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This leads to minor improvements in (4)—(6) in the coefficient of the

term arising from the casg = 0. Abstract—n this correspondence, we present a construction, in a closed
For P(m, 2) and the small set of Kasami sequences of ledgth.  form, for an optimal family of 2™ binary sequences of period22™ — 1
we have approximately equal maximum even correlation. The Kasafyiih respect to Welch's bound, whenever there exists a balanced binary

f em I : ;
set has considerably fewer sequences, however, the best known u@é%lr'ence of perio™ — 1 with ideal autocorrelation property using the
ce function. This construction enables us to reinterpret a small set of

bound (see [7]) for their maximum aperiodic correlation B&#2/7  asami and No sequences as a family constructed from-sequences. New
as the coefficient of /7 In (4L /) where we haves/x. optimal families of binary sequences are constructed from the Legendre
sequences of Mersenne prime period, Hall's sextic residue sequences, and
miscellaneous sequences of unknown type. In addition, we enumerate the
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if there exists an integer such thatc(t) = b(¢ + 7) for all t. sequences with respect to Welch’'s bound. In Section Ill, the small
Otherwise, they are said to lmyclically distinct For an integer, set of Kasami sequences and the No sequences are reinterpreted as
the sequencdc(t)} is called thedecimationby » of the sequence a family constructed from then-sequences. New optimal families
{b(t)} if c(t) = b(rt) for any integett. It is easily checked that the of binary sequences are constructed from the Legendre sequences of
period of {c(¢) = b(rt)} is given by N divided bygcd (r, N). Itis Mersenne prime period in Section IV. Hall's sextic residue sequences
also well known that if a sequendé(#)} of period N has the ideal and miscellaneous sequences of unknown type are also considered in
autocorrelation property, so does its decimatjotrt)} by », wherer ~ Section V.
is an integer relatively prime t&/. Two sequence$b(t)} and{c(t)}
are said to beequivalentf there are some integersandr such that Il. CONSTRUCTION OF AFAMILY OF BINARY SEQUENCES
c(t+7) = b(rt) for all . They are said to bimequivalenf otherwise. WITH OPTIMAL CORRELATION

Consider a set of binary sequences, each with peridd denoted

by Let ¢ be a prime power and, be the finite field withy elements.

» Letn = em > 1 for some positive integers and . Then the trace
(),  t=0,1,---. N—1},  j=1,2 -, L functiontr?, (-) from Fu» to its subfieldFy~ is a mapping [10], [11]

- . . given by
The periodic crosscorrelatiof®;«(7) at shift 7 between two se-

quences{+?)(¢)} and {v‘*)(¢)} from this collection is defined as

e—1 .
n 27
try, (z) = E x= .
N-—-1 ‘
=0

o) (b )0 (B
Rt = 3 (-, .
= No et al. [17] presented a closed-form expression of binary se-

guences of longer period with ideal autocorrelation property in a trace
representation, if a given binary sequence with ideal autocorrelation
property is described using the trace function. The idea of extension
R4 =max max |R;;(7)| in [17] will be helpful for our further discussion, so it is quoted

7 0<r<N without proof in the following theorem.

and the maximum crosscorrelation magnitutle between sequences Theorem 1 [17]: Let m andn be positive integers such that| n.
T

The maximum out-of-phase periodic autocorrelation magnitiide
for this signal set is defined as

in this set is given by Let & be a primitive element off;» and setd = «° where
_ ) ) T =(2"-1)/(2™—1). Assume that for an index séf the sequence
Ro = P 2 | Bji (7)]- {b(t),tp =0,1,---, M — 1} of period M = 2™ — 1 given by
The criterion for signal design is to minimize b(t)) = Z tr} (31

Ruax = max (Ra, Ro). el

) ) ) ) has the ideal autocorrelation property. For any integet < r <
In signal design, the Welch bound and the Sidelnikov bound ajg _ { relatively prime toM, the sequence

used to test the optimality of sequence sets. Some of well-known

optimal families of binary sequences include Gold sequences [6], {c(t),t=0,1,---, N -1}
Kasami sequences [18], [20], bent sequences [12], [20], and No . v on .

sequences [15]. Gold sequences form an optimal set with resp@gPeriod N = 2" — 1 defined by

to Sidelnikov’s bound [19] which states that for any set/ofor c(t) = Z e ([t (a')]")

more binary sequences of peridd =y

Runax > (2N = 2)'/2, also has the ideal autocorrelation property.

. . . . . Based on the idea of extension in Theorem 1, we will provide a
The small set of Kasami sequences is an optimal collection of blnarw

sequences with respect to Welch’s bound [22], which implies that et_hoql ;2 construct an c_)ptlmal_ family af” binary seq_ue?ces of
period 2°™ — 1 from a given binary sequence of periad® — 1

Runax > 1+ 27/ with ideal autocorrelation property. Throughout the correspondence,
we use the following notations. Let. and n be positive integers

when it is applied to a set &"/* sequences of perio = 2" — 1  gych thatm [n. Let a be a primitive element inFy» and set
for an even integern. Bent and No sequences also form an optima} — ,(2"=1/(2™=1) Note thats is primitive in Fy=. From now

set with respect to Welch’s bound, respectively, but they have largg§, we assume that the sequedéér;), ¢, =0, 1, ---, M — 1} of
linear spans than Gold sequences and Kasami sequences. period M = 2™ — 1 given by

In this correspondence, we show that if a binary sequence of period
2™ — 1 in a trace expression has the ideal autocorrelation property, b(t1) = Z tr" (3°) (1)
it can be used to construct, in a closed form, a famil\26f binary =

sequences of perid2f™ — 1 with optimal correlation with respect to has the ideal autocorrelation property for an indexset

Welch’s bound. This construction method enables us to reinterpret therpagrem 2: Let n = 2im, and let{s")(¢)} be the sequence given
small set of Kasami sequences as well as the No sequences as a fagily ‘

constructed from then-sequences. New optimal families of binary »

sequences are constructed from the Legendre sequences of Mersenné” (t) = > tr{" ([tr}, (o) +v;8°"),  for v; € Fom
prime period, Hall's sextic residue sequences, and miscellaneous a€l

sequences of unknown type. In addition, we enumerate the numRﬁ"rere r,1 < r < M —1,is an integer relatively prime to
of distinct families of binary sequences, which are constructed from _ Q,L —_ 1. and the index‘seI is in (1). Define the familyF

a given binary sequence by this method. of 2™ binary sequences of peril = 2" — 1 as
This correspondence is organized as follows. In Section II, we ,
present the main results to construct an optimal family of binary 7 = {{s")(¢),t=0,1,---, N =1} |j=1,2,---,2™}.
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Then the familyF is an optimal set 02" binary sequences of period Therefore, it is sufficient to find the size of the setrefs such that
N with respect to Welch’s bound. Furthermoi@;;(7) takes only a the inner sum gives the val@& —1 in order to compute?;; (7). Let
value—1, 2™ — 1, or —2™ — 1 for anyi, j, andr except for the . .
case wheré = j and7 = 0 (mod N). A={ta]0 <12 <27, f(vin t2) = 077 f (5. ta + 72) )
Proof: We will show that the possible values &f;(7) are—1,
2™ —1,or—2"—1 for anysi, j, andr except for the case wheie= j
andr_ = 0(mod N). Letzz;’ =2"41. SinC?gcd (2'”_— 1, T) =1, Rij(1) = (2" —1) - |A| 4 (=1)- (2" +1—|A])
any integert, 0 < ¢t < 2°™ — 2, can be uniquely written as

Then we have

=2"|A| - (2™ + 1). 2
t=0T+ (2" -1), 0<t <2™M =2, 0<t, <2™,

2t5(2™

By definings = a Y andu = o?=2?" Y we have

Then each sequen({e“)(t), t=0,1,---, 2" — 2} becomes

2 27 27 2™
SO = 3t {Jerd, (20T A= [{ole + 227 45 = 327 e+ 0?22 44},
acl ” 107 227
e 3t1'1'+t2(2m71)]ar} Note thate € Fy2-\{0} anda = z, SO we get
e . P2 2@ )2 S22
= 3 a0 e (0777 ) roe ' "
a€cl

Similarly, we haveu?” = «~'. Thus
sincea®'” € Fym and 37 = 2. For short notation, we define

e AL = [l + 27" 4 = 527+ () ™"+ )}
Flyis t2) = el @227 D) 44,

={z|e® + 14+ vie =87 (ua® + v 4 ).
Then we have
, N ] The degree of the polynomial inis at most2, which meansA| < 2.
sW(t) = S {8 f (s t2)]" ) Hence we conclude that

a€l

Similarly, we have Rij(r) € {=2" -1, -1,2" — 1}

() _ mof g2ar(tidT) o ar) from (2). (I
sV (t+r)=) tr" {f [F(vis 2+ 72)]"}

; ' ! Theorem 3: Let & = 2n, and lety be a primitive element of,.
Set = 42" D/@"=1 ganda = 4@ D/ D Let {s0) ()} be
the sequence given by

sO 1) =Y e ([t (e, (47 + 8,071
Thus we get the equation at the bottom of this page. Note that the a€l

inner sum . . .
ey for 6; € Fy» and the index sef in (1), wherer, 1 <r < M —1, is

Z (—]_)Zael P (B2OTL([f (va, 1)) HIBTL (75, ta+72)]%T)) an intt_ager relative_ly primt_a tas = 2™ - 1, andu, l1<ug N =1,
is an integer relatively prime t&/ = 2" — 1. Define the familyF
of 2" binary sequences of periofl = 2¥ — 1 as

wherer, 0 < 7 < 22 — 2, is also uniquely written as

T=nT+ (2" -1), 0<7 <2™M—-2,0< 12 <2™.

t1=0
yields 2™ — 1 when

‘ F={{sV),t=0,1,---, K=1}|j=1,2,---,2"}.
Frist2) = B2 f (50 t2 4 72).

Then the familyF is an optimal set 02" binary sequences of period

When I with respect to Welch'’s bound, arfé} ;(7) takes only a value-1,
Fyin t2) # B f (4, to + 72) 2" — 1, 0r=2" — 1 for anyi, j, andr except for the case where
) ) ) ) i =jand7 = 0(mod K).
we claim that the inner sum is-1. If either f(~;, t2) = 0 or Proof: By Theorem 1, the sequencg(t:)} in (1) can be

Fv, f:z + ) = 0, the exponent to(—l). in the inner sum is aytended to a sequende(ts), t> = 0, 1, ---, N — 1} of period
essentially a shift of the sequenfie2r#, ) }. Sinceged (2r, M) =1,y — 97 _ 1 with ideal autocorrelation property given by
it is obvious that the sequendg(2rt1)} is balanced and has the

ideal autocorrelation property. This implies that the inner sum gives c(ta) = Z try” ([t (a'2)]*").

—1. On the other hand, iff(vi, t2) # 0 and f(~;, t2 + ™) # 0, acl

the inner sum is the autocorrelation of the sequefig@rt1)} at

a nonzero shif{mod V), so it is —1 by the assumption. Thus theLet 7'=(2“—1)/(2" —1). Sinceged (2" —1, T) =1, any integer,

inner sum always yields-1 if 0 <t < 2" -2, can be uniquely written as
f(’)"i-/ tz) 7/: /327—1]“(’)”]'./ to + TQ). t= tQT + tg(?n - 1). 0 S ta S 2" - 2, 0 S t3 S 2".
— @ o
sit s\ T
Rij(r) =Y (=17 O
t=0

2m 9™ _g
Z Z (_1)Za€1 e (B2 ([f (i, t2)]*THB2TL (75 t2+1'2)]‘”)).

to=0 t;=0
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Then each sequent{em(t)} becomes

s(j)(t Ztl

a€l

T [t n( )121+2t3()n 1))

+6 }(’t2T+t3(2”71)]U)]a7‘)

= 3 o ([ (0= ok (757 0) 4 6])])
acd

= a”. For short notation, we define
f((sjv t‘J) = trf‘; (72%(2”71)) + (5‘],.

Then we have

since+*"2' € Fon anda’

SO0 = o (el (0* 2 [£(85, )],
acl
Note that
(]) H = 0, if f( Jﬂt3) 0
O = c@ults + 1)), i £(6,, t5) = a2,

Since{c(2ut,), to =0, 1, ---, 2" — 2} is the decimation bypu of

{c(t2)}, it also has the ideal autocorrelation property. Hence, similar

arguments as in the proof of Theorem 2 complete the proof. (I

1599

In signal design for CDMA, it is desirable to have a lot of distinct
families of binary sequences with optimal correlation for a given
period. Hence it is an interesting problem to find the number of
distinct families of binary sequences constructed from a given binary
sequence by Theorem 2.

Two families 74 and Fp of sequences of the same period are
said to beequivalentif each sequence itF4 is a cyclic shift of
some sequence iffz, andvice versa Otherwise, they are said to
be distinct Furthermore, they are said to Welly distinct if each
sequence i 4 is cyclically distinct from every sequence jhs.

For an integetM = 2™ — 1, define the cyclotomic cosét; of an
integeri, 0 < i < M —1, by

Ci={jl0<j<M-1,
j =i2" (mod) M for some integet > 0}.

For the sake of convenience, the cyclotomic coset representative of
C; is often defined as the least integerGi. It is easily checked that
eitherC; = C'; or C; N C; = ¢. Hence the sef0, 1, ---, M — 1}

is partitioned into pairwise disjoint cyclotomic cosets, that is,

{0,1,---, M -1} = Ua
1I€EA

Remark 4: The family 7 of sequenceqs'”)(t)} in Theorem 3 \yhere 4 is the set of all the cyclotomic coset representatives. Note

can be obtained by applying Theorem 1{t(¢:)} in (1) and then {hat
Theorem 2. As a first stegdb(¢1)} can be extended to a sequence

{e(t2),t2 = 0,1, -, N — 1} of period N = 2" — 1 with ideal
autocorrelation property, defined by
c(t2) = tri" ([tr, (a')]"")
a€cl
wherer, 1 < r < M — 1, is an integer relatively prime tad/.
Writing each trace term ir(t.) as

oy ([, (@) = YT oy (a"2)

i€J(a)

©)

for some index sef (a), the sequencéc(tz)} can be expressed as
c(t2) = Z Z tr} (a''2).
acli€J(a)
Applying Theorem 2 to{c(#2)}, we have a family
F={{V 0} li=12--. 2"}

given by
VI =3T3 wf ([t () + 85077
a€l i€ J(a)

for an integern:, 1 < u < N —1, relatively prime toN. On the other
hand, s\ (¢) in Theorem 3 can be expressed as

s(j)(ff) - Z try” ([er ([trf (%) + 8;a'])]™")
a€cl
=> > [tk (%) + 8,0'])")
a€l i€ J(a)

tr" (27) = tr]” (2")

for any integerj € C;.
For an integer and an index sef, definerI as

rI={jl0<j<M-1,j=ri(mod)M fori e I}
and define the séf; of cyclotomic cosets associated withas
Tr = {Cqyla € T}.

Let N; be the number ofr’s relatively prime toM such that
Tr # Ty, ie,

Ni=Hrl<r<M-1,gcd(r, M)=1, andT; # Trs}|. (4)

Theorem 5: Let Ny, be the number of fully distinct familieg
of 2™ binary sequences of periad = 2" — 1 given in Theorem
2. Then we have

T CC\D]
n
wherep(-) is the Euler's phi function andV; is given in (4).

Proof: In order to evaluatéVy..,.,, we need to count the number
of choices forv andr. The number of choices fer is o (N)/n, since
o' and o’ give the same family for any in the cyclotomic coset
mod N containingi. If »1I = r,I, then the family associated with
r = ry is exactly the same as the family associated witk 7.
Thus the number of choices foris N;, given by (4). Therefore,
Ntam = N1 - @(N)/n. O

M.
Let m andn be positive integers such that= 2m. Let « be a

K ASAMI SEQUENCES ANDNO SEQUENCES

using the relation in (3). Hences”)(¢) is exactly the same as primitive element offz» and set3 = a” whereT = 2™ + 1. Then

,1)(1)(1;). O

3 is a primitive element ofy~. Let{b(¢,), t, =0, 1, --- , M —1}

A general form fors\"(¢) in Theorem 3 can be given as follows:be a binarym-sequence of periodf = 2™ — 1, given by

mz

[tlm 1 mg

7772

mo 2t~
tr?nl )

([ ([try,, (v

s =3y
a€l
Hojal]) - T,
Here,m = mi|mz|---|mq = n, andr; is relatively prime t@™ —1
for eachi = 1,2, ---, d.

fl) = Trm 311).

Note that them-sequence{b(t1)} is a binary sequence with ideal
autocorrelation property. Applying Theorem 24b(¢,)}, we get an
optimal family F defined by

F={{sV),t=0,1,---, N=1}j=1,2---,2"} (5)
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where {s”)(#)} is the sequence of perial given by Theorem 7: Let m be an integer such that/ = 2™ — 1 is a
» prime, and let. = 2m. Let « be a primitive element of7,;, the
s ) = ul" {[tl, (o) + 4,87} set of integersnod M. Let o be a primitive element of,» and set
8 =a’ whereT = 2™ 4+ 1. For an integerr, 1 <r < M —1, let

for 4; € Fom. Observe that the family® in (5) is exactly the family {s¢)(¢), + =0, 1, ---, N—1} be the sequence of peridd = 2" —1

of No sequences [15]. In particular, the famify becomes the small given by

set of Kasami sequences wher= 1 [14], [20]. Hence the small set [(M—1)/2m]—1

of Kasami sequences and the No sequences can be reinterpreted as;(/) 4y = Z e {[tr? (a®') + Wﬁ,,]ru,zz ,

a family constructed from the.-sequences. Similarly, generalized =0 ‘

No sequences in [13] and [14] are shown to be families constructed for v; € Fam.

from anm-sequence by applying Theorem 1 successively and then ) .

Theorem 2. Then the familyF defined by

Consider the numMbe¥.., of fully distinct families of 2" binary F={{sV®}j=12 ---,2"}
sequences of periad = 2" — 1 constructed from am-sequence by
Theorem 2. Sincd = {1}, it is easy to check tha¥; = ¢(M)/m.
Hence we have

is an optimal set 02™ binary sequences of perigd = 2" — 1 with
respect to Welch’s bound.
Consider the numbe¥y.,,, of fully distinct familiesF of 2™ binary

N — w(M) ) e(N) sequences of period = 2" — 1 constructed from the Legendre
Sam = n sequence of period/ = 2™ — 1 by Theorem 7. Since we have
which is a known result [15]. = {uziﬁ —0 1, A{)— 1 1}
Zm

for a primitive element: in Zyy, it is easy to check thalv; = 2.

IV. NEw OPTIMAL FAMILIES OF BINARY SEQUENCES
Hence we get

: - . SP(N)
A. New Optimal Families from Legendre Sequences Ntam = ZT-
Let p be an odd prime. The Legendre sequeriéer). ¢ = 0. Remark 8: By Theorem 3 and Remark 4, the Legendre sequences
L, ---p — 1} of periodp is defined as of Mersenne prime period™ — 1 can be used to construct optimal

families of period2* — 1, wherek is any even multiple ofn. O

Example 9: Letm = 7 and thusM = 127(=2"—1). Itis easy to
check thatw = 3 is a primitive element of 2. Let 3 be a primitive
element ofF,-. The sequencéb(t1), t1 =0, 1, ---, 126} given by

1, ift=0modp
b(t) =< 0, if tis a quadratic residumod p (6)
1, if ¢ is a quadratic nonresiduaod p.
It is not difficult to show that{b(¢)} has the ideal autocorrelation 8 2i LA
property if and only ifp = 3§n50)d}4) [3], [8]. Recently, a trace b(ti) = Z ol (5% 1) = Z i (57"
representation of the Legendre sequences of period 2™ — 1 =0 =0
(called Mersenne prime) was derived as follows [16]: is the Legendre sequence of peribalr.
Proposition 6 [16]: Let M = 2™ — 1 be a prime for some integer Letn = 2m = 14. Let « be a primitive element of’,14 such that
m > 3 and letu be a primitive element of,/, the set of integers # = a'**. Forv; € Fy, we define

mod M. Then there exists a primitive elementof I, such that , e w 2
SO =3t (et (@) + 4,87 )
1=0

[(A4—1)/2m]—1
m ’LL27.
Z try" (a” ) =0 wherer, 1 <r < 126, is an integer. Then the famil§ defined by
1=0 .
F={sV).t=0,1,---,16382}j = 1,2, .-, 128}

and the sequences(#), =0, 1,2, -, M—1} of periodM given optimal set of 128 binary sequences of peti&B3 with respect

by to Welch’s bound. Note that there are 1512 fully distinct families of
[(M—1)/2m]—1 binary sequences of periot383, constructed from the Legendre
214 . —_
s(t) = E try (o™ ) (7) sequences of periotR7. O

=0

) ) . B. New Families from Hall's Sextic Residue Sequences
is exactly the Legendre sequence given in (6). ) . . .

Consider a decimatiofs(«'#)} by «' of the sequencés(t)} given Binary sequences of_ periad = 2 — 1 with ideal autocorrelation
in (7). Clearly, if/ is an even integer, thefs(u'?)} is the Legendre prope_rty associated with Hall's difference set appears only Wh_len
sequence given in (6). It is also easy to show that i§ an odd 'S 5,7, and17 [1], [9]. They are known as the Hall's sextic residue
integer, then{s(u't)} is the sequence given by sequences. In the case that= 5, the Hall's sextic residue sequences

' t are exactly then-sequences of perio8il.

1., if t=0mod M Let m be one of5, 7, or 17, and setM = 2" — 1. Let« be a
s(u't)={ 1, if tis a quadratic residusod M primitive element inZ,;, and let3 be a primitive element of ;.
0, if tis a quadratic nonresiduaod M. From a computer search for a trace representation of the Hall's sextic
residue sequencgh(ti), t1 =0, 1, ---, M — 1} of period M, it is
Since {s(u't)} has the ideal autocorrelation property regardledgund that it can be expressed as
of I, we will also refer to it as a Legendre sequence hereafter. [(M=1)/6m]—1 o
The following theorem is the consequence of Theorem 2 and Propo- b(t) = Z e (@ ).

sition 6. i=0
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Note that its decimation by any integeralso has the ideal auto- By Theorem 2, new optimal families can be constructed from the

correlation property. Hencelb(¢1)} and all of its decimations are above sequences of unknown type. For example, consider a family

called the Hall's sextic residue sequences. Applying Theorem 2 from the sequencghi(#1)}. Letn = 2m = 14. Let« be a primitive

{b(t1)}, we have an optimal family with respect to Welch’s bounalement ofF,14 and set3 = o” whereT = 27 + 1. For any integer

in the following. r,1<r <126, let{s“(t),t=0,1,---, N—1} be the sequence
Theorem 10:Let » = 2m, wherem is one of5, 7, or 17, and of period N = 2'* — 1 given by

let v be a primitive element iy, with M = 2" — 1. Let« be a

e j \ 7 14 2t atiar
primitive element ofF» and set3 = o’ whereT = 2™ + 1. For s (t) = Z try {[trr” (o) + ;81" }
any integerr, 1 <r < M — 1, let {sW(#), t=0,1,---, N — 1} €l
be the sequence of periodl = 2" — 1 given by wherev; € Fyr andI = {1, 9, 13}. Then the familyF defined by
[((M—-1)/6m]—1 .
. 6% — <) (4 19 .. ¢
SO = 3wyl (0¥ s, FEUTmii =12, 128

=0 is an optimal set of 128 binary sequences of pefbe: 2'* — 1 with

respect to Welch’s bound. It is easily checked tNat= ¢(127)/7 =
Then the familyF defined by 18. Hence we haveéVi,,, = 18(2' — 1)/14 = 13608 optimal
0 ) . families from a binary sequence of each miscellaneous type.
F={{sVm}i=12 .27} i0d 255, it inequivalentbi
At period 255, it is found that there are founequivalentbinary
is an optimal set o™ binary sequences of perigd = 2" — 1 with Séquences with ideal autocorrelation property: arsequence, a
respect to Welch’s bound. GMW sequence, and two others of unknown type. New optimal
Consider the numbeiNt... of fully distinct families of binary families can be constructed from a binary sequence of each unknown

sequences of period constructed from the Hall's sextic residuetyPe. Note thatV; = ((255)/8 = 16 in this case.

for v; € Fym.

sequences of period/ by Theorem 10. Since At period 511, there are fiveinequivalentbinary sequences with
.. ideal autocorrelation property: am-sequence, a GMW sequence,
I'={u"li=0,1,---, [(M—1)/6m]— 1} and three others of unknown type. New optimal families can be

constructed from a binary sequence of each unknown type. Note that
N; = ¢(511)/9 = 48 in this case.
Niwrn = 6 e T)_ In the case of period023, a computer search found that there
n is at least one binary sequen&(t(), t; = 0, 1, ---, 1022} with
Remark 11: Using Theorem 3 or Remark 4, the Hall's sextiddeal autocorrelation property, whichirgequivalento any of known
residue sequences of peridd = 2™ — 1 can be applied to con- binary sequences such as thesequences, the GMW sequences, and
struct optimal families of period® — 1, wherek is any even multiple the extensions of the Legendre sequences. It is given by
of m. O

in Zur, it is easy to check tha¥; = 6. Hence we have

b(t1) =tr° (@) 4+ tr1% (a”) 4 tr;° (o°71)

10 /T3ty 10 0 1214y
V. NEW OPTIMAL FAMILIES FROM +trp (o) ity (@ )

MISCELLANEOUS SEQUENCES OFUNKNOWN TYPE whereqw is a primitive element of’,10. Hence, a new optimal family
To classify and construct balanced binary sequences of perigd1024 binary sequences of peria® — 1 can be constructed from
2"—1 is a very interesting problem in both theory and practice [7], [8the sequencgb(t;)} described above.
Especially, the balanced binary sequences of petfodl with ideal  As in the cases of Legendre sequences and Hall’s sextic residue
autocorrelation property find many applications in spread-spectrquences, miscellaneous sequences of unknown type of period
communication systems. A complete search for those sequences Was= 2™ — 1 can be used to construct optimal families of period

conducted for period27 by Baumert and Fredrickson [255 by 2% — 1, wherek is any even multiple ofn, by applying Theorem

Cheng [4], and511 by Drier [5]. 3 or Remark 4.
It is well known that there are siequivalent binary sequences
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On the positive side, we first show that the Code Equivalence
problem is unlikely to be NP-complete. The proof of this assertion

Abstract—We study the computational difficulty of deciding whether relies on techniques developed in the field inferactive proofs

two matrices generate equivalent linear codes, i.e., codes that consist of the,, i \we summarize in Section II. In Section Ill, we invoke results
same codewords up to a fixed permutation on the codeword coordinates

We call this problem Code Equivalence. Using techniques from the area Of_ Goldwasser, Micali, and Rackqﬁ [4], Goldreich, Mi%a"' and
of interactive proofs, we show on the one hand, that under the assumption Wigderson [3], Goldwasser and Sipser [5], and Boppanastat,
that the polynomial-time hierarchy does not collapse, Code Equivanence and Zachos [2], to show that if Code Equivalence is NP-complete,
is not NP-complete. On the other hand, we present a polynomial-time then the polynomial hierarchy collapses.

reduction from the Graph Isomorphism problem to Code Equivalence. . .
Thus if one could find an efficient (i.e., polynomial-time) algorithm for Yet, we do state also a negative result, namely, that Code Equiv-

Code Equivalence, then one could settle the long-standing problem of alence is also unlikely to be too easy. We do this by relating Code
determining whether there is an efficient algorithm for solving Graph  Equivalence to th&raph Isomorphisnproblem. LetG, = (V. E)

Isomorphism. and G» = (V,E,) be two undirected graphs with the same set
Index Terms—Code Equivalence, Graph Isomorphism, interactive Of verticesV, and with sets of edge&; and E-, respectively.
proofs, polynomial hierarchy. We say thatG, is isomorphic toG. if there exists a permutation

(isomorphism)w: V' — V such that{u,v} € E; if and only
if {w(u),w(v)} € E> (we assume here that the graphs have no
o _ parallel edges; if they do, theR;, and E, are multisets, in which
Let £ be a finite field and letzi and G» be generator matrices case isomorphism requires equality of the multiplicities {of v}
of two Ilnt_aar codes”, and (s overE We say thatz; andGs are  gpq {m(u),7(v)} in E, and E., respectively). The problem of
code-equivalentdenotedG, ~ G, if the setsCy and C are the yeiding efficiently (i.e., in polynomial time) whether two graphs are
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