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Much work has been done to accelerate the prediction of structure and thermodynamics, particularly of the
chemical potential of condensed phases by means of molecular simulation, requiring large computational power
or simpli®ed simulation procedures. This work demonstrates that the combination of simulation with

approximate calculations based on integral equation theory provides the necessary information for
quantitatively correcting simulation de®ciencies. These ideas are illustrated with two examples: the calculation
of artefact-free radial distribution functions from truncated potentials and the accurate prediction of excess

chemical potentials from a single trajectory with the full potential.

1 Introduction

Modelling increasingly complex systems requires the use of
large computational power or alternatively simpli®ed models
and simulation procedures in order to yield at least approx-
imate results. The prediction of accurate free energies and
chemical potentials by thermodynamic integration or pertur-
bation theory is particularly tedious as this requires to gra-
dually increase the interaction potentials within in a series of
Monte Carlo (MC) or molecular dynamics (MD) simulations.1

Simpli®cations like the use of continuum models for solvent
degrees of freedom2 are only a partial remedy as this changes
the system Hamiltonian. It is therefore of utmost interest to
have available a methodology that uses on one hand limited
simulation data, generated even with simpli®ed, for instance
truncated, potentials, and, on the other hand, a fast corrective
device. In this way, the computational speed would be com-
petitive with, for instance, continuum models while simulta-
neously the original Hamiltonian is retained.
It is the purpose of this work to demonstrate that the use of

statistical-mechanical integral equation (IE) theory3 is a valu-
able step in this direction. IE theory tries to predict atomic and
molecular distribution functions directly from a knowledge of
the system Hamiltonian. From these the thermodynamic
properties of the system are calculated. Of particular impor-
tance in this ®eld are the one-dimensional reference interaction
site model (RISM) equations3,4 (also termed site±site Orn-
stein±Zernike equations in the literature) that yield the radially
averaged site±site distribution functions and, more recently,
the 3D-RISM approach.5,6 For practical purposes, approx-
imations have to be made, notably the introduction of an
approximate closure relation like the hypernetted chain (HNC)
equation, which lead to well-characterised de®ciencies of the
theory. For recent reviews, the reader is referred to refs. 7 and 8.
As will be worked out later, we can cope with the systematic

drawbacks of both approaches, the simulation and the IE
theories, in the sense of complementarity. Advantages of both
methodologies, formal ensemble accuracy of the simulation
and the computational speed of the IE theories, can be com-
bined to compensate for each other's de®ciencies, reaching
greater predictive power with limited resources.
Besides the extraction of data for mere comparison of IE

theory with simulation, predictive combinations of molecular

simulation and integral equation theory have rarely been
attempted in the past. The earliest work was done by Verlet9

(see also ref. 10) for the purpose of extrapolating the radial
distribution functions of simple liquids from MD simulations
beyond the range determined by the simulation cell. Along
these lines Trokhymchuk et al.11 estimated the long range
behaviour of liquid water. Their method was later applied to
the calculation of small wavenumber structure factors12 and
relative permittivities.13 With a conceptually much simpler
approach, Roux and co-workers14 used MD simulations of
water to extract the solvent susceptibility that was subse-
quently used for the IE-based prediction of hydration free
energies. Kambayashi and Chihara15 corrected potential
truncation artefacts in the spirit of Lado's16 reference hyper-
netted chain (RHNC) theory. Polymer (PRISM) IE the-
ories17,18 extract the intramolecular distribution from single
chain MC simulations that are then used for the IE-based
prediction of bulk properties. Hirata and co-workers19,20

coupled the IE treatment of the solvent phase with MC sam-
pling of intramolecular degrees of freedom for biomolecules.
Schmidt and Kast21 recently computed binding constants for
crown ether complexes with a combined RISM=MC free
energy perturbation approach.
This work utilises perturbation-theoretic approaches to the

excess chemical potential in order to address the questions of
(1) extrapolation of cuto� simulation data to the full
potential and (2) determination of accurate chemical poten-
tials from a single simulation. The distorting e�ects of
applying simple potential truncation, switching or shifting
functions as compared to the presumably `` exact '' Ewald22

summation for Coulomb potentials, have been known for
quite some time.23±25 They have also been treated on the
basis of RISM=HNC theory.26 Here, a corrective scheme
will be described to yield accurate Ewald-limit radial dis-
tribution functions for molecular liquids from shifted-force
potential simulations. The question of free energy determi-
nation from a single trajectory has been addressed in the
past on the basis of a Taylor series expansion of the free
energy from a single reference state27 and, more successfully,
via linear response theory28,29 by calibrating free parameters
with experimental data. In the following, a di�erent method
is formulated yielding chemical potentials from radial
distribution functions at full potential alone.
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After a description of the basic theory and the models used
in the next sections, the results for liquid argon and for water
will be presented in section 3. Finally, some conclusions are
drawn in the last section.

2 Theory and methods

2.1 Background

The 1D-RISM equation for pure ¯uids composed of sites a
and g as used in this work is

h � x � c � x� x � c � �rh�; �1�
where h� (hag(r)) is the matrix of the total correlation func-
tions (the radial distribution function is g� h� 1), c� (cag(r))
are the direct correlation functions, v� (oag(r)) are the
intramolecular correlation functions (for rigid molecules these
are normalised Dirac delta functions constraining the site
distance), r is the site density, r is the distance and the asterisk
denotes convolution. This equation must be supplied with a
closure relation

hag � 1 � exp�ÿbuag � hag ÿ cag � Bag� �2�
with the pair potential uag and b� 1=kT where k is the Boltz-
mann constant and T is the absolute temperature; Bag terms are
so-called bridge functions. In the HNC approximation B

identically vanishes. Eqns. (1) and (2) can be solved simulta-
neously in an iterative scheme to yield the correlation functions
and ®nally the thermodynamics.
The bridge functions in eqn. (2) have a clear diagrammatic

meaning for the atomic and the molecular Ornstein±Zernike
equations only3,30 and were extensively studied by Rosenfeld
and Ashcroft.31 Information about B can be deduced from a
variety of sources, for instance from diagrammatic expan-
sion,30 from a series in powers of the density,32 from argu-
ments enforcing consistency of various thermodynamic
properties33,34 (see also related work35) and from simula-
tion.15,31,36,37 All these works were concerned with simple
liquids only. In all others cases, and this view will be adopted
here, eqn. (2) can be interpreted as a formal relation that
pragmatically corrects the de®ciencies of the HNC theory by
the introduction of a nonzero B. In this sense, eqn. (2) and its
3D generalisation have only rarely been used beyond the
HNC approximation for studies of multi-site molecular
liquids.14,38,39

An e�cient approach to the extraction of bridge functions
from MD simulation data as used in this work is given by
constraining the RISM g functions to the values of the simu-
lation by de®ning14

Bag�r� � S�r��ln�gMD
ag �r�� � buag�r� ÿ hag�r� � cag�r�� �3�

where the switching function S(r) is a simple cubic polynomial
that goes smoothly from 1 to 0 over a range de®ned by the
simulation cell. Beyond this range the correlation functions are
extrapolated within the HNC approximation. We see imme-
diately that in regions where gMD is zero the explicit value of B

is numerically ill-de®ned, i.e. particularly for r! 0. Conse-
quently, much e�ort is needed to get an exact B near r� 0, and
the work of Llano-Restrepo and Chapman,36,37 who essen-
tially applied the umbrella sampling technique, is the only
detailed study available in this direction.
The excess chemical potential within the HNC theory is

given in closed form40 by

DmHNC�h; c� � bÿ1r
X
ag

Z
dr 1

2 > h2ag ÿ cag ÿ 1
2hagcag

� �
; �4�

where the summation indices run over all site pairs. The square
brackets denote the fact that Dm is a functional of all hag(r) and

cag(r). The generalisation to nonzero bridge functions is38

DmB�h; c;B� � bÿ1r
X
ag

Z
dr 1

2h
2
ag ÿ cag ÿ 1

2hagcag�
�

�Bag �
Z 1

0

dlhag�l� @Bag�l�
@l

�
: �5�

Here, the `` charging '' or coupling parameter l `` switches on ''
the potential and varies from 0 to 1. It is obvious for the
application of this ``direct '' formula that B(r) must be known
precisely over the full range of distances. This rules out its use
when correlation functions from simple molecular simulations
are used. If a bridge functions model is applied that consists of
a dependence on t� hÿ c, i.e. B�B(t) so that the coupling
parameters integration in eqn. (5) can be done analytically (see
for instance ref. 34), we must furthermore make sure that the
essential physics is captured correctly for all values of l.
Hence, utilising eqn. (5) for the prediction of free energies is
impractical.

2.2 Perturbation theory

As an alternative to the direct formula one can use perturba-
tion-theoretic approaches. Kovalenko and Hirata39 derived a
®rst order approximation by expanding the excess chemical
potential into a functional Taylor series in terms of Mayer
functions of B around the HNC solution:

Dm � DmHNC�hHNC; cHNC�
� bÿ1r

X
ag

Z
drgHNC

ag �r��exp�Bag�r�� ÿ 1�: �6�

Here, an explicit bridge function is needed. For eqn. (6) to be
useful we must therefore expect that B is well known at least
within the range of nonzero gHNC. This could pose a problem
in the case of polar systems where it is known that gHNC tends
to have its ®rst major peak at a notably smaller distance as
compared to simulation.14 Application of eqn. (6) under those
circumstances can lead to drastic errors.
An interesting feature of the perturbation expansion men-

tioned above is that it can be used to correct radial distribution
functions from simulations with a speci®ed cuto� distance,
rc, 1 , to another one, rc, 2 . Let us supply each function in eqn.
(6) with a subscript indicating calculations with a speci®c
cuto� distance. By assuming that the bridge functions are
short-ranged (for which there is some evidence at least for
simple liquids31) and that the dominant distorting e�ect in the
case of shifted-force potentials are located around the cuto�
distance,24,26 the second term (and, in fact, higher terms as
well) will be almost independent of a given rc . Upon identi-
fying the left-hand side of eqn. (6) with the hypothetical exact
chemical potential DmMD (considering further perturbation
terms) and subtracting two instances of (6) representing rc, 1
and rc, 2 , we end up with

DmMD�rc;2� ÿ DmMD�rc;1� >� DmHNC�rc;2� ÿ DmHNC�rc;1�: �7�
After some algebra and using the reversible work theorem, this
leads to

gMD�rc;2=gMD�rc;1� � g>HNC�rc;2�=gHNC�rc;1� �8�
which represents a simple recipe for extrapolating from
gMD(rc, 1) to an unknown gMD(rc, 2) by readily accessible
computations of gHNC(rc, 1) and gHNC(rc, 2) from IE theory.
For the purpose of free energy predictions an alternative

form of perturbation theory could be useful. If we assume that
the exact bridge function term represents a small correction to
the original potential, i.e. ÿkTBag� uag , we might as well
include the bridge potential in an e�ective potential ue�, ag�
uagÿ kTBag and use it in the sense of the HNC approximation.
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Repeating the steps described by Singer and Chandler40 leads
to the chemical potential estimate

Dm � DmHNC�hMD; > cMD� �9�
where the superscript ``HNC'' means the functional given in
eqn. (4). In practice, one would start with the simulated dis-
tribution functions gMD and use the bridge function expression
(3) for a number of switch ranges S. The correct chemical
potential is then estimated by averaging over the results from
eqns. (6) or (9). In what follows, results from eqn. (6) will be
denoted DmI, from eqn. (9) DmII.

2.3 Models and numerical methods

The argon model consisted of a Lennard-Jones potential with
parameters taken from ref. 41. For water, the rigid 3-site
TIP3P model was used.42 Within the RISM theory small
Lennard-Jones parameters were applied to the hydrogen sites
to avoid numerical singularities.39 The CHARMM shifted-
force potential24 was used as an example for potential trun-
cation and subsequent correction for both Lennard-Jones and
Coulomb interactions.
The 1D-RISM solutions (eqns. (1)±(3)) were obtained on a

logarithmic grid of 512 points ranging from 5.98� 10ÿ3 +
A to a

maximum distance of 164.02
+
A. The correlation functions

were iterated with a variant of the ``modi®ed direct inversion
of iterative subspace '' method developed by Hirata and co-
workers,43 supplied with the nonlinear fast Fourier transfor-
mation technique.44 For the HNC theory, convergent solu-
tions were obtained after roughly 30±40 iterations as de®ned
by a tolerance of max[D(hÿ c)r]< 10ÿ5 between two successive
iteration steps. In the case of the bridge function closure (3),
the minimal achievable tolerance was 2� 10ÿ3 as determined
probably by the level of statistical noise of the simulated g

functions. Correspondingly, the number of iterations increases
to around 300.
Reference radial distribution functions from MD simula-

tions were provided by Schilling45 who also used the models
described above. These simulations were performed in the
canonical (NV T )46,47 and in the isothermal-isobaric (NpT )48

ensembles applying either the CHARMM shifted-force
potential or Ewald summation.22 More details about the
simulations will be given in an extensive study of the trunca-
tion artefact correction for various cuto� distances and trun-
cation schemes to be published elsewhere.49

The models and conditions used within the RISM calcula-
tions were chosen in correspondence to the simulation settings.
In the case of free energy NpT simulations, the resulting
average density was used for the IE solutions. The MD dis-
tribution functions were recorded with a spacing of 0.05

+
A.

The sampling points of the simulation were transformed to
those of the RISM solutions by means of cubic spline inter-
polation.

3 Results and discussion

3.1 Cuto� corrections

To check the validity of eqn. (8) we ®rst look at the results in a
case that usually shows very limited cuto� e�ects: liquid argon.
Fig. 1 shows the results of dividing the radial distribution
functions from 12

+
A and 6

+
A cuto� calculations at T� 87 K

and r� 0.02104
+
Aÿ3 in the HNC approximation and from

MD simulations. The simulation data was gathered from a 500
ps NV T simulation of a cubic box consisting of 1040 argon
atoms using 2000 con®gurations.45 Assuming statistical inde-
pendence, the absolute error of the distribution function
reaches a maximum of 0.004 at the onset of the ®rst peak and
is on average 0.001±0.002 throughout the rest.

As can be seen from the range of the ordinate, in this case
very ®ne e�ects are resolved, so we might conclude that eqn.
(8) is excellently veri®ed. We note a systematic overshooting of
the simulation oscillations as compared to the IE results which
can be traced back to the size of the simulation cell. Pre-
liminary results (not shown here) indicate that the correspon-
dence of the curves is closer if a 5000 atom box is used.
For polar molecular liquids we can try to extrapolate shif-

ted-force potential results to Ewald summation data,22i.e. to
the limit rc!1. As an example, Figs. 2 and 3 compare H±H,
O±H and O±O radial distribution functions of water from
di�erent sources. No extrapolation beyond the simulation cell
dimensions was attempted here. The cuto� distance was cho-
sen as 8

+
A, RISM=HNC solutions and cuto� simulations

(NV T ) were done at T� 300 K and r� 0.03341
+
Aÿ3. Ewald

reference data comes from a NpT simulation at 1 bar, yielding
an average density of 0.03291

+
Aÿ3. Radial distribution func-

tions were generated from a 200 ps trajectory using 2000
con®gurations. All simulations were performed with 1000
water molecules.45 The statistical accuracy of the distribution
functions is roughly the same as in the argon case described
above.
As is obvious from Fig. 2 where only data from shifted-force

calculations is depicted, the RISM=HNC solutions show large
discrepancies from the MD data in in the region of the ®rst
peaks. On the other hand the long range part and particularly
the well-known artefacts around the cuto� distance26 are
reproduced quite well.
Fig. 3 shows again the original shifted-force MD data, but

also the Ewald reference functions as well as the corrected ones.
The corrected results, even for such a small cuto� distance,
come very close to the Ewald simulation data. Particularly the
massive cuto� artefacts vanish completely. We can therefore
safely use very small cuto� distances in the simulation and
nevertheless get a clear picture of the solvent structure in the
Ewald limit at considerably lower computational cost. For the
correction according to eqn. (8), in Fig. 3 neither the dielec-
trically consistent RISM equations50 nor the simple charge-
scaling procedure51 were used to adjust the relative permittivity
in the IE solutions at full potential. Although the e�ect of using
these methods is barely visible on the level of the g functions,
their use is not warranted anyway: The former can be for-
mulated as a bridge function correction to the original HNC
equations, the latter changes the Hamiltonian. This would lead

Fig. 1 Ratios of radial distribution functions of liquid argon
(12

+
A=6

+
A cutoff distance); simulation (Ð) and HNC result (± ± ±).
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to an element of inconsistency since the modi®cation is applied
to the computations without cuto� only.
After Kambayashi and Chihara's study15 on cuto� correc-

tion for simple liquids of spherical particles this is the ®rst time
that a combined RISM=MD correction of cuto� artefacts has
been done for molecular liquids. The assumptions, based on
which eqn. (8) is approximately valid, pose a lower limit on the
cuto� distance to allow for successful correction: If the range
of the bridge function interferes with regions of notable cuto�
artefacts the approximation will fail. This aspect together with
a detailed analysis of other observables will be studied
elsewhere.49

3.2 Determination of excess chemical potentials

For argon with rc� 10
+
A and water with rc� 12

+
A the validity

of the perturbative relations (6) and (9) was checked by pre-
dicting the excess chemical potential from the radial distribu-
tion functions at full coupling only. The reference data was
taken from Schilling45 who conducted highly accurate ther-
modynamic integration simulations1 yielding a statistical error
of less than 1 kJ molÿ1. The argon g function was derived from
a maximum number of 2000 con®gurations of a 500 ps NpT

simulation of 1040 particles at T� 87 K and p� 1 bar with an

average density of 0.02022
+
Aÿ3.45 The radial distribution

functions for water were computed from a maximum of 1000
con®gurations of a 100 ps NpT simulation of 1000 particles at
a pressure of 1 bar and T� 300 K, yielding on average a
density of 0.03305

+
Aÿ3.45 The spacing of the g functions was

again 0.05
+
A, yielding a similar statistical accuracy of the

distribution functions as in the cuto� correction study. The
switching function in eqn. (3) was successively applied over a
range of 1

+
A starting with 13.5, 14.5, 15.5, 16.5 +

A for argon
and 11, 12, 13, 14

+
A for water, respectively. DmI and DmII were

®nally averaged over these calculations. The results are sum-
marized in Table 1. The standard deviations of the averaging
process are also given there.

Fig. 3 Radial pair distribution functions of TIP3P water, (a) hy-
drogen±hydrogen, (b) oxygen±hydrogen, (c) oxygen±oxygen; Ewald
simulation (Ð), corrected 8

+
A CHARMM cutoff simulation (± ± ±),

original cutoff simulation (- - - -).

Table 1 Excess chemical potentials (kJ molÿ1) of liquid argon and
TIP3P water from di�erent approaches; the error of the MD simula-
tion result is less than 1 kJ molÿ1

Substance
DmHNC=
kJ molÿ1

DmMD=
kJ molÿ1 DmI=kJ molÿ1

DmII=
kJ molÿ1

Ar ÿ1.56 ÿ3.71 ÿ3.35�0.87 �2.89�0.84
H2O ÿ29.10 ÿ26.63 �143.29�40.39 ÿ27.39�0.71

Fig. 2 Radial pair distribution functions of TIP3P water, (a) hy-
drogen±hydrogen, (b) oxygen±hydrogen, (c) oxygen±oxygen; 8

+
A

CHARMM cutoff simulation (Ð), corresponding HNC result (± ± ±).
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DmI is very close to the reference value in the case of argon,
while DmII agrees very well with the simulated chemical
potential for water. Both numbers are within the statistical
error margin of the simulation. DmI for water and DmII for
argon deviate substantially. The reason for the failure of DmI

for water is related to fact that gHNC is di�erent from 0 in a
range where the bridge function is ill-de®ned.
Looking at Fig. 4 reveals the already good quality of the

HNC solution as compared to the simulation result for liquid
argon, as has been known for quite some time.3 This is par-
ticularly remarkable since the g functions for polar molecular
systems like water are considerably o� (cf. Fig. 2). On the other
hand, concerning the magnitude of the perturbing bridge
potential in comparison with the physical interaction, a dif-
ferent situation would be expected. Fig. 5 shows this data for
argon and for the O±H interaction of water. In fact, the bridge
correction for water is small while that for argon it is quite
large. The liquid noble gas structure is dominated by repulsive
packing e�ects which explains why a strong perturbation is
needed to achieve even small e�ects. Fig. 5 gives us a clue as to
when the perturbation formulae (6) or (9) are applicable and
explains the results given in Table 1. This analysis is necessary
for reliable predictions.
It is worth looking at the performance of the perturbation

theory if only a fraction of the original simulation data is used
for the determination of radial distribution functions. This is
illustrated for both argon and water in Table 2: The result for
the full data set is given in the ®rst column while columns 2 and
3 contain the outcome when every other con®guration is used;
columns 4 and 5 were yielded by utilising the ®rst and the
second half of the con®gurations, respectively.

For water, Dm1 scatters with no obvious numerical trend
while in the argon case DmII appears to be extrapolated sys-
tematically in the wrong direction. For both argon (DmI) and
water (DmII), the estimates under the in¯uence of the reduced
statistical quality from using only every other con®guration
are still acceptable. Using less simulation time is, however,
deleterious in both cases studied: The average chemical
potentials do not overlap with the simulated ones within error
bars. This is related to the fact that the volume correlation time
of the NpT simulation is comparable to the length of the
shorter trajectories; the generated ensemble is therefore not
representative for the average density of the full trajectory.
Using every other con®guration instead reduces only the sta-
tistical accuracy but avoids those systematic deviations. Ana-
logously to checking the magnitude of the bridge perturbation,
this analysis is essential for reliable free energy predictions.

4 Conclusions

It was the aim of this work to demonstrate the complementary
character of molecular simulation and integral equation the-
ory. The results clearly suggest that limited simulation data
can be used in conjunction with the RISM equations, thus
accelerating the computations signi®cantly. The methodology
was applied to the extrapolation of radial distribution func-
tions from simulations with the CHARMM shifted-force
potential to the Ewald limit, as well as the prediction of excess
chemical potentials from the simulated radial distribution
functions at full potential only.
We might expect that the prediction of Ewald-limit ther-

modynamic data from rather short simulations and drastically
truncated potentials is within reach, particularly if a potential
is used that directly leads to less cuto� artefacts compared to
traditional schemes, for instance with the damped Coulomb
potential.52,53 The perturbation-theoretic free energy determi-
nation will bene®t from better bridge functions that need to be
developed or from the 3D-RISM=HNC approaches5,6 for
which a closed-form expression for the chemical potential is

Fig. 4 Radial distribution functions of liquid argon (10
+
A cutoff

distance), simulation (Ð) and HNC result (± ± ±).

Fig. 5 Pair interaction energy (Ð) and bridge potential ÿkTB (± ± ±)
for argon (a) and oxygen±hydrogen of TIP3P water (b).

Table 2 Perturbation theory excess chemical potentials (kJ molÿ1) of
liquid argon and TIP3P water from various portions of simulation
data

Method 1,2,3... 1,3,5... 2,4,6... 1st half 2nd half

DmI(Ar)=kJ molÿ1 ÿ3.35 ÿ4.53 ÿ2.12 �0.88 ÿ9.98
DmII(Ar)=kJ molÿ1 �2.89 �4.15 �1.71 ÿ1.11 �9.91
DmI(H2O)=kJ molÿ1 �143.29 �995.01 �415.95 �319.73 �95.80
DmII(H2O)=kJ molÿ1 ÿ27.39 ÿ25.00 ÿ26.30 ÿ32.51 ÿ4.39
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known. The loss of orientational information upon using the
1D-RISM equations is responsible for most of their de®-
ciencies.39 This is also indicated by the work of Krienke and
co-workers54 who thoroughly compared the performance of
the RISM=HNC equations with results from MC simulations
and the molecular Ornstein±Zernike equation. Extrapolation
of the chemical potential deduced from truncated potentials to
the Ewald limit can subsequently be done via eqn. (7),
avoiding known problems with Ewald summation free energy
simulations.55

An important next step will be the treatment of single solute
molecules in a liquid environment. We will probably need
e�cient smoothing strategies in order to use the simulated
distribution functions that su�er from more pronounced sta-
tistical noise as compared to pure solvent phases.
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