viral load may rebound due to noncompliance and

drug resistance. In this case, it will be difficult to estimate the biphasic viral decays in

plasma virus. Mathematical and statistical methods need to be developed to deal with

this situation. Other virologic and clinical endpoints are also important to evaluate the
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long-term effect of antiviral therapies against drug resistance and noncompliance.
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APPENDIX A: SOLUTION TO VIRAL DYNAMIC MODELS

Model (2) is a system of linear differential equations. Therefore the solution is clearly

of the form (3), where parameters −c,−d0,−d1 and −d2 (d0 ≥ d1 ≥ d2) are eigenvalues

of the coefficients matrix of differential equation system (2):

A =




−δ1 0 (1 − γ1)α1kT 0

0 −δ2 (1 − γ2)α2kT 0

(1 − η1)(1 − η0)N1δ1 (1 − η2)(1 − η0)N2δ2 −c 0

(η0 + (1 − η0)η1)N1δ1 (η0 + (1 − η0)η2)N2δ2 0 −c




.

Clearly, −c is an eigenvalue of A. Since −c is also the only nonzero element in the last

column of A, the other three eigenvalues −d0,−d1 and −d2 are also eigenvalues of the

submatrix

Ã =




−δ1 0 (1 − γ1)α1kT

0 −δ2 (1 − γ2)α2kT

(1 − η1)(1 − η0)N1δ1 (1 − η2)(1 − η0)N2δ2 −c




.
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Direct calculation shows that

|Ã − λI|

= −(δ1 + λ)[(δ2 + λ)(c + λ) − (1 − η2)(1 − η0)N2δ2(1 − γ2)α2kT ]

+(1 − η1)(1 − η0)N1δ1(1 − γ1)α1kT (δ2 + λ)

= −(δ1 + λ)[(δ2 + λ)(c + λ) − (1 − e2)r2δ2]

+(1 − e1)r1δ1(δ2 + λ)

= |A − λI|,

where

A =




−δ1 0 (1 − e1)r1

0 −δ2 (1 − e2)r2

δ1 δ2 −c




, (9)

and r1 = (1 − η0)N1α1kT , r2 = (1 − η0)N2α2kT are the pretreatment viral production

rates through compartments T1 and T2. Thus, −d0,−d1 and −d2 are also the eigenvalues

of matrix A, which means that they are functions of δ1, δ2, c, r1 , r2, e1 and e2.

APPENDIX B: PROOF OF THEOREM 1

Here we fix δ1, δ2, c, r1 and r2 and consider the effects of e1 and e2 on the viral decay rates

d1 and d2. Denote d1(e1, e2) and d2(e1, e2) as the viral decay rates, which are functions of

e1 and e2.

Notice that from direct calculation of eigenvalues of A in Appendix A,

d0(1, e2) =
(δ2+c)+

√
(δ2−c)2+4(1−e2)r2δ2

2

d1(1, e2) = δ1

d2(1, e2) =
(δ2+c)−

√
(δ2−c)2+4(1−e2)r2δ2

2
.

(10)

We are going to prove Theorem 1 using this fact and the expressions of partial derivatives

of d0, d1 and d2.

By definition, d0(e1, e2), d1(e1, e2) and d2(e1, e2) are solutions of the equation |A+xI| =

16



0, and

|A + xI| = [x − d0(e1, e2)][x − d1(e1, e2)][x − d2(e1, e2)].

On the other hand,

|A + xI| =

∣∣∣∣∣∣∣∣∣∣∣∣

x − δ1 0 (1 − e1)r1

0 x − δ2 (1 − e2)r2

δ1 δ2 x − c

∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

x − δ1 0 0

0 x − δ2 (1 − e2)r2

δ1 δ2 x − c

∣∣∣∣∣∣∣∣∣∣∣∣

− (1 − e1)r1δ1(x − δ2)

= [x − d0(1, e2)][x − d1(1, e2)][x − d2(1, e2)] − (1 − e1)r1δ1(x − δ2).

Combine the above two formulae, we have

[x − d0(e1, e2)][x − d1(e1, e2)][x − d2(e1, e2)]

= [x − d0(1, e2)][x − d1(1, e2)][x − d2(1, e2)] − (1 − e1)r1δ1(x − δ2).
(11)

Differentiating both sides of (11) with respect to e1 at points x = d0(e1, e2), x =

d1(e1, e2), x = d2(e1, e2), respectively, we have

− ∂
∂e1

d0(e1, e2)[d0(e1, e2) − d1(e1, e2)][d0(e1, e2) − d2(e1, e2)] = r1δ1(d0(e1, e2) − δ2),

− ∂
∂e1

d1(e1, e2)[d1(e1, e2) − d0(e1, e2)][d1(e1, e2) − d2(e1, e2)] = r1δ1(d1(e2, e1) − δ2),

− ∂
∂e1

d2(e1, e2)[d2(e1, e2) − d0(e1, e2)][d2(e1, e2) − d1(e1, e2)] = r1δ1(d2(e1, e2) − δ2).

(12)

Or equivalently

∂
∂e1

d0(e1, e2) = −r1δ1(d0(e1, e2) − δ2)/{[d0(e1, e2) − d1(e1, e2)][d0(e1, e2) − d2(e1, e2)]},
∂

∂e1

d1(e1, e2) = −r1δ1(d1(e1, e2) − δ2)/{[d1(e1, e2) − d0(e1, e2)][d1(e1, e2) − d2(e1, e2)]},
∂

∂e1

d2(e1, e2) = −r1δ1(d2(e1, e2) − δ2)/{[d2(e1, e2) − d0(e1, e2)][d2(e1, e2) − d1(e1, e2)]}.
(13)
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Therefore

d0(e1, e2) = d0(1, e2) + r1δ1

∫ 1
x=e1

(d0(x,e2)−δ2)
{[d0(x,e2)−d1(x,e2)][d0(x,e2)−d2(x,e2)]

dx

d1(e1, e2) = d1(1, e2) + r1δ1

∫ 1
x=e1

(d1(x,e2)−δ2)
[d1(x,e2)−d0(x,e2)][d1(x,e2)−d2(x,e2)]

dx

d2(e1, e2) = d2(1, e2) + r1δ1

∫ 1
x=e1

(d2(x,e2)−δ2)
[d2(x,e2)−d0(x,e2)][d2(x,e2)−d1(x,e2)]

dx

(14)

For any fixed 0 ≤ e2 < 1, we have that d2(1, e2) < δ2 < d1(1, e2) = δ1 < c <

d0(1, e2) from the result (10). Combining with the second formula in (14), this implies

that ∂
∂e1

d1(1, e2) > 0. Therefore d1(e1, e2) < δ1 in a small neighborhood of e1 = 1. Because

d0, d1 and d2 are continuous functions in e1 and e2, the conclusion (a) in Theorem 1,

d2 < δ2 < d1 < δ1 < c < d0, is true at least in a small neighborhood of e1 = 1.

If the conclusion (a) in Theorem 1 does not hold for all 0 ≤ e1, e2 < 1, then (14) implies

that there exist values of (e10, e20) such that d1(e10, e20) = δ2 > d2(e10, e20). (Otherwise,

for each fixed e2, as e1 decreases from 1 to 0, d0 increases, d2 decreases, and d1 decreases

but never reaches δ2, which means that (a) holds for all e1, e2.) We shall show that this

leads to contradictions by considering the higher order partial derivatives of the decay

rates with respect to e1 at (e1, e2) = (e10, e20).

Notice that if we differentiate both sides of (11) more than twice, the right hand side

will be equal to zero. The left hand side can be simplified when d1(e10, e20) = δ2. Since

d1(e10, e20) = δ2 > d2(e10, e20), (13) implies that ∂
∂e1

d1(e10, e20) = 0. By induction, the left

side of (11) being differentiated with respect to e1 for k times equals

− ∂k

∂ek
1

d1(e1, e2)[d1(e1, e2) − d0(e1, e2)][d1(e1, e2) − d2(e1, e2)],

and hence ∂k

∂ek

1

d1(e1, e2) = 0. However, ∂k

∂ek

1

d1(e1, e2) = 0, k = 1, 2, ... implies that d1(e1, e20) =

δ2 for all e1, which contradicts (10).

Now we see that (a) must hold for all 0 ≤ e1, e2 < 1.

Combine result (a) with formulas (13), we have

∂

∂e1
d0(e1, e2) < 0

∂

∂e1
d1(e1, e2) > 0

∂

∂e1
d2(e1, e2) > 0. (15)
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Therefore the result in (b) holds for fixed e2.

For fixed e1, similar to (11)

[x − d0(e1, e2)][x − d1(e1, e2)][x − d2(e1, e2)]

= [x − d0(e1, 1)][x − d1(e1, 1)][x − d2(e1, 1)] − (1 − e2)r2δ2(x − δ1).
(16)

Differentiating both sides of (16) with respect to e2, we yields formulas similar to (13),

∂
∂e2

d0(e1, e2) = −r2δ2(d0(e1, e2) − δ1)/{[d0(e1, e2) − d1(e1, e2)][d0(e1, e2) − d2(e1, e2)]},
∂

∂e2

d1(e1, e2) = −r2δ2(d1(e1, e2) − δ1)/{[d1(e1, e2) − d0(e1, e2)][d1(e1, e2) − d2(e1, e2)]},
∂

∂e2

d2(e1, e2) = −r2δ2(d2(e1, e2) − δ1)/{[d2(e1, e2) − d0(e1, e2)][d2(e1, e2) − d1(e1, e2)]}.
(17)

Combine this with result (a), , we have

∂

∂e2
d0(e1, e2) < 0

∂

∂e2
d1(e1, e2) < 0

∂

∂e2
d2(e1, e2) > 0, (18)

which implies the result in (b) for fixed e1.
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APPENDIX C: A FORMULA FOR APPROXIMATING d2

From the third formula in (17)

d2(e1, e2) = d2(e1, 1) + r2δ2

∫ 1

x=e2

(d2(e1, x) − δ1)

[d2(e1, x) − d0(e1, x)][d2(e1, x) − d1(e1, x)]
dx (19)

From direct calculation of the eigenvalues,

d2(e1, 1) = δ2. (20)

Therefore we can simplify (19) as

d2(e1, e2) = δ2 + r2δ2

∫ 1

x=e2

(d2(e1, x) − δ1)

[d2(e1, x) − d0(e1, x)][d2(e1, x) − d1(e1, x)]
dx. (21)

This result is used to obtain the approximation formula for d2 in Section 3.2.
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Table 1: Parameter Values Used in the Simulation Studies

Parameters Values Parameters Values

γ1 0.5, 0.1 η0 0.99

γ2 0.3, 0.1 η1 0.8

α1 0.9 η2 0.6

α2 0.1 e1 0.9, 0.19

δ1 0.44 e2 0.72, 0.19

δ2 0.032 T1(0) 3068

k 0.00015 T2(0) 4688

T 10000 VI(0) 1000

N1 = N2 200 VNI(0) 99000

c 3.0



Figure Legends

Figure 1. Process of HIV Replication and Intervention of Antiviral Drugs. Step 1, HIV

enters a target cell; Step 2, HIV uses an enzyme known as reverse transcriptase to convert

its RNA into DNA (RTI drugs work at this step); Step 3, HIV DNA enters the nucleus of

the target cell and inserts itself into the cell’s DNA. HIV DNA then instructs the cell to

make many copies of the original virus; Step 4, New virus are assembled (PI drugs work

at this step) and leave the cell, ready to infect other target cells. This completes a cycle

of virus replication.

Figure 2. Simulation results on approximation formulas. Solid line is numerical solution

to differential equations (2); the cross (+) is the approximation by bi-exponential model

(4); the circle (◦) is the approximation of formulas (7) and (8).

Figure 3. Comparison between true viral decay rates (solid line) versus the estimates from

our approximation formulas (dot line).

Figure 4. Relationships between viral decay rates and treatment effects.



Figure 1: Ding and Wu
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(a) Strong treatment effects: e1=0.9, e2=0.72
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(b) Weak treatment effects: e1=0.19, e2=0.19

Figure 2: Ding and Wu
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