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Abstract

A three-dimensional continuous time dynamical system is considered. It is a model for a tritrophic food chain, based

on a modified version of the Leslie–Gower scheme. We establish and prove theorems on boundedness of the system,

existence of an attracting set, existence and local or global stability of equilibria which represent the extinction of the

top or intermediate predator. Using intensive numerical qualitative analysis we show that the model could exhibit

chaotic dynamics for realistic parameter and state values. Transition to chaotic behavior is established via period

doubling bifurcation, and some sequences of distinctive period-halving are found.

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

In this paper we are interested in a three-dimensional system of autonomous differential equations, modeling a

tritrophic food web. Much literature exists on the general problem of food chains. It often concerns (two or) three

trophic-level food chains models composed of logistic prey X and Lotka–Volterra or Holling type II specialist predator

Y and top-predator Z, see for example [1–9], while the model we study here is especially based on a modified version of

the Leslie–Gower scheme [10]. Given some reasonable restrictions on the model, we determine the conditions and

establish results for boundedness of the system and local or global stability of equilibria which represent the extinction

of the top or intermediate predator. A rapid study near the XY-plane is also performed. Studies on ‘realistic’ ecological

situations exist in the literature, see [11,14,20–22,35]. By ‘realistic’ ecological situations we mean one where the regions

of parameters chosen for numerical experiments contain parametric values which are not arbitrary but are quantitative

measures of the system attributes. Using realistic regions of parameters, as in [14,15,20,22], numerical qualitative

analysis of the asymptotic behavior of the system is performed. Some interesting numerical results on this model are

given in [12,13]. The transition behavior when some parameters of the system vary is studied. Chaotic dynamics is

observed via sequences of period-doubling bifurcation of limit cycles (in a relatively broad range of parameters) which

however break down and reverse giving rise to a sequence of distinctive period-halving. Indeed, recent studies indicate

that chaotic dynamics may play an important role in continuous time models, see [4,6,9,11,12,23,24] for example. Our

intensive numerical study has a similar orientation and suggests that natural terrestrial systems may be suitable can-

didates for researching chaos, even though the regions of parameters, in which the dynamics is chaotic, can be small.

This paper is organized as follows. In Section 2, the model is described and rescaling transformations to obtain a

simpler analytical form are given. In Section 3, the boundedness of the solutions of this system and the existence of a

positively invariant attracting set are established. The equilibria, which represent the extinction of the specialist pre-

dator or top-predator, and their stability are the subject of Section 4 (the study of interior equilibria is left aside) using a

study near the XY-plane. The question of existence of chaos is numerically studied in Section 5.
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2. The mathematical model

The three-species food chain model, studied analytically as well as numerically, describes a prey population X which

serves as the only food for a predator Y. This specialist predator Y is, in turn, the prey of a top-predator Z. The in-

teraction between species Y and its prey X has been modeled by the Volterra scheme (predator population dies out

exponentially in the absence of its prey). But, the interaction between species Z and its prey Y has been modeled by the

Leslie–Gower scheme [10,25,26] (the loss in a predator population is proportional to the reciprocal of per capita

availability of its most favourite food), see also [14,22]. The state equations for the three components of the chain

population can be written as follows:

dX
dT

¼ a0X � b0X 2 � v0XY
d0 þ X

;

dY
dT

¼ �a1Y þ v1XY
d1 þ X

� v2YZ
d2 þ Y

;

dZ
dT

¼ c3Z2 � v3Z2

d3 þ Y
;

ð1Þ

with X ð0ÞP 0, Y ð0ÞP 0 and Zð0ÞP 0, where X ; Y and Z represent the population densities at time T; a0; b0; v0; d0,
a1; v1; d1; v2; d2, c3; v3 and d3 are model parameters assuming only positive values and are defined as follows: a0 is the

growth rate of prey X, b0 measures the strength of competition among individuals of species X, v0 is the maximum value

which per capita reduction rate of X can attain, d0 measures the extent to which environment provides protection to

prey X, a1 represents the rate at which Y will die out when there is no X, v1 and d1 have a similar meaning as v0 and d0, v2
and v3 have a similar biological connotation as that of v0 and v1, d2 is the value of Y at which the per capita removal rate

of Y becomes v2=2, c3 describes the growth rate of Z, assuming that the number of males and females is equal, d3
represents the residual loss in species Z due to severe scarcity of its favorite food Y; the second term on the right-hand

side in the third equation of (1) depicts the loss in the top-predator population.

Remark (Origin of the model). Let us remark that the first two equations of system (1) are standard. By contrast, the

third equation is absolutely not standard. The system obtained by replacing this third equation by the equation

dZ
dT

¼ k1Y
k2 þ Y

�
� k3

�
Z;

that is a system in which X is the number of logistic prey, Y the number of Holling-type II intermediate predator and Z
the number of Holling-type II top-predator, has been studied by many authors, see [4,5,27] and references therein. Even

if its behavior can be complicated, these authors have given a number of results including study of stability of equilibria,

bifurcation phenomena or chaotic behavior. The system we study here is different due to this third equation. Indeed, an

interesting formulation for the predator dynamics given by Leslie [25] and discussed by Leslie and Gower [10] and

Pielou [28] is

dZ
dT

¼ c3Z 1

�
� Z
S1Y

�
;

where c3 and S1 are model parameters. In this formulation, the growth of the predator population is of logistic form

(i.e., dZ=dT ¼ c3Zð1� ðZ=KÞÞ), but the conventional K, which measures the carrying capacity set by the environmental

resources, is K ¼ S1Y , proportional to prey abundance. Thus, the logistic equation becomes

dZ
dT

¼ c3Z 1

�
� Z
S2 þ S1Y

�
;

the additional constant S2, appearing in the denominator, normalises the residual reduction in the predator population

Z because of severe scarcity of the favourite food. We then get the following equation:

dZ
dT

¼ c3Z � c3
S1

Z2

S2
S1
þ Y

 !
¼ c3Z � v3Z2

d3 þ Y
:
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Finally, we get the third equation of system (1):

dZ
dT

¼ c3Z2 � v3Z2

d3 þ Y
;

in which the square term c3Z2 signifies the fact that mating frequency is directly proportional to the number of males as

well as to that of females, see [19,22].

This third equation says that in the absence of the intermediate predator (Y ¼ 0, but the Leslie–Gower formulation

of predator–prey breaks down in such a case), the top-predator Z goes extinct if

c3d3 < v3; ð2Þ
and grows unboundedly if the opposite, which is, of course, biologically not acceptable. In fact, throughout the paper,

we, anyway, will assume that condition (2) holds (indeed, condition (7) of Theorem 3 implies condition (2)).

The system we study in the present paper is then different and may, for example, be considered as a representation of

a rodent–snake–peacock food chain, nature abounds in systems which exemplify this model, see [22,29].

We can reduce the number of parameters in the system from 12 to 8 by the following scaling transformations, even

if, for our numerical tests, we will continue to use the original system (1):

X ¼ a0
b0

x; Y ¼ a20
b0v0

y; Z ¼ a30
b0v0v2

z; T ¼ t
a0

; ð3Þ

and

a ¼ b0d0
a0

; b ¼ a1
a0

; c ¼ v1
a0

; d ¼ d2v0b0
a20

; p ¼ c3a20
b0v0v2

; q ¼ v3
v2
; r ¼ d3v0b0

a20
: ð4Þ

All these parameters, of course, assume only positive values. We henceforth assume, without loss of generality, that

the environment provides an equal protection for species X and Y. That is, d0 ¼ d1. Thus, system (1) becomes

dx
dt

¼ xð1� xÞ � xy
xþ a

;

dy
dt

¼ cxy
xþ a

� by � yz
y þ d

;

dz
dt

¼ pz2 � qz2

y þ r
;

ð5Þ

xð0Þ ¼ x0 P 0, yð0Þ ¼ y0 P 0 and zð0Þ ¼ z0 P 0. The state space of the system is the non-negative cone

R3
þ ¼ fðx; y; zÞ 2 R3; xP 0; y P 0; zP 0g:

We will investigate the asymptotic behavior of orbits starting in the positive cone

IntðR3
þÞ ¼ fðx; y; zÞ 2 R3; x > 0; y > 0; z > 0g:

We will also note Rþ
xy the first non-negative quadrant

Rþ
xy ¼ fðx; yÞ 2 R2

xy ; xP 0; y P 0g:

3. Boundedness of the solutions

Lemma 1. The positive cone IntðR3
þÞ is invariant for system (5).

Proof. We first observe that the boundaries of the non-negative cone R3
þ are invariant, this is obvious from system (5).

Therefore, the densities xðtÞ, yðtÞ and zðtÞ are positive: for tP 0, if xð0Þ > 0, yð0Þ > 0 and zð0Þ > 0 then xðtÞ > 0, yðtÞ > 0

and zðtÞ > 0. The basic existence and uniqueness theorem for differential equations ensures that positive solutions and

the axis cannot intersect. �

We will show that, under some assumptions, solutions xðtÞ, yðtÞ, zðtÞ of system (5) are bounded, for t sufficiently

large. First, to make the paper more readable, let us recall and prove the (classical) following comparison lemma.
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Lemma 2. Let / be an absolutely continuous function satisfying the differential inequality:

d/ðtÞ
dt

þ k1/ðtÞ6 k2; tP 0; ð6Þ

where ðk1; k2Þ 2 R2, k1 6¼ 0. Then, for all tP ~TT P 0,

/ðtÞ6 k2
k1

� k2
k1

�
� /ð ~TT Þ

�
e�k1ðt� ~TT Þ:

Proof. Multiply both sides of (6) by ek1t to get

d/ðtÞ
dt

�
þ k1/ðtÞ

�
ek1t 6 k2ek1 t:

Then

d/ðtÞ
dt

�
þ k1/ðtÞ � k2

�
ek1t 6 0;

which is equivalent to

d

dt
/ðtÞ
��

� k2
k1

�
ek1 t
�
6 0:

Thus the function

/ðtÞ
�

� k2
k1

�
ek1t;

has a non-positive derivative and so is non-increasing for tP 0. Therefore, for all tP ~TT P 0,

/ðtÞ
�

� k2
k1

�
ek1t 6 /ð ~TT Þ

�
� k2
k1

�
ek1

~TT ;

and hence,

/ðtÞ6 k2
k1

� k2
k1

�
� /ð ~TT Þ

�
e�k1ðt� ~TT Þ;

which is equivalent to

/ðtÞ6 k2
k1
ð1� e�k1ðt� ~TT ÞÞ þ /ð ~TT Þe�k1ðt� ~TT Þ:

For ~TT ¼ 0, this formula becomes

/ðtÞ6 k2
k1
ð1� e�k1tÞ þ /ð0Þe�k1t: �

Theorem 3. Let us assume

cþ c
4b

þ r <
q
p
; ð7Þ

and let A be the set defined by:

A ¼ ðx; y; zÞ 2 R3
þ : 0

�
6 x6 1; 06 xþ y

c
6 1þ 1

4b
; 06 xþ y

c
þ az6 1þ 1

4b
þM

b

�
;

where

a ¼ 1

b2 cþ c
4b þ r

� � and M ¼ 1

4 q� cþ c
4b þ r

� �
p

� � :
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Then

2(i) A is positively invariant,
(2i) all non-negative solutions (i.e. solutions initiating in R3

þ) of (5) are uniformally bounded forward in time, (thus they
exist for all positive times), they eventually enter the attracting set A.

(3i) system (5) is dissipative.

Proof. (i) Let ðxð0Þ; yð0Þ; zð0ÞÞ 2 A, obviously, from Lemma 1, ðxðtÞ; yðtÞ; zðtÞÞ remain non-negative; we will show that

ðxðtÞ; yðtÞ; zðtÞÞ 2 A for all tP 0, we then have to prove that for all tP 0,

• Step (i-a): xðtÞ6 1;

• Step (i-b): xðtÞ þ yðtÞ=c6 1þ 1=4b;
• Step (i-c): xðtÞ þ yðtÞ=cþ azðtÞ6 1þ 1=4bþM=b:
• Step (i-a). We first prove that xðtÞ6 1 for all tP 0: Since x > 0; y > 0 and z > 0 in IntðR3

þÞ, any solution

/ðtÞ ¼ ðxðtÞ; yðtÞ; zðtÞÞ of (5), which starts in IntðR3
þÞ, satisfies the differential inequation dx=dt6 xð1� xÞ, this is ob-

vious by considering the first equation of (5), moreover, due to the Lemma 1, these solutions remain non-negative.

Thus, xðtÞ may be compared with solutions of

dsðtÞ
dt

¼ sðtÞð1� sðtÞÞ; sð0Þ ¼ xð0Þ > 0;

to get xðtÞ6 1=ð1þ c0e�tÞ for tP 0 (where c0 ¼ 1=x0 � 1). It follows that any non-negative solution /ðtÞ of (5)

satisfies

xðtÞ6 1 for all tP 0: ð8Þ

• Step (i-b). We prove now that

xðtÞ þ 1

c
yðtÞ6 1þ 1

4b
for all tP 0:

We define function rðtÞ ¼ xðtÞ þ ð1=cÞyðtÞ, the time derivative of which is

dr
dt

¼ dx
dt

þ 1

c
dy
dt

¼ xð1� xÞ � b
c
y � 1

c
yz

y þ d
:

Since all parameters are positive, and solutions initiating in R3
þ remain in the non-negative cone then,

dr
dt

6 xð1� xÞ � ðb=cÞy

holds for all x, y and z non-negative. Thus,

dr
dt

6 xð1� xÞ þ bx� bðxþ y=cÞ;

so

drðtÞ
dt

þ brðtÞ6 bþ 1

4
;

since, in A, 06 x6 1 and max½0;1�ðxð1� xÞÞ ¼ 1=4. Using Lemma 2, we get, for all tP ~TT P 0,

rðtÞ6 1þ 1

4b
� 1

�
þ 1

4b
� rð ~TT Þ

�
e�bðt� ~TT Þ; ð9Þ

then, if ~TT ¼ 0,

rðtÞ6 1þ 1

4b
� 1

	
þ 1

4b
� xð0Þ
�

þ yð0Þ
c

�

e�bt: ð10Þ
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Hence, since ðxð0Þ; yð0Þ; zð0ÞÞ 2 A,

xðtÞ þ 1

c
yðtÞ6 1þ 1

4b
for all tP 0: ð11Þ

• Step (i-c). We finally prove, provided cþ c=4bþ r6 q=p, that

06 xþ y
c
þ az6 1þ 1

4b
þM

b

holds, with

a ¼ 1

b2ðcþ c
4b þ rÞ

and

M ¼ 1

4ðq� ðcþ c
4b þ rÞpÞ :

The proof is similar as done above; we define the following function:

gðtÞ ¼ xðtÞ þ 1

c
yðtÞ þ azðtÞ;

the time derivative of which is

dg
dt

¼ dx
dt

þ 1

c
dy
dt

þ a
dz
dt

¼ xð1� xÞ � b
c
y � 1

c
yz

y þ d
þ a p
�

� q
y þ r

�
z2:

Similarly to the previous Step (i-b), since every solution initiating in R3
þ remains non-negative, all parameters are

positive, 06 x6 1 and max½0;1�ðxð1� xÞÞ ¼ 1=4, we get,

dgðtÞ
dt

6
1

4
þ b� bgðtÞ þ abzþ a p

�
� q
y þ r

�
z2;

thus, as in A, y6 cþ c=4b, one gets

dgðtÞ
dt

6
1

4
þ b� bgðtÞ þ abzþ a p

�
� q
cþ c

4b þ r

�
z2;

hence

dgðtÞ
dt

þ bgðtÞ6 1

4
þ bþM ; ð12Þ

where

M ¼ max
z2Rþ

abz
�

þ a p
�

� q
cþ c

4b þ r

�
z2
�
:

The maximum M exists since, from formula (7), one easily gets

p � q
ðcþ c

4b þ rÞ < 0;

and simple algebraic computations show that with

a ¼ 1

b2ðcþ c
4b þ rÞ ;

M ¼
ab2 cþ c

4b þ r
� �

4 q� ðcþ c
4b þ rÞp

� � ¼ 1

4 q� cþ c
4b þ r

� �
p

� � :
Therefore, from Eq. (12), and using Lemma 2, we get for all tP ~TT P 0,

gðtÞ6 1þ 1

4b
þM

b
� 1

�
þ 1

4b
þM

b
� gð ~TT Þ

�
e�bðt� ~TT Þ ð13Þ
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then, if ~TT ¼ 0,

gðtÞ6 1þ 1

4b
þM

b
� 1

�
þ 1

4b
þM

b
� gð0Þ

�
e�bt:

Thus, since ðxð0Þ; yð0Þ; zð0ÞÞ 2 A,

xþ y
c
þ az6 1þ 1

4b
þM

b
:

Consequently, we get the result

xþ y
c
þ z
b2 cþ c

4b þ r
� � 6 1þ 1

4b
þ 1

b
1

4 q� cþ c
4b þ r

� �
p

� �
for all tP 0.

(2i) We must prove that, for ðxð0Þ; yð0Þ; zð0ÞÞ 2 R3
þ,

ðxðtÞ; yðtÞ; zðtÞÞ ! A as t ! þ1:

We will follow the steps:

• Step (2i-a): limt!þ1 sup xðtÞ6 1,

• Step (2i-b):

lim
t!þ1

sup xðtÞ
�

þ yðtÞ
c

�
6 1þ 1

4b
;

• Step (2i-c):

lim
t!þ1

sup xðtÞ
�

þ yðtÞ
c

þ azðtÞ
�
6 1þ 1

4b
þM

b
:

• Step (2i-a): This result follows directly from Step (i-a) and Lemma 2, since solutions of the initial value problem

dx=dt ¼ xð1� xÞ, xð0ÞP 0, satisfy limt!þ1 sup xðtÞ6 1.

• Step (2i-b): Let e > 0 be given. Then there exists a T1 > 0 such that xðtÞ6 1þ e=2 for all tP T1. From Eq. (9) with
~TT ¼ T1, see Step (i-b), we get, for all tP T1 P 0,

rðtÞ ¼ xðtÞ þ yðtÞ
c

6 1þ 1

4b
� 1

	
þ 1

4b
� xðT1Þ
�

þ yðT1Þ
c

�

e�bðt�T1Þ

6 1þ 1

4b
� 1

�	
þ 1

4b

�
ebT1 � xðT1Þ

�
þ yðT1Þ

c

�
ebT1


e�bt

6 1þ 1

4b
� 1

�	
þ 1

4b

�
� xðT1Þ
�

þ yðT1Þ
c

�
ebT1


e�bt:

Then

xðtÞ þ yðtÞ
c

6 1

�
þ 1

4b
þ e
2

�
� 1

�	
þ 1

4b
þ e
2

�
� xðT1Þ
�

þ yðT1Þ
c

�
ebT1


e�bt

for all tP T1: Let T2 P T1 be such that

1

����� þ 1

4b
þ e
2

�
� xðT1Þ
�

þ yðT1Þ
c

�
ebT1
����e�bt

6
e
2

for all tP T2: Then

xðtÞ þ yðtÞ
c

6 1þ 1

4b
þ e for all tP T2:

Hence

lim
t!þ1

sup xðtÞ
�

þ yðtÞ
c

�
6 1þ 1

4b
:
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• Step (2i-c): The proof is similar to the previous one. Let e > 0 be given. Then there exists a T3 > 0 such that

xðtÞ þ yðtÞ
c

6 1þ 1

4b
þ e
2

for all tP T3:

From Eq. (13) with ~TT ¼ T3, see Step (i-c), we get, for all tP T3 P 0,

gðtÞ ¼ xðtÞ þ yðtÞ
c

þ azðtÞ

6 1þ 1

4b
þM

b
� 1

	
þ 1

4b
þM

b
� gðT3Þ



e�bðt�T3Þ

6 1þ 1

4b
þM

b
� 1

�	
þ 1

4b
þM

b

�
ebT3 � gðT3ÞebT3



e�bt

6 1þ 1

4b
þM

b
� 1

�	
þ 1

4b
þM

b

�
� gðT3ÞebT3



e�bt:

Then

gðtÞ6 1þ 1

4b
þM

b
þ e
2
� 1

�
þ 1

4b
þM

b
þ e
2
� gðT3ÞebT3

�
e�bt:

Let T4 P T3 be such that

1

���� þ 1

4b
þM

b
þ e
2
� gðT3ÞebT3

����e�bt
6

e
2

for all tP T4:

Then

gðtÞ6 1þ 1

4b
þM

b
þ e for all tP T4:

Hence

lim
t!þ1

sup xðtÞ
�

þ yðtÞ
c

þ azðtÞ
�
6 1þ 1

4b
þM

b
:

(3i) System (5) is then obviously dissipative in R3
þ: �

Remark. In the numerical simulations, last section, chosen regions of parameters always satisfy hypotheses of this

theorem. However, these numerical experiments are done for system (1), therefore, conditions of the previous theorem

have also to be rescaled; for instance 06 x6 1 will be replaced in the numerical tests by 06X 6 a0=b0.

4. Existence and stability of equilibria

The main result of this section is done by Theorem 7 in which we give conditions for global stability of the equilibria

representing the extinction of the intermediate or top predator. Since we treat an ecological model, we are interested in

the steady states which have non-negative coordinates. Such steady states are said to be relevant (for R3
þ), or simply,

exist. An equilibrium point of system (5) is found by solving the three equations _xx ¼ _yy ¼ _zz ¼ 0. First of all, we obtain

three trivial equilibria (belonging to the boundary of IntðR3
þÞ, i.e. at which one or more of populations has zero density

or is extinct):

E0 ¼ ð0; 0; 0Þ; E1 ¼ ð1; 0; 0Þ and E2 ¼ ðh; ð1� hÞðaþ hÞ; 0Þ; ð14Þ

where

h ¼ ab
c� b

; ð15Þ

(by assuming c 6¼ b, that is a1 6¼ v1: the maximum value which per capita reduction rate of Y can attain is different from

the rate at which Y will die out when there is no X). E2 belongs to the xy-plane and is obviously a relevant equilibrium of
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system (5) (i.e. xP 0, y P 0) if 0 < h < 1. Let us remark that h 6¼ 0 since all parameters of the system assume only

positive values, furthermore if h ¼ 1 then E1 ¼ E2. The last trivial solution is the point

0;
q
p

�
� r;� b

q
p

�
� r þ d

��
;

which is localized in the yz-plane but is not relevant for R3
þ, since it cannot occur in the non-negative cone R3

þ. Indeed,

at least one of its coordinates is negative since, either ðq=pÞ � r is negative or, otherwise, the third coordinate

�bððq=pÞ � r þ dÞ is negative, since all the parameters of the system assume only positives values.

Non-trivial equilibrium point is an interior one (i.e. belonging to IntðR3
þÞ), that is an equilibrium at which all species

have non-zero positive densities. The possible non-trivial equilibria are

Eþ ¼ ðxþ; �yy; zþÞ; and E� ¼ ðx�;�yy; z�Þ; ð16Þ

where

x� ¼ 1� a
2

� aþ 1

2

� �2
 

� �yy

!1=2

;

�yy ¼ q
p
� r;

z� ¼
�
� bþ cx�

aþ x�

�
ð�yy þ dÞ:

ð17Þ

The study of these interior equilibria will be done in a forthcoming paper.

We will now investigate the behavior of the system (5) around steady states E1;2.

4.1. Behavior near the xy-plane and Hopf bifurcation

Since top-predator Zmay disappear when one of the other populations dies out, various characteristics of the system

(such as persistence) depend only on its behavior near the xy-plane. Therefore, the study of the system near the xy-plane

may give some relevant information. See for example [5] in which some three-species system is investigated and where

the dynamic near the xy-plane is studied (z is fixed and used as a parameter).

Using only the first two equations of system (5) and removing the last term of the second member of the second

equation of (5), this system becomes restricted to the xy-plane R2
xy . This leads to the system

dx
dt

¼ xð1� xÞ � xy
xþ a

;

dy
dt

¼ cxy
xþ a

� by:
ð18Þ

Such system has been studied in [30–33] and the behavior of its solutions is well known. However, we give off (or recall)

some results on system (18) which will simplify and the study of (5).

It is easy to verify that the following points are equilibria of (18): ~EE0ð0; 0Þ, ~EE1ð1; 0Þ and ~EE2ð~xx2; ~yy2Þ, where
~xx2 ¼ h and ~yy2 ¼ ð1� hÞðaþ hÞ: ð19Þ

Obviously, these points are the restriction of E0; E1 and E2 to R2
xy . Note that, in order to guarantee the existence of

an interior equilibrium of (18) to the positive first quadrant IntðRþ
xyÞ, it is necessary to assume that 0 < h < 1 is satisfied

(c 6¼ b is assumed satisfied throughout all this paper).

The local stability of equilibria of (18) is determined by computing the eigenvalues of the Jacobian matrix about each

equilibrium. Let ~JJ0, ~JJ1 and ~JJ2 be this matrix evaluated respectively at ~EE0, ~EE1 and ~EE2. Then,

~JJ0 ¼
1 0
0 �b

� �
; ~JJ1 ¼

�1 �1
1þa

0 c�b�ab
1þa

� �
; ~JJ2 ¼

�2h2�ða�1Þh
aþh � h

aþh
acð1�hÞ
aþh 0

 !
: ð20Þ

From ~JJ0, since b > 0, ~EE0 is obviously non-stable; it is a hyperbolic saddle point which attracts in the y-direction and

repels in the x-direction.

Now, for ~EE1, the eigenvalues of ~JJ1 are

�1 and
ðc� b� abÞ

ð1þ aÞ :
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If c� b > ab (i.e. 0 < h < 1, case of existence of ~EE2), then ~EE1 is also a hyperbolic saddle point which attracts in the x

direction and repels in the y direction. If c� b < ab, then both eigenvalues are negative, ~EE1 is locally asymptotically

stable. Furthermore, if c < b (i.e., h < 0), the following result establishes the global stability of ~EE1.

Theorem 4. If c < b, then ~EE1 is globally asymptotically stable.

Proof. First, let us remark that if hypothesis c < b is satisfied. Then system (18) has only two non-negative equilibria.

Indeed, under this hypothesis, ~EE2 is not in Rþ
xy (since c < b ) h < 0).

From the second equation of system (18), since parameters of the system are positive, ðx; yÞ 2 R2
þ and c < b, then

dy=dt6 cxy=ðxþ aÞ � cy; thus dy=dt6 � ac=ðxþ aÞy; and dy=dt6� K1y; for some K1 > 0, since xðtÞ is bounded in

t 2 ½0;þ1�. As a consequence, one gets yðtÞ6 yð0Þe�K1t. Then, any solution yðtÞ which starts on the non-negative first

quadrant Rþ
xy tends to zero as t tends to þ1. Thus, the x-limit set X of every solution with positive initial conditions is

contained in fðx; 0Þ; xP 0g. Now, the first equation of system (18) verifies,

dx
dt

¼ xð1� xÞ � xy
xþ a

6 xð1� xÞ:

For x > 1, we have dx=dt < 0, so X � fðx; 0Þ; 06 x6 1g. Taking into account that ~EE0 62 X, ( ~EE0 is non-stable and

repels in the x-direction) and that X is a non-empty closed and invariant set, we get X ¼ f ~EE1g: �

Let us now move to ~EE2 which exists and is positive iff 0 < h < 1 holds (that is if 0 < ab < c� b, the case, h ¼ 1 leads

to ~EE1 ¼ ~EE2). The eigenvalues of ~JJ2 are given by

~kki ¼ ~kk�ðhÞ ¼
a11ð~xx2; ~yy2Þ

2
� 1

2

ffiffiffiffiffiffiffiffiffiffi
DðhÞ

p
; ð21Þ

where

a11ð~xx2; ~yy2Þ ¼
�2h2 � ða� 1Þh

2ðaþ hÞ

and

DðhÞ ¼ 1

ðaþ hÞ2
½ð2h2 þ ða� 1ÞhÞ2 � 4achð1� hÞ�:

Simple algebraic computations show that ~kki have negative real parts if and only if

1� a
2

< h < 1 ð22Þ

(with h ¼ ab=ðc� bÞ > 0). Consequently, if (22) holds, ~EE2 is locally asymptotically stable.

Theorem 5. If ~EE2 exists in Rþ
xy and if it is locally asymptotically stable (i.e. if ð1� aÞ=2 < h < 1), then it is globally stable.

Proof. We follow the same way as in [31] where the stability criterion of Rosenzweig and MacArthur [34] is used to

establish the global stability of equilibria. Therefore, let u the function defined as

uð~xx2Þ ¼ ~xx2sð~xx2Þ
d

dx
ln

xsðxÞ
uðxÞ

� �� �
jðx¼~xx2Þ

;

where sðxÞ ¼ 1� x, uðxÞ ¼ x=ðaþ xÞ. Then,

uð~xx2Þ < 0 ) asymptotic stability of ~EE2;

uð~xx2Þ > 0 ) unstability:
ð23Þ

Here,

uð~xx2Þ ¼ ~xx2ð1� ~xx2Þ
d

dx
lnð1

�
� xÞðaþ xÞ

�
jðx¼~xx2Þ

¼ �2h2 � ða� 1Þh
aþ h

:
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Due to (23), asymptotic stability of ~EE2 occurs if uð~xx2Þ < 0, that is if ð1� aÞ=2 < h < 1. This is exactly formula (22).

To end the proof we use the following result, given in [32], where the author also uses Rosenzweig and MacArthur

criterion.

Theorem (Hsu [32]). Assume ~EE2, interior equilibrium of (18), is locally stable (i.e. uð~xx2Þ < 0) and let

d2

dx2
ln

xsðxÞ
uðxÞ

� �� �
< 0 for 0 < x < 1:

Then ~EE2 is globally stable.

Here, for system (18), xsðxÞ=uðxÞ ¼ ð1� xÞðaþ xÞ, then

d2

dx2
ln

xsðxÞ
uðxÞ

� �� �
¼ �2 < 0:

Therefore, under condition (22), ~EE2 is globally stable. �

System (1) has non-trivial dynamics in the absence of the top-predator (i.e. case of system (18)). Indeed, the loss of

stability of ~EE2 happens by a supercritical Hopf bifurcation. To study the last, every parameter will be considered fixed

but a0 which will play the role of the bifurcation parameter. Let us recall (by using notations (4)) that

h ¼ ab
c� b

¼ 1

a0

b0d0a1
v1 � a1

¼ hða0Þ:

Then one can also consider h as a bifurcation parameter. In fact, one should note that a decrease in h corresponds to an

increase in a0 which corresponds to an increase in the carrying capacity of prey species X; and vice-versa, an increase in

h corresponds to a decrease in a0, then to a decrease in the carrying capacity of prey species X. Therefore, this change in

h can act to destabilize the system allowing for more complicated dynamics. In the following, we prove that a limit cycle

emerges from E2 in the xy-plane.

Theorem 6. Suppose that conditions (0 < h < 1) and (a < 1) hold. Then, equilibrium point ~EE2 undergoes a Hopf bifurcation
at h ¼ h0 ¼ ð1� aÞ=2.

Proof. The eigenvalues of J2 are given by (21). One easily show that Reð~kk�ðhÞÞ > 0 (resp. <) according as h < h0 (resp.

>). At h ¼ h0, since 0 < a < 1, the eigenvalues become

~kk�ðh0Þ ¼ � i
ðaþ 1Þ ðacð1� a2ÞÞ1=2;

which are purely imaginary and conjugate. Furthermore, the eigenvalues cross the imaginary axis with non-zero speed,

that is,

d

dh
Re ð~kk�ðhÞÞ

� �
jh¼h0

6¼ 0:

Indeed, simple computations lead to

d

dh
Re ð~kk�ðhÞÞ ¼ �1þ a2 þ a

2ðaþ hÞ2
;

hence

d

dh
Reð~kk�ðhÞÞ

� �
jh¼h0

¼ �1þ 2a
aþ 1

;

which is non-zero since a < 1. Consequently, at h ¼ h0, the equilibria ~EE2 undergoes a Hopf bifurcation. �

Moreover, one can also see that ~EE2 emerges from ~EE1 via a transcritical bifurcation (if h > 1, ~EE2 does not exist, if

h ¼ h0
~EE2 ¼ ~EE1 and last if h < 1 both exist).
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4.2. Stability of E0, E1 and E2

Note that the existence of ~EEi will imply the existence of Ei (i ¼ 0; 1; 2). The Jacobian matrix evaluated at an equi-

librium Eðx�; y�; z�Þ of system (5) is

J ¼
a11ðx�; y�; z�Þ a12ðx�; y�; z�Þ 0
a21ðx�; y�; z�Þ a22ðx�; y�; z�Þ a23ðx�; y�; z�Þ

0 a32ðx�; y�; z�Þ 0;

0
@

1
A; ð24Þ

where

a11ðx�; y�; z�Þ ¼ 1� 2x� � ay�

ðaþ x�Þ2
; a12ðx�; y�; z�Þ ¼ � x�

aþ x�
;

a21ðx�; y�; z�Þ ¼
acy�

ðaþ x�Þ2
; a22ðx�; y�; z�Þ ¼ �bþ cx�

aþ x�
� dz�

ðd þ y�Þ2
;

a23ðx�; y�; z�Þ ¼ � y�

d þ y�
; a32ðx�; y�; z�Þ ¼

qz�
2

ðy� þ rÞ2
:

Then, the Jacobian matrix evaluated at E0ð0; 0; 0Þ and E1ð1; 0; 0Þ are respectively:

where ~JJ0 and ~JJ1 are given by (20).

The eigenvalues of J0 are 1, �b and 0, hence E0 is non-hyperbolic. Furthermore, as one eigenvalue is a positive real,

and another one is a negative real, E0 is always non-stable. Thus, for each orbit starting in IntðR3
þÞ, the number of prey

X and specialist predator Y will not tend to zero.

The eigenvalues of J1 are

�1; � abþ b� c
aþ 1

and 0:

Hence, E1 is also non-hyperbolic. Since all parameters of the system assume only positive values, if ab < c� b (i.e.

0 < h < 1), then E1 is non-stable. Otherwise, if ab > c� b, two of the eigenvalues are negative real, so E1 has a stable

manifold of at least two dimensions. To know the actual dimensions of the stable and unstable manifolds of E1 we need

to compute the center manifold corresponding to the eigenvalue zero. This will be studied in a forthcoming paper [36].

The dynamic in the xy-plane, near E2, is locally driven by the corresponding linearized system on E2 for which the

Jacobian matrix evaluated at this equilibrium is

where ~JJ2 is given by (20). The eigenvalues of J2 are those of ~JJ2 which are done by (21) and k3 ¼ 0, so one can use the

study on ~EE2 to have some information near the xy-plane.
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The next theorem establishes the global stability of E1 and E2 for some reasonable conditions on the parameters.

Theorem 7. Let us assume satisfied the following statements:

p6 q; ð25Þ

cþ c
4b

þ r < 1: ð26Þ

(a) If ~EE1 is globally asymptotically stable with respect to Rþ
xy (i.e. c < b holds, see Theorem 4), then E1 is globally asymp-

totically stable.
(b) If ~EE2 is globally stable with respect to Rþ

xy (i.e. ð1� aÞ=2 < h < 1 hold, Theorem 5), then E2 is globally stable.

Proof. Using the third equation of system (5) and as p6 q, we get

dz
dt

6 � 1

y þ r

�
� 1

�
pz2:

Now, 1=ðy þ rÞ � 1 > 0. Indeed, if conditions (25) and (26) hold, then condition (7) of Theorem 3 holds, and then

solutions of the system eventually enter the attracting set A. In A, we clearly have 06 y6 cþ c=4b, thus

0 <
1

cþ ðc=4bÞ þ r
6

1

y þ r
:

Eq. (26) is equivalent to

1 <
1

cþ c
4b þ r

;

thus one gets 1=ðy þ rÞ � 1 > 0. Therefore

dz
dt

6 � 1

cþ c
4b þ r

�
� 1

�
pz2 ¼ �Kz2;

where

K ¼ 1

cþ c
4b þ r

� 1 > 0:

This differential inequality leads to

zðtÞ6 1

Kt þ 1=z0
:

As a consequence, if (25) and (26) hold, any solution zðtÞ which starts on the non-negative cone R3
þ tends to zero as t

tends to þ1. Thus, the x-limit set X of every solution ðxðtÞ; yðtÞ; zðtÞÞ with positive initial conditions is contained in Rþ
xy .

Consequently,

(a) since ~EE1 is globally asymptotically stable and E1 restricted to Rþ
xy is

~EE1, then E1 is globally asymptotically stable with

respect to R3
þ, (the intermediate Y and the top predator Z go extinct);

(b) since ~EE2 is globally stable with respect to Rþ
xy and E2 restricted to Rþ

xy is
~EE2, then one gets the conclusion that E2 is

globally stable with respect to R3
þ, (the top-predator Z goes extinct). �

Thus, following a similar analysis of bifurcations given in [4], and using the study which we have done on the be-

havior on the xy-plane (Section 4.1), one can show that system (5) has no trivial dynamics even if the quantity of top-

predator is small. This is numerically illustrated by Figs. 7–9 (see the last part of Section 5, numerical observations).

Likewise, other chains of events occur leading up to and following a Hopf bifurcation which ultimately results in the

chaotic behavior numerically presented in the last section.

5. Numerical results

Many studies on various, two or three, food chains strongly support the conjecture that the irregular dynamics

observed in many natural food chains might be those of a strange attractor and chaos, see [4–6,8,11,21,23,24]. In this
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paper, the chaotic behavior of system (1) is shown only by numerical analysis, in a different regions of the parameter

space. A deep bifurcation analysis is left for a forthcoming paper.

Selection of biologically ‘realistic’ parameter values for the numerical experiments of ecological models is a difficult

problem. It must be guided by biological principles. The ranges for the variation of parameters we have used in this

paper for the numerical study of the dynamical behavior were chosen on the basis of values reported in [20,22], since

these ranges contain parametric values which are not arbitrary but are quantitative measures of the system attributes.

Nevertheless, we have enlarged these ranges and sometimes found other parameter regions in which chaotic behavior

exists. These regions do not allow the existence of interior equilibria E� given by (16) and (17), the dynamics displayed

in the last section, even chaotic, does not depend on these points.

We have done the numerical calculations very accurately in double precision for different initial conditions and for

different variations of parameters, and verified our results. In order to obtain reliable numerical results, the step size has

been chosen to be equal to 10�4 or less, and the first 107 steps are discarded to avoid the transient regime. For all the

figures, the chosen bifurcation parameters are a0 or c3 and the following parameters are fixed throughout:

b0 ¼ 0:06; v0 ¼ 1:0; d0 ¼ d1 ¼ d2 ¼ 10:0; a1 ¼ 1:0; v1 ¼ 2:0; v2 ¼ 0:405; v3 ¼ 1:0; d3 ¼ 20:0: ð27Þ

The following initial condition is also used when we do not give another.

X0ð1:2; 1:2; 1:2Þ: ð28Þ

Fig. 1. Phase portraits in the XY-plane, for system (1), showing the transition to chaos, via period-doubling from a limit cycle to

strange attractors, with c3 ¼ 0:038, the set of parameters given by (27) and the initial condition given by (28). Parameter a0 is done in
each figure. Figures (a)–(c) correspond to the first (type I) periodic window, and figures (d)–(i) to the second (type II).
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Period-doubling bifurcation. Various chains of period-doubling or period-halving, wavetime forms and power spectra

are done to give numerical evidence of chaotic behavior. Fig. 1 shows a sequence of period-doubling of limit cycles. This

is also presented by the symbolic diagram of Fig. 2, while Fig. 3 presents a tri-dimensional view of the strange attractor

displayed in Fig. 1(h), the power spectra and the timewave-form of the corresponding X-component.

The remarkable fact is that both stable attractors given by Figs. 1(c) and (d) coexist for the same parameters given by

(27), c3 ¼ 0:038 and for a0 2 ½1:780; 1:891�, but for different initial conditions, see Figs. 2, and 4. Indeed, when more

than one critical points are identified, it may appear that two bifurcations involving low periodic orbits induce

simultaneously a periodic window. In such a case, two co-existing stable limit cycles may be observed, we qualify theses

limit cycles by solutions of type I, Figs. 1(a)–(c), or type II, Figs. 1(d)–(i). This means that it is possible for the behavior

of the three species to change completely if the initial amount of one of these species changes, even if the parametric

values remain unchanged, a natural fact. This may be occur when for example an epidemics arises. When two attractors

co-exist the epidemic may induce a transition from one attraction basin to the other, therefore, the dynamical behavior

after the disease may be different from the one observed before.

For the same parameters given by (27), if we fix c3 ¼ 0:03, the strange attractor given in the previous figures change

slightly, we obtain another strange attractor (Fig. 5(a)), revealed via a period-doubling cascade the diagram of which is

given by Fig. 5(b).

Fig. 2. Symbolic diagram specifying the attractors of system (1) for c3 ¼ 0:038, the set of parameters given by (27) with 06 a0 < 1,

and the initial condition given by (28). A stable equilibrium point is denoted by ‘EP’, a stable limit cycle of period k by ‘k-LC’, a quasi-

periodic trajectory by ‘QP’, a strange attractor by ‘SA’. For a0 2 ½1:780; 1:891�, two coexisting period doubling cascades are observed,

they are denoted by type I (T1) and type II (T2).

Fig. 3. (a) Tri-dimensional view of the phase portrait of the system (1) with c3 ¼ 0:038, the set of parameters given by (27), a0 ¼ 2:1

and the initial condition given by (28). (b) The coresponding power spectra for the X-component (on 217 ¼ 131072 pts). (c) The

corresponding time-waveform for the X-component.
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Period-halving bifurcation. The period-doubling phenomenon leading to chaos is a well-known feature of a range of

nonlinear differential equations, often used in modeling biological populations. Nevertheless, this phenomenon can

suddenly break down and reverse, giving rise to period-halving bifurcations leading to stable limit cycles. By using the

parameters given by (27) and with c3 ¼ 0:03, a0 varying, Fig. 6 shows such a chain of period-halving.

Numerical observations on the behavior near the XY-plane close to E2. For small a0 there is no limit cycle in the XY-

plane and E2 has a two-dimensional stable manifold (the XY-plane) and one-dimensional manifold transverse to the

XY-plane. At this stage, even in the presence of the top-predator, the population sizes readily moves towards E2, see

Fig. 7. As a0 increases, (when h becomes less than ð1� aÞ=2), and if the initial quantity Z0 of the top-predator is small, a

Hopf bifurcation occurs in the XY-plane (see Theorem 6), that is the interaction between species X and Y become

oscillatory and a planar limit cycle appears, Fig. 8. If this initial quantity Z0 is not small, even if the parameter a0
remains fixed and does not increase, the limit cycles period doubles through a sequence of period-doubling bifurcations.

Next, a connection with a broken homoclinic solution (which emanates on E1) occurs and finally lead to the attractors

shown in Fig. 9. However, there is numerical evidence of other routes to chaos, which is for example a saddle-node

bifurcations of limit cycles. Via a change of various parameters, other interesting dynamics are possible for this system.

6. Conclusion

We have studied a three-dimensional continuous time dynamical system, modeling a tritrophic food chain, based

especially on a modified Leslie–Gower scheme. The boundedness of the trajectories, existence of an attracting set, as

Fig. 4. Projection on the XY-plane of coexistent stable limit cycles of the system (1), for the parameters (27), c3 ¼ 0:038, and

a0 ¼ 1:7925. The initial conditions are: (a) a stable limit cycle of type I for initial condition ð1:2; 1:2; 1:2Þ; (b) a stable limit cycle of type

II for initial condition ð0:1; 0:1; 0:1Þ; (c) both cycles plotted together.

Fig. 5. (a) Phase portrait in the XY-plane of a strange attractor exhibited by system (1) with the set of parameters given by (27), the

initial condition given by (28) and with a0 ¼ 1:93, c3 ¼ 0:03. (b) The ða0;X Þ bifurcation diagram for the same parameters.
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Fig. 6. Phase portraits in the XY-plane for system (1) showing the transition from chaos to a stable period-1 limit cycle via period-

halving with the parameters given by (27), c3 ¼ 0:03 and the initial condition given by (28); the parameter a0 is done in each figure.

Fig. 7. (a) Projection on the XY-plane of the solution exhibited by system (1) for the parameters given by (27), a0 ¼ 1:5 and c3 ¼ 0:038.

The chosen initial condition is X0 ¼ 10:1, Y0 ¼ 30:1 and Z0 ¼ 0:1: the equilibrium E2 is globally stable. (b) The time-waveform of the

x-component for the same parameters.

Fig. 8. (a) Projection on the XY-plane of the solution exhibited by system (1) for the same parameters as the previous figure, but

a0 ¼ 2:1 and for small Z0. The chosen initial condition is X0 ¼ 10:1, Y0 ¼ 30:1 and Z0 ¼ 0:001: the equilibrium E2 of the previous figure

has lost its stability and a stable limit cycle appears. (b) The corresponding time-waveform of the x-component.
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well as the existence of the equilibria which represent the extinction of top-predator or intermediate-predator, their local

or global stability, have been analyzed. We have also explored numerically the chaotic behavior of the system by

plotting various phase portraits, timewave forms or power spectra. Even if the selection of biologically realistic pa-

rameter values for the numerical simulation of ecological models is difficult and our parameter range is narrow, very

rich and complex dynamics are appeared, presenting various sequences of period doubling leading to chaos or se-

quences of period-halving leading to limit cycles.
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