
Systematic generation of executing programs for
processor elements in parallel ASIC or FPGA-based

systems and their transformation into VHDL-
descriptions of the processor element control units

O. Maslennikow

Institute of Electronics, Technical University of Koszalin
Ul. Partyzantow 17, 75-411 Koszalin, Poland

E-mail: oleg@ie.tu.koszalin.pl

Abstract. In this paper, a method for the systematic generation of the executing
programs for the processor element of the parallel ASIC or FPGA-based
systems liked to processor arrays is proposed. In this method, the each processor
element of the array has separate control unit and is controlled in an
autonomous way, based on the executing program received from the host
computer before computations. This method allows: (i) to minimize executing
program size stored in the processor elements; (ii) to make sizes of these
programs independent from sizes of input data sets; (iii) to provide the
independence of program contents from the realized applied algorithm; (iv) to
derive the VHDL-description of all processor element control units in the
behavioral style.

1 Introduction

Advantages in VLSI technology have stimulated research in application - specific
architectures, which are tailored to real-time applications. Among these architectures,
which can have a different degree of specialization, and are destined for realization as
ASIC or FPGA-based device [6], architectures like to processor arrays [2,3,4] (PA)
are widely used.
 Architectures of such systems are usually designed [2,3,4,5] using top-down
methodology, i.e. applying methods of regular algorithms mapping. Such algorithms
are usually expressed by systems of recursive equations or nested loops, or by regular
dependence graph (DGs). Each node of such a DG corresponds to a certain operator
(or iteration) of the original algorithm, and is associated with the integer vector K =
(k1,...,kn). All its nodes are located in the vertices K of a lattice Kn ⊂ Zn, where Kn is
called the index space. If the iteration corresponding to a node K2 depends on the
iteration corresponding to another node K1, this dependence is represented by the
dependence vector d = K2 - K1. In the course of mapping, a given algorithm AL with
the dependence graph G is transformed into a set of structural schemes C = <S, T, Φ>
of parallel systems implementing this algorithm. Here S is a directed graph called the
array structure, T is the synchronization function specifying the computation time of
nodes in the DG, and Φ is the set of the algorithm operators.
 Using known mapping methods, efficient parallel architectures for implementing
algorithms with regular data dependencies, as well as internal structures of their

processor elements (PE) have been designed. The next stage is designing the control
units (CU) for all PE’s of the system. If processor elements have separate control units
with the program memory, then their executing program should be designed. In
opposite case, the structure of the control unit or its VHDL-description should be
derived for each EP of the system.
 The existing mapping methods don’t allow to solve these problems. Therefore, in
this paper, the method for automatic generation of the executing programs for the
arbitrary processor element of the parallel system implementing applied regular
algorithm given by nested loops is proposed. Moreover, the transformation of the PE
executing program into VHDL-description of its CU is shown. The main idea of the
method consists of loading, before computation, into each PE control unit a control
information from the host. This information represents all types of algorithm operators
(or graph nodes) which should be executed in the PE, as well as ranges of changing
coordinates ki of nodes, for each type of operators which this PE should be performed.
Moreover, every PE is provided with an expression for computing the coordinates of
the next executed node of DG, in accordance with the timing schedule mapping. These
data are parameters of the executing program, which should be carried out by PE. The
template of this program is written in the program memory of PE or realized by
hardware way in the PE control unit. During computation, in each time step, each PE
determines the coordinates of the next executed node of DG and compares them with
the given ranges. In the case of the positive answer, the control unit of this PE
determines the type of operator (COP) which should be executed. Then COP is
transformed into a real instruction forall PE blocks. In the case of the negative answer,
the "empty" operator (NOP) is performed by PE. Details of the proposed method are
illustrated on the example of the Gauss elimination algorithm.

2 Deriving executing programs for the processor elements of PAs
 We assume that an elementary loop nest (ELP) consists of a multi-level

construction of n nested DO-statements including one another, with no exit from the
loop body [1,5]. Each elementary nest is characterized by its dimension n (which is
equal to the number of DO-statements) and defines the corresponding iteration space.
Each of its nodes represents a single execution of the loop body, and is defined by an
iteration vector K = (k1, k2, ... , kn). If between two consequent DO-statements there
exist a loop body, then such a loop construction will be called the composite loop
nest. As a result, algorithms under consideration can be written in the following form:

do k1 =⋅ a1 to b1 step c1
 [{ statements of the loop body 1}]
[enddo]
 do k2 =⋅ a2 to b2 step c2

[{ statements of the loop body 2}]
 [enddo]

do kn =⋅ an to bn step cn
{statements of the loop body n} (1)

enddo

[{ statements of the loop body n-1}]
[enddo]

 [{ statements of the loop body 1}]
[enddo]

Here aj, bj are expressions denoting the lower and upper limits of the loop at nesting
level j, while cj stands for the incrementing of variables kj. Square brackets are used to
denote that the corresponding statements may be absent, and q is the number of
different loop bodies (or different types of operators), q ≤ n.
 Let us assume, that using one of known methods [1,5], the DG of an original
algorithm was derived, and its description is given in a form of Table 1. Here xi,j, yi,j
and cj denote the low limit, upper limit and increment values for the coordinate kj
respectively, where j = 1, ... , n, and i = 1, ... , q.

Table 1. Description of an algorithm DG

Operator
type

Coordinate
k1

Coordinate
k2

. . . Coordinate
kn

from to step from to step ... from to step
1 x1,1 y1,1 c1 x1,2 y1,2 c2 ... x1,n y1,n cn

2 x2,1 y2,1 c1 x2,2 y2,2 c2 ... x2,n y2,n cn

...
q xq,1 yq,1 c1 xq,2 yq,2 c2 ... xq,n yq,n cn

 Let us also assume, that the structure graph S of the target parallel system with
dimension m, as well as the synchronization function T, have been already derived.
This means that space FS and time FT components of the mapping function F are
known. In other words, the integer (m x n) matrix FS determines the m-dimensional
hyperplane, such that the projection of the DG onto this hyperplane gives the structure
S. Besides, a node of the DG with coordinates K = (k1, k2, ... , kn) will be executed in
the PE with the coordinates FS ⋅K at the time step t given by the expression

t = FT ⋅K + const1 . (2)

Remark. In this paper, we will assume that all the m column-vectors of the function FS
are equal to the first m coordinate vectors k1, k2, ... km of the space Wn.
 In this case, each PE of structure S will execute only those operators of the
algorithm (or nodes K = (k1, k2, ... , kn)) for which values of (k1, k2, ... , km) are
equal respectively to values of the first m coordinates of the PE. In other words, each
PE will execute a set of nodes of the DG which belong to the hyperplane given by the
last (n-m) coordinates (km+1, km+2, ... , kn) of the space Wn . The time component FT of
the mapping F gives the sequential order of executing the nodes belonged to this
hyperplane, in a PE. Thus, for the implementation of the autonomous PE control in
processor arrays, the following steps should be performed.

 1. Based on the description of the algorithm DG represented by the table 1 and
known coordinates of PEs, the host generates a reduced tables of the DG description
which is different for different processor elements. This table includes ranges of the
 last (n-m) coordinates (km+1, km+2, ... , kn) of DG. These ranges describe the set of
those nodes of the DG which are mapped in the given PE. The number g of rows in
the reduced table is equal to the number of different types of operators of the
algorithm which are mapped into a given PE, so we have 1≤g≤ q.
 2. For the each PE, the host generates a partially computed expression (3) of the
following form:

T=FT ⋅K + const1 = f1⋅k1 + f2⋅k2 + ... + fn⋅kn + const1 . (3)

For each node K = (k1, k2, ... , kn) of the DG, this equation determines the time step in
which this node will be executed. Note, that in the expression (3), the values of the
first m coordinates of nodes are equal to the values of coordinates (k1, k2, ... , km) of
given PE, while (f1, f2, ... , fn) are coefficients of the time component FT . Therefore,
each the expression (3) is reduced to the following expression:

T = fm+1⋅km+1 + fm+2⋅km+2 + ... + fn⋅kn + const2 , (4)

where const2 = f1⋅k1 + f2⋅k2 + ... + fm⋅km + const1 . (5)
 3. For each PE, the host forms the template of its execution program, which can be
represented by the following form:

 t=1
 do Jn =⋅ an to bn step sn
 do Jn-1 = an-1 to bn-1 step sn-1

 do Jn-m+1 =⋅ an-m+1 to bn-m+1 step sn-m+1
 { calculation of expression (5) to determine T } ;
 { finding of the operator type based on the current values of Ji};
 while t ≠T do t = t+1 {no useful operation};
 { execution of the operator }; (6)
 enddo

 enddo
 enddo,

 where Ji , ai , bi and si are values of ki , min{xr,i , r = 1, ..., g }, max{yr,l , r = 1, ..., g }
and ci respectively, placed in the order of increasing of FT coefficients fi, i=m+1,...,n.
 Analysis of the construction (6) shows that if either sizes xr,l or yr,l of input data are
changed, or other mappings FS , FT are used, or even another regular applied
algorithm is implemented by the system, then only the number of DO-statements and
their parameters ai, bi, ci , as well as the form of the expression (4), should be changed
in the executing program (6). Consequently, the template (6) may be stored in the
program memory of PE control unit or may be realized in hardware way (if there is no
program memory in the PE control unit).

3. An example. Design of the executing programs for the Gauss
elimination algorithm
The algorithm corresponding to the Gauss elimination without pivoting is presented
by the construction (7).

do k1 =⋅ 1 to N-1 step 1
 do k2 =⋅ k1+ 1 to N step 1
 m (k1, k2) = a(k2, k1) / a(k1, k1); /*Operator type 1*/
 enddo
 do k2 = k1 to N step 1
 do k3 = k1+1 to N step 1
 a (k2, k3) = a(k2, k3) - m(k2, k1) * a(k1, k3); /*Operator type 2*/ (7)
 enddo
 enddo
enddo

The table of this algorithm DG description (table 1) transforms to the table 2.

Table 2. Description of the Gauss elimination algorithm DG

Operator
Type

Coordinate
K1

Coordinate
k2

Coordinate
k3

from to step from to step from to step
1 1 N-1 1 k1+1 N 1 k1 k1 1
2 1 N-1 1 k1+1 N 1 k1+1 N 1

Let us assume, that the following mapping operator F has been obtained as the result
of using mapping method [4]:

 k1 k2 k3

)1(
11
001

),1(
),(

),1(=

=

=+ m

NnF
nmF

nmF
T

S

Note that the derived FS value corresponds to the projection of the graph G onto the
axis k1. As a result, the p-th PE of this processor array, where p = 1, ..., N-1, will
execute the nodes K of the graph with the coordinates K = (p, k2 , k3). The obtained
FT value determines the following value of the constant const 1 in the expression (3):

const 1 = 1 - FT ⋅ K* = - (N + 1),

where K* = (1, 2 , 1) are coordinates of the first executed node of the graph G.
 Based on these data, the reduced form of the DG description table is formed, which
for the p-th PE of the array, is represented by the table 3, where J2 = k2 and J3 = k3
because | f2 | < | f3|, while k1 = p. The data from this table should be passed to the p-
th PE of the array (p = 1, ..., N-1). Based on the component FT = (f1 , f2 , f3) = (1, 1,
N-1), the expression (4) is represented in the following form (for the p-th PE):

T = f2 ⋅ k2 + f3 ⋅ k3 + const1 = k2 + (N-1)⋅k3 + const2 , (8)

where const2 = 1⋅p + const1 = k1 - N -1.

The executing program for the p-th PE of the array is formed in the following form:

Table 3. Table of the p-th PE operations

Operator
Type

Coordinate
J2

Coordinate
J3

from to step from to step
1 p+1 N 1 p p 1
2 p+1 N 1 p+1 N 1

t=1
do J3 =⋅ x1,3 to N step 1
 do J2 =⋅ x1,2 to N step 1

T = J2 + (N-1)⋅J3 + p - N – 1; (9)
while t ≠T do t = t+1 {no useful operation};
{ determination of the operator code based on current values of Ji};
{ execution of the operator of the algorithm };

 enddo
enddo

where a3 = min{ x1,3, x2,3 } = p; b3= max{ y1,3, y2,3 } = N; c3 = 1;
a2 = min{ x1,2, x2,2 } = p + 1; b2 = max{ y1,2, y2,2 } = N; c3 = 1.

4 Transformation of the executing program to VHDL-description
of the PE control unit
 When the target parallel system is realized as the ASIC or FPGA circuit, its
structure and the internal structures of all PEs should be described in the HDL
language [6]. In order to this, transformation of the PE executing program into
corresponding VHDL-description of the PE control unit should be carried out. Note,
that in this case, the PE control unit represents the „black box” with the RESET and
CLOCK inputs and COP (code of operation) outputs.
 The template of VHDL description of the control unit “architecture” which has
been obtained from the corresponding program template (6) and should be generated
by corresponding CAD environment is following (without a declarative part):

entity control_unit is
generic (log2g : integer:=2);

port (CLK : in std_logic;
Reset : in std_logic;
COP : out std_logic_vector (1 to log2g));

end entity control_unit;
architecture control_unit_a of control_unit is
-- declaration of constants and parameters isn’t show in this program

begin
 process
 variable T,i,q,s,time_step,kop:integer;
 variable J:vector;
 begin if Reset='1' then time_step:=0; J(n):=a(n); COP<=(others=>'0');

 else
 Label_n: while J(n) <= b(n) loop

J(n-1):=a(n-1);
Label_n-1: while J(n-1) <= b(n-1) loop
.
 J(m+1):=a(m+1);
 Label_m+1: while J(m+1) <= b(m+1) loop
 T:= J(n)*f(n) + J(n-1)*f(n-1) + ...+ J(1)*f(1) + const2;
 Label0: for i in 1 to g loop

 s:=0;
 for q in m+1 to n loop
 if J(q)>=X(i,q) and J(q)<=Y(i,q)then s:=s+1;end if;

end loop;
 if s=n-m then kop:=i; exit Label0; end if;

 end loop Label0;
 label1: while T/=time_step loop time_step:=time_step+1;

COP<=(others=>'0'); wait on clk; wait on clk;
 end loop label1;
 if s=n-m then

 COP<=CONV_STD_LOGIC_VECTOR(kop,log2g);
 else COP<=(others=>'0'); end if;
 time_step:=time_step+1; wait on clk; wait on clk;
 J(m+1):= J(m+1)+c(m+1);
 end loop Label_m+1;
J(m+2):= J(m+2)+c(m+2);

.
 end loop Label_n-1;
 J(n):= J(n)+c(n);
 end loop Label3;
end if;
wait on reset;

 end process;
end architecture control_unit_a;

Here constants n and m represent the dimensions of the DG and the structure of the
processor array respectively. The constants g and log2g are the number of the operator
types in DG and the number of the lines in the output COP respectively.
The results of simulation of the VHDL-model of the second PE (p=2) control unit in
ActiveVHDL v.4.2 environment are represented in the fig. 1. These results prove the
correctness both the obtained executing program (9) and the proposed method.

5 Conclusions

In this paper, the method for the systematic generation of the executing programs
for the arbitrary processor element of the parallel ASIC or FPGA-based device
implementing applied regular algorithm given by nested loops has been proposed.
This method allows: (i) to minimize executing program size stored in the processor
elements; (ii) to make sizes of these programs independent from sizes of input data
sets; (iii) to provide, to a maximum possible extent, the independence of program
contents from the realized applied algorithm; (iv) to provide the possibility of
generation of these programs in the fully automatic way, based on the description of
the algorithm dependence graph and device structure; (v) to derive the VHDL-
description of all processor element control units in the behavioral style. Correctness
of the proposed method has been illustrated on the example of the Gauss elimination
algorithm.

Fig. 1. Simulation results of VHDL model of the second PE control unit (p=2)

References
1. U. Banerjee, An introduction to a formal theory of dependence analysis. J.

Supercomput., 1988 (2) 133-149.
2. A. Darte, Y. Robert, Mapping uniform loop nests onto distributed memory

architectures. Parallel Computing, 1994 (20) 679-710.
3. S.Y. Kung, VLSI Array Processors, Prentice Hall, Englewood Cliffs, 1988.
4. R. Wyrzykowski, J. Kanevski, O. Maslennikov, Mapping recursive algorithms into

processor arrays. Int. Workshop Parallel Numerics'94, Smolenice (Slovakia),
1994, pp.169-191.

5. R.Wyrzykowski, J. Kanevski, O. Maslennikov, A method for deriving dependence
graphs of recursive algorithms for processor array designs. Proc. Int. Workshop
Parallel Numerics'95, Sorrento (Italy), 1995, pp.263-280.

6. G.R. Goslin. A Guide to Using Field Programmable Gate Arrays (FPGAs) for
Application-Specific Digital Signal Processing Performance. Xilinx, Inc., 1995.

