
Improving Database Performance Using a
Flash-Based Write Cache

Yi Ou and Theo Härder

University of Kaiserslautern
{ou,haerder}@cs.uni-kl.de

Abstract. The use of flash memory as a write cache for a database
stored on magnetic disks has been so far largely ignored. In this paper,
we explore how flash memory can be efficiently used for this purpose and
how such a write cache can be implemented. We systematically study the
design alternatives, algorithms, and techniques for the flash-based write
cache and evaluate them using trace-driven simulations, covering the
most typical database workloads.

1 Introduction

Flash memory1 is popularly used in a variety of data storage devices, such as
compact flash cards, secure digital cards, flash SSDs, flash PCIe cards, etc.,
primarily due to its non-volatility and high density. Flash-based storage devices
(or flash devices for short) can be manufactured with some interesting properties,
such as low-power consumption, small form factor, shock resistance, etc. which
make them attractive to a large range of applications.

Due to the physical constraints of flash memory such as erase-before-program
and wear-out of memory cells [1], flash devices typically implement an additional
layer, the flash translation layer (FTL) [2], on top of the flash memory to support
typical host-to-device interfaces.

The function of magnetic disks (HDDs), the currently dominating mass stor-
age devices, relies on mechanical moving parts, which is one of the major threats
to the device reliability and typically the bottleneck of the entire system per-
formance. In contrast, flash devices do not contain mechanical moving parts.
Therefore, they allow much faster random access (up to two orders of magni-
tude) and much higher reliability.

Flash memory and flash devices have received a lot of attention from the
database research community due to the fact that existing database systems
are designed and optimized for HDDs that have quite different performance
characteristics than flash devices, e. g., flash SSDs [3].

To exploit the performance potential of flash memory and flash devices in
a database environment, flash-specific query processing techniques [4,5], index
structures [6,7,8], and buffer management algorithms [9,10,11] have been pro-
posed. Efficient use of flash devices for update propagation [12], logging and
recovery [13], and transaction processing [14] has also been studied.

1 We focus on the NAND type flash memory due to its high density and low cost.

Modern flash devices are much faster than HDDs, even for random write
workloads. At the same time, they are also much more expensive than HDDs
in terms of price per unit capacity. Some researchers realized that completely
replacing HDDs with flash devices is not a cost-effective solution [15], instead,
using flash as an intermediate tier between RAM-based memory and HDDs
[16,17] can bridge the access-time gap between the two tiers without introducing
much higher cost. However, it is doubtful whether such an abrupt architecture
change will be widely accepted in practice, given the trend in industry to keep
the whole working set in RAM for maximum performance [18,19].

1.1 Flash-Based Write Cache

In this paper, we study the use of flash as a write cache for databases based on
HDDs. The flash-based write cache (or the flash-based second-tier cache) is a
page cache layer between the RAM-based buffer pool (or first-tier cache) and
the database stored in HDDs (the third tier). The accesses to all three tiers are
via page-oriented interfaces, i. e., in units of database pages.

read write

Flash-based write cache

RAM buffer pool

read write

HDD

Lr

Lf

Ld

Fig. 1: Database storage system with flash-based write cache

The architecture of a three-tier database storage system are illustrated in
Figure 1. It is very similar to the three-layer architecture (3LA) introduced
in [17]. To be comparable, we adopt the notation of [17] to denote the RAM-
based buffer pool as Lr, the flash-based write cache as Lf , and the third tier
as Ld. Their capacities, in number of pages, are denoted as |Lr|, |Lf |, and |Ld|,
respectively. As opposed to [17], which assumes that

|Lr| ≤ |Lf | ≤ |Ld| (1)

we drop the constraint |Lr| ≤ |Lf | and assume that

|Lr| � |Ld| and |Lr| ∼ |Lf | (2)

Note, according to Equation 2, |Lr| > |Lf | is acceptable.
In practical systems, flash is used in different forms such as flash SSDs or flash

PCIe cards. In our system, there is no constraint on which a specific form should

be used. Instead, various forms of flash devices are abstracted into page-oriented
devices with flash performance characteristics. We consider four different costs
for device access in our system: the costs of flash read, flash sequential write,
flash random write, and the cost of disk access, denoted as Cfr, Cfw, Cfw̃, and
Cd, respectively.

In such a configuration, dirty2 pages evicted from the RAM buffer pool are
first written to the flash-based write cache and later propagated to HDDs. De-
pending on specific replacement policies, the number of disk writes can be sub-
stantially reduced in this way (see Section 3). Even as a write cache, Lf should
ideally keep the “warm” pages, i. e., pages that are not so hot to be kept in Lr,
but warmer than the remaining database pages. Hence, whenever a page request
can be satisfied from Lf , a cost benefit of Cd − Cfr can be obtained.

There are multiple benefits of using such a write cache: 1. Compared with a
volatile write cache, it provides higher reliability and protection against data loss
at power failure. 2. Due to the cost advantage of flash to RAM, the write cache
can be much larger and potentially more efficient than volatile and expensive
battery-backed RAM-based write cache (The same argument in favor of flash
applies to energy saving [17]). 3. A dedicated write cache improves the write
response time and offloads write workloads from HDDs and can asynchronously
propagate them to HDDs, i. e., the read performance can also benefit from the
write cache. 4. Potential page hits in the write cache reduce the number of
expensive disk writes.

Using flash for a write cache, the wear-out problem of flash cells seems to
be a concern. However, with proper wear-leveling techniques, the life time of
flash memory becomes quite acceptable. For example, an SLC flash memory
module typically has a write endurance of 100,000 program/erase cycles (Write
endurance of one million cycles has already been reported [20]). With perfect
wear-leveling, i. e., all flash pages are programmed and erased at equal frequency,
10 GB flash memory can have a life span of 27.4 years3 under a daily write
workload of 100 GB (factor 10 of its capacity).

1.2 Contribution

Our major contributions are:

– The use of flash devices as a write cache for a database stored on HDDs has
been so far largely ignored. To the best of our knowledge, our work is the
first one that considers this usage.

– We systematically study the algorithms and techniques for flash-based write
caches and evaluate them using trace-driven simulations, covering the most
typical database workloads.

2 In contrast to its use in transactional contexts, we denote modified pages as “dirty”,
as long as they are not written to disk.

3 100000× 10/(100× 365) = 27.4

1.3 Organization

The remainder of this paper is organized as follows: Section 2 discusses related
works. Section 3 presents and discusses the algorithms and techniques for the
flash-based write cache. Section 4 reports our empirical study. The concluding
remarks and future works are presented in Section 5.

2 Related Work

[16] is one of the pioneer works studying flash-aware multi-level caching. The
authors identified three page-flow schemes in a three-level caching hierarchy with
flash as the mid-tier and proposed flash-specific cost models for those schemes. In
contrast, contribution [17] presented a detailed three-tier storage system design
and performance analysis. In this study, the experiments have shown for certain
range of applications, by reducing the amount of energy-hungry RAM-based
memory and using a much larger amount of flash as the mid-tier, that system
performance and energy efficiency can be both improved at the same time.

Canim et al. [21] proposed a temperature-aware replacement policy for man-
aging the SSD-based mid-tier, based on the access statistics of disk regions (page
groups). In [22], the authors studied three design alternatives of an SSD-based
mid-tier, which differ mainly in the way how to deal with dirty pages evicted
from the first-tier, e. g., write through or write back.

As a general assumption, all these approaches use a flash-based mid-tier being
much larger than the first tier. As a consequence, both clean pages and dirty
pages are cached in the mid-tier. In contrast, we focus on a configuration where
the flash is used as a write cache, i. e., only dirty pages are cached in the mid-tier.
More important, the above mentioned works only consider the cost asymmetry
of reads and writes on flash, while the cost asymmetry between random and
sequential flash writes are ignored, which can significantly impact the system
performance, according to our experiments (see Section 4).

Using flash as a write cache has also been studied by Li et al. [23]. However,
in their configuration, the database is completely stored in Lf and no Ld is
considered, in contrast to the three-tier system (Figure 1) being studied by us.
Their basic idea is to exploit the performance advantage of focused writes over
random ones, by directing all the writes generated by Lr to a small logical flash
area and reordering the writes so that they can be written back to their actual
destinations on the same flash device, but in more efficient write patterns.

The authors of [24] and [25] have taken an approach that is somehow the
“opposite” of ours. They consider the use of HDDs as the write cache for flash
SSDs, based on the argument that the write performance of HDDs is better
than that of some flash SSDs and HDDs don’t have the wear-out problem. How-
ever, we believe that compared to HDDs, flash devices can be made much more
reliable and they have a much higher performance potential. In fact, even the
random write performance of many mid-range SSDs is now superior to that of
the enterprise HDDs.

3 Algorithms and Techniques

Two design decisions are critical to the performance of flash-based caches:

– When should a page be admitted into the cache? This is specified by cache-
admission strategies.

– How should admitted pages be written to the cache? This is specified by
cache-writing strategies.

3.1 Cache-Admission Strategies

Following the architecture shown in Figure 1, there are only two cases where
pages can be admitted into Lf : 1. Admit-On-Read (AOR), i. e., when the read
function of Lf is called; 2. Admit-On-Write (AOW), i. e., when the write function
of Lf is called.

The first case happens when a buffer fault occurs for page p in Lr. If p is not
found in Lf either, it will be fetched from Ld and forwarded to Lr. After that,
the newly fetched p can be admitted into Lf .

The second case happens when a dirty page p is evicted from Lr and the
write function on Lf is called to write p back. Conceptually, pages admitted
in this case are all dirty pages even if Lf is non-volatile, i. e., they need to be
propagated to Ld at the latest, when they are evicted from Lf .

The GLB algorithm discussed in [17] actually uses a third cache-admission
strategy, which we call Admit-On-Eviction (AOE), because it admits every page
(either clean or dirty) evicted from Lr into Lf . However, AOE is not considered
in this paper due to two problems: 1. It requires a write operation on Lf even
on a cache hit in Lf (because the page currently hit has to be exchanged with a
page from Lr); 2. It violates the transparency of Lf , because it requires for Lf

an extension of the interface shown in Figure 1.
Cache-admission strategies are orthogonal to replacement polices, although

classical second-tier cache algorithms such as LOC [17] and MQ [26] implicitly
use AOR. In contrast, AOW is the cache-admission strategy used by our flash-
based write cache.

3.2 Cache-Writing Strategies

According to the characteristics of flash memory, we consider two cache-writing
strategies: sequential cache write (SCW) and random cache write (RCW). With
SCW, pages are written to the flash media in a strictly sequential fashion (thus
each write has a cost of Cfw, in contrast to Cfw̃ in case of RCW), as illustrated
in Figure 2. If the flash-based cache has n pages and the most recently updated
cache slot is curr, then the next cache slot to be used is given by next = (curr+1)
mod n. If an earlier version of a newly admitted page p is already in Lf , it has to
be invalidated, i. e., if multiple versions of p exist in Lf , only the newest version
is valid.

Because updates to the flash media are sequential and the slots are updated
with equal frequency, SCW enjoys two advantages: write performance and wear
leveling without the need of an FTL. However, due to the constraint of strict
sequential writes, SCW does not allow much flexibility in the choice of replace-
ment victims, which is always predetermined by the next pointer. Even if the
page cached at the slot pointed to by next is a “warm” page, we have to write
it back to the disk in order to make room for the page to be cached.

0 1 2 3 4

nextcurr

Fig. 2: Sequential cache write. Illus-
trated is a flash-based write cache with
5 pages. The slot number is marked
at the bottom-left corner of the cache
slots. Slot 2 is just written, the next
slot to be used is slot 3.

LRUMRU

0 1 2 3 4

Fig. 3: Random cache write. In the
example, the cache slots are ordered
by their reference recency (as doubly
linked list maintained in volatile mem-
ory), which implies the (random) order
they are to be overwritten: 2, 0, 4, 1, 3

Random cache write (RCW), as the name suggests, allows writing to the
flash-based cache in a random fashion. If a earlier version of a newly admitted
page p is already in Lf , it has to be overwritten. The cost of writing to the cache
is higher than in the SCW case, and wear-leveling mechanisms such as FTL
become necessary. However, in contrast to SCW, RCW does not impose any
restriction on the replacement policy. For example, the cache slots can be ordered
by their reference recency (as shown in Figure 3) or frequency, upon which
the replacement decision can be made, as in the classical buffer management
algorithms.

3.3 Track-Aware Algorithms

Seeking is the most expensive mechanical movement made by a magnetic disk
– typically a few milliseconds for modern disks. If the information about which
page belongs to which track, i. e., the page-to-track mapping function t that
maps a logical page number a to its corresponding track number t(a), is known
to the flash-based write cache, it is possible to further improve the disk write
performance by minimizing the number of seeks. Assume that the mapping func-
tion t is given by t(a) = a/4, then pages 0, 1, 2, and 3 have the track number 0,
pages 4 to 7 have the track number 1, and so on. Cache algorithms making use
of this track information are called track-aware algorithms.

Virtual track is an in-memory data structure used by the track-aware algo-
rithms. It contains the pointers to the set of pages belonging to the same track.

5 17 8 2 6 11 18 9 0 16 3 1

01 4 2

LRUMRU

(a) By reference recency (LRU)

5 17 8 2 6 11 18 9 0 16 3 1

01 4 2

(b) Densest track first

Fig. 4: Virtual tracks (depicted as large rectangles with track number in the
bottom-left corner) ordered by reference recency (a) and by density (b). Re-
placement victims are shown in green. Page numbers of the cached pages are
depicted as the numbers inside the flash slots.

When a free cache slot is needed and all slots are currently occupied, a virtual
track can be chosen as the replacement victim, and the m pages pointed to by
it are all flushed to disk at once, freeing m pages and requiring only one seek.
This technique is called coalesced flushing (CF).

The set of virtual tracks can be ordered by their reference recency, i. e., the
time that a page belonging to the track is referenced (i. e., read or updated).
When a replacement victim is needed, the least-recently-referenced virtual track
is chosen, similar to the LRU replacement policy. Note if the page-to-track map-
ping function is t(a) = a (one page per track), the described algorithm degen-
erates to the classical page-oriented LRU (see Figure 3). Therefore, we refer to
this algorithm also as LRU whenever there is no ambiguity. An example runtime
state of the algorithm is shown in Figure 4a.

Virtual tracks can also be ordered by their density, i. e., by the number of
pointers they contain. The replacement victim is then the densest track, as illus-
trated in Figure 4b. This replacement policy is called densest track first (DTF).

Using the track information, we can further reduce the number of seeks using
a piggy-backing (PB) technique. When the flash-based cache has to serve a read
request for a page belonging to track t, a seek to t is very likely inevitable,
but the cache can flush all pages pointed to by the corresponding virtual track
without enforcing further seeks. Figure 5 illustrates a PB example.

5 17 8 2 6 11 18 9 0 16 3 1

01 4 2

Fig. 5: Piggy-backing. In this sample, a read request for page 7 is to be served,
thus a seek to track 1 is needed; in this case, the cache flushes pages 5 and 6
pointed to by virtual track 1.

3.4 Compatibility Matrix

The cache-write strategies SCW and RCW are orthogonal to the track-aware
techniques. With SCW, it is also possible to perform coalesced flushing and
piggy-backing. However, replacement policies, such as REC and DTF, are only
compatible with RCW. Table 1 lists the compatibility relationships between the
discussed techniques.

Table 1: Compatibility matrix of the
techniques

SCW RCW

LRU, DTF, etc.
√

CF
√ √

PB
√ √

Table 2: Device access costs

metric high-end low-end

Cfr 0.105 ms 0.165 ms

Cfw 0.106 ms 0.153 ms

Cfw̃ 0.133 ms 7.972 ms

Cd 4.464 ms

3.5 Logging and Recovery Implications

The data structures used by the algorithms discussed in this section, e. g., the
table mapping logical page numbers to their physical locations, are stored in a
small RAM area. To prevent from data loss in case of a system crash, the logical
page number should be stored in the page (either in the payload or in the page
header) to be able to restore the mapping table by a recovery procedure.

For SCW, it is possible that multiple versions of the same page exist in the
cache at recovery. The solution is to store a version number in the page which
increments whenever the page is updated. At recovery, only the version with
the highest version number generates an entry in the mapping table. The log
sequence number (LSN) [27] can serve as the version number. In this case, no
extra space is required.

Because of the persistence of the mid-tier, all our 2-step update propagation
approaches can be combined with the classical logging methods, the WAL princi-
ple (Write Ahead Log), and the recovery-oriented concepts (Atomic/NoAtomic,
Steal/NoSteal, Force/NoForce) for mapping database changes from volatile to
non-volatile storage [28]. As a consequence, the 2-step mechanism can not only be
used to accelerate the propagation of data pages to disk, but can also be applied
to log information. Such a practice automatically minimizes transaction latency
caused by commit processing, i.e., the 2PC protocol, because all synchronous
writes are first directed to the flash layer and not directly to HDDs.

4 Experiments

We implemented our algorithms and used trace-driven simulations to evaluate
their performance and study their behavior under various workloads. Our test

system consists of a disk layer supporting the block-device interface and collect-
ing disk-access statistics, and a cache layer implementing the introduced algo-
rithms and collecting flash-access statistics. Our traces contain the block-level
accesses (physical page requests), collected with the help of the PostgreSQL
database engine under TPC-C (100 warehouses) and TPC-H (scale factor: 10)
benchmark workloads. The PostgreSQL engine was used to collect the buffer
traces (logical page requests), which were then fed to and filtered by an LRU
buffer pool of 10,000 pages (i. e., |Lr| = 10, 000), and the resulting sequence of
physical page requests make the block-level traces used in our experiments.

A test program parses the traces and generates block read and write requests,
which are then served by the cache layer, either using the cached pages whenever
possible or by accessing the disk layer if necessary. According to our three-tier
storage architecture in Figure 1, only the bottom two tiers are used in our
experiments. The observations made under the TPC-C workload are very similar
to those made under the TPC-H workload. This means that our observations
are not specific to the workload. For improved clarity, we choose to only report
the experimental results collected using the TPC-C trace.

Based on our cost model introduced in Section 1.1 and with the variables
nfr, nfw, nfw̃, and nd as the numbers for the related flash read, flash sequential
write, flash random write, and disk accesses, we can define the performance
metric virtual execution time (v) as:

v = nfr × Cfr + nfw × Cfw + nfw̃ × Cfw̃ + nd × Cd (3)

The actual values for device access costs, listed in Table 2, are obtained using
device benchmarks on two SSDs (high-end and low-end) and a magnetic disk.
According to our device benchmark, the high-end SSD has a very good random
write performance: its average time of serving a random page write is only 25%
slower than that of a sequential page write. In contrast, for the low-end SSD,
the random writes are slower than the sequential writes by a factor of 50. The
remarkable difference in the device performance characteristics can be explained
by substantial differences in the proprietary FTL implementations.

4.1 AOR vs. AOW

We first compare AOR with AOW. Figure 6 shows their virtual execution times
relative to the no-cache configuration. The replacement policy in both cases was
LRU. The cache size |Lf | was scaled by a factor of 4 from 1,000 to 16,000 pages.
In this range, AOR suffers from the problem of duplicate caching. Hence, we
can expect that AOW has a better performance. As indicated by the results,
AOW clearly outperforms AOR, meaning that caching only dirty pages is quite
efficient in our configuration, where the second-tier cache is of comparable size
of the first-tier cache (|Lr| = 10, 000, see also Equation 2). For this reason,
this paper focus on AOW, and all algorithms evaluated in the remainder of the
section use the AOW strategy.

1,000 4,000 16,000
0.60

0.70

0.80

0.90

1.00

1.10
AOR
AOW

Fig. 6: Virtual execution times of AOR and AOW relative to the no-cache case

4.2 SCW vs. RCW

To study the cache-write strategies SCW and RCW, we used the performance
metrics both of the high-end and the low-end SSD. The difference in device
performance characteristics are reflected in our test results shown in Figure 7,
where the virtual execution times of SCW and RCW with a cache of 4,000 pages
relative to the no-cache configuration are shown. The replacement policy used in
RCW was LRU. On the high-end SSD, RCW performance was superior because
its higher hit ratio compensated the slightly higher cost of random flash writes.
On the low-end SSD, however, RCW is much slower than SCW, because the
latter only does sequential writes, which can be handled rather efficiently even
by the low-end SSD.

high-end low-end
0.60

0.80

1.00

1.20

1.40

1.60
SCW
RCW

Fig. 7: Virtual execution times rela-
tive to the no-cache case

CF CF + PB
0.75

0.80

0.85

0.90

0.95

1.00

SCW
RCW (LRU)
RCW (DTF)

Fig. 8: Number of seeks relative to the
non-track-aware LRU

4.3 CF and PB

We used the performance metrics of the high-end SSD to study the track-aware
techniques discussed in Sect. 3.3. The goal of those techniques is to minimize the
number of disk seeks. Figure 8 shows the numbers of seeks of various configu-
rations relative to LRU (Admit-On-Write, without using track information) for

a cache size of 4,000 pages. The page-to-track mapping function t used in the
simulation was t(a) = a/32.

The results reveal that the track-aware technique CF clearly reduced the
number of seeks (up to 12% for LRU), and the combination CF+PB achieved
even more significant improvements (up to 18% for LRU). Another observation
is that the simple replacement policy LRU, combined with the track-aware tech-
niques, achieved remarkably good performance.

5 Conclusion and Future Work

Based on our experimental results, we can conclude that:

– A small-sized (relative to the RAM buffer pool size) flash-based write cache
can substantially improve storage system performance.

– Cache-writing strategies can significantly impact system performance, de-
pending on the flash device implementation. For low-end flash devices with
poor random write performance or raw flash memory, it is better to use SCW
to handle the wear-leveling problem and random write problem natively in
the database software.

– The page-to-track information, if available, can be used to further improve
disk access performance.

The sector-to-track relation on modern disks can be much more sophisticate
than the mapping function used in our simulation. The fact that most enterprise
databases are hosted on RAID also adds complexity requiring further inves-
tigation. As future work, we plan to investigate the discussed algorithms and
techniques in a larger variety of configurations and on real devices. We will also
examine the correlation between the strategies and workload characteristics.

6 Acknowledgement

We are grateful to anonymous referees for valuable comments. This research is
supported by the German Research Foundation and the Carl Zeiss Foundation.

References

1. E. Gal and S. Toledo. Algorithms and data structures for flash memories. ACM
Computing Surveys, 37(2):138–163, 2005.

2. T.S. Chung, D.J. Park, S. Park, D.H. Lee, S.W. Lee, and H.J. Song. A survey of
flash translation layer. Journal of Systems Architecture, 55(5):332–343, 2009.

3. L. Bouganim, B.T. Jónsson, and P. Bonnet. uFLIP: Understanding flash IO pat-
terns. In CIDR’09, 2009.

4. D. Tsirogiannis, S. Harizopoulos, et al. Query processing techniques for solid state
drives. In SIGMOD, pages 59–72. ACM, 2009.

5. Y. Li, S.T. On, J. Xu, B. Choi, and H. Hu. DigestJoin: Exploiting fast random
reads for flash-based joins. In MDM’09, pages 152–161. IEEE, 2009.

6. S. Nath and A. Kansal. FlashDB: dynamic self-tuning database for NAND flash.
In Int. Conf. on Information Processing in Sensor Networks, pages 410–419, 2007.

7. Y. Li, B. He, Q. Luo, and K. Yi. Tree indexing on flash disks. In ICDE’09, pages
1303–1306. IEEE, 2009.

8. S. Yin, P. Pucheral, and X. Meng. A sequential indexing scheme for flash-based
embedded systems. In EDBT’09, pages 588–599. ACM, 2009.

9. S. Park, D. Jung, et al. CFLRU: a replacement algorithm for flash memory. In
CASES, pages 234–241, 2006.

10. Y. Ou, T. Härder, et al. CFDC: a flash-aware replacement policy for database
buffer management. In SIGMOD Workshop DaMoN, pages 15–20, 2009.

11. P. Jin, Y. Ou, T. Härder, and Z. Li. AD-LRU: An efficient buffer replacement
algorithm for flash-based databases. Data & Knowledge Eng., 72:83–102, 2012.

12. S.W. Lee and B. Moon. Design of flash-based DBMS: an in-page logging approach.
In SIGMOD’07, pages 55–66. ACM, 2007.

13. S. Chen. FlashLogging: exploiting flash devices for synchronous logging perfor-
mance. In SIGMOD’09, pages 73–86. ACM, 2009.

14. S. On, J. Xu, B. Choi, H. Hu, and B. He. Flag Commit: Supporting efficient
transaction recovery on flash-based DBMSs. IEEE Transactions on Knowledge
and Data Engineering, (99):1–1, 2011.

15. D. Narayanan, E. Thereska, et al. Migrating server storage to SSDs: analysis of
tradeoffs. In EuroSys, pages 145–158. ACM, 2009.

16. I. Koltsidas and S. D. Viglas. The case for flash-aware multi-level caching. Technical
Report, 2009.

17. Y. Ou and T. Härder. Trading memory for performance and energy. In DAS-
FAA’11, pages 241–253. Springer-Verlag, 2011.

18. J. Ousterhout, P. Agrawal, D. Erickson, et al. The case for RAMClouds: scalable
high-performance storage entirely in DRAM. ACM SIGOPS Operating Systems
Review, 43(4):92–105, 2010.

19. H. Plattner. A common database approach for OLTP and OLAP using an in-
memory column database. In SIGMOD’09, pages 1–2. ACM, 2009.

20. Micron Technology, Inc. Micron collaborates with sun microsystems to extend lifes-
pan of flash-based storage, achieves one million write cycles. http://investors.

micron.com/releasedetail.cfm?ReleaseID=440650.
21. M. Canim, G.A. Mihaila, et al. SSD bufferpool extensions for database systems.

In VLDB, pages 1435–1446, 2010.
22. J. Do, D.J. DeWitt, D. Zhang, J.F. Naughton, et al. Turbocharging DBMS buffer

pool using SSDs. In SIGMOD’11, pages 1113–1124. ACM, 2011.
23. Y. Li, J. Xu, B. Choi, and H. Hu. StableBuffer: optimizing write performance for

dbms applications on flash devices. In CIKM’10, pages 339–348, New York, NY,
USA, 2010. ACM.

24. G. Soundararajan, V. Prabhakaran, et al. Extending SSD lifetimes with disk-based
write caches. In USENIX FAST’10. USENIX Association, 2010.

25. P. Yang, P. Jin, and L. Yue. Hybrid storage with disk based write cache. In
DASFAA’11, pages 241–253. Springer-Verlag, 2011.

26. Y. Zhou, Z. Chen, et al. Second-level buffer cache management. IEEE Transactions
on Parallel and Distributed Systems, 15(6):505–519, 2004.

27. C. Mohan, D. J. Haderle, et al. ARIES: A transaction recovery method support-
ing fine-granularity locking and partial rollbacks using write-ahead logging. ACM
Trans. Database Syst., 17(1):94–162, 1992.

28. T. Härder and A. Reuter. Principles of transaction-oriented database recovery.
ACM Computing Surveys, 15(4):287–317, 12 1983.

http://investors.micron.com/releasedetail.cfm?ReleaseID=440650
http://investors.micron.com/releasedetail.cfm?ReleaseID=440650

	Improving Database Performance Using a Flash-Based Write Cache

