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The management of large-scale distributed information systems relies on the effective use and modeling of
monitoring data collected at various points in the distributed information systems. A traditional approach
to model monitoring data is to discover invariant relationships among the monitoring data. Indeed, we can
discover all invariant relationships among all pairs of monitoring data and generate invariant networks,
where a node is a monitoring data source (metric) and a link indicates an invariant relationship between
two monitoring data. Such an invariant network representation can help system experts to localize and
diagnose the system faults by examining those broken invariant relationships and their related metrics, since
system faults usually propagate among the monitoring data and eventually lead to some broken invariant
relationships. However, at one time, there are usually a lot of broken links (invariant relationships) within an
invariant network. Without proper guidance, it is difficult for system experts to manually inspect this large
number of broken links. To this end, in this article, we propose the problem of ranking metrics according
to the anomaly levels for a given invariant network, while this is a nontrivial task due to the uncertainties
and the complex nature of invariant networks. Specifically, we propose two types of algorithms for ranking
metric anomaly by link analysis in invariant networks. Along this line, we first define two measurements to
quantify the anomaly level of each metric, and introduce the mRank algorithm. Also, we provide a weighted
score mechanism and develop the gRank algorithm, which involves an iterative process to obtain a score to
measure the anomaly levels. In addition, some extended algorithms based on mRank and gRank algorithms
are developed by taking into account the probability of being broken as well as noisy links. Finally, we
validate all the proposed algorithms on a large number of real-world and synthetic data sets to illustrate the
effectiveness and efficiency of different algorithms.
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1. INTRODUCTION

Recent advances in information infrastructure have enabled the development of net-
worked information systems. These large-scale information systems usually consist of
thousands of components, such as servers, networking devices, and storage equipment.
The connectivity of these devices and hence the complexity of the information systems
they are embedded in correlates well with their functional essentiality. Also, the dy-
namics and heterogeneity of such information systems introduces another dimension
of complexity. For example, numerous users may interact with information systems in
very different ways and lead to dynamic work loads on the systems. Also, each informa-
tion system may be integrated with various hardware and software components, which
are usually supplied by different vendors and have their own specific configurations.
Therefore, it has been a great challenge to maintain and manage these large-scale,
dynamic, and complex information systems.

Indeed, the management of large-scale distributed information systems often relies
on the effective use and modeling of monitoring data collected at various points in
the distributed information systems. For instance, people may detect the anomaly or
system faults by examining an individual metric in monitoring data with a thresholding
method [Gertler 1998]. However, it is usually difficult to learn a reliable and robust
threshold in practice due to the dynamic and complex nature of information systems.
Instead, a promising direction is to model the system dynamics by correlating all
monitoring data (metrics) in a systematic way. For example, in a web system, the
number of specific HTTP requests x(t) may be correlated with the number of SQL
queries y(t) as y(t) = 3x(t) because one HTTP request always leads to three related
SQL queries and the logic is written in the application software of this web system.

In previous work, Jiang et al. [2006a, 2006b, 2007] have proposed a System Invariant
Analysis Technique (SIAT) to model the system dynamics and detect system faults.
Jiang et al. introduced a concept named flow intensity to measure the intensity with
which internal monitoring data react to the volume of user requests. For example,
the number of SQL queries and the average memory usage are typical examples of
such flow intensity measurements. These flow intensity measurements are usually
time series data. They provided the ARX model [Jiang et al. 2006a; Ljung 1998] to
model the relationships between a pair of flow intensities measured at various points
within a distributed information system. Specifically, the ARX model between two flow
intensities x and y is y(t) + a1y(t − 1) + · · ·+ any(t − n) = b0x(t − k) + · · ·+ bmx(t − k− m).
If such a relationship between x and y holds all the time when there is no fault, they
regarded it as an invariant of the underlying information systems. For example, one
relationship based on the ARX model may be yejb(t) = 0.08yejb(t−1)−0.39xjvm(t), where
yejb and xjvm represent the flow intensity of “EJB created” and “JVM processing time.”
And this relationship (equation) is considered as an invariant if it holds all the time.
More details of the invariant modeling and extraction can be found in Section 2.2.

Given all intensity measurements of an information system, it is possible to gen-
erate an invariant network as shown in Figure 1, where each node represents a flow
intensity measurement (metric) and one edge between two nodes denotes an invariant
(relationship) between these two metrics. Such invariant networks can be used to help
to monitor the dynamic of information systems [Jiang et al. 2007] and detect system
faults, because a system fault may cause some intensity measurements to change
unusually and such change may then cause some invariants to be broken. To this
end, at any future timestamp, we can get all broken links (invariants) in an invariant
network. Specifically, if the residual between an observed value y(t) and a simulated
value ŷ(t) for an invariant [Jiang et al. 2007] is over a certain threshold, this invariant
is considered as broken. Here ŷ(t) is obtained based on the learned ARX model with
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Fig. 1. An example of invariant networks.

training data [Jiang et al. 2007]. More details about tracking invariants can be found in
Section 2.3. System experts can then follow the broken links and related metrics to
narrow down possible problems and faults. Actually, a commercial product based on
the SIAT technique has been released by NEC recently.1

However, there are usually a large number of invariants, which can be broken at a
certain timestamp, because a simple fault can cause many metrics to change unusually.
Thus, there may be a lot of metrics (nodes) related to the broken invariants at one time.
Moreover, the invariant networks of one information system can be very large due to the
large scale of the system. Such large invariant networks will lead to too many metrics
involved with broken links at a time. As a result, system experts may not effectively
follow the broken links to detect the fault with so many broken links. To meet this
challenge, in this article, we propose to rank the metrics based on the anomaly level.
The ranking of metrics can provide a guidance for system experts to follow the broken
links more effectively and localize the fault.

Nonetheless, it is a nontrivial task to rank the metric anomaly in invariant networks.
For example, in Figure 1, we show an example of invariant networks, where dashed
links (lines) are broken and solid ones are held at this timestamp. In the figure, we can
observe the complexity of connectivity in invariant networks. Such complexity can vary
among different invariant networks of different information systems. When we try to
determine if one node is abnormal or not in such complex invariant networks, we cannot
only consider all associated links with this node, because the broken links among these
associated links are also connected with other nodes. In other words, system faults can
propagate from one node to another node, and thus all nodes associated with broken
links are naturally tied together. As a result, it is not easy to decide which nodes
(metrics) are abnormal and cause the broken links. Particularly, the things will get
worse for a large-scale invariant network containing thousands of nodes. In addition,
unlike the link of other types of networks, such as social networks, each link of invariant
networks is an ARX model and is considered as broken if the anomaly of its related
nodes causes the residual of the ARX model to be over a certain threshold [Jiang et al.
2006b]. Indeed, one fundamental challenge underlying this metric ranking problem
is that one node (metric) with a certain degree of anomaly has a certain possibility
to cause some of its related links to be broken as shown in Figure 2. In this article,
we name this challenge as uncertainty for short. All uncertainty associated with each
broken-link-related node together makes this metric ranking problem quite difficult.

1http://nec.com/global/prod/masterscope/invariantanalyzer/index.html.
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Fig. 2. Uncertainty illustration.

To meet this challenge, in this article, we propose two types of metric ranking al-
gorithms based on our domain understanding of system faults and their influence
patterns in invariant networks. First, for a node A with many broken links, if the
majority of links of its direct neighboring nodes, each of which is connected to A via a
broken link, are not broken, the node A is abnormal. Based on this understanding, we
define two score measurements to quantify the anomaly level of each node and propose
the first algorithm mRank. Second, by exploiting the mutual dependency of influence
among all broken-invariant-related nodes, we propose the second algorithm, called
gRank, for computing the anomaly score iteratively. Along this line, we also design two
computational methods to perform efficient iterative computation. In addition, by tak-
ing the probability of being broken for an individual link as well as noisy links into the
consideration, we develop some extended algorithms based on both mRank and gRank
algorithms. Finally, we examine the performances of all the proposed algorithms on
real-world and synthetic datasets.

Overview. The rest of this article is organized as follows: Section 2 describes some
preliminaries about SIAT. In Section 3, we provide the problem formulation and in-
troduce the research challenges of the proposed problem. Section 4 shows two types of
ranking algorithms. In Section 5, we evaluate the performances of the proposed algo-
rithms on real-world data. Section 6 presents the related work. Finally, we conclude
the work in Section 7.

2. PRELIMINARIES

In this section, we will briefly introduce some basic concepts and notations that will be
used in this article.

2.1. Flow Intensities and Invariants

In today’s information systems, such as Amazon, millions of transaction requests are
received and proceeded every day. A large number of user requests flow through various
system components sequentially according to the application software logic. If we re-
gard the control flow graph of application software as a pipe network, the mass of user
requests that flows through various software paths can be considered as fluid flowing
through that pipe network [Jiang et al. 2007]. During system operation, a large amount
of monitoring data, such as the log files, are collected at various system components to
record their operational status. Usually, much of the internal monitoring data directly
or indirectly reacts to the volume of user requests accordingly. For example, network
traffic volume and database request usually go up and down according to the volume
of user requests. We use flow intensity to measure the intensity with which internal
monitoring data reacts to the volume of user requests. Flow intensities can be calcu-
lated from the monitoring data collected at various points across distributed systems.
The number of HTTP requests, the number of SQL queries, and the number of network
packets (per sampling unit) are typical examples of such flow intensity measurements.

There are strong correlations or relationships among many of flow intensity measure-
ments [Jiang et al. 2006a, 2006b, 2007]. This is because these measurements mainly
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respond to the same external factor—the volume of user requests. In fact, in an en-
gineered system, there are usually many constraints on the relationship among flow
intensity measurements because of many factors, such as hardware capacity, applica-
tion software logic, functionality, and system architecture, and these constraints lead
to a certain correlation among the flow intensities. For example, in a web system, if a
specific HTTP request x always leads to three related SQL queries y, we should always
have I(y) = 3I(x) because this logic is written in its application software. No matter
how these flow intensities change in accordance with varying user loads, the relation-
ship (the equation) of the flow intensities is always constant. If such relationship holds
all the time, it is considered as an invariant of the underlying systems. In the previous
example, the relationship I(y) = 3I(x) but not the flow intensities is considered as
an invariant. For a large-scale distributed information system, it is extremely hard to
characterize its dynamics or model the whole system. On the contrary, each invariant is
able to capture the local property of its components. And if we can search all invariants
of a distributed system, we can characterize the whole system well by considering all
invariants together [Jiang et al. 2006a, 2011].

2.2. Invariant Modeling and Extraction

Jiang et al. [2006a, 2006b, 2007] used AutoRegressive models with eXogenous inputs
(ARX) [Ljung 1998] to learn the relationship between flow intensity measurements.
Following the notation in Jiang et al. [2007], at time t, we denote the flow intensity
measured at the input and output of a component by x(t) and y(t), respectively. The
ARX model describes the following relationship between two flow intensities:

y(t) + a1y(t − 1) + · · · + any(t − n)
= b0x(t − k) + · · · + bmx(t − k − m), (1)

where [n, m, k] is the order of the model, and it determines how many previous steps
are affecting the current output. ai and bj are the coefficient parameters that reflect
how strongly a previous step is affecting the current output. Let us denote

θ = [a1, . . . , an, b0, . . . , bm]T , (2)

ϕ(t) = [−y(t − 1), . . . ,−y(t − n), x(t − k), . . . , x(t − k − m)]T . (3)

Then, Equation (1) can be rewritten as

y(t) = ϕ(t)T θ. (4)

Assuming that we have observed the inputs and outputs (i.e., the flow intensity) over
a time interval 1 ≤ t ≤ N, let us denote this observation by

ON = {x(1), y(1), . . . , x(N), y(N). (5)

With a given θ and the observations, we can calculate the simulated outputs ŷ(t/θ )
according to Equation (1). Thus, we can get the estimation error as

EN(θ, ON) = 1
N

N∑
t=1

(y(t) − ŷ(t/θ ))2 = 1
N

N∑
t=1

(y(t) − ϕ(t)T θ )2. (6)

The Least Squares Method (LSM) can find the θ̂ that minimizes the estimation error
EN(θ, ON). Then, the normalized fitness score F(θ ) [Jiang et al. 2007] is used to evaluate
how well the learned model fits the real observations as

F(θ ) = 1 −
√∑N

t=1 |y(t) − ŷ(t/θ )|2∑
t=1 N|y(t) − ȳ|2 , (7)
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where ȳ is the mean of the real output y(t). A higher fitness score indicates that the
model fits the observed data better, and its upper bound is 1. Given a pair of flow in-
tensities and the order [n, m, k], Jiang et al. [2007] learned θ̂ via minimizing EN(θ, ON).
They also set a range for the order [n, m, k] rather than a fixed number to learn a list
of model candidates, and then the model with the highest fitness score is chosen from
them to characterize the relationship between each pair of flow intensities. Further-
more, given two flow intensity measurements, we do not know which one should be
chosen as input or output (i.e., x or y in Equation (1)) in complex systems. Therefore,
for each set of order parameters [n, m, k], we construct two models (with reverse input
and output) and maintain the model with higher fitness score as the invariant can-
didate. Finally, for one pair of metrics (flow intensity measurements), if the highest
fitness score among all model candidates is higher than a certain threshold τ , we treat
the corresponding model with highest fitness score as an invariant. Accordingly, we
can obtain the parameters of ARX model for this invariant.

2.3. Invariant Networks

Given all metrics (intensity measurements) of an information system, invariant search
is performed among all pairs of metrics with the observations of each metric. Then,
a set of invariants can be obtained for this information system. If we represent each
metric as a node and each invariant as a link between two metrics, we are able to
generate a graph as shown in Figure 1, which is called an invariant network. Note
that usually we assume all given observations for invariant search are normal without
system fault and we denote them as training data. Thus, the invariant networks are
generated with the training data.

With the invariant networks, there is a learned parameter θ̂ , the corresponding ARX
model and the fitness score associated with each invariant (link). Also, we can further
calculate all residuals R(t)(1≤t≤N) for each invariant with the training data as

R(t)(1≤t≤N) = y(t) − ŷ(t) = y(t) − ϕ(t)T θ̂ . (8)

In a normal situation of an information system, the residuals can be regarded as the
noise and their absolute values are usually small. Furthermore, for each node, we may
also have some label about the semantic meaning of this metric (intensity measure-
ment) for some information systems. For example, we may know which cluster or ma-
chine a metric is measured at or which service or application a metric is associated with.

2.4. Online Tracking of Invariant Networks

With the invariant networks of an information system, model-based Fault Detection
and Isolation (FDI) [Jiang et al. 2007; Gertler 1998; Isermannn and Balle 1997] meth-
ods can be applied to track invariants in real time for fault detection. Specifically, at
each timestamp t in the future, for each invariant, we compare the real observation
y(t) and its simulated one ŷ(t) calculated with θ̂ to get the absolute difference as

Rt = |y(t) − ŷ(t)|. (9)

In the normal situation without fault, we should have the residual Rt ≤ εM, where
εM is a threshold of model error. If a system fault occurs inside the information sys-
tem, it usually affects the metric relationship, and the invariants are likely to be
violated. Thus, we can observe such a fault in the real time by tracking whether the
real output stays in the same trajectory as the invariant model expects, that is at
time t, check whether Rt ≤ εM. In Figure 3, we illustrate the invariant tracking for
FDI, where the link between x and y is broken if R > εM. Note that εM is differ-
ent for each invariant. Actually, εM of each invariant is automatically decided with
the residual distribution associated with each link. Specifically, we select a threshold
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Fig. 3. An invariant online tracking example.

εM = 1.1 · argR̂{prob(|R(t)| < R̂) = 0.995}, that is, choose a value R̂ that is larger than
99.5% of the observed residuals (after a long time period T) and the selected threshold
is 1.1 times R̂. Such detection of broken invariants is every fast because only simple
calculations are needed, as shown in Equations (8) and (9).

3. PROBLEM FORMULATION

In this section, we formulate the problem of metric anomaly ranking in invariant
networks of distributed information systems.

3.1. Metric Anomaly Ranking in an Invariant Network

By the online tracking of each invariant, the state (broken or not) of every invariant
can be decided at a certain timestamp. After the states of all the links in an invari-
ant network at a certain timestamp have been decided, the metric anomaly ranking
problem can be formulated as follows.

Given an invariant network I with N nodes (metrics), denoted as Vi, 1 ≤ i ≤ N, and
M links (invariants), denoted as Ej, 1 ≤ j ≤ M, there are a learned parameter θ̂ j , a
set of residuals R j , and a fitness score Fj associated with each link Ej . Furthermore,
we can calculate a threshold ε

j
M from R j , where ε

j
M is used to check if invariant Ej is

violated or not. Then, at a certain timestamp T , we can obtain an overall state S for
these M links, which shows the states of all the invariants at T . The objective is to rank
all metrics from most abnormal to least abnormal. Such metric anomaly ranking can
provide a guidance for system experts to effectively and efficiently examine metrics and
localize the system fault. Based on the previous description and notations, we formally
state the metric anomaly ranking problem as follows.

Note that the given invariant network I in the Metric Anomaly Ranking Problem
is a connected graph, which means there is a path between any two nodes. Given all
metrics, it is possible that we may generate two or more completely separated invariant
networks with methods described in Section 2, but we focus on metric anomaly ranking
in an invariant network in this article. In the following, an invariant network indicates
a connected graph unless specified otherwise.

3.2. Discussion About the Metric Anomaly Ranking Problem

First, since an invariant is considered as a symmetric relationship, the invariant net-
work is an undirected graph. Also, the invariant network we study in this article is a
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Fig. 4. Samples of invariant networks.

connected graph. If multiple completely separated invariant networks are generated
via invariant searching, we can study them independently and separately.

Second, given a broken link (invariant) between two nodes, it is almost impossible to
label which node is “good” or “bad.” Indeed, there are usually many broken links, which
are associated and influenced by each other through the whole network; therefore,
there is a chance to infer the abnormal nodes if we investigate all the broken links and
the network structure in a correlated way. As a result, the metric anomaly ranking
problem involves the ranking of nodes through the analysis of network links and
their interactions. This problem is particularly important and interesting because the
ranking of metrics can help system experts to localize the system faults, debug the
information systems, and resolve the system problems.

However, this metric anomaly ranking problem is quite different from existing rank-
ing problems, such as web page ranking. Most link analysis techniques may not be
directly used for this problem because the nature of links in invariant networks is
quite different from other networks, such as social networks and web graphs. A link of
an invariant network is essentially an invariant relationship (measured by the ARX
model) between two metrics. While the information may flow along links within social
networks or web graphs, there is no meaningful information flow along the links of an
invariant network. For example, this problem is different from the PageRank problem
[Brin and Page 1998]. The importance or information of one web page (node) may prop-
agate to another web page (node) via single or multiple links between these two web
pages (nodes). While such information propagation is very important for the PageRank
problem, there is no similar information propagation along the links of invariant
networks.

4. METRIC ANOMALY RANKING ALGORITHMS

In this section, we introduce two types of algorithms to rank the metric anomaly based
on our domain understanding of information system faults and their influence pattern
in invariant networks.

4.1. The mRank Algorithm

Figure 4 shows some invariant networks. In the figure, dashed links are broken and oth-
ers are not. In Figure 4(a), we may have an intuition that a node is likely to be abnormal
if most links of this node are broken. However, it is also possible that these broken links
are caused by other nodes. Therefore, to infer the possibility of a node being abnormal
or not, we need to consider the links related to the broken-invariant-neighboring-nodes
(BINNs). The broken-invariant-neighboring-nodes of a node are those nodes, each of
which connects to this node with a broken link. For example, for node A in Figure 4(a),
its BINNs consist of B, C, D, and E, and the links of BINNs of node A include all the
links that are connected to B, C, D, and E. Therefore, if most links of a node are broken
and most links of its BINNs are not broken, it is very likely that this node is abnormal.

Based on this basic idea, we define two measurements to quantify the anomaly of a
node in the following.

ACM Transactions on Knowledge Discovery from Data, Vol. 8, No. 2, Article 8, Publication date: May 2014.
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Definition 4.1 (iScore). iSocre of a node Vi (1 ≤ i ≤ N) within an invariant network
I is defined as:

iScoreVi = number of broken links of Vi

number of all links of Vi
. (10)

By this definition, for example, in Figure 4(b), the iScore of node A is 4
5 .

Definition 4.2 (xScore). xSocre of a node Vi (1 ≤ i ≤ N) within an invariant network I
is defined as:

xScoreVi = 1 − number of broken links related to BINNs
number of all links related to BINNs

. (11)

Note that if one link is related to multiple nodes of BINNs, we only count this link
once for xScore. For example, the link between nodes D and E is only count once when
we calculate xScore for node A in Figure 4(b). Thus, the xScore score of node A is 1− 5

10 .
Then, we further combine iScore and xScore to get the ixScore as

ixScore = iScore + xScore. (12)

This ixScore is used to measure the anomaly degree of each node in an invariant net-
work. From the previous definitions, we know that ixScore is to combine the multiple
evidences from a node itself and its neighbors to infer its anomaly degree. We cannot
independently infer the anomaly degree of a node because the node itself and its neigh-
bors naturally influence each other, as shown in Figure 4. In fact, all the nodes directly
or indirectly influence each other through the network. However, we only quantify the
influence of the first-order neighbors for a node in this article.

Finally, to rank all the nodes of an invariant network at a certain timestamp, we first
calculate ixScore for each node, then we rank all the nodes from the highest ixScore
to the lowest ixScore.

4.1.1. The Uncertainty of a Broken Link. At a timestamp during online tracking, we can
know not only if a link is broken but also how likely this link is broken. As mentioned
in Section 2.4, we check if a link Ej is broken at a timestamp t by checking if Rt ≤ εM.
In fact, if Rt > εM, we have the following ratio

rj = (
Rt − εM)

/εM. (13)

To measure the uncertainty of being broken with a probability, we convert rj into the
range of (0, 1) by the logistics function as follows:

pj = 1/(1 + exp(−rj)). (14)

Then, we use pj to represent the probability of being broken for link Vj . For example,
if εM is 1.2 and Rt is 2.1, we can derive rj = (2.1 − 1.2)/1.2 = 0.75 and pj = 1/(1 +
exp(−rj)) = 0.679. Note that, with the logistics function, the minimum pj is still over
0.5 for a broken link and the maximum pj is close to 1 when rj reaches the infinite.
Some other functions or methods may also be applied here to estimate the probability
of being broken. For example, we can assume the Gaussian distribution to the residual
samples obtained from the training set and estimate the probability based on the
inferred parameters of the Gaussian distribution. However, since this is not the focus
of this article, we simply adopt Equation (14) to compute pj for each broken link at a
timestamp.

Given the probability of being broken for each broken link, we can update the numer-
ator of Equation (10) for iScoreVi as the weighted number of broken links of Vi, where
the weight for each broken link of Vi is the probability pj . For example, if a node Vi has
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Fig. 5. Iterative computing I.

three broken links, denoted as E1, E2 and E3, the original numerator of Equation (10),
which is 3, will be updated as p1 + p2 + p3. Similarly, we can update the numerator of
Equation (11) for xScoreVi as the weighted number of broken links related to BINNs.
We denote the updated two scores as iScoreu and xScoreu accordingly. Finally, we will
get a weighted ixScore, denoted as ixScoreu, which will be eventually used to measure
the anomaly degree of each node.

4.2. The gRank Algorithm

In this section, we introduce the gRank algorithm, which has an iterative process to
compute a score to quantify the anomaly degree of each node.

First, let us present the weighted iScore as wiScore. With the definition of iScore,
we can compute the iScore for each node. Then, we argue that the iScore of one node
is highly reliable if all iScores of its BINNs are relatively low. For example, the iScore
of node A in Figure 4(a) is considered very reliable because the iScore of node B, C, D,
or E is relatively low. Based on this, we define wiScore as:

Definition 4.3 (wiScore). wiSocre of a node Vi (1 ≤ i ≤ N) within an invariant
network I is defined as:

wiScoreVi =
∑

Vk∈BINNs of Vi
(1 − iScoreVk) ∗ 1

number of all links of Vi
, (15)

where Vk denotes an individual node of BINNs of node Vi. For example, in Figure 4(a),
if the iScores of B, C and D and E are 0.2, 0.25, 0.25, and 0.2, respectively, the wiScore
of node A is ((1 − 0.2) + (1 − 0.25) + (1 − 0.2) + (1 − 0.25))/4 = 0.775.

Therefore, after obtaining the initial iScore for each node, we can compute the
wiScore for each node based on the Definition 4.3 as the second round. Furthermore,
we can continue to compute the wiScore for each node with the obtained wiScore in the
second round based on Definition 4.3. In fact, we can iteratively compute and update
the wiScore of each node. Specifically, we provide the iterative computing pseudocode
in Figure 5. For the following rounds of computing, we need to use wiScore obtained in
the previous round, instead of iScore, when we update wiScore. Thus, Equation (15)
will be updated as:

wiScorer+1
Vi

=
∑

Vk∈BINNs of Vi

(
1 − wiScorer

Vk

) ∗ 1

number of all links of Vi
, (16)

where wiScorer+1
Vi

denotes the wiScore of node Vi at the end of round r + 1 iteration.
Actually, if we initialize the wiScore of each node as wiScore0

Vi ,1≤i≤N = 0, the cal-
culation of wiScore1

Vi ,1≤i≤N by Equation (16) is the same as that of Equation (10) in
Definition 4.1. Thus, after we run the first iteration with the initialized wiScore of 0
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Fig. 6. Iterative Computing II.

for each node and Equation (16), the wiScore of each node will be exactly the same
as the iScore of each node at the end of first round iteration in Figure 5. Based on
this observation, we update the iterative computing pseudocode in a unified way in
Figure 6.

Note that, in this article, we update the score for each node round by round, which
means we just use all wiScore of round r when we update the wiScore in the round
r + 1, as shown in Equation (16). Alternatively, the score of individual node can also
be updated one by one, which means we always use the most recent wiScore of each
node when we update the wiScore of a node. In other words, we only maintain the
most recent wiScore for each node, and we use the most recent wiScoreVk, instead of
wiScorer

Vk
in Equation (16), to compute the wiScoreVi .

Moreover, the aforementioned iterative computing can be represented as a matrix
format. Let us first define the adjacent vector.

Definition 4.4 (Adjacent Vector). The adjacent vector of a node Vi (1 ≤ i ≤ N) in an
invariant network I is defined as:

EVi =
[
s1

1
NVi

, . . . , sn
1

NVi

, . . . , sN
1

NVi

]
, (17)

where NVi is the number of all first-order neighboring nodes of Vi in an invariant
network. N is the number of all nodes in the invariant network. sn (1 ≤ n ≤ N) is 1 if
the node Vn (1 ≤ n ≤ N) is a first-order neighbor of node Vi and the link between Vi
and Vn is broken, and it is 0 otherwise.

For example, in Figure 4(c), where the node A has 5 first-order neighboring nodes,
the adjacent vector of the node A can be

EVA =
[
0,

1
5

,
1
5

,
1
5

,
1
5

, 0
]

based on Definition 4.4. Note that the adjacent vector of a node may vary if we consider
all the nodes in different orders. The order of nodes for the aforementioned EVA is
A, B, C, D, E, F. However, for all nodes, we generate the adjacent vector for each one
with the same order of all nodes. Also, a node has no link to itself; therefore, the first
element of EVA is 0.

Second, we can generate a score vector of Sr as:

Sr = [
wiScorer

1, . . . , wiScorer
n, . . . wiScorer

N

]T
, (18)

where wiScorer
n is the wiScore of the nth node of the invariant network I in the round

r. T is the transpose of a vector. Note that we generate Sr with the same order of nodes
as that of EVi . In other words, the elements of Sr and EVi (1 ≤ i ≤ N) have one-to-one
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Fig. 7. Iterative Computing III.

correspondence. In addition, EVi has the same dimension as Sr, which is the number
of nodes, N. For example, following the same order of EVA mentioned earlier, we can
generate the score vector in Figure 4(c) as

Sr = [
wiScorer

A, wiScorer
B, wiScorer

C,

wiScorer
D, wiScorer

E, wiScorer
F ,

]T
, (19)

where wiScorer
A is the wiScore of node A in round r.

Given the previous definitions of two vectors, the computation of wiScoreVi in Equa-
tion (16) can be reformed as:

wiScorer+1
Vi

= EVi · (1 − Sr), (20)

where · is the dot product of two vectors. 1 is a N-dimensional column vector, each
element of which is 1. For instance, in Figure 4(c), if Sr = [0.7, 0.2, 0.25, 0.2, 0.25, 0.1],
wiScorer+1 of node A can be calculated as wiScorer+1

A = [0, 1/5, 1/5, 1/5, 1/5, 0] ·
[0.7, 0.2, 0.25, 0.2, 0.25, 0.1]. Therefore, given the state of an invariant network I, we
can generate one adjacent vector for each node with the same order of all nodes and
calculate the wiScore based on Equation (20). Furthermore, if we put each adjacent
vector of a node as a row, we can form a N-row matrix E, which is named as adjacent
matrix. Then, we can represent the iterative computing in a matrix format as:

Sr+1 = E ∗ (1 − Sr). (21)

Here ∗ denotes the multiplication of matrices. The adjacent matrix E can be determined
once we are given the invariant network I and its state S. And E is a N-by-N square
matrix, where N is the number of all nodes within I. Also note that, we can still initialize
the score vector as a zero vector, that is, S0 = 0, where 0 denotes a N-dimensional
column vector with each element as 0. Finally, we can present the iterative computing
in a matrix format, as shown in Figure 7.

Here, we would like to emphasize that the matrix E depends on both the structure
of an invariant network I and its state S. For the same invariant network, E can be
different for different states S. However, based on the definition of E, we can infer the
following basic properties of the matrix E.

—Asymmetric Matrix (Usually). If the link is nonbroken or there is no link between
the nodes Vi and Vi′ , both Eii′ and Ei′i are 0. On the contrary, if there is a broken link
between Vi and Vi′ , and Vi and Vi′ have different numbers of first-order neighboring
nodes, Eii′ and Ei′i are positive, but different. The second case usually happens within
an invariant network. Thus, the matrix E is usually asymmetric.

—Non-Stochastic Matrix (Doubly). Recalling that a row of an adjacent matrix E is
actually an adjacent vector of a node, the sum of a row of the matrix E is less than 1,
unless all links of the corresponding node are broken, based on Definition 4.4. Thus,
the matrix E is not doubly stochastic, unless all links of the invariant network are
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broken, which is usually not common for an invariant network of an information
system.

—Zero-Triangle Matrix. The entry on the main triangle of the matrix E is 0 because
there is no broken link from a node to itself based on our invariant definition.

Given the iterative computing as shown in Figures 6 and 7, one interesting question
is that if there is a steady state for such an iteration, which means all wiScore will
finally converge to some steady points. Specifically, a steady state of all wiScore means
the Sr+1 of an invariant network will be the same as Sr. Thus, we can have the
following:

S = E ∗ (1 − S). (22)

From Equation (22), we can directly infer S as:

S = (I + E)−1 ∗ E ∗ 1, (23)

where I denotes the identity matrix. Now, we obtain the aforementioned algebraic
solution in addition to the iterative solution, as shown in Figure 7. In other words, we
can directly obtain the final wiscore of each node via Equation (23).

Next, we would like to compare these two solutions mainly from the complexity
perspective. For the iterative solution, we have to run multiple iterations and apply
a stop criterion to terminate the iteration. For example, we can specify the maximum
iteration number to stop the iteration. Also, we can check the difference between the
score vectors Sr+1 and Sr and terminate the iteration if the difference is lower than a
certain threshold. However, those criteria may be subjective sometimes. At the same
time, we may face the efficiency issue due to too many iterations. For the algebraic
solution, we do not need to specify a stop criterion. We can directly get the final score
vector S. This direct calculation may save some time if the adjacent matrix is not very
big. However, we have to compute the inversion of a matrix according to Equation (23).
And this matrix inversion may be extremely time-consuming if we have a large number
of nodes. For a large invariant network, the iterative solution may be faster if we could
stop the iteration early. Based on the previous comparisons, we can see both algebraic
and iterative solutions may face efficiency issues under different circumstances.

4.2.1. The Uncertainty of a Broken Link. Here, we introduce the uncertainty of a broken
link into the gRank algorithm. We get the probability or uncertainty for each broken
link in the same way as introduced in Section 4.1.1. To incorporate such uncertainty
into the calculation of wiScore, we update the adjacent vector as:

Definition 4.5 (Adjacent Vector with Uncertainty). The adjacent vector of a node Vi
(1 ≤ i ≤ N) in an invariant network I is defined as:

Eu
Vi

=
[
s1

pi1

NVi

, . . . , sn
pin

NVi

, . . . , sN
piN

NVi

]
, (24)

where NVi is the number of all first-order neighboring nodes of Vi in an invariant
network. N is the number of all nodes in the invariant network. sn (1 ≤ n ≤ N) is 1 if
the node Vn (1 ≤ n ≤ N) is a first-order neighbor of node Vi and the link between Vi
and Vn is broken, and it is 0 otherwise. pin is the estimated probability of the broken
link between nodes Vi and Vn.

Given the new adjacent vector with uncertainty, we can get the updated adjacent
matrix accordingly. Then, we can perform the iteration III shown in Figure 7 with the
updated adjacent matrix. Furthermore, we can also infer the similar algebraic solution
with the update adjacent matrix with uncertainty.
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Fig. 8. Examples for rScore.

4.2.2. The Noisy Broken Links. During the iteration described earlier, we actually ob-
serve that both anomaly scores of two nodes connected by a broken link may shrink
to be quite small, such as 0.05, at the end of a certain round during the iteration.
This kind of links are probably noisy among all broken links, which means that these
broken links tend to be fake. To address this challenge, we introduce a mechanism
to interrupt the aforementioned iteration. Specifically, we identify and filter out these
noisy broken links at each round of the iteration by checking if the anomaly scores of
two nodes connected by a broken link are less than a threshold τ . Then, we consider
the filtered-out links as nonbroken links when we update the wiScore of each node in
the next round.

Given the aforementioned interruption, we would not be able to derive the algebraic
solution. But, we can still get the iterative solution by the similar iteration, as shown
in Figure 7.

4.3. The rScore for Ranking

As discussed earlier, a broken invariant is associated with two nodes and we want
to determine the anomaly of which node results in the broken relationship. In the
previous subsections, we introduced several metrics such as ixScore and wiScore to
measure the anomaly of each node in an invariant network. Given a broken invariant
and its two nodes. In this subsection, we further introduce a rScore to normalize these
metrics and decide the portion of each node’s contribution to a broken relationship.
And, we may use the rScore to rank all nodes of an invariant network.

In the following, we introduce the rScore based on ixScore, but it can be directly
applied to wiScore. Let us first temporally denote a broken link as Eij , which connects
nodes Vi and Vj , as shown in Figure 8(a). With the mRank algorithm, we can get the
ixScorei and ixScore j for node Vi and Vj , respectively. Then we can obtain two ratios
as:

rij = ixScorei

ixScorei + ixScore j
; rji = ixScore j

ixScore j + ixScorei
.

Then, we will calculate these ratios for each broken link. For example, if ixScorei and
ixScore j are 0.8 and 0.6, respectively, for Figure 8(a), we can get rij = 0.8/(0.8 + 0.6) =
0.5714 and rji = 0.6/(0.8 + 0.6) = 0.4286. Thus, for each broken-link-related node, we
will get multiple ratios as shown in Figure 8(b). Suppose for a node Vi with K related
broken links, we get K ratios riak (1 ≤ k ≤ K), where ak is the node index. This means
that the node Vak is connected to node Vi via a broken link. Then, we define the rScore
of a node Vi by combining all the ratios related to the node Vi as:

rScore(Vi) =
∑K

k=1 riak

K
. (25)
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Table I. Examples of Categories and Metrics

Categories Samples of Measurements
CPU utilization, user usage time, IO wait time
DISK # of write operations, write time, weighted IO time
MEM run queue, collision rate, UsageRate
NET error rate, packet rate
SYS UTIL, MODE UTIL

For example, in Figure 8(b), we can get three ratios, ria1 , ria2 and ria3 , for node Vi. Then,
the rScore of Vi is rScore(Vi) = (ria1 + ria2 + ria3 )/3.

5. EXPERIMENTAL RESULTS

In this section, we evaluate the performances of the metric anomaly ranking algorithms
on both real-world and synthetic data.

5.1. The Experimental Setup

Experimental Data. The experiments were performed on one real-world dataset and
three synthetic datasets. The real-world monitoring data were collected from a real-
world information system. In total, there are 11 categories, and each category includes
different numbers of measurements. For example, Table I shows some categories of
the collected monitoring data. This monitoring data is used to calculate various flow
intensities with a sampling unit equal to 6 seconds. We have 1,273 flow intensity
measurements (time series or metrics), which will be used in the following experiments.

In the experiment, we first collected a set of training data that were collected at the
normal state of the system. Each flow intensity within the training set contains 168
points. We used this training set to search all invariants and generated the invariant
network as described in Section 2. For example, one invariant searched is

Isql(t) = 0.08Isql(t − 1) + 0.22Iejb(t) − 0.53Iejb(t − 1), (26)

where Isql and Iejb represent the flow intensities of the “number of MySQL queries” and
the flow intensities of the “number of Enterprise JavaBeans (EJB) created” measured
in the information system. The generated invariant network contains 750 nodes and
39116 links. Note that this invariant network is a connected graph.

Also, we collected another set of data for these 1,273 flow intensity measurements,
which were collected during the abnormal state of the system. We have 169 observed
points for each flow intensity. We use this set of data as the test set. We track the
invariant network with this test set by using the method described in Section 2. Then,
we perform the metric anomaly ranking at different timestamps.

We also generated three sets of synthetic time series data. First, we randomly gen-
erated 500 time series, each of which contains 1,050 points. With such a synthetic
data, we generated invariant networks by using the first 1,000 points of all time series.
Different from the aforementioned real-world data, multiple connected invariant net-
works were generated. We selected the biggest connected invariant network to perform
metric anomaly ranking, which contains 129 nodes and 1,567 links. Then, we tracked
this invariant network with the remaining 50 observations of relevant metrics. We
performed metric anomaly ranking at a certain timestamp of these 50 observations.
Second, to further test the scalability of ranking algorithms, we generated another two
synthetic datasets containing 5,000 time series and 8,000 time series in the same way.
Each time series contains 1,050 points and the first 1,000 points were used to search
invariants. For the dataset with 5,000 time series, we selected the biggest invariant
network which contains 1,551 nodes and 157,371 links. For the dataset with 8,000 time
series, we got the biggest invariant network with 2,821 nodes and 21,157 links.
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Table II. Some Statistics of Experimental Datasets

Real-world Synthetic Synthetic Synthetic
Datasets Data Data I Data II Data III
# of Nodes 750 129 1,551 2,821
# of Links 39,116 1,567 157,371 21,157
Average Degree 104.30 24.28 202.92 14.99
Minimum Degree 1 1 1 1
Maximum Degree 299 52 478 321

Table III. The Computation Time of Invariant Search

Datasets Synthetic Data I Synthetic Data II Synthetic Data III
Computation Time (sec) 78 6,493 12,310

Table IV. Notations of Six Ranking Methods

mr mRank + rScore
mru mRank + rScore + Uncertainty
gr gRank + rScore
gru gRank + rScore + Uncertainty
grun gRank + rScore + Uncertainty + Noise
b baseline method

Table II shows some statistics of four invariant networks, which were generated from
three synthetic datasets and one real-world dataset. Note that for invariant search,
we specified the range for the order [n, m, k] as 0 ≤ n, m, k ≤ 2. Also, the threshold τ
of the fitness score is 0.7. However, to particularly show the performance of ranking
algorithms on sparser networks, we specified τ = 0.85 for the invariant searching
on the data with 8,000 time series because the higher value of τ generally leads to
fewer links of invariant networks. In addition, the time complexity of invariant search
generally increases as we increase the number of time series. In Table III, we show
the computation time of invariant search for the three synthetic datasets. Note that
even there are several smarter algorithms for invariant search [Jiang et al. 2007], we
just used the FullMesh algorithm mentioned in Jiang et al. [2007] for simplicity in this
article.

Experimental Platform. All the algorithms were implemented in Matlab2008a
and the experiments were conducted on a Windows 7 with Core2 Quad Q8300 and
6.00GB RAM.

5.2. Ranking Methods

In total, we have developed five ranking methods in this article. In addition to these five
algorithms, there is a baseline method [Jiang et al. 2006b]. For the baseline method,
they simply used the iScore defined in Equation (10) to measure the anomaly degree
of each node and rank all nodes based on the measured anomaly degree. To facili-
tate the comparison, we denote these six methods with acronyms in Table IV, where
Uncertainty indicates that we incorporate the probability of a broken link (as described
in Sections 4.1.1 and 4.2.1), and Noise means that we remove the noisy broken links
during the iteration (as described in Section 4.2.2).

5.3. Benchmark Generation

It is difficult to obtain the benchmark of anomalies from the real-world distributed
systems [Jiang et al. 2006b; Ghanbari and Amza 2002]. A lot of system faults may
happen in a distributed system. Though system experts may be able to manually
diagnose the system, identify the root causes, and resolve the problems, it is almost
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Fig. 9. Amplitude-based benchmark illustration.

impossible to ask them to rank all metrics according to the anomaly levels [Gertler
1998; Jiang et al. 2006b], because there is significant dependency between various
components and metrics of systems. Furthermore, for many cases, system experts may
just reboot the system to solve the problem without knowing the root causes. Thus,
system experts usually cannot provide the benchmark for anomaly ranking, while they
do expect the ranked metrics to guide them to locate the faults or understand root
causes.

To this end, in this article, we propose two methods to artificially generate the
benchmark with the synthetic data and provide a standard for us to evaluate different
anomaly ranking algorithms. First, the anomaly of a time series (metric) usually in-
dicates the abnormal amplitude change. Actually, people have developed some system
fault detection methods by checking the individual metric with a learned threshold
[Gertler 1998]. Based on this intuition, we generate the benchmark of anomaly by
measuring the changing ratio of the amplitude of time series. Specifically, at a certain
timestamp, we artificially inject anomaly into the time series. For example, in Fig-
ure 9, where the 1,001st observation of one time series is originally y1, after manually
changing the observation from y1 to y2, we measure the degree of manually injected
anomaly as

di = |y2 − y1|
|y1| . (27)

Given all the metrics in the invariant network, we randomly select a small portion of
metrics and manually inject a certain degree of anomaly to each one metric and record
all anomaly degree of all selected metrics. Then, we rank all the selected metrics
according to this artificial anomaly degree (from high degree to low degree) and treat
such rank as our first benchmark. We denote this benchmark generation method as the
amplitude-based benchmark. However, before we manually inject the anomaly, some
time series may happen to contain a certain degree of anomaly because we randomly
generate the synthetic data. Thus, we first calibrate the 1001st observations of all time
series into normal states. Specifically, for each time series Vi, we calibrate its 1001st
observed value until all its related links in the invariant network are decided to be
unbroken at the 1001st observation. The decision of being unbroken is determined by
the process described in Section 2.4.

Second, because of the anomaly of a time series (metric), the relevant residuals exceed
the residual thresholds and lead to broken links. Based on this intuition, we generate
the benchmark of anomaly via measuring the average changing ratio of residuals.
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Fig. 10. Residual-based benchmark illustration.

Specifically, we also first calibrate the 1001st observed values of all time series (within
the network we study) to be normal. Then we randomly choose a portion of metrics
and manually inject a certain degree of anomaly. Suppose we inject anomaly into the
time series (metric) Vi, then let us obtain all its relevant links, as shown in Figure 10.
Suppose we have total Z relevant links of Vi, which are denoted as Ez(1 ≤ z ≤ Z). For
each relevant link of Vi, we have already learned a residual threshold through invariant
searching. Each threshold is used to decide if a link is broken or not, as described in
Section 2.4. Let us denote all thresholds as εz(1 ≤ z ≤ Z). We also represent all residuals
of links at the 1001st observation as Rz(1 ≤ z ≤ Z). Then, we measure the anomaly
degree for metric Vi as:

ratiomean =
∑Z

z=1
|Rz|−εz

εz

Z
(28)

dr = max (0, ratiomean) . (29)

The reason we use the max function here is that the ratiomean may be negative by Equa-
tion (28). However, we set the minimum value of anomaly degree in the benchmark
as 0. Actually, negative ratiomean indicates the absolute value of residual is smaller
than the residual threshold, on average; thus, there is no anomaly associated with
the time series (metric). Finally, we rank all metrics with the injected anomaly ac-
cording to this artificial anomaly degree (from high degree to low degree) and treat
such a rank as another benchmark. Different from the first benchmark generation, the
residual of a link can be influenced by two related metrics. Thus, we keep all other
metrics (time series) normal when we measure the anomaly degree of one metric with
Equation (29). In practice, each time we only select one metric, inject anomaly at the
1001st observation, measure the anomaly degree, and then change its 1001st obser-
vation to the calibrated normal value. In addition, we perform the same procedure for
all selected metrics one by one. We denote this benchmark generation method as the
residual-based benchmark.

For each selected metric (time series), we keep injecting the anomaly until we get the
anomaly degree di or dr, which is positive. In other words, if the anomaly degree, di or
dr, happens to be zero after injecting the anomaly, we inject the random anomaly again
until we get the positive anomaly degree. All other metrics, which are not injected
anomaly, have anomaly degree 0 for both benchmark generation methods. In addition,
each of these two benchmarks is generated under a certain intuition and assumption,
and may be subjective. Thus, in the experiments, we will use both of them to compare
different ranking algorithms.

For the real-world data used in this article, we know the root cause of system faults.
Specifically, the domain experts have specified that the root cause is related to “AP11,”
which indicates a particular machine component in the system. Also, this root cause
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leads to some faults at the observation 139th in the test data. Thus, in the experiment,
we would like to leverage this information to evaluate the ranking algorithms. Basi-
cally, we will demonstrate how the top abnormal metrics ranked by our algorithms are
related to this known root cause.

5.4. Validation Metrics

Given the benchmark of anomaly ranking, we first use Precision and Recall to validate
the effectiveness of different anomaly ranking algorithms. Precision and Recall gen-
erally tell us the quality of top-K metrics in the ranking list, but they cannot capture
the order of metrics within the top-K metrics. In this system metric ranking scenario,
higher Precision and Recall only indicate that most metrics in the top-K ones are ab-
normal, but the order of metrics within the top-K ones is also important for providing
useful guidance to system experts, whose time is precious and want to have a priority on
diagnosing system faults. Thus, we further adopt normalized Discounted Cumulative
Gain at p (nDCG@p) [Jarvelin and Kekalainen 2002] to evaluate the ranking results.
nDCG@p takes into account the order of metrics within the top-p metrics and provides
more information about the quality of top-p metrics in the ranking list. All of these
measurements are widely used in ranking-related works [Valizadegan et al. 2009; Wei
et al. 2010]. In the following, we briefly introduce these validation measurements.

Precision is the fraction of the top-K metrics in the rank list that are truly abnormal
according to the benchmark. Specifically, among these top-K metrics, there are TK met-
rics that are abnormal, then the precision is computed as PK = TK

K . Also, suppose we
have R abnormal metrics that are manually injected a certain degree of anomaly, then
the recall is defined as RK = TK

R , where we usually set R <= K. The nDCG@p measure-
ment is evaluated over top-p metrics of the ranked metric list, based on the assumption
that highly abnormal metrics should appear earlier in the ranking list (have higher
ranks) and highly abnormal metrics are more important than marginally abnormal
metrics. Specifically, in this paper, reli represents the anomaly degree (benchmark) of
the metric at position i of the ranking list. Then, the nDCG@p is defined as:

nDCGp = DCGp

IDCGp
. (30)

Here, DCGp is computed as:

DCGp =
p∑

i=1

2reli − 1
log2(1 + i)

. (31)

In addition, IDCGp is the ideal DCG at position p of the ideal ranking list, which can
be done by sorting all metrics (all nodes of the examined invariant network) by the
anomaly degree (benchmark). Typically, we have p ≤ K if we examine the quality of
top-K metrics in the ranking list.

5.5. Ranking Performance Comparisons on Synthetic Data

In this section, we compare the performances of different ranking algorithms on the
synthetic data.

For the Synthetic Data I, the selected connected invariant network contains 129
nodes and 1,567 links. Among all 129 nodes, we randomly select 9 nodes to inject the
anomaly at the 1,001st observations. We perform such random selection 10 times. Each
time, we measure the anomaly degree for the selected nine nodes with both amplitude-
based and residual-based benchmark methods, thus we get two types of benchmark
rankings for each set of 9 abnormal nodes. For each set of 9 abnormal nodes, we conduct
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Table V. The Computation Time of Online Tracking of Invariant Networks

The Invariant Network The Invariant Network The Invariant Network
from Synthetic Data I from Synthetic Data II from Synthetic Data III

Computation
Time (sec) 0.051 4.002 0.601

Table VI. An Example of Benchmark Ranking and Anomaly Degree

Amplitude-based Residual-based
Ranked Anomaly Ranked Anomaly
Node IDs Degree Node IDs Degree

6 3.4897 120 18.1071
120 3.4741 6 14.2927

95 3.0046 210 11.5254
266 2.405 15 8.5929
208 1.6775 95 4.2812
287 1.2848 266 4.0993
210 1.0953 208 3.1036

15 0.5979 287 2.4399
26 0.0009 26 0.0001

Fig. 11. A comparison in terms of Precision (Synthetic Data I).

the online tracking of invariant networks (i.e., the detection of broken invariants). In
Table V, we show the computation time of one-time online tracking of the selected
invariant networks. As can be seen, the computation of online tracking is very fast,
as we mentioned in Section 2.4. Also the computation time of online tracking is linear
with the number of links in an invariant network. Based on each type of benchmark
ranking, we compute the average Precision, Recall and nDCG of the 10 sets of selected
nodes (metrics). Since we measure amplitude-based and residual-based anomaly for
the same set of nine abnormal nodes each time, we have the same average Precision or
Recall for these two types of benchmark rankings for one ranking algorithm. However,
for a set of nine abnormal nodes, the amplitude-based ranking order may be different
from the residual-based ranking order. Also, for a node, the amplitude-based anomaly
degree may be quite different from the residual-based anomaly degree. For example,
Table VI shows a comparison of these two types of benchmark rankings and anomaly
degree for one set of nine abnormal nodes.

Thus, for a set of nine nodes, the nDCG performance based on the amplitude-based
benchmark can be quite different from that based on residual-based benchmark for a
ranking algorithm.

Figure 11 shows the average Precision of top-K metrics. In Figure 11, we compare
the average Precision of the six algorithms with different K values. We empirically
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Fig. 12. The probability of being broken.

Fig. 13. A comparison in terms of Recall (Synthetic Data I).

set the maximum iteration number as 50 for the iterative solution of the gRank-based
algorithms to stop the iteration. Actually, after 50 iterations, both gr and gru lead to the
stable ranking results. As shown in Figure 11, all algorithms developed in this article
can outperform the baseline method. For example, all top-7 metrics by all algorithms
proposed in this article are truly abnormal, while only top-2 metrics by the baseline
method are abnormal. Also, the gr algorithm can lead to slight better performance
than the mr algorithm. The incorporated Uncertaintly may boost the performance for
some values of K. For many cases, it does not help a lot. To investigate this problem,
we plot the histogram of probability associated with all the broken links in Figure 12.
As can be seen, most of probability of being broken is close to 1, and only a very small
portion of probability is between 0.8 and 0.9 (recalling the calculation of probability in
Section 4.1.1, the minimum probability is 0.5). Incorporating this kind of Uncertaintly
will not make much change to the anomaly score (i.e., the calculation of ixScore and
wiScore). Thus, the incorporated Uncertainty does not help much with the ranking of
anomaly in this experiment.

Figure 13 shows the performance comparisons in terms of Recall of top-K metrics.
Similar to Precision, we can find a very similar comparison result in terms of Recall
among all the algorithms at different values of K.
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Fig. 14. A comparison in terms of nDCG (Synthetic Data I and amplitude-based Benchmark).

Fig. 15. A comparison in terms of nDCG (Synthetic Data I and residual-based benchmark).

Figure 14 shows the average nDCG@p with different p values for the amplitude-
based benchmark—p indicates the different position in the ranking list. Again,
for most values of p, all proposed algorithms lead to better performance (higher
nDCG values) than the baseline algorithm. In Figure 15, the average nDCG@p with
residual-based benchmark is presented. Even the absolute value of nDCG is different
from the amplitude-based benchmark, the comparisons among different algorithms
share the similar trend, as shown in Figure 14.

For Synthetic Data II, we randomly select 32 nodes among 1,551 nodes to inject the
anomaly at the 1,001st observations, get two benchmark rankings, and perform this
for 10 times to get average results. Then, we did similar comparisons among different
methods, benchmarks, validation measurements, and K values, as shown in Figures 16,
17, 18, and 19. As can be seen, the comparison results of different methods share similar
trends over different validation metrics.

For Synthetic Data III, we randomly selected 40 nodes among 2,821 nodes to inject
the anomaly at the 1,001st observations, and performed this for 10 times to get average
results. The similar performance comparisons among different methods are shown in
Figures 20 and 21, where we can find that gru (mru) can still outperform gr (mr) on
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Fig. 16. A comparison in terms of Precision (Synthetic Data II).

Fig. 17. A comparison in terms of Recall (Synthetic Data II).

Fig. 18. A Comparison in terms of nDCG (Synthetic Data II and amplitude-based benchmark).
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Fig. 19. A Comparison in terms of nDCG (Synthetic Data II and residual-based benchmark).

Fig. 20. A comparison in terms of Precision (Synthetic Data III).

Fig. 21. A comparison in terms of Recall (Synthetic Data III).
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Table VII. Top-12 Metrics by Different Methods at 139

AP11-Related Metrics b
AP11 PACKET Output DB17 DISK hdm Request

AP11 DISK hd0 Request DB18 DISK hdk Busy
AP11 CPU User DB18 DISK hday Busy

AP11 DISK hd45 Request DB16 DISK hday Busy
AP11 DISK hd45 Busy DB17 DISK hdm Block

AP11 DISK hd1 Request DB16 DISK hdk Busy
AP11 CPU System DB15 DISK hdk Busy
AP11 CPU Waitio DB16 DISK hdm Block

AP11 DISK hd45 Block DB15 DISK hday Busy
AP11 PACKET Input DB18 DISK hdbu Request
AP11 DISK hd0 Busy AP11 PACKET Input
AP11 DISK hd30 Busy AP13 DISK hd30 Request

mr gr
DB17 DISK hdm Request AP13 DISK hd30 Request

DB18 DISK hday Busy AP11 DISK hd45 Request
DB18 DISK hdk Busy DB16 CPU User
DB16 DISK hday Busy AP11 DISK hd0 Request

AP11 DISK hd45 Request DB18 DISK hdw Request
AP11 DISK hd0 Request AP11 DISK hd45 Block
DB16 DISK hday Block AP11 PACKET Input
AP11 DISK hd45 Block DB16 DISK hday Busy

WEB17 DISK BYDSK PHYS WRITE BYTE DB16 DISK hdk Busy
DB16 DISK hdbk Request DB17 DISK hdm Block
DB17 DISK hdx Request DB15 DISK hday Busy
DB17 DISK hdbl Request DB16 DISK hdm Block

sparse invariant networks in terms of precision and recall, and all proposed methods
lead to better results than the baseline algorithm.

5.6. Ranking Performance Comparisons on Real-World Data

In this section, we compare the ranking performances of different algorithms on the
real-world data.

In the real-world data, there is a root cause related to the “AP11” at the 139th obser-
vation in the test data. However, it is difficult to ask system operators to provide the
rank of abnormal metrics because there is huge dependency among various metrics.
Moreover, we have a unique semantic label associated with each metric. For exam-
ple, some semantic labels may be “DB15 DISK hdaw Block” and “WEB26 PAGEOUT
RATE.” From these labels, we can easily infer some information of a metric, such as the
layer of the distributed system and the cluster or machines associated with the metric.
Actually, a system expert who is very familiar with the specific system may be able to
infer more relationships among metrics by checking the semantic label. Finally, with
a simple query, we find all 12 nodes (metrics) with labels related to “AP11.” Table VII
shows all these metrics.

One of our goals is to study how the top metrics in the ranking list are related to
this “AP11”-related root cause. First, given the root cause at the 139th observation,
we perform online tracking in invariant networks and do metric ranking at the 139th
observation in the test data. Table VII shows the label of top-12 metrics of ranking
lists generated by three different ranking methods. For example, in the ranking list of
the mr algorithm, there are three metrics related to “AP11” in the top-12 metrics. And
the gr algorithm produces the most number of metrics related to “AP11” in the top-12
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Fig. 22. Illustrations of four metrics.

metrics. However, it is possible that other metrics, which are not labeled with “AP11,”
can become abnormal after the root cause happens, because there is much underlying
dependent relationship between different components of the information system and
such dependency will help to spread the influence of root cause in the information
system. To investigate this, in Figure 22, where we highlight the 139th observation
with a small square, we simply plot four metrics that are in the top-12 metrics by the
gr algorithm but not related to “AP11.” As can be seen, most metrics start to behavior
very abnormally from the 139th observation.

Moreover, the system fault may propagate its influence on more metrics with the
time. For example, an AP11-related metric may tend to become abnormal several
seconds later than the occurrence of root cause because of the natural system delay
[Jiang et al. 2006a]. Also, this temporal influence propagation will further make impact
on more abnormal metrics, which may or may not related to “AP11.” To this end, we
continue to perform the ranking at the observations after the 139th one. Specifically,
in Table VIII, we see results that are similar to Table VII at the 140th and 141th
observations. Note that, to save space, we only show the results of mr and gr algorithms.
As shown in Table VIII, there are more metrics related to “AP11” appearing in the top
of the ranking lists by different methods. More other metrics, which did not appear in
the top of ranking lists at the 139th observation, also show up in the top of the ranking
lists.

5.7. The Computational Performances

Due to the large-scale nature of modern information systems, it is important to develop
efficient ranking algorithms in practice. To this end, in this section, we evaluate the
computational performances of the proposed ranking algorithms. We also compare
the two different computation solutions—iterative and algebraic solutions—of the gr
algorithm.

To do a fair comparison, we stop the iteration of the gr algorithm until the anomaly
score of all nodes, wiScore, does not change. Table IX shows the running time of three
methods on Synthetic Data I and II. Here, all the results are the averages over 10 sets
of abnormal nodes. As can be seen, on the Synthetic Data I, the mr algorithm is faster

ACM Transactions on Knowledge Discovery from Data, Vol. 8, No. 2, Article 8, Publication date: May 2014.



Ranking Metric Anomaly in Invariant Networks 8:27

Table VIII. Top-12 Metrics by Different Methods at 140 and 141

mr@140 mr@141
WEB11 SYS MODE UTIL WEB11 SYS MODE UTIL
AP11 DISK hd45 Request AP11 DISK hd45 Request

WEB11 TOTAL UTIL WEB12 NET BYNETIF IN PACKET
AP11 PACKET Input AP11 PACKET Input

WEB10 USER MODE UTIL WEB14 DISK BYDSK PHYS WRITE BYTE
WEB10 TOTAL UTIL WEB10 TOTAL UTIL

WEB12 DISK BYDSK PHYS BYTE WEB12 DISK BYDSK PHYS BYTE
AP11 CPU Waitio AP11 CPU Waitio

DB16 DISK hdj Request DB15 DISK hdax Request
WEB11 DISK BYDSK PHYS IO DB18 DISK hdbu Request

DB16 DISK hdw Busy DB16 DISK hdw Busy
DB16 PACKET Input AP11 DISK hd30 Busy

gr@140 gr@141
AP11 DISK hd45 Block WEB12 NET BYNETIF IN PACKET

WEB13 DISK BYDSK PHYS READ BYTE AP11 DISK hd45 Request
AP11 DISK hd0 Request AP11 DISK hd45 Busy

WEB13 DISK BYDSK PHYS READ AP11 DISK hd45 Request
AP11 DISK hd45 Request WEB14 USER UTIL
AP11 DISK hd0 Request AP11 DISK hd45 Block

WEB10 DISK BYDSK PHYS READ AP11 PACKET Input
AP11 DISK hd45 Block DB16 DISK hday Busy

WEB17 DISK BYDSK PHYS WRITE BYTE DB16 CPU User
AP11 PACKET Input AP11 DISK hd1 Request

AP11 DISK hd1 Request AP11 PACKET Input
DB17 DISK hdbl Request DB16 DISK hdm Block

Table IX. Results of the Computational Performance

On Synthetic Data I
mr gr: iterative solution gr: algebraic solution

Computation 0.06902 0.33724 0.0484
Time (sec)

On Synthetic Data II
mr gr: iterative solution gr: algebraic solution

Computation 4.0102 66.9131 10.8782
Time (sec)

than the iterative solution of the gr algorithm. However, the algebraic solution of the
gr algorithm is a little faster than mr and much faster than the iterative solution.
However, on the Synthetic Data II, which contains much more nodes than Synthetic
Data I, the efficiency of the mr algorithm is much better than both solutions of the
gr algorithm, while the algebraic solution is clearly better than the iterative solution.
These observations tell us that for a small invariant network, the gr algorithm with
algebraic solution can lead to the competitive efficiency and more effective ranking
results, as shown in Section 5.5. However, for a large invariant network, the mr algo-
rithm allows us to get the ranking results much faster. In other words, there is a clear
trade-off between efficiency and effectiveness for different algorithms.

6. RELATED WORK

Related work can be grouped into three categories. The first category is most relevant
and includes the work on fault detection in distributed systems. The second category
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is about the related work on invariant search. Finally, the third category includes the
general work on graph-based anomaly detection.

First, fault detection and diagnosis in complex information systems has drawled
a lot of attention in the literature. For instance, Yemini et al. [1996] used event
correlation and located faults based on known dependency relationships between
faults and symptoms. However, in practice, it is usually very difficult to obtain such
fault-symptom dependency relationships precisely. Also, [Jiang et al. 2011] developed
an efficient fault detection and diagnosis method in complex software systems with
information-theoretic monitoring. With a focus on small information systems, they
proposed to locate faulty components by leveraging the component dependencies,
which is probably unknown for today’s large-scale information systems. In Hangal and
Lam [2008] and Jiang et al. [2008], Bayesian and neural networks were use to learn
fault symptoms from labeled data. Even the labeled data significantly helps improve
diagnosis, it is extremely difficult to obtain such prior faulty knowledge for a large-scale
distributed system. Jiang et al. [2006a, 2006b] and Chen et al. [2010] have developed
a series of model-based approaches to detect the faults in complex distributed systems.
Jiang et al. [2006a, 2006b] have developed some Jaccard-coefficient-based approaches
to locate the faulty components after searching all invariants among metrics. Nonethe-
less, the nature and structure of invariant networks is still under-explored within the
residual-correlation-based approaches. Instead, in this article, we focus on the ranking
of nodes (metrics) in invariant networks rather than focusing on locating the faulty
components.

Second, the work on invariant search is a basic step of the proposed task in this
article. To the best of our knowledge, the “invariant” concept was first proposed by
Jiang et al. [2006a] and used widely for large-scale system management. Since in-
variant search can be very expensive, two efficient searching algorithms, SmartMesh
and SimpleTree, were developed by Jiang et al. [2007]. However, both SmartMesh
and SimpleTree methods are based on some assumption and lead to heuristic results.
Thus, the accuracy (recall) of invariants are sacrificed. To get the precise invariant
network, in this article, we use brute-force method to search complete invariants. In
Chen et al. [2008] and Shan et al. [2010], in addition to the original invariant in Jiang
et al. [2006a], the global invariant concept was introduce to address the relationship
among metrics. It is much more complex to search the global invariants than the pair-
wise invariants. Thus, they developed efficient search algorithms to search the global
invariants. In addition, Jiang et al. [2009] used a combination of generalized least
squares and multivariable regression to model nonconstant residual variance to char-
acterize the relationships among metrics. Also, an efficient algorithm was proposed to
find such invariant.

Finally, there are some more general related works on graph-based anomaly detec-
tion. In Jiang et al. [2006b], an anomaly score of a node (metric) was simply defined as
the ratio of broken links among all relevant links. Then, all nodes are ranked based on
the defined anomaly score. In this article, we use this method as the baseline method
for comparison. In Noble and Cook [2003], the methods for detecting anomalous sub-
graphs in graph data were proposed. However, instead of ranking nodes, they proposed
to detect/rank the abnormal subgraphs. In Liu et al. [2005], frequent subgraph mining
was used to detect noncrashing bugs in software flow graphs. Moonesinghe and Tan
[2008] introduced a stochastic graph-based anomaly detection algorithm called Out-
Rank. Essentially, this approach is to build a Markov chain model on the graph data
and assign an anomaly score to each node via analyzing the structure of the graph. Le
et al. [2011] proposed a novel approach to detect anomalous network traffic based on
graph theory concepts such as degree distribution, maximum degree and dK-2 distance.
They used the traffic dispersion graphs (TDG) to model network traffic over time and
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analyzed differences of TDG graphs in time series to detect anomalies. Akoglu et al.
[2009] proposed an algorithm named OddBall was proposed to detect anomalous nodes
in weighted graphs. The main idea of OddBall is to leverage features of nodes, and
rules in density, weights and so on to quatify the anomaly of nodes. Eberle et al. [2009]
and Eberle and Holder [2009] detected threats in cyber systems by modeling the re-
lationships among the entities of cyber systems. They first mined normative patterns
in the graph using graph-based data mining and then searched for unexpected devia-
tions to these normative patterns in order to detect the threats. In Eberle et al. [2012],
graph-based anomaly detection was used for homeland security cargo screening. In
addition, in Inoue et al. [2003], a node (component) ranking method was developed to
rank software components after obtaining the directed graph.

7. CONCLUDING REMARKS

In this article, we presented a study of exploiting monitoring data, collected at different
points in distributed information systems, for system fault detection and diagnosis.
Specifically, we proposed a metric anomaly ranking problem, which is motivated by the
complexity arising from the traditional invariant-based modeling of system dynamics.
Indeed, based on the domain understanding of system faults, their influence patterns
in invariant networks, and link analysis in networks, we developed two types of metric
anomaly ranking algorithms. First, mRank is a simple but efficient ranking algorithm
which considers all broken links of a node and the broken links of its direct neighboring
nodes. We also developed the gRank algorithm, which applies an iterative way for
computing anomaly scores for the nodes in invariant networks. In addition, we derived
the algebraic solution for the gRank algorithm. For both mRank and gRank algorithms,
we further introduced the probability of being broken for each link and then proposed
two extended algorithms. Finally, we demonstrated the effectiveness of all the proposed
algorithms on both synthetic and real datasets, and we showed the computational
performances of these algorithms on a large-scale synthetic dataset.
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