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Introduction: The volume of three-dimensional structural information of mac-

romolecules and the number of computational tools to predict binding modes

and affinities of molecular complexes are increasing daily. Molecular docking

is a rational structural approach employed to predict thermodynamic param-

eters based on molecular recognition between two or more molecules. In

addition, docking studies have become very important for therapeutic appli-

cations in modern structure-based drug design because this computational

tool uses few economic resources. However, they omit many biological condi-

tions that critically influence small and macromolecular structural motions. To

mimic physiological conditions, it is necessary to consider other environmen-

tal factors, such as the presence of water molecules and the flexibility of

ligands and side chain residues of proteins. Furthermore, molecular dynamics

simulations have been coupled with docking procedures to expand the

boundaries and obtain more reliable information.

Areas covered: In this article, we review current advances in protein-small

molecule docking and possible future directions.

Expert opinion: Docking studies include many conformations to predict bind-

ing free energies (scoring functions) and to search (scoring sampling) for the

most representative binding conformations. Therefore, several biological

properties, from side chain residues to complete protein motions, have been

included in docking studies to improve theoretical predictions.

Keywords: docking, molecular dynamics simulations, protein target, small ligands

Expert Opin. Drug Discov. [Early Online]

1. Introduction

Since the isolation of morphine from opium in 1805 by the German pharmacist
Friedrich Wilhelm Sertürner, pharmaceutical companies have been aware of the
importance of finding other naturally occurring substances with potential medicinal
uses [1].

In the nineteenth century, the physiologists John Newport Langley and Paul Ehr-
lich introduced the concept of a receptor [2]. Paul Ehrlich conceptualized the idea
that different chemoreceptors can be found in parasites, microorganisms or cancer
cells based on his observations of their response to certain dyes [3]. In 1905, Langley
and his collaborators proposed that binding a substrate to a receptor could activate
or inhibit the receptor [4]. These theories served as the basis for the study of drug
action on cells in the 1930s by Joseph Clark [5].

Experimental techniques, such as X-ray crystallography and nuclear magnetic
resonance (NMR), are currently the most utilized methods to obtain information
concerning the three-dimensional (3D) structure of water-soluble proteins and
membrane proteins. However, it is very difficult to study membrane proteins
because of their intrinsic flexibility and limited water solubility [6]. For this reason,
other crystallization conditions have been explored for membrane proteins, such as
co-crystallization of membrane proteins with their respective ligands [7] or the
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design of chimeric proteins, such as the human beta-2 adrener-
gic receptor [8]. In the field of drug discovery, it is essential to
study co-crystallized complexes of target proteins and their
ligands [9]. This experimental data provides detailed informa-
tion at the atomic level about receptor structure and particu-
larly binding sites for use in drug design. In addition, these
experimental data help theoretical researchers design algo-
rithms that can be validated with respect to large numbers
of ligand--protein complexes and subsequently used to per-
form molecular docking studies [10].
In response to current demands for the discovery and

design of new molecular structures with the potential for use
as drugs, computational methods (in silico) are being applied
to discover new receptor molecules by employing algorithms
for de novo ligand design and ligand docking as well as for
scoring protein--ligand binding arrangements and energies [11].
In silico tools are very useful for the identification of binding
sites on proteins [12] and the prediction of ligand--receptor
interactions that determine ligand--protein affinity [13].
Because docking studies are very useful for the prediction of

protein--ligand interactions, they provide an opportunity to
explore recognition properties and identify potential pharma-
cophores [14]. Currently, most of the computational docking
programs, such as Autodock 3.0.5 and Autodock Vina [15],
consider the protein as a rigid body and the ligand as a flexible
molecule, which reduces the computational cost. However,
these calculations omit conformational changes that occur in
protein molecules due to ligand binding.
Due to the importance of molecular motion and the flexi-

bility of targets and/or ligands, other types of docking pro-
grams have been designed. For example, some docking
algorithms consider the flexibility of certain residues in the
protein side chains and ligands to make accurate predictions
of protein--ligand associations [16,17]. However, these docking
programs do not consider backbone protein motion, which
are very important in the process of ligand recognition [18].
To incorporate protein flexibility in ligand--protein coupling
studies under a docking procedure, many research groups
employ molecular dynamics (MD) simulations [19] or intro-
duced protocols for fits [20,21], which can provide more reliable

predictions than traditional protocols. However, when several
ligands are examined with virtual screening protocols, the
predictions may require longer times and be computationally
more expensive.

2. Algorithms for docking studies

2.1 Search algorithms
Docking studies can be regarded as combinations of two com-
ponents, a search strategy and a scoring function. The search
algorithm is defined by a set of rules and parameters used to
predict ligand-receptor conformations. A search algorithm
should generate an optimum number of putative ligand bind-
ing orientations/conformations at the binding site of a pro-
tein, which include the experimentally determined binding
mode [22]. After these configurations are generated, they are
evaluated with scoring functions to distinguish the experimen-
tal binding mode from all of the binding modes identified by
the search algorithm in the docking program. A rigorous search
algorithm would explore all of the possible binding modes
between the two molecules, but this would be impractical due
to the size of the search space [22].

Docking applications can be classified into at least two
groups based on ligand flexibility and/or receptor docking
algorithms: rigid-body and flexible docking. Rigid-body
docking methods consider neither ligand nor receptor flexibil-
ity, which limits the specificity and accuracy of their results.
Despite the lack of molecular flexibility, it is possible for
rigid-body docking methods to predict the correct ligand
binding sites for several different proteins relative to their
corresponding co-crystallized complexes [23-28]. Therefore,
rigid-body docking methods are used as the fastest method
for performing an initial screen of a small molecule database [29].
In contrast, flexible docking methods allow the choice of several
conformations of the ligand or the receptor or for both
molecules simultaneously at greater computational expense.

In general, docking procedures use four types of search
algorithms: shape matching (SM) [30], systematic search, sto-
chastic algorithm and MD simulations. SM methods are
among the simplest algorithms used in the early stages of
the docking processes. SM methods place the ligand into the
protein binding site using a criterion that the molecular surfa-
ces must complement each other. The degrees of freedom of
the ligand enable the ligand to adopt different conformer ori-
entations in the macromolecule binding site. Therefore, the
main goal of SM algorithms is to place the ligand inside the
binding site with good shape complementarities. In fact, sev-
eral docking applications, such as ZDOCK [31], FRED [32],
FLOG [33], Surflex [34], LigandFit [35] and EUDOC [36], adopt
the basic concept of SM. For example, EUDOC performs a
systematic search of rigid body rotations and translations of
a rigid ligand within a rigid active site [36]. This application
is based on the earlier SYSDOC program [37] that uses a fast
affine transformation to perform the systematic search [36]

and utilizes the AMBER force field [38] to calculate the

Article highlights.

. Docking studies are dependent on the search and
scoring functions.

. Docking studies include side chain motions.

. Docking studies depict pharmacophore moieties of the
tested ligands.

. Docking studies are more efficient at identifying a
potential drug than traditional procedures.

. MD simulations coupled with docking could yield more
reliable data than traditional procedures.

. Incorporating protein and ligand flexibility yield better
results than rigid systems.

This box summarizes key points contained in the article.
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intermolecular energy with a distance-dependent dielectric.
This method was applied to virtual screening of farnesyltrans-
ferase inhibitors. Based on this study, 21 hits were obtained,
and 4 of these hits were selected as good inhibitors [22].
However, when using the SM method with flexible-
ligand docking, it is necessary to dock an ensemble of pre-
generated ligand conformations into the protein [39] and
then re-rank the docked arrangements with respect to their
energy scores [40]. Recently, a ‘progressive distributed docking
method’ has been reported that iteratively combined a shape-
matching method with a multiple receptor conformation
docking method [41]. A validation of this method with a selec-
tion of PPARg- and PI3Kg-oriented compounds revealed
that the combination of these two methods provided a better
selection of the target-oriented virtual hits.

Systematic search algorithms are commonly used in
flexible-ligand docking procedures. With this type of algo-
rithm, it is possible to generate every possible ligand binding
conformation by exploring all degrees of freedom for the
ligand. Systematic searches can be divided into three types:
exhaustive, conformational ensemble and fragment-based.
Exhaustive searches are the most straightforward method,
and in these searches, flexible-ligand docking is performed
by rotating all of the possible bonds of the ligand at a given
interval. However, for some cases, the large number of rotat-
able bonds in a ligand would result in a huge number of
conformations, and geometrical or chemical constraints are
used to filter the ligand conformations. Glide [42,43] and
FRED [32] are two examples of exhaustive search methods.
FRED utilizes a Gaussian function [32] to generate a smooth
and clearly searchable energy landscape. In addition, this
method allows a broad freedom for errors in the protein
atom positions. Therefore, although the use of a pre-
generated database of multiple ligand conformers is an appro-
priate technique when a soft and error-tolerant approach is
used, the method has limited precision in accurately ranking
ligands resulting in further scoring [44]. In fact, comparative
research between the FRED and Glide scoring schemes using
the binding sites of different proteins [45] indicated that hard
functions, such as those used in Glide, performed better
than the softer scoring function in FRED. Nevertheless,
when hydrophobic effects outweighed electrostatic interac-
tions, FRED was found to produce better results for hydro-
phobic binding sites indicating that these methods react
differently to specific features in the binding sites.

Conformational ensemble methods [39] simulate ligand
flexibility by using an ensemble of ligand conformations pre-
viously generated through a rigid-docking program. Afterward,
the ligand binding conformations obtained from different
docking runs are collected and ranked with respect to their
binding free energies. FLOG [33], DOCK [46], PhDOCK [47],
MS-DOCK [48], MDock [49,50] and Q-Dock [51] are examples
of conformational ensemble methods for docking. For exam-
ple, FLOG [33] generates database conformations based on dis-
tance geometries. Once adequate conformations have been

performed, the algorithm explores them in a manner similar
to DOCK [46].

In fragment-based methods, the ligand is divided into
separate portions or fragments. These fragments are individu-
ally docked into the protein-binding site, and then linked
covalently. Some well-known docking programs that use
fragment-based methods are DOCK [46] and FlexX [52]. In
FlexX, the first step is the selection phase of the base fragment
for the ligand from which possible conformations are made
based on the MIMUMBA torsion angle database [53].
Although this selection was manually performed in early
implementations, this process has now been automated [54].
All of the fragments identified for a particular ligand serve
as starting points for the docking. After placement of a base
fragment, the complete ligand is constructed by adding the
remaining components. At each step, the interactions are cal-
culated and the best solution is selected according to the dock-
ing score. The docking score uses the model of molecular
interactions developed by Klebe [55] and B€ohm [56].

Originally, this algorithm was validated on 19 complexes,
from which 10 of the docked complexes with the best score
reproduced the experimental binding mode with maximum
RMSD values of 1.04 Å, although these were not necessar-
ily the lowest free energy values. More recent extensions to
FlexX include the placement of explicit waters into the
binding site through the docking procedure [57]. This pro-
cess was validated using 200 complexes, and based on this
study, some improvements were found for some targets,
such as HIV protease.

The docking program DOCK [46,58] basically performs a
search for geometrically allowed ligand-binding poses by
modeling the ligand and receptor cavity as spheres, matching
the sphere groups, placing the ligand and scoring each posi-
tion using the AMBER force field [38]. Some extensions have
been applied to this protocol in which the bipartite graphs
consisting of the protein and ligand interactions are combined
into a single graph, giving rise to a pair of molecular interac-
tions from which group detection is performed using the
methodology developed by Bron and Kerbosch [59]. In addi-
tion, this technique was evaluated [60,61] and classified as one
of the most efficient methods to locate a cluster that has the
maximal pairs of interactions between matching sites.
DOCK 4.0 incorporates ligand flexibility using a modified
scoring function [62]. In this version, the ligand fragment is
chosen and placed on the receptor. Then, a rigid body mini-
mization is performed, and the conformations of the remain-
ing parts of the ligand are searched by a limited backtrack
method and minimized. This protocol was evaluated using
10 structures from which 7 docked complexes reproduced
the crystallographic complex with a maximum RMSD value
of 1.03 Å with the remaining 3 complexes within
1.88 Å [22]. Some of the new features added in a recent ver-
sion (i.e., DOCK 6.0) include minimization that uses a
conjugate gradient method, MD simulation capabilities,
ligand and receptor desolvation, ligand conformational

Automated docking for novel drug discovery

Expert Opin. Drug Discov. [Early Online] 3

E
xp

er
t O

pi
n.

 D
ru

g 
D

is
co

v.
 D

ow
nl

oa
de

d 
fr

om
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
14

8.
20

4.
15

5.
22

9 
on

 0
5/

06
/1

3
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.



entropy corrections, receptor flexibility and an efficient
MPI-based parallel implementation [63].
Although DOCK and FlexX are fragment-based methods,

they produce quite different results. Whereas DOCK per-
forms well with apolar binding sites, FlexX shows the totally
opposite behavior. In fact, it has a bit lower hit rate than
DOCK, but provides better estimates of RMSD for com-
pounds with correctly predicted binding modes. Furthermore,
there is a version of FlexX named FlexE with flexible receptors
that has produced better results with significantly lower
computational times [64].
In stochastic methods, the ligand binding conformations

are sampled by making random changes to the ligand in
both the conformational space and degrees of freedom [40]

and deciding whether to accept or reject the change according
to a probabilistic criterion. Stochastic methods can be divided
into four types: Monte Carlo (MC) simulations, genetic algo-
rithms (GA), Tabu search methods (TS) and particle swarm
optimization (PSO).
MC simulations were first used as minimization procedures

in some MD simulations, such as GROMACS [65], and then
they were adopted for use by certain flexible docking algo-
rithms, such as MCDOCK [66], ICM [17] and AutoDock [67,68].
MC simulations involve the generation of random moves in the
system and then accept or reject these moves based on a Boltz-
mann probability function [22]. Because of the combination of
atomistic potential energy models with stochastic search techni-
ques, MC simulations are among the most powerful methods
available for analyzing different thermodynamic conditions
for both structure optimization and prediction. For flexible
docking, the MC procedure places the ligand inside the recep-
tor binding site by exploring many random positions and rota-
tions, which decreases the likelihood of being trapped in local
minima [22]. Next, each random structure is minimized using
a force field. MC simulations are not appropriate for assessing
time-dependent processes. At the present time, DockVision [69],
ICM [70], QXP [71], Prodock [72] and MCDOCK are examples
of programs that use MC methods [66].
Prodock [72] uses a MC minimization approach to dock

flexible ligands into a flexible binding site using two force
fields (AMBER [38] and ECEPP/3 [73]) and a solvation model
based on solvent exposed volume. However, this method dif-
fers from a standard MC procedure in that after each random
motion a local gradient-based minimization is performed.
Then, the resulting structure would be acceptable based on
the Metropolis acceptance criteria. In this program, the sam-
pling is facilitated during the docking process by scaling the
magnitudes of the potential energy terms, thus, allowing the
reduction of barriers that restrict sampling. In its first version,
MCDOCK [66] used a MC minimization approach with sim-
ulated annealing using a scoring function based on the
CHARMM force field [74]. MCDOCK applied a multiple
step strategy to dock a flexible ligand into a rigid receptor.
Next, the overlaps between the ligand and protein atoms are
reduced by applying random motions. Then, a MC

simulation that incorporates an adjustable temperature is per-
formed. This method have been tested using a set of 19 com-
plexes taken from a set obtained with the FlexX program, and
the RMSD between the theoretical and experimental binding
modes oscillated from 0.25 Å to 1.84 Å [75]. In contrast to
Prodock and MCDOCK, DockVision applies a rigid ligand
and receptor. First, this docking algorithm generates a ran-
dom ligand orientation, and an MC method is applied to
the system, except for the energy function, which is replaced
by a geometric score for atomic overlap. Next, MC-
simulated annealing is performed using a simple potential
energy function, and the same procedure is repeated for a large
number of random ligand orientations. Finally, the generated
ligand orientations are clustered based on an RMSD score.
This method has been tested using two inhibitor--protein com-
plexes, and the binding geometry was properly predicted in
both cases [69].

GA belongs to the class of evolutionary programming algo-
rithms that solve docking problems by trying to find the exact
conformation of the global energy minimum, or similar con-
formations, based on approaches that adapt the principles of
biological competition and population dynamics. Basically,
the concept of GA is the evolution of a population of possible
solutions through genetic operators (mutations, crossovers
and migrations) to attain a final population [22]. The process
of applying GA starts with encoding the variables. In this
case, the degrees of freedom are encoded into genes or binary
strings [22]. A random initial population of solutions is cre-
ated, and a genetic operator is applied to generate a new pop-
ulation that is scored and ranked using the survival of the
fittest. Therefore, the probability that a conformation advan-
ces to the next iteration round depends on its score. However,
in contrast to MC and MD, which require only a single initial
structure, GA requires the generation of an initial population
of structures. Docking programs that use GA include
GOLD [76], AutoDock [77], DIVALI [78], DARWIN [79],
MolDock [80], PSI-DOCK [81], FLIPDock [82], Lead finder [83]
and EADock [84].

GOLD was originally developed by Jones et al. [76]. The
program has been commercially released by the Cambridge
Crystallographic Data Center. GOLD 3.2 uses a GA
to explore the rotational flexibility for selected receptor
hydrogen bonds along with total ligand flexibility [85]. The
ligand--receptor hydrogen bonds are subsequently matched
with a least squares fitting protocol to maximize the number
of intermolecular hydrogen bonds between the accepting
and donating hydrogen bonding groups. This feature is
unique to GOLD. In addition, the GA optimizes GOLD
for flexible dihedrals, ligand ring geometries and for dihedrals
of protein OH- and NH3+ groups [85]. Given the 3D struc-
tures of both protein and ligand, an initial population of
ligand-binding poses is randomly generated. Then, fitness is
assigned to each individual of the population based on its pre-
dicted binding affinity. Three scoring functions, referred to as
GoldScore, ChemScore and ASP, are implemented in GOLD

M. Bello et al.
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3.2 to perform this task [86]. Kellenberger et al. [87] tested
GOLD on 100 protein--ligand complexes and found that it
successfully docked 80% of the ligands with an RMSD value
of 2.0 Å. Perola et al. [85] performed a virtual screening of
HIV-1 protease where GOLD predicts the binding of 60%
of the ligands when investigating the top 10% of the
ranked complexes.

AutoDock 4.0 uses a MC method and simulated annealing
in combination with GA for constructing the possible confor-
mations. GA is used for global optimization. The search
method in combination with free energy values obtained
using AMBER force field [38] is utilized to evaluate the bind-
ing positions with several scoring functions based on the free
energy. Autodock has two software programs (AutoDock
and AutoGrid). AutoDock performs the docking of the ligand
to a set of grids depicting the target protein, while AutoGrid
pre-calculates these grids. AutoDock calculates the atomic
affinity using grids whereas its graphical user interface, named
‘AutoDockTools (ADT)’, depicts the ligand--protein interac-
tions, which supports the analyses of the docking results. In
contrast with some popular commercial software packages
for conducting molecular docking simulations, such as
GOLD, FlexX and ICM, AutoDock 4.0 has the advantage
of being an open-source package. This program has been suc-
cessfully utilized in a number of virtual screenings and in the
development of the HIV integrase inhibitor raltegravir [88-90].
Recently, a parallelized version of ‘AutoDock 4.2’ using MPI
and OpenMP to create mpAD4 has been released [91].

TS methods are iterative procedures designed to solve
optimization problems [29]. In TS methods, new states are
randomly produced from an initial random ligand conforma-
tion. These novel solutions are graded and rated in ascending
order. The best solution is selected as the new current solu-
tion, and the procedure is repeated. The probability of
approval will depend on the previously visited areas in the
conformational space of the ligand [40] because a random con-
figurational change will be rejected if the RMSD between the
current ligand binding conformation and the previous one is
less than a specific cut-off, otherwise, the configurational
change will be accepted [40]. Some examples of docking pro-
grams that employ this algorithm are PRO_LEADS [92] and
PSI-DOCK [81].

PRO_LEADS uses Chemscore [93] as a scoring function.
PRO_LEADS has been tested for the flexible ligand docking
of 50 ligand--protein complexes, from which a success rate
of 86% of the solutions within an RMSD of 1.5 Å of the
co-crystallized complexes was achieved [92]. This program
has also been applied to 70 ligand--receptor complexes for
which the experimental binding affinity and binding geome-
try are known, and 79% of the solutions were within
2.0 Å [94].

PSI-DOCK uses an improved score function capable of
reproducing the absolute binding free energy of a training
set of 200 protein complexes with a correlation coefficient
of 0.788 and a standard error of 8.13 kJ/mol [81]. In addition,

this program has been shown to be highly efficient at identi-
fying the experimental binding pose. For a test dataset of
194 complexes, PSI-DOCK achieved a 67% success rate
(RMSD < 2.0 Å) with one run. However, PSI-DOCK
achieved a 74% success rate in 10 runs [81]. Although PSI-
DOCK is similar to programs such as GOLD that have a
high success rate for binding pose predictions, it also precisely
estimated the experimental binding free energies and is
extremely easy to use compared to other docking programs [81].

PSO methods share many similarities with evolutionary
algorithms, such as GA. In PSO methods, the system starts
with a population of random solutions and searches for an
optimal solution in a search space. However, unlike GAs in
which evolutionary operators, such as crossover and muta-
tions, are used, the PSO methods use swarm intelli-
gence [29]. In PSO methods, the motion of each ligand
through the search space is influenced by its best known
local position and guided toward its best value in the con-
formational space by information about the best positions
of its neighbors. Some examples of docking programs that
use PSO include SODOCK [95], PSO@Autodock [96] and
Tribe-PSO [97].

SODOCK has been described as being more simple and
efficient than GA-based methods [95]. The docking perfor-
mance of SODOCK was evaluated using 37 complexes whose
ligands had a number of torsions ranging from 0 to 19, and
the smallest RMSD was obtained for 19 of 37. The average
RMSD value (2.29 Å) of SODOCK was better than those
of the other docking programs, such as FlexX [52],
DOCK [46], GOLD [76] and LGA of AutoDock 3.05 [68],
which were all above 3.0 Å. PSO@Autodock, which is a pro-
gram constructed on Autodock 3.0 [68,77], has been reported as
a highly efficient tool for performing flexible peptide--protein
docking and virtual screening studies [96]. The performance of
PSO@Autodock has been compared with the docking pro-
grams GOLD [76], DOCK [46], FlexX [52], Autodock 3.05 [68]

and SODOCK [95] using a set of 37 complex structures with
highly flexible ligands. For example, there was a ligand with
23 rotatable bonds that was successfully docked within as
few as 100,000 computing steps (RMSD = 0.87 A), corre-
sponding to only 10% of the computing time required by
Autodock [96]. In addition, PSO@Autodock clearly outper-
forms the other docking programs, providing the smallest
RMSD values for 12 in 37 protein--ligand complexes and an
average RMSD value of 1.4 Å. This value was significantly
lower than those obtained with the other docking programs,
which were all above 2.0 A [96]. Therefore, PSO@autodock is
a highly efficient docking program in terms of speed and
quality for flexible peptide--protein docking and virtual
screening studies.

Currently, MD simulations are one of the most versatile
and popular computational approaches for studying biologi-
cal ligand-target complexes. MD simulations involve the cal-
culation of solutions to Newton’s equations of motion [65],
and there are many programs that can be used to perform
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MD simulations, such as GROMACS [65], AMBER [38] and
NAMD [98], among others. MD simulations are useful not
only for exploring conformational changes coupled to com-
plex stabilization [99] and intrinsic protein mobility coupled
to metal coordination [100] but also for refining structures
that are experimentally determined by X-ray and NMR
studies [50,101].
Ideally, MD simulations could be used to simulate a ligand

docked to a receptor. These methods have the advantage of tak-
ing into account all of the degrees of freedom of a protein, thus
approaching physiological conditions while explicitly consider-
ing the solvent. In addition, acceptable binding free energies
can be obtained using non-covalent terms of the association
process along with the free energy perturbation (FEP)
method [102] or the linear interaction energy (LIE) method [103].
Unfortunately, MD simulations are computationally expensive,
and the computational power needed to simulate a complete
ligand diffusion process without approximation is out of reach
currently and in the near future. However, there are reports
that these types of studies have been performed [104].
In contrast, MD simulations have the drawback of being

often unable to cross high-energy barriers within the allowed
simulation time and, therefore, might only accommodate
ligands in local minima of the rugged hypersurface [105].
Thus, in some cases, the results from MD simulations depend
on the starting conformation. Therefore, other approaches
have been used with MD simulations to cross these barriers.
In fact, MD simulations at various temperatures have been
performed [106], whereas other authors have proposed meth-
odologies to place the ligand in different binding poses [44].
In addition, another approach is to model full protein mobil-
ity, perform a MD simulation of the receptor without the
ligand, and use an ensemble of conformations to represent
the conformational diversity of the protein in water. Then,
these conformations can be docked using a set of ligands
employing traditional rigid-protein/flexible-ligand methods,
as we have used in our research group [107]. It is important
to mention that a MD simulation procedure not only allows
for the sampling of many protein snapshots under a docking
procedure, but it is also an important computational tool
that can be used to refine new 3D structures constructed
with homology modeling methods [108]. MD simulations
allow a protein to achieve its optimal conformation energy
value, which would represent its natural behavior. However,
after refining a model, its structure needs to be validated by
verifying several properties, such as Ramachandran maps,
RMSD values versus template, as well as validating against
its natural or synthetic ligands.

2.2 Scoring functions
Scoring functions are fast mathematical methods used to esti-
mate the binding affinity between a ligand and its receptor for
a complex predicted by a search algorithm [22]. Scoring func-
tions are also considered the primary tool for lead optimiza-
tion of virtual screening results because they make it possible

to determine the highest-affinity ligand for a target. Then,
another procedure is performed to discriminate between cor-
rect and incorrect arrangements. Therefore, the design of a
trusted scoring function is critical. Free energy simulations
have been used to predict the binding free energy [109,110].
However, this type of calculation has a high computational
cost because it analyzes a large number of protein--ligand
complexes. Therefore, scoring functions implemented in
docking programs make various simplifications in the evalua-
tion of the binding free energy. Nevertheless, scoring
functions do not take into account a number of thermody-
namic parameters that determine molecular recognition, for
example, the entropic component.

Scoring functions can be classified into three different
groups: force field based, [111], knowledge based [108,112] and
empirically based [113].

Force field-based scoring functions have been developed
based on physicochemical atomic interactions that include
van der Waals (VDW) interactions, electrostatic interactions,
bond stretching energies, bond angle bending energies, bond
torsion energies and hydrogen bond energies. All of these
parameters are commonly obtained from experimental and
ab initio quantum mechanical calculations. Despite its simple
physical meaning, a major challenge for force field scoring
functions is how to treat the solvent in ligand binding [114].
Several force field scoring functions are based on different
force field parameters. For example, DOCK and Autodock
are based on the AMBER force field [38]. Recently, a torsional
entropy for ligands in G-Score and the inclusion of explicit
protein--ligand hydrogen bond terms, which might increase
the specificity in molecular recognition, has been included
in the force field-based scoring functions of some docking
programs, such as Autodock [68] and Gold [44,76]. In the
AMBER force field, the scoring function is composed of
two energy components including a Lennard--Jones VDW
term and an electrostatic term.

E =
A

r
-

B

r
+

qiqj
Dr(r )ri j

ij

ij
12

ij

ij
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ij ij
∑∑
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⎝
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⎞
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⎟ ð1Þ

where rij represents the distance between protein atom i and
ligand atom j; Aij and Bij denote the VDW repulsion and
attraction parameters, respectively; and qi and qj are the par-
tial charges corresponding to atoms i and j, respectively. In
this equation, the solvent effect is implicitly considered by
introducing a straightforward distance dependent dielectric
constant Dr(rij) in the Coulombic term. The force field scor-
ing function has a high computational efficiency. The distant-
dependent dielectric constant cannot describe the desolvation
effect [114]. There are other available methods that take into
account the solvent by using explicit water molecules, such
as the FEP method [105] and LIE method [103]. However, these
methods are too computationally expensive to be used in vir-
tual database screening. Therefore, accelerated force field
models have been developed to perform molecular docking
incorporating a more appropriate method for handling the
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solvent effects by treating water as a continuum dielectric
medium. Two popular examples that have been successfully
used for performing virtual screening test are the Pois-
son--Boltzmann/surface area (PB/SA) model [115-117] and the
generalized-Born/surface area (GB/SA) model [118-120].

Another force field-based scoring function is Medusa-
Score [121], in which the VDW attraction and repulsion terms,
vdw_attr and vdw_rep, respectively; solvation (sol); and hydro-
gen bonding energies are included. The hydrogen bonding
energies are divided into three groups: bonds formed between
backbone atoms (bb_hbond), between side chains (sc_hbond)
and between backbone and side chains (bb_sc_hbond) are taken
into account. However, the hydrogen bond interactions between
the protein and ligand are not present in the force field:

E W E W E W E

W W

vdw attr vdw attr vdw rep vdw rep sol sol

bb hbond

= + +

+ +
_ _ _ _

_ ssc hbond sc hbond bb sc hbondE W_ _ _ _+
ð2Þ

where the VDW energy parameters were taken from the
CHARMM 19 united atom force field of [74], the hydrogen
bond energy model was taken from Kortemme et al. [122],
and the solvation energy model is an approximation of the
EEF1 model of Lazaridis et al. [123]. These coefficients were
trained to match the native structure of 38 high-resolution
crystal structures determined by X-ray crystallography [124].
It is worth mentioning that the electrostatic energy term that
is present in the AMBER force field is not present in Medusa-
Score even though the electrostatic interactions involved in
hydrogen bond formation are implicitly considered, their
mathematic form is not Columbic [125].

Knowledge-based scoring functions are collected from
experimentally determined 3D data regarding the ligand-
target complexes [126,127]. These scoring functions work
according to the principle of the potential of mean force
(PMF), where the energy of the complex is the sum of all of
the interaction terms of the protein--ligand atom pairs [40].
Among the most important features of knowledge-based scor-
ing functions is the introduction of an appropriate reference
state for an optimal description of the residue--residue or
atom--atom pairs in the non-interaction state. Since it is
known that the predictive power of a knowledge-based scor-
ing functions will depend on the definition of a suitable refer-
ence state, several attempts have been performed to establish
an appropriate reference state value [128,129]. Derived from
these early studies, it was stated that a reference sphere radius
of at least 7 -- 8 Å is needed to capture solvation effects [129].
However, despite the introduction of this useful approxima-
tion of the reference state, there were still some limitations
as the fact of not including explicitly the contributions from
solvation and entropy contributions [108]. More recently, it
has been developed a new computational model that explicitly
includes the contributions from solvation and entropy in the
knowledge-based scoring functions named as ITScore/
SE [108], which was evaluated using three important bench-
marks of diverse protein--ligand complexes. Two popular
scoring functions that include this implementation are

DrugScore [108] and SMoG [130] where DrugScore includes
solvent-accessibility corrections to the pair-wise potentials
and SMoG utilizes pair-wise atom potentials to evaluate pro-
tein--ligand interactions. The major attraction of many
knowledge-based scoring functions is that compared to the
force field and empirical scoring functions, the knowledge-
based scoring functions offer a good balance between preci-
sion and speed that allows efficient screening of a large data-
base of compounds. A disadvantage is that these functions
were primarily designed to reproduce experimental structures
instead of evaluate binding energies.

In empirical scoring functions, the binding energy of
a complex is scored by summing several intermolecular
interaction terms:

Δ ΔG Wi Gi
i

= ∑ . ð3Þ
where DGi represents several energy terms, such as VDW
energy, electrostatic energy, hydrogen bonding energy, desol-
vation and entropy terms. The coefficient Wi is determined
through a linear regression procedure in which the theoretical
values are fitted to the experimental data. Therefore, empirical
scoring functions are more computationally efficient than
force field scoring functions.

One of the first empirical scoring functions (SCORE1) was
developed by Bohm et al., and consisted of four energy terms
describing hydrogen bonds, ionic interactions, the lipophilic
protein--ligand contact surface and the number of rotatable
bonds in the ligand [131]. This scoring function was calibrated
using 45 protein--ligand complexes. Then, this empirical scor-
ing function was upgraded by increasing the dataset to
82 known 3D structures of protein--ligand complexes with
known binding constants and including a more extended list of
energy terms [132]. ChemScore [93] is an empirical scoring func-
tion developed by Eldridge et al., in which some energetic terms
and functions are similar to those adopted by Bohm et al. Some
of these terms describe hydrogen bonds, metal atoms, the lipo-
philic effects of atoms and the effective number of rotatable
bonds in the ligand [93]. This scoring function was calibrated
with 82 protein--ligand complexes with known binding affinities
and tested using two other sets of ligand--receptor complexes.
This scoring function is implemented in several docking
programs including GOLD [76] and FRED [32].

X-Score is a recently developed empirical scoring
function [133] consisting of four energy terms describing VDW
interactions, hydrogen bonds, hydrophobic effects and effective
rotatable bonds. X-Score is based on a larger set of 200
protein--ligand complexes. Two hundred and eight hundred
protein--ligand complexes were used to calibrate two versions
of X-Score. Empirical scoring functions have been widely uti-
lized in some well-known protein--ligand docking programs,
such as FlexX [52] and Surflex [34]. However, the applicability
of an empirical scoring function will depend on its training
set [40], which often yields different weighting factors for the var-
ious terms. Therefore, the terms of different scoring functions
cannot simply be recombined into a new scoring function.
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In empirical scoring functions, some of the terms describ-
ing non-bonded interactions can be implemented in different
ways. For example, in the early LUDI function [134], the
hydrogen-bonding term was separated into neutral and ionic
hydrogen bonds, while the hydrophobic contributions were
based on a representation of the molecular surface area. In
contrast, ChemScore [93] does not distinguish between differ-
ent types of hydrogen bonds. ChemScore evaluates the con-
tacts between hydrophobic atom pairs and F-score adds an
extra term to account for aromatic interactions [52]. Non-
enthalpic contributions, which is the so-called rotor term,
can also be included in empirical scoring functions. These
contributions approximate entropy penalties on binding
from a weighted sum of the number of rotatable bonds in
the ligand. In other cases, a more complicated form describes
the molecular environment surrounding each rotatable bond,
as implemented in the ligand rotational entropy of Chem-
Score [93]. Solvation and desolvation effects have also been
addressed through complex functions, as reported in the
Fresno scoring functions [135] that explicitly account for
ligand desolvation and desolvation energies using a contin-
uum electrostatic model [136,137]. During docking procedures,
scoring functions are used to optimize ligand placement.
After a docking procedure is complete, the scoring functions
are used to rank each ligand from the docking procedure.
This ranking process will predict which ligand has the
best affinity.
Among the methods for estimating the binding constant

between a receptor and its ligand, scoring functions are able to
determine the binding free energy or binding constant (Ka).
The binding free energy is obtained using the integrated form
of the Gibbs--Helmholtz equation at constant temperature:

Δ Δ ΔG H T S= − ð4Þ
where DG is the change in the free energy of binding, DH is
the change in enthalpy, T is the temperature in degrees Kelvin
and DS is the change in entropy. The binding constant for a
complex, Ka, can be related to the standard free energy change
DG0 by Equations 5 and 6.

ΔG K0 = RT aln ð5Þ
k

k

PL

P La
d

= +1 [ ]
[ ][ ]

ð6Þ
where Ka is the binding constant (association), its inverse is
termed the dissociation constant (Kd) in the pharmacology
field, L refers to the ligand, P refers to the protein and L--P
is a ligand--protein complex (Figure 1).

Figure 1 shows the predicted binding conformation for a
complex between valproic acid and Cytochrome 2E1 (from
molecular modeling) obtained using docking procedures
under equilibrium conditions by our work group.
However, it is known that the binding free energy estimate

greatly decreases in accuracy when side chains are misplaced
in the binding site [138]. A new mean force potential for the
knowledge-based scoring function ROTA [139] has been

developed that is primarily used for scoring protein and small
ligand complexes with modeled side-chain conformations.

3. Expert opinion

3.1 Side chain flexibility
It is known that physiologically, molecules (small and macro)
are in constant motion inside water and lipid--water environ-
ments. Therefore, several programs utilized for docking studies
have incorporated some flexibility properties in which back-
bones are fixed and side-chains are flexible [140]. This approach
has many advantages, particularly when the principal residues
undergo significant conformational changes, as in some
GPCR proteins, such as Trp 6.48, which is better known as
the toggle switch [141]. In addition, side chain flexibility can
be used to explain the catalytic process of some enzymes, where
the substrate fits into the active site and yields some prod-
ucts [142]. Therefore, more detailed studies are required that
are focused on experimental data and aided by quantum chem-
istry, which has not been widely used [143]. Consequently, rigid
proteins and flexible ligands are still used in virtual screening
computations [144]. In addition, there are some disadvantages
to modeling side-chain flexibility. It can be difficult to obtain
reliable data because the process of ligand recognition in pro-
teins involves more than side chain flexibility and the compu-
tational costs are high. For example, we used both flexible and
non-flexible side chain residues of topoisomerase II in a study
that showed that the free energy of side chain residues is higher
in flexible systems than in rigid systems [143].

One approach utilized to incorporate protein flexibility dur-
ing docking is the use of a side-chain prediction tool, such as
IRECS [139]. The IRECS program allows for the creation of
an ensemble of rotamers for the side chains involved in the
complex stabilization. To simultaneously include more protein
components, such as side chain residue properties, and be able
to quickly attain docking results, some research groups have
developed search algorithms named Iterative Multi-Greedy
Docking (IMGDock) [145]. This algorithm places the ligand
into the potential binding site by trying all of the possible con-
formations to determine the ones that have the lowest free
energy values. Furthermore, during protein-- ligand recogni-
tion, more than side chain residues are involved. Recently, a
stochastic tunneling algorithm (STUN) has been used that
takes into account the backbone loop motions [146].

3.2 MD and docking simulations
Because ligands and targets are flexible and that ligands can
reach their targets in different conformational states, MD simu-
lations can be used to sample many snapshot structures of a
protein--ligand complex. This methodology has been recently
explored by our group [107,147] because it has the advantage of
exploring the natural behavior of proteins. This approach allows
one to obtain information about ligand selection that is more
reliable than information from a rigid-body approach, similar
to themethodologywe used to explainCYP450metabolism [148],
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which did not depict the conformational changes of the ligand
and protein during their coupling process. However, conforma-
tional changes during coupling in solution can be explored using
MD simulations, as previously performed in our research
group [147]. Unfortunately,MD simulations have high computa-
tional costs, but they can help to explain some interactions,
including ligand accommodation and catalysis mechanisms.

3.3 Induced fit
Small ligands and targets are dynamic at all times, including
during recognition processes [149]. MD simulations can be
used to explore dynamics under free conditions in water or
water/membranes. However, when a small ligand approaches
a protein molecule, the protein can undergo structural changes
due to non-covalent interactions with the ligand [149]. In fact,
during this recognition process, many conformational changes
occur until the ligand and protein reach the best free energy
value of coupling. This physical process can be explored under
a protocol named ‘induced fit’ even though only a few pro-
grams are designed to perform these theoretical assays [150].

3.4 Docking simulations for drug design
One method to validate a docking procedure is to reproduce
the crystal complexes of small ligands and targets. After per-
forming the protein evaluation and validation, the 3D model
of the target is reliable and can be used for virtual screening in
docking applications, which is reflected by the results for many
ligand--protein complexes that reproduce experimental findings,
as previously reported in the literature [151]. Thereby, many
designers of docking programs have delivered their software after
validation with Autodock or other docking programs [101].

It is possible that in the near future, many drugs could be
designed with this strategy [152]. For example, HIV protease inhib-
itors have been developed through structure-based design and
screening [153]. However, at this time, the number of drugs

discovered with these theoretical strategies is still low because these
methodologies require several steps before selecting the best
compounds, which must then be synthesized and tested in pre-
clinical assays, which is a process that may require several years.
It is interesting that new methodologies have been developed to
improve the performance of molecular docking, such as
high-throughput screening and combinatorial chemistry [154].

In conclusion, we have reviewed the current aspects of the
protein--small ligand problem, such as search algorithms, scor-
ing functions and protein flexibility. In contrast with search
algorithms and scoring functions, which have been extensively
studied in the last two decades, protein flexibility has only
recently been incorporated in docking studies. However, this
method still has a high computational cost due to the enormous
degrees of freedom of proteins (amino acid residues). Neverthe-
less, it has recently been shown through several computational
studies that coupling docking with MD simulations can pro-
duce successful results [155]. Furthermore, modeling the different
conformations present in a solvated system and then docking
them with a ligand may enable researchers to better elucidate
the biological aspect of molecular recognition.
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Cytochrome 2E1, and the thermodynamic cycle describing the formation of the complex by our work group.
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México, CP 11340, USA

Tel: +1 5255 57296000 Ext 62747 and 62767;

Fax: +1 5255 57296000 Ext 62747 and 62767;

E-mail: jcorreab@ipn.mx

M. Bello et al.

14 Expert Opin. Drug Discov. [Early Online]

E
xp

er
t O

pi
n.

 D
ru

g 
D

is
co

v.
 D

ow
nl

oa
de

d 
fr

om
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
14

8.
20

4.
15

5.
22

9 
on

 0
5/

06
/1

3
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

https://www.researchgate.net/publication/45538747_Virtual_Screening_for_HIV_Protease_Inhibitors_A_Comparison_of_AutoDock_4_and_Vina?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/45538747_Virtual_Screening_for_HIV_Protease_Inhibitors_A_Comparison_of_AutoDock_4_and_Vina?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/45538747_Virtual_Screening_for_HIV_Protease_Inhibitors_A_Comparison_of_AutoDock_4_and_Vina?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/45538747_Virtual_Screening_for_HIV_Protease_Inhibitors_A_Comparison_of_AutoDock_4_and_Vina?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/45538747_Virtual_Screening_for_HIV_Protease_Inhibitors_A_Comparison_of_AutoDock_4_and_Vina?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/45538747_Virtual_Screening_for_HIV_Protease_Inhibitors_A_Comparison_of_AutoDock_4_and_Vina?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/45538747_Virtual_Screening_for_HIV_Protease_Inhibitors_A_Comparison_of_AutoDock_4_and_Vina?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/45538747_Virtual_Screening_for_HIV_Protease_Inhibitors_A_Comparison_of_AutoDock_4_and_Vina?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/46123921_Homology_modeling_and_molecular_dynamics_of_CYP1A1_and_CYP2B1_to_explore_the_metabolism_of_aryl_derivatives_by_docking_and_experimental_assays?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/46123921_Homology_modeling_and_molecular_dynamics_of_CYP1A1_and_CYP2B1_to_explore_the_metabolism_of_aryl_derivatives_by_docking_and_experimental_assays?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/46123921_Homology_modeling_and_molecular_dynamics_of_CYP1A1_and_CYP2B1_to_explore_the_metabolism_of_aryl_derivatives_by_docking_and_experimental_assays?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/46123921_Homology_modeling_and_molecular_dynamics_of_CYP1A1_and_CYP2B1_to_explore_the_metabolism_of_aryl_derivatives_by_docking_and_experimental_assays?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/46123921_Homology_modeling_and_molecular_dynamics_of_CYP1A1_and_CYP2B1_to_explore_the_metabolism_of_aryl_derivatives_by_docking_and_experimental_assays?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/46123921_Homology_modeling_and_molecular_dynamics_of_CYP1A1_and_CYP2B1_to_explore_the_metabolism_of_aryl_derivatives_by_docking_and_experimental_assays?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/46123921_Homology_modeling_and_molecular_dynamics_of_CYP1A1_and_CYP2B1_to_explore_the_metabolism_of_aryl_derivatives_by_docking_and_experimental_assays?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/46123921_Homology_modeling_and_molecular_dynamics_of_CYP1A1_and_CYP2B1_to_explore_the_metabolism_of_aryl_derivatives_by_docking_and_experimental_assays?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/230657861_Modeling_loop_backbone_flexibility_in_receptor-ligand_docking_simulations?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/230657861_Modeling_loop_backbone_flexibility_in_receptor-ligand_docking_simulations?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/230657861_Modeling_loop_backbone_flexibility_in_receptor-ligand_docking_simulations?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/230657861_Modeling_loop_backbone_flexibility_in_receptor-ligand_docking_simulations?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/230657861_Modeling_loop_backbone_flexibility_in_receptor-ligand_docking_simulations?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/230657861_Modeling_loop_backbone_flexibility_in_receptor-ligand_docking_simulations?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/230657861_Modeling_loop_backbone_flexibility_in_receptor-ligand_docking_simulations?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/232230395_Consensus_Induced_Fit_Docking_cIFD_Methodology_validation_and_application_to_the_discovery_of_novel_Crm1_inhibitors?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/232230395_Consensus_Induced_Fit_Docking_cIFD_Methodology_validation_and_application_to_the_discovery_of_novel_Crm1_inhibitors?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/232230395_Consensus_Induced_Fit_Docking_cIFD_Methodology_validation_and_application_to_the_discovery_of_novel_Crm1_inhibitors?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/232230395_Consensus_Induced_Fit_Docking_cIFD_Methodology_validation_and_application_to_the_discovery_of_novel_Crm1_inhibitors?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/232230395_Consensus_Induced_Fit_Docking_cIFD_Methodology_validation_and_application_to_the_discovery_of_novel_Crm1_inhibitors?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/6848182_How_inaccuracies_in_protein_structure_models_affect_estimates_of_protein-ligand_interactions_Computational_analysis_of_HIV-I_protease_inhibitor_binding?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/6848182_How_inaccuracies_in_protein_structure_models_affect_estimates_of_protein-ligand_interactions_Computational_analysis_of_HIV-I_protease_inhibitor_binding?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/6848182_How_inaccuracies_in_protein_structure_models_affect_estimates_of_protein-ligand_interactions_Computational_analysis_of_HIV-I_protease_inhibitor_binding?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/6848182_How_inaccuracies_in_protein_structure_models_affect_estimates_of_protein-ligand_interactions_Computational_analysis_of_HIV-I_protease_inhibitor_binding?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/6848182_How_inaccuracies_in_protein_structure_models_affect_estimates_of_protein-ligand_interactions_Computational_analysis_of_HIV-I_protease_inhibitor_binding?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/6848182_How_inaccuracies_in_protein_structure_models_affect_estimates_of_protein-ligand_interactions_Computational_analysis_of_HIV-I_protease_inhibitor_binding?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/6848182_How_inaccuracies_in_protein_structure_models_affect_estimates_of_protein-ligand_interactions_Computational_analysis_of_HIV-I_protease_inhibitor_binding?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/11458559_Molecular_Dynamics_and_Free_Energy_Analyses_of_Cathepsin_D-Inhibitor_Interactions_Insight_into_Structure-Based_Ligand_Design?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/11458559_Molecular_Dynamics_and_Free_Energy_Analyses_of_Cathepsin_D-Inhibitor_Interactions_Insight_into_Structure-Based_Ligand_Design?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/11458559_Molecular_Dynamics_and_Free_Energy_Analyses_of_Cathepsin_D-Inhibitor_Interactions_Insight_into_Structure-Based_Ligand_Design?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/11458559_Molecular_Dynamics_and_Free_Energy_Analyses_of_Cathepsin_D-Inhibitor_Interactions_Insight_into_Structure-Based_Ligand_Design?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/11458559_Molecular_Dynamics_and_Free_Energy_Analyses_of_Cathepsin_D-Inhibitor_Interactions_Insight_into_Structure-Based_Ligand_Design?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/11458559_Molecular_Dynamics_and_Free_Energy_Analyses_of_Cathepsin_D-Inhibitor_Interactions_Insight_into_Structure-Based_Ligand_Design?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/6463534_Role_of_binding_entropy_in_the_refinement_of_protein-ligand_docking_predictions_analysis_based_on_the_use_of_11_scoring_functions_J_Comput_Chem?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/6463534_Role_of_binding_entropy_in_the_refinement_of_protein-ligand_docking_predictions_analysis_based_on_the_use_of_11_scoring_functions_J_Comput_Chem?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/6463534_Role_of_binding_entropy_in_the_refinement_of_protein-ligand_docking_predictions_analysis_based_on_the_use_of_11_scoring_functions_J_Comput_Chem?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/6463534_Role_of_binding_entropy_in_the_refinement_of_protein-ligand_docking_predictions_analysis_based_on_the_use_of_11_scoring_functions_J_Comput_Chem?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/6463534_Role_of_binding_entropy_in_the_refinement_of_protein-ligand_docking_predictions_analysis_based_on_the_use_of_11_scoring_functions_J_Comput_Chem?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/51311293_Jackson_RM_Gabb_HA_Sternberg_MJ_Rapid_refinement_of_protein_interfaces_incorporating_solvation_application_to_the_docking_problem_J_Mol_Biol_276_265-285?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/51311293_Jackson_RM_Gabb_HA_Sternberg_MJ_Rapid_refinement_of_protein_interfaces_incorporating_solvation_application_to_the_docking_problem_J_Mol_Biol_276_265-285?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/51311293_Jackson_RM_Gabb_HA_Sternberg_MJ_Rapid_refinement_of_protein_interfaces_incorporating_solvation_application_to_the_docking_problem_J_Mol_Biol_276_265-285?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/51311293_Jackson_RM_Gabb_HA_Sternberg_MJ_Rapid_refinement_of_protein_interfaces_incorporating_solvation_application_to_the_docking_problem_J_Mol_Biol_276_265-285?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/51311293_Jackson_RM_Gabb_HA_Sternberg_MJ_Rapid_refinement_of_protein_interfaces_incorporating_solvation_application_to_the_docking_problem_J_Mol_Biol_276_265-285?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/11190053_Further_Development_and_Validation_of_Empirical_Scoring_Functions_for_Structure-Based_Binding_Affinity_Prediction_J_Comput?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/11190053_Further_Development_and_Validation_of_Empirical_Scoring_Functions_for_Structure-Based_Binding_Affinity_Prediction_J_Comput?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/11190053_Further_Development_and_Validation_of_Empirical_Scoring_Functions_for_Structure-Based_Binding_Affinity_Prediction_J_Comput?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/11190053_Further_Development_and_Validation_of_Empirical_Scoring_Functions_for_Structure-Based_Binding_Affinity_Prediction_J_Comput?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/11190053_Further_Development_and_Validation_of_Empirical_Scoring_Functions_for_Structure-Based_Binding_Affinity_Prediction_J_Comput?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/51412671_Agonist-Induced_Conformational_Changes_in_Bovine_Rhodopsin_Insight_into_Activation_of_G-Protein-Coupled_Receptors?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/51412671_Agonist-Induced_Conformational_Changes_in_Bovine_Rhodopsin_Insight_into_Activation_of_G-Protein-Coupled_Receptors?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/51412671_Agonist-Induced_Conformational_Changes_in_Bovine_Rhodopsin_Insight_into_Activation_of_G-Protein-Coupled_Receptors?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/51412671_Agonist-Induced_Conformational_Changes_in_Bovine_Rhodopsin_Insight_into_Activation_of_G-Protein-Coupled_Receptors?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/51412671_Agonist-Induced_Conformational_Changes_in_Bovine_Rhodopsin_Insight_into_Activation_of_G-Protein-Coupled_Receptors?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/51412671_Agonist-Induced_Conformational_Changes_in_Bovine_Rhodopsin_Insight_into_Activation_of_G-Protein-Coupled_Receptors?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/245163111_Accurate_Calculation_of_Hydration_Free_Energies_Using_Macroscopic_Solvent_Models?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/245163111_Accurate_Calculation_of_Hydration_Free_Energies_Using_Macroscopic_Solvent_Models?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/245163111_Accurate_Calculation_of_Hydration_Free_Energies_Using_Macroscopic_Solvent_Models?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/245163111_Accurate_Calculation_of_Hydration_Free_Energies_Using_Macroscopic_Solvent_Models?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/6268910_IRECS_A_new_algorithm_for_the_selection_of_most_probable_ensembles_of_side-chain_conformations_in_protein_models?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/6268910_IRECS_A_new_algorithm_for_the_selection_of_most_probable_ensembles_of_side-chain_conformations_in_protein_models?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/6268910_IRECS_A_new_algorithm_for_the_selection_of_most_probable_ensembles_of_side-chain_conformations_in_protein_models?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/6268910_IRECS_A_new_algorithm_for_the_selection_of_most_probable_ensembles_of_side-chain_conformations_in_protein_models?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/6268910_IRECS_A_new_algorithm_for_the_selection_of_most_probable_ensembles_of_side-chain_conformations_in_protein_models?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/235659314_Systematic_and_efficient_side_chain_optimization_for_molecular_docking_using_a_cheapest-path_procedure?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/235659314_Systematic_and_efficient_side_chain_optimization_for_molecular_docking_using_a_cheapest-path_procedure?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/235659314_Systematic_and_efficient_side_chain_optimization_for_molecular_docking_using_a_cheapest-path_procedure?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/235659314_Systematic_and_efficient_side_chain_optimization_for_molecular_docking_using_a_cheapest-path_procedure?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/235659314_Systematic_and_efficient_side_chain_optimization_for_molecular_docking_using_a_cheapest-path_procedure?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/257539926_Clinically_effective_HIV-1_protease_inhibitors?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/257539926_Clinically_effective_HIV-1_protease_inhibitors?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/257539926_Clinically_effective_HIV-1_protease_inhibitors?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/231565741_Predicting_Binding_Affinities_of_Protein_Ligands_from_Three-Dimensional_Models_Application_to_Peptide_Binding_to_Class_I_Major_Histocompatibility_Proteins?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/231565741_Predicting_Binding_Affinities_of_Protein_Ligands_from_Three-Dimensional_Models_Application_to_Peptide_Binding_to_Class_I_Major_Histocompatibility_Proteins?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/231565741_Predicting_Binding_Affinities_of_Protein_Ligands_from_Three-Dimensional_Models_Application_to_Peptide_Binding_to_Class_I_Major_Histocompatibility_Proteins?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/231565741_Predicting_Binding_Affinities_of_Protein_Ligands_from_Three-Dimensional_Models_Application_to_Peptide_Binding_to_Class_I_Major_Histocompatibility_Proteins?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==
https://www.researchgate.net/publication/231565741_Predicting_Binding_Affinities_of_Protein_Ligands_from_Three-Dimensional_Models_Application_to_Peptide_Binding_to_Class_I_Major_Histocompatibility_Proteins?el=1_x_8&enrichId=rgreq-220d1fd1-322f-453b-8196-f10bf33ca2b1&enrichSource=Y292ZXJQYWdlOzIzNjYzNjE5MjtBUzoxMDEzNTgzNjc2NzQzODJAMTQwMTE3NzEyNjk5Mw==

