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Abstract—This work addresses the problem of accurately
modeling the spectrum occupancy patterns of real radio com-
munication systems, an essential aspect in the study of cognitive
radio networks. The main drawbacks and limitations of previous
works are identified and the methodological procedures on
which they rely are improved and extended. Two sophisticated
measurement platforms, providing low and high time resolutions,
are used to obtain extensive real-world data from a multi-band
spectrum measurement campaign, embracing a wide variety of
spectrum bands of practical interest for cognitive radio applica-
tions. A comprehensive, systematical and rigorous analysis of the
statistical properties observed in the measurement data is then
performed in order to find accurate models capable to capture
and reproduce, within reasonable complexity limits, the statistical
properties of temporal patterns, at both short and long timescales,
in real wireless systems. Innovative modeling approaches capable
to simultaneously describe statistical properties at both timescales
are developed as well. In summary, this work contributes realistic
and accurate time-dimension spectrum usage models for their
application to the study and development of cognitive radio.

Index Terms—Cognitive radio, dynamic spectrum access, spec-
trum usage models, time dimension.

I. I NTRODUCTION

COGNITIVE Radio (CR) has become one of the most in-
tensively studied paradigms in wireless communications

[1]–[4]. A CR is a context-aware intelligent radio capable of
autonomous reconfiguration by learning from and adapting
to the communication environment. An important specific
application of CR is Dynamic Spectrum Access (DSA) [2],
[5]. Despite being a broader concept [6]–[8], DSA is com-
monly understood as an opportunistic spectrum access method
whereby unlicensed (secondary) systems are allowed to access,
in a non-interfering manner, licensed bands not occupied by
the licensed (primary) systems for a certain time interval
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(time dimension) or over a certain region (spatial dimension).
This work focuses on the time dimension of DSA. Temporal
opportunities arise when the primary system remains inactive
for a certain period of time. Secondary users take profit of
these inactivity periods (white spacesor spectrum holes[9])
to opportunistically access the spectrum. The DSA/CR concept
has been motivated by the results of spectrum measurement
campaigns performed all over the world over both wide fre-
quency ranges [10]–[22] and specific bands [23]–[29], which
demonstrated that spectrum remains idle most of the time. This
suggests that new communication systems based on DSA/CR
can coexist with legacy systems in the same spectrum, thus
leading to a more efficient exploitation of the spectrum.

Owing to the opportunistic nature of the DSA/CR principle,
the behavior and performance of a secondary network depends
on the spectrum occupancy patterns of the primary system.
A realistic and accurate modeling of such patterns becomes
therefore essential and extremely useful in the domain of
DSA/CR research [30]. Spectrum usage models can be em-
ployed in analytical studies, the design and dimensioning
of DSA/CR networks, the implementation of new simulation
tools and the developement of more efficient DSA/CR tech-
niques. However, the practical utility of such models depends
on their degree of realism and accuracy. Unfortunately, the
models of spectrum usage widely accepted and commonly
used to date by the research community are limited in scope,
and based on oversimplifications or assumptions that have
not been validated with empirical measurement data. In this
context, this work presents models that accurately capture
and reproduce the statistical properties of temporal spectrum
opportunities in real radio communication systems.

The modeling of spectrum occupancy in the time dimension
from a discrete-time viewpoint was addressed in [31]. In con-
trast, this work addressed the problem from a continuous-time
perspective. From the viewpoint of DSA/CR, the occupancy
pattern of a Radio Frequency (RF) channel can be modeled by
means of a Continuous-Time Markov Chain (CTMC) with two
states, namelybusy(i.e., channel occupied by a primary user
and therefore not available for opportunistic access) andidle
(i.e., available for secondary use). According to this model,
the channel is constantly changing to the alternative state after
having remained in the previous state for a random time in-
terval, referred to asstate holding timeor sojourn time, which
is modeled as an exponentially distributed random variable.
The CTMC model has been widely employed in the study of
various aspects of DSA/CR networks such as Medium Access
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Control (MAC) protocols for spectrum sharing [32], [33],
MAC-layer sensing schemes [34]–[36], adaptive spectrum
sensing solutions [37], the sensing-throughput tradeoff [38],
[39], and the performance of DSA/CR sensor networks [40].
However, the analysis of field measurements demonstrates that
the lengths of busy and idle periods in real systems are not
exponentially distributed and the CTMC model is therefore
unrealistic. An alternative channel model is the Continuous-
Time Semi-Markov Chain (CTSMC) model, where the state
holding times can follow any arbitrary distribution. Based
on this modeling approach, previous works have attempted
to characterize spectrum occupancy patterns [41]–[45], but
unfortunately, they lack of a sufficiently comprehensive treat-
ment of the problem. In this context, this work aims to cover
the deficiencies of previous studies. The main drawbacks and
limitations of previous works reported in the literature are
identified and the methodological approaches and procedures
on which they rely are improved and extended. A compre-
hensive, systematical and rigorous analysis of the statistical
properties observed in field measurements of real wireless
systems is performed, and innovative modeling approaches are
developed as well.

The remainder of this work is organized as follows. First,
Section II reviews previous related studies. Section III then
summarizes the main novelties of this work, highlighting
the differences with respect to related previous studies. Two
sophisticated measurement platforms, providing low and high
time resolutions, are used to obtain real-world empirical data,
which are described in Section IV. The considered probability
distribution models and the goodness-of-fit metrics employed
to assess their suitability in fitting the empirical data are
presented in Sections V and VI, respectively. The most suitable
distribution models are discussed in Sections VII and VIII,
based respectively on low and high time-resolution measure-
ments. Additionally, two innovative modeling approaches to
simultaneously describe spectrum occupancy statistics atboth
short and long timescales are proposed in Section IX. Finally,
Section X summarizes the work.

II. PREVIOUS WORK

Based on a CTSMC, a model that statistically describes
the busy and idle periods of an IEEE 802.11b Wireless Local
Area Network (WLAN) is proposed in [41]–[43]. The model
is based on data obtained from measurements performed with
a vector signal analyzer in the 2.4 GHz ISM band, considering
a controlled laboratory setup and under high Signal-to-Noise
Ratio (SNR) conditions. The experimental setup considers a
traffic source of UDP packets with a constant packet length
(512 bytes) and Poisson-distributed inter-departure times at
different rates [41], as well as more realistic traffic sources
such as FTP [42], VoIP [42] and HTTP [43] streams generated
by real applications. The high sampling rate provided by vector
signal analyzers enables time accuracies down to the symbol
level and thereby the identification of the IEEE 802.11b MAC
protocol behavior in the captured traces. The sequence of
states corresponding to data transmission and acknowledgment
is found to be essentially deterministic, which results in a

deterministic sojourn time in the busy state. The idle sojourn
time is fitted to a generalized Pareto distribution [41], a
mixture of uniform distribution (associated to the effectsof
the contention window) and generalized Pareto distribution
(associated to truly unused channels) [42], [43], and a hyper-
Erlang distribution [42], [43], which represents a good tradeoff
between accuracy and tractability of the model.

While [41]–[43] considers an interference-controlled envi-
ronment with a single packet flow artificially generated, [44]
analyzes the distribution of busy and idle periods in a real
environment with heterogeneous wireless devices operating in
the 2.4 GHz ISM band. The study reported in [44] concludes
that complex models such as the hyper-exponential distribution
provide excellent fits, but simpler models such as the gen-
eralized Pareto distribution still lead to good matches with
empirical data, thus providing a reasonable tradeoff between
complexity and accuracy.

The work reported in [45] performs a similar study over
a wider set of spectrum bands and based on a spectrum
analyzer. Spectrum analyzers are characterized by significantly
lower sampling rates, which may result in under-sampling
of the measured signals, but enable high dynamic ranges,
high sensitivity levels and broadband measurements. The work
performed in [45] concludes that state holding times can
appropriately be described by means of geometric distribu-
tions. For channels with low (high) loads, the duration of
idle (busy) periods increases notably, leading to heavy-tailed
distributions for which a log-normal model is found to provide
more accurate fits.

III. N OVELTIES OF THIS STUDY

This section identifies the main drawbacks and limitations
of previous modeling studies reported in the literature and
explains how they are overcome in this work.

• High time-resolution measurement equipments have been
employed in [41]–[43] (vector signal analyzer) and [44]
(wireless transceiver in a laptop) to obtain spectrum
occupancy data in the 2.4 GHz ISM band. Although high
time resolutions enable more accurate models, the studies
performed in [41]–[44] focus on the 2.4 GHz ISM band
exclusively. A wider set of spectrum bands have been
embraced by the study performed in [45], but making use
of a low time-resolution device (spectrum analyzer). This
work jointly employs both low and high time-resolution
devices to measure the spectral activity in a wide range of
allocated spectrum bands and discusses the consequences
of different time resolutions on the resulting models.

• As opposed to some previous works [41]–[43] where
a single traffic flow is generated and measured, this
chapter exhaustively measures the occupancy patterns of
a significantly high number of channels for each analyzed
spectrum band, which ensures that the resulting models
are representative of the true spectrum occupancy of
channels in real wireless systems.

• Previous works have tried to fit a reduced number of
probability distributions to empirical data, in some cases
considering complex models such as phase-type distri-
butions (e.g., hyper-Erlang or hyper-exponential) that are
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obtained as a linear (weighted) combination of a number
of simpler distributions of the same class. Such complex
models have been shown to provide good accuracy levels
and can be implemented in simulation tools. However,
their applicability in analytical studies appears to be
difficult due to their complex mathematical expressions
and the high number of model parameters involved. By
contrast, this work analyzes the suitability of a wider set
of simpler distributions, some of which have not been
considered before, showing that satisfactory fits can be
achieved as well.

• Model parameters have usually been derived from em-
pirical data based on Maximum Likelihood Estimation
(MLE) techniques [41]–[44]. This work also considers the
Method Of Moments (MOM) and evaluates the resulting
fits under both inference methods.

• The fits for various distribution models have solely been
evaluated based ondistance-type metrics. This type of
metrics provide a single indication on the goodness of the
fit for a certain probability model over the whole range
of values of the parameter under study (i.e., the duration
of busy and idle periods in this case). Although this type
of metrics is also considered in this work, the fit of the
considered models in particular regions of the parameter
under study (i.e., short and long periods) is individually
evaluated as well.

In summary, this work provides an adequate treatment of
the problem by performing a comprehensive, systematical and
rigorous study on the probability distributions that can be
employed to accurately describe the statistical properties of
spectrum usage in real wireless systems.

IV. M EASUREMENT SETUP AND METHODOLOGY

Two measurement platforms, providing low and high time
resolutions, are employed in this study. The first measure-
ment platform (see Figure 1) relies on a spectrum analyzer
setup where different external devices have been added to
improve the detection capabilities. The design is composed
of two broadband discone-type antennas (75-7075 MHz), a
Single-Pole Double-Throw (SPDT) switch to select the desired
antenna, several filters to remove undesired out-of-band and
overloading FM signals, a low-noise pre-amplifier to enhance
the sensitivity (the overall noise figure of the whole platform
is 4 dB), and a high performance spectrum analyzer to record
the spectral activity. The spectrum analyzer is connected to a
laptop via Ethernet and controlled by a tailor-made software
based on the Matlab’s Instrument Control Toolbox. A more
detailed description of this platform can be found in [46], [47].
The second measurement platform (see Figure 2) relies on a
Universal Software Radio Peripheral (USRP). Target signals
are captured with a broadband discone-type antenna (75-3000
MHz) and down-converted by TVRX (50-860 MHz, 8 dB
typical noise figure) and DBSRX (800-2400 MHz, 3-5 dB
typical noise figure) RF front-end boards to the Intermediate
Frequency (IF) at which the main USRP board performs sam-
pling and filtering. Digital signal samples are down-converted
(decimated) to Base Band (BB) and sent via USB to a laptop

Discone antenna

JXTXPZ-100800-P

3 – 7 GHz SPDT switch

DC – 18 GHz

FM band-stop filter

Rejection 20 – 35 dB

88 – 108 MHz
Low-pass filter

DC – 3000 MHz
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Fig. 1. Low time-resolution platform.

Discone antenna

AOR DN753

75 MHz – 3 GHz

RF

Front-end
ADC

USB

controller

USRP

mother board

USRP

daughter board

Base Band (BB)Intermediate Frequency (IF)Radio Frequency (RF)

FPGA

Filtering Decimation

Laptop

GNU

Radio

Fig. 2. High time-resolution platform.

running the GNU Radio software, where signal samples are
saved to files for off-line processing and analysis. A more
detailed description of this platform can be found in [48].

Both measurement platforms provide complimentary char-
acteristics. On the one hand, USRP can handle up to 8 MHz
bandwidth, meaning that only one or a few RF channels can
be measured at a time. Moreover, due to its high sampling
rate (1µs between samples) and the resulting huge volume
of generated data, a channel can be monitored continuously
for a relatively short period (20 minutes in our experiments1).
However, high time-resolution measurements are useful to
accurately extract the true occupancy pattern of RF channels
(see Figure 3). On the other hand, spectrum analyzers can
handle entire spectrum bands, and due to their lower sampling
rates (in our experiments, 2.58-5.70 seconds between samples,
depending on the considered band), can be used for much
longer measurements (7 days in our experiments). The low
effective sampling rates of spectrum analyzers, however, result
in a significant under-sampling of the measured signals (the
channel state may change between two consecutive obser-
vations as illustrated in Figure 3). The occupancy pattern
observed in such a case, although inaccurate, is interesting
as it can be thought of as the perception of a DSA/CR user
that periodically senses the channel and observes its stateat
discrete time instants. Thus, while USRP measurements are
useful to accurately describe the true channel occupancy pat-
tern at short timescales, spectrum analyzer measurements are
useful to model the occupancy pattern perceived by DSA/CR
users at longer timescales.

Both measurement setups were employed to monitor spec-
trum bands allocated to amateur systems (144–146 MHz),
paging systems (157–174 MHz), Private/Public-Access Mobile
Radio (PMR/PAMR) systems such as TETRA UL (410–
420 MHz) and TETRA DL (420–430 MHz), cellular mobile

1For most radio technologies, a measurement period of 20 minutes is
enough to obtain a sufficiently large number of samples of the period durations
and derive statistically reliable estimations of the empirical distributions at
short timescales. In a few particular cases, however, several measurement
sessions of 20 minutes were required to obtain a sufficiently large sample.
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Fig. 3. Low versus high time-resolution measurements.

communication systems such as E-GSM 900 UL (880–915
MHz), E-GSM 900 DL (925–960 MHz), DCS 1800 UL
(1710–1785 MHz) and DCS 1800 DL (1805–1880 MHz),
cordless telephone systems such as DECT (1880–1900 MHz),
and open bands such as ISM (2400–2500 MHz). Most of these
bands were measured from a strategically selected building
rooftop with direct line-of-sight to several transmittersa few
tens or hundreds of meters apart. For the DECT and ISM
bands, however, measurements were performed in indoor
environments, where short-range devices using these bandsare
commonly deployed. Measurement locations were carefully
selected to maximize the receiving SNR and ensure a reliable
and accurate estimation of the true busy/idle states for the
measured channels. Although this work does not present
detailed results for all the considered bands, extensive and
detailed analyses were performed for all of them.

Binary busy/idle channel occupancy patterns were extracted
from spectrum data based on energy detection [49]. Power
samples provided by the spectrum analyzer were processed
individually, leading to the effective time resolutions men-
tioned above (2.58-5.70 seconds between samples). USRP
data were processed in blocks of 128 samples, resulting in
an effective resolution of one channel state observation every
128µs. This time resolution enables an accurate estimation of
the true channel activity patterns for the considered technolo-
gies2. Spectrum analyzer data were processed based on the
classical energy detection method [49] (as in [31]), while the
Improved Energy Detection (IED) scheme presented in [50]
(with parameterL = 5) was used to extract binary occupancy
information from USRP data. The IED method makes use of
past channel observations to determine the current channel
state, which is not sensible when the time period between
consecutive observations is in the order of several seconds.
This prevents the application of the IED scheme to the
spectrum analyzer data. However, the high time resolution of
the USRP platform enables the application of the IED method,
which was experimentally observed to result in an improved
detection performance and a more accurate estimation of the
true channel occupancy.

V. CONSIDERED PROBABILITY DISTRIBUTIONS

Based on the binary occupancy patterns extracted from em-
pirical data, the length of busy and idle periods was computed

2For instance, the time-slot duration is 14.167 ms in TETRA, 577µs in
GSM/DCS and 417µs in DECT.

for each RF channel and the corresponding empirical Cumu-
lative Distribution Function (CDF) was derived and compared
to the probability distribution models shown in Table I. Some
complex distributions studied in previous works (phase-type
distributions such as hyper-Erlang or hyper-exponential)are
not considered. Such distributions have been proven to be
accurate but involve complex mathematical expressions and
a high number of parameters, which hinders their application
in analytical studies. By contrast, this work considers a wider
set of simpler and more tractable models, some of which have
not been considered before. The considered CDF models, as it
will be shown, can provide satisfactory fits to empirical data.

The exponential distribution is analyzed to determine the
validity of the widely employed CTMC model. The interest
of the generalized exponential distribution [51] relies onits
ability to reproduce other distributions with a single analytical
expression: forα = 1 it becomes the exponential distribution,
while for certain ranges of the shapeα and scaleλ parameters
it closely resembles the log-normal, gamma, and Weibull
distributions, which are explicitly considered as well. The
log-normal distribution has been suggested as an adequate
model for heavy-tailed trends [45], while the suitability of the
gamma and Weibull distributions has not been studied before.
The Pareto and generalized Pareto distributions, considered in
previous studies, are also analyzed.

It is worth noting that the exponential and Pareto distri-
butions are particular cases of their generalized counterparts
when α = 1 and µ = λ/α, respectively. In such cases, the
relationsµGE = µE and λGE = λE hold for the former,
while λGP = λP /αP and αGP = 1/αP hold for the latter
(see Table I). There is a reason, however, to explicitly consider
the particular cases, instead of solely considering the gener-
alized distributions. When the particular cases are sufficient
to provide accurate fits, the numerical methods employed to
estimate the parameters of the generalized distributions do
not necessarily lead to numerical values satisfyingα = 1
andµ = λ/α, and hence the need to explicitly consider the
particular cases in order to identify those situations where
simpler distributions with fewer parameters suffice. In some
cases, a better accuracy may be obtained with the particular
cases than with the generalized distributions, which is merely
an artifact of the employed numerical methods and indicates
the suitability of the particular cases. This circumstancealso
highlights the need to explicitly consider the particular cases
of the general distributions in order to guarantee optimum fits,
an aspect that seems to have been neglected in previous works,
where only generalized distributions have been considered.

As mentioned in Section III, the distributions parameters
have frequently been derived from the empirical data based on
MLE techniques [41]–[44]. MLE is also employed in this work
to estimate the best fitting parameters for the exponential [53]–
[55], generalized exponential [51], Pareto [56], generalized
Pareto [57]–[59], log-normal [53], [54], [60], [61], gamma
[53], [54], [60], [61], and Weibull [53]–[55] distributions.
Additionally, MOM inference techniques are also considered,
which consist in equating statistical moments with sample
moments and then solving those equations for the estimated
parameters [62]. MOM parameter estimates are computed
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TABLE I
CONSIDERED PROBABILITY DISTRIBUTION MODELS. DISTRIBUTION NAMES: E (EXPONENTIAL), GE (GENERALIZED EXPONENTIAL), P (PARETO), GP

(GENERALIZED PARETO), LN (LOG-NORMAL), G (GAMMA ), AND W (WEIBULL ). DISTRIBUTION PARAMETERS: µ (LOCATION), λ (SCALE), AND α
(SHAPE). Ti REPRESENTS THE PERIOD LENGTH. E {·} AND V {·} REPRESENT THE MEAN AND THE VARIANCE OF THE DISTRIBUTION, RESPECTIVELY.

ψ(·) IS THE DIGAMMA FUNCTION [52, 6.3.1]AND ψ′(·) IS ITS DERIVATIVE. γ(·, ·) IS THE LOWER INCOMPLETE GAMMA FUNCTION[52, 6.5.2]AND Γ(·)
IS THE (COMPLETE) GAMMA FUNCTION [52, 6.1.1].

Distribution function Parameters Moments

FE(Ti;µ, λ) = 1− e−λ(Ti−µ) Ti ≥ µ > 0
λ > 0

E{Ti} = µ+ 1
λ

V{Ti} = 1
λ2

FGE(Ti;µ, λ, α) =
[

1− e−λ(Ti−µ)
]α

Ti ≥ µ > 0
λ > 0
α > 0

E{Ti} = µ+
ψ(α+1)−ψ(1)

λ

V{Ti} =
ψ′(1)−ψ′(α+1)

λ2

FP (Ti;λ, α) = 1−
(

λ
Ti

)α Ti ≥ λ
λ > 0
α > 2

E{Ti} = αλ
α−1

V{Ti} = αλ2

(α−1)2(α−2)

FGP (Ti;µ, λ, α) = 1−
[

1 +
α(Ti−µ)

λ

]−1/α Ti ≥ µ (α ≥ 0)
Ti ∈ [µ, µ− λ

α
] (α < 0)

µ, λ > 0, α < 1/2

E{Ti} = µ+ λ
1−α

V{Ti} = λ2

(1−α)2(1−2α)

FLN (Ti;µ, λ) =
1
2

[

1 + erf
(

lnTi−µ√
2λ2

)] Ti ≥ 0
µ ∈ R

λ > 0

E{Ti} = eµ+λ
2/2

V{Ti} =
(

eλ
2

− 1
)

e2µ+λ
2

FG(Ti;µ, λ, α) =
γ
(

α,
Ti−µ

λ

)

Γ(α)

Ti ≥ µ > 0
λ > 0
α > 0

E{Ti} = µ+ λα

V{Ti} = λ2α

FW (Ti;µ, λ, α) = 1− exp
[

−
(

Ti−µ
λ

)α] Ti ≥ µ > 0
λ > 0
α > 0

E{Ti} = µ+ λΓ
(

1 + 1
α

)

V{Ti} = λ2
[

Γ
(

1 + 2
α

)

− Γ2
(

1 + 1
α

)]

based on the sample mean and sample variance of the length of
busy/idle periods (see Table I). While MLE is widely accepted
as a preferred inference method, MOM can sometimes provide
better fits to empirical data.

VI. GOODNESS-OF-FIT METRICS

In order to assess the suitability of the considered proba-
bility distributions in fitting the empirical data sets, several
tests and their underlying Goodness-Of-Fit (GOF) metrics are
employed. Based on the Kolmogorov-Smirnov (KS) test, the
KS distance between the empirical CDFFemp(Ti) of period
lengthsTi (i ∈ {0, 1} denotes the period type, withT0 andT1

being idle and busy periods, respectively) and the CDF model
Ffit(Ti) is computed as [63]:

DKS = max
Ti

{|Femp (Ti)− Ffit (Ti)|} (1)

A symmetric version of the Kullback-Leibler (KL) diver-
gence [63] is also employed:

Dsym
KL =DKL (femp (Ti) ||ffit (Ti))

+DKL (ffit (Ti) ||femp (Ti)) (2)

=

K
∑

k=1

femp

(

T k
i

)

ln

(

femp

(

T k
i

)

ffit
(

T k
i

)

)

+

K
∑

k=1

ffit
(

T k
i

)

ln

(

ffit
(

T k
i

)

femp

(

T k
i

)

)

(3)

wherefemp

(

T k
i

)

andffit
(

T k
i

)

represent the empirical Prob-
ability Density Function (PDF) and the evaluated PDF model,
respectively, assumed to be computed for a discrete number
of K values of the period lengthTi, T k

i (k = 1, 2, . . . K)
represents thek-th value of Ti, and DKL(fA||fB) denotes
the KL divergence between PDFsfA andfB .

Finally, the Bhattacharyya distance is also employed, which
is defined as [64]:

DB = − ln

(

K
∑

k=1

√

femp

(

T k
i

)

· ffit
(

T k
i

)

)

(4)

These metrics provide a single numerical value indicating
the GOF of a certain probability model over the whole range of
values ofTi. Additionally, the GOF of the considered models
in particular regions of the CDF corresponding to low and
high values ofTi will be evaluated as well.

VII. L ONG TIMESCALE MODELS

This section analyzes the suitability of the considered CDF
models in describing the length of busy and idle periods based
on spectrum analyzer measurements. The high number of
factors involved in the analysis were handled as follows. First,
the CDF models of Table I were fitted to the empirical CDFs of
busy and idle periods (for every individual RF channel within
the measured bands) based on MLE and MOM. The resulting
GOF was evaluated for every individual combination of chan-
nel, period type, CDF model and inference method. Given the
high number of RF channels within a single spectrum band,
the GOF metrics were averaged over channels belonging the
same band in order to obtain a single representative GOF
value per analyzed spectrum band. It was observed that the
best fitting CDF model for a given combination of period
type, GOF metric and inference method was the same for all
the analyzed bands, and it could also be concluded from the
mean value of the GOF metrics averaged over all bands. As
an example, Table II shows the KS distance for the fit of the
considered distributions to the idle periods of some selected
bands based on MLE. As it can be appreciated, the generalized
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TABLE II
KS METRIC OF IDLE PERIODS FOR VARIOUS DISTRIBUTIONS AND BANDS

BASED ON THEMLE METHOD.

Band E GE P GP LN G W
Amateur 0.22 0.14 0.17 0.08 0.12 0.14 0.23
Paging 0.26 0.17 0.23 0.13 0.15 0.16 0.25

TETRA UL 0.25 0.13 0.17 0.06 0.10 0.13 0.17
TETRA DL 0.20 0.13 0.24 0.13 0.13 0.13 0.26

DCS 1800 DL 0.24 0.16 0.16 0.12 0.16 0.15 0.30
DECT 0.25 0.15 0.19 0.07 0.09 0.14 0.15
ISM 0.18 0.18 0.22 0.16 0.21 0.18 0.43

Average 0.23 0.15 0.20 0.11 0.14 0.15 0.26

Pareto distribution provides the best fit in all cases, whichcan
also be concluded based on the average KS distance. Similar
trends were observed for other GOF metrics and inference
methods, for both busy and idle periods, thus indicating that
the analysis can be undertaken in terms of average values
since such values are sufficiently representative of the results
obtained for individual bands. Based on this appreciation,the
GOF metrics were averaged over all bands in order to obtain
the average GOF metrics shown in Table III.

In order to compare the fitting accuracy of the considered
distributions, the minimum value of the GOF metrics resulting
from the MLE and MOM approaches was selected as the
representative result. Notice that the best possible fit (either
MLE or MOM) is the one that really indicates the ability of
a distribution function to describe a set of empirical data3.
Thus, the comparison among the considered distributions is
performed based on the minimum values obtained for each
GOF metric, which are shown in bold in Table III. As it can
be appreciated, all the considered GOF metrics indicate that
the best fit for idle periods is attained with the generalized
Pareto distribution. For busy periods, the generalized Pareto
distribution is the most accurate model according to the KS
distance, but not from the point of view of the symmetric KL
divergence and the Bhattacharyya distance. However, in these
two cases it is interesting to note that the fitting accuracy of the
generalized Pareto distribution is only marginally worse than
the best fit, thus indicating that the GOF of the generalized
Pareto distribution in these cases can be considered to be ac-
ceptable. Based on these observations, the generalized Pareto
distribution can be selected as an appropriate model for the
lengths of both busy and idle periods in real systems. Other
alternative models such as the generalized exponential, log-
normal, gamma and Weibull distributions are able to achieve
comparable (or slightly better) GOFs in some particular cases
of Table III. However, the generalized Pareto distributionis
the only model that provides an acceptable fit (i.e., the best
fit, or a fit very close to the best one) over the wide range
of considered spectrum bands, for both busy and idle periods.
The possibility to characterize the lengths of both periodswith
a single CDF model irrespective of the considered band makes
of the generalized Pareto distribution an attractive model.

3An exhaustive analysis for all channels and bands indicatedthat approxi-
mately 75% of the channels were best fitted with the MLE method. Therefore,
MLE outperforms MOM in general, but not always provides the best fit (see
for example the Weibull distribution in Table III).

TABLE III
GOF METRICS FOR LOW TIME RESOLUTION MEASUREMENTS.

E GE P GP LN G W

B
us

y
pe

rio
ds D
K
S MOM 0.20 0.23 0.35 0.18 0.21 0.22 0.19

MLE 0.20 0.19 0.23 0.16 0.20 0.19 0.43

D
s
y
m

K
L MOM 2.00 2.32 2.55 1.96 1.88 2.29 2.11

MLE 2.00 1.89 2.22 1.93 1.94 1.91 2.63

D
B MOM 0.25 0.30 0.32 0.24 0.32 0.30 0.27

MLE 0.25 0.23 0.29 0.24 0.28 0.24 0.34

Id
le

pe
rio

ds D
K
S MOM 0.23 0.26 0.39 0.17 0.19 0.25 0.16

MLE 0.23 0.15 0.20 0.11 0.14 0.15 0.26

D
s
y
m

K
L MOM 1.59 1.88 2.41 1.39 1.34 1.82 1.46

MLE 1.59 1.38 1.64 1.29 1.32 1.38 1.70

D
B MOM 0.19 0.28 0.31 0.17 0.23 0.27 0.19

MLE 0.19 0.18 0.23 0.16 0.20 0.18 0.22

The previous analysis has been based solely on distance
metrics, which provide a single numerical value as an indica-
tion of the GOF of a certain probability model over the whole
range of values ofTi. The fitting accuracy in particular regions
of the CDF is analyzed in the following. Figures 4 and 5 show
the empirical and fitted distributions based on the MLE and
MOM methods, respectively. These figures correspond to a
single selected channel from a particular spectrum band but
are representative of the behavior observed for other channels
and bands. Each figure is composed of four graphs. Upper
graphs show the statistics of busy periods, while lower graphs
show the statistics of idle periods. The graphs on the left-hand
side show the empirical and fitted CDFs with the abscissa
axis in logarithmic magnitude, which enables a finer detail of
appreciation of the fitting accuracy for low values ofTi (i.e.,
short periods). The graphs on the right-hand side show the
same information in terms of the Complementary Cumulative
Distribution Function (CCDF) with both axes in logarithmic
magnitude, which allows for a finer detail of appreciation of
the fitting accuracy for high values ofTi (i.e., long periods).

The first interesting observation from Figures 4 and 5
is that the exponential distribution is not able to describe
with sufficient accuracy the length of busy and idle periods
observed in real channels, meaning that the CTMC channel
model widely employed in the literature is unrealistic4. It is
important to note that the exponential distribution considered
in this study (see Table I) includes a location parameterµ
that is not usually considered in the conventional exponential
distribution widely employed in the literature. Without such
location parameter (i.e.,µ = 0), the resulting accuracy was
observed to be notably worse, thus confirming that a CTMC
does not constitute an adequate model. In terms of accuracy,
similar comments can be made for the Pareto distribution,
which suggests that simple one/two-parameter distributions do
not seem to be adequate models.

For the rest of distributions, it is interesting to note that
each inference method improves the fitting accuracy in one
particular region at the expense of degrading the fit in the
opposite region. With some particular exceptions, the best

4Previous work [65] has shown that the PDF of channel vacancy durations
can be fitted with an exponential-like function of the formf(Ti) ≈ a + b ·
exp(−c · Ti), with a, b, c ∈ R

+, which is not an exponential distribution.
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Fig. 4. Empirical CDF and fitted distributions based on the MLEapproach.

fitting accuracies in the region of short periods is normally
achieved by the MLE method, while the best fit for long
periods is in general attained with the MOM approach. How-
ever, the generalized Pareto distribution is the only modelthat
simultaneously provides acceptable fits for both short and long
periods, regardless of the inference method applied, whichis
not observed for any other of the considered distributions.This
observation confirms the suitability of the generalized Pareto
distribution for the state holding times of the CTSMC channel
model. The obtained results demonstrated that the generalized
Pareto distribution provides a remarkably good fitting accuracy
for short/long busy/idle periods in channels with low/high
loads over a wide range of spectrum bands and technologies.

In order to facilitate to researchers the application of the
CTSMC model, Table IV provides numerical values for the
distribution’s parameters extracted from field measurements.
Various channel loads are shown in terms of the channel Duty
Cycle (DC). To reproduce an arbitrary DC,Ψ, the parameters
of the distribution need to be chosen such that the following
equality holds [66]:

Ψ =
E{T1}

E{T0}+ E{T1}
(5)

whereE{T0} and E{T1} represent the mean idle and busy
periods, respectively, which are related with the parameters
µ, λ andα as shown in Table I. The values shown in Table
IV for the location parameterµ are determined by the time
resolution of the spectrum analyzer. This parameter could be
tailored to the particular scenario under study in order to match
the considered spectrum sensing period or the minimum period
of activity/inactivity of a primary RF channel.

VIII. S HORT TIMESCALE MODELS

This section analyzes the suitability of the considered CDF
models in describing the length of busy and idle periods based
on measurements performed with the USRP platform. Given
the limited bandwidth capabilities of the USRP hardware,
selected channels were analyzed instead of entire bands as
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Fig. 5. Empirical CDF and fitted distributions based on the MOMapproach.

in Section VII. An individual analysis for each channel was
feasible in this case and, as a result, the GOF metrics were
not averaged over channels belonging to the same band. As
opposed to Section VII, no single distribution was observedto
provide acceptable fits for all bands, thus indicating the need
of an individual analysis for each considered band. Moreover,
there was no clear predominance of an inference method over
the other. The results shown for each distribution correspond
to the inference method providing the best fitting accuracy
in each case. In general, the three considered GOF metrics
showed agreement on the inference method attaining the best
fit. In those cases where some disagreement was observed,
the inference method indicated by any two of the three GOF
metrics was selected (i.e., amajority votecriterion).

An individual analysis for each band is provided in the
following5. The results shown for each band are representative
examples of the typical channel loads observed in each case.
Other load levels can be reproduced by selecting the parame-
ters of the distribution based on (5).

A. Amateur bands

Figure 6 shows the fitted distributions for a channel mea-
sured in amateur bands. Two of the three GOF metrics
indicated that the generalized Pareto distribution provides the
best fit for busy periods. The KS distance, however, indicated
that the best fit corresponds to the log-normal distribution.
As appreciated in Figure 6, the latter provides the best fit
for long busy periods, but it cannot accurately model the
minimum period duration. Therefore, it can be concluded
that the generalized Pareto distribution provides a betterfit
over the whole range of busy period durations. For idle
periods, the most precise models are the generalized Paretoand
Weibull distributions, but similar accuracies are attained with
the generalized exponential and gamma models. To facilitate
the application of these models, Table V provides the valuesof

5The activity patterns of IEEE 802.11 systems operating in the2.4 GHz
ISM band have already extensively been studied in [41]–[44]using high time-
resolution devices and will not be considered in this section.
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TABLE IV
PARAMETERS OF THE GENERALIZEDPARETO DISTRIBUTION FOR BUSY AND IDLE PERIODS EXTRACTED FROMEMPIRICAL MEASUREMENT RESULTS BY

MEANS OF MLE (Ti IN TABLE I EXPRESSED IN SECONDS).

Load Duty cycle
Busy periods Idle periods

µ (secs) λ α µ (secs) λ α

Very low 0.09 3.5150 1.6960 0.0284 3.6100 38.3633 0.2125
Low 0.29 3.5150 2.6240 0.1884 3.5780 10.9356 0.1784

Medium 0.51 3.5150 5.1483 0.1978 3.5160 4.6583 0.2156
High 0.71 3.5470 10.7968 0.1929 3.5310 2.6272 0.2119

Very high 0.93 3.5940 52.8611 0.2377 3.5160 1.6609 0.0068
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Fig. 6. Empirical CDF and fitted distributions for amateur bands.

the fitted parameters, along with the corresponding values of
the GOF metrics and a typical DC value observed in channels
of the amateur band.

B. Paging bands

Figure 7 shows the fitted distributions for a channel mea-
sured in paging bands. The numerical results of GOF metrics
indicated that the best fit for busy periods is attained with
the Weibull distribution. Nevertheless, Figure 7 shows that the
generalized exponential and gamma distributions are also able
to provide a comparable fitting accuracy, even slightly better,
over the whole range of busy period lengths, which indicates
that these distributions are adequate models as well. For idle
periods, the best fit corresponds to the Pareto distribution. Ta-
ble VI provides the values of the fitted distribution parameters,
GOF metrics and typical DC value.

C. Private/public access mobile radio bands

Figure 8 shows the fitted distributions for a channel mea-
sured in the TETRA DL band, which represents an example
of a PMR/PAMR system. The best fit for busy periods is
attained with the generalized Pareto distribution. Nevertheless,
the simpler Pareto distribution is able to attain a similar level
of accuracy as well. For idle periods, the Weibull distribution
provides the best fit to empirical data. It is worth noting
that other channels within the TETRA DL band showed a
slightly better fit with Weibull distributions for busy periods

10
−1

10
0

10
1

0

0.2

0.4

0.6

0.8

1

Period duration (msecs)
C

D
F

Busy periods

0.3 1 10 20
10

−4

10
−3

10
−2

10
−1

10
0

Period duration (msecs)

C
C

D
F

Busy periods

10
−1

10
0

10
1

0

0.2

0.4

0.6

0.8

1

Period duration (msecs)

C
D

F
Idle periods

0.3 1 10 20
10

−4

10
−3

10
−2

10
−1

10
0

Period duration (msecs)

C
C

D
F

Idle periods

Emp

E

GE

P

GP

LN

G

W

Emp

E

GE

P

GP

LN

G

W

Emp

E

GE

P

GP

LN

G

W

Emp

E

GE

P

GP

LN

G

W

Fig. 7. Empirical CDF and fitted distributions for paging bands.

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

Period duration (msecs)

C
D

F

Busy periods

0.2 1 5
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Period duration (msecs)

C
C

D
F

Busy periods

10
−1

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

Period duration (msecs)

C
D

F

Idle periods

0.2 1 10 100
10

−4

10
−3

10
−2

10
−1

10
0

Period duration (msecs)

C
C

D
F

Idle periods

Emp

E

GE

P

GP

LN

G

W

Emp

E

GE

P

GP

LN

G

W

Emp

E

GE

P

GP

LN

G

W

Emp

E

GE

P

GP

LN

G

W

Fig. 8. Empirical CDF and fitted distributions for PMR/PAMR bands.

and (generalized) Pareto distributions for idle periods. This
circumstance indicates that both busy and idle periods in the
TETRA DL band can indistinctly be modeled with the Weibull
and (generalized) Pareto distributions (in some cases, however,
the Pareto distribution was observed not be accurate enough
and only the generalized Pareto distribution was acceptable).
Table VII provides the values of the fitted parameters, GOF
metrics and typical DC value. The results in this case are
shown for two different channels.
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TABLE V
PARAMETERS OF BUSY AND IDLE PERIOD DISTRIBUTIONS FOR AMATEURBANDS (Ti IN TABLE I EXPRESSED IN MILLISECONDS).

Period Fitted GOF metrics Parameters Duty
type distribution DKS D

sym
KL

DB µ (msecs) λ α cycle
Busy GP 0.15 2.80 0.35 6.8659 · 102 6.0417 · 102 −0.4559

0.09
Idle

GP 0.07 1.13 0.14 2.2208 · 102 1.0230 · 104 −0.1395

W 0.07 1.13 0.14 2.2208 · 102 9.7262 · 103 1.1801

GE 0.07 1.15 0.14 2.2208 · 102 1.3271 · 10−4 1.3263

G 0.07 1.15 0.14 2.2208 · 102 7.0195 · 103 1.2790

TABLE VI
PARAMETERS OF BUSY AND IDLE PERIOD DISTRIBUTIONS FOR PAGING BANDS (Ti IN TABLE I EXPRESSED IN MILLISECONDS).

Period Fitted GOF metrics Parameters Duty
type distribution DKS D

sym
KL

DB µ (msecs) λ α cycle

Busy
W 0.13 0.25 0.05 0.2560 0.5922 0.5866

0.46
GE 0.16 0.26 0.11 0.2560 0.4204 0.2808

G 0.14 0.26 0.10 0.2560 3.0029 0.3058

Idle P 0.05 0.15 0.02 — 0.2560 1.2233

TABLE VII
PARAMETERS OF BUSY AND IDLE PERIOD DISTRIBUTIONS FORPMR/PAMR BANDS (Ti IN TABLE I EXPRESSED IN MILLISECONDS).

Period Fitted GOF metrics Parameters Duty
type distribution DKS D

sym
KL

DB µ (msecs) λ α cycle

Busy
GP 0.08 0.21 0.03 0.2560 0.0621 0.3861

0.06P 0.12 0.24 0.03 — 0.2560 3.5311

Idle W 0.04 0.23 0.05 0.2560 3.1084 0.5451

Busy W 0.08 0.21 0.03 0.2560 0.4192 0.6656
0.06

Idle P 0.11 0.35 0.08 — 0.2560 1.0186

D. Cellular mobile communication bands

Figure 9 shows the fitted distributions for a channel mea-
sured in the E-GSM 900 DL band, which represents an exam-
ple of a cellular mobile communication system (the results are
also representative of the DCS 1800 system). The generalized
Pareto distribution provides the best fit for busy periods over
the whole range of period durations. For idle periods, the best
fit is attained with the generalized exponential distribution,
although the gamma distribution provides a similar accuracy.
Table VIII provides the values of the fitted distribution pa-
rameters, GOF metrics and typical DC value. The location
parameter (i.e., minimum period duration) should be equal to
the GSM/DCS time-slot duration (µ = 0.577 ms). The value
shown in Table VIII is affected by the time resolution of 0.128
ms of the measurement device (see Section IV).

It is worth noting that the stair-shaped empirical CDF in
Figure 9 is a natural consequence of the time-slotted structure
employed by the multiple access mechanism of the GSM/DCS
system, which defines a frame structure with 8 time slots
of 577 µs each. This circumstance suggests the possibility
of modeling busy/idle periods in time-slotted systems from
a discrete perspective, where period lengths are describedin
terms of the number of time-slots. Based on this observation,
and considering a time-slot duration of of 577µs, the empirical
CDF of Figure 9 was discretized and compared to several
discrete-time CDF models. In particular, geometric, Poisson
and negative binomial distributions were fitted to the empir-
ical data (see Table IX). The binomial distribution was also

considered, but it was observed to be unable to fit empirical
data and it is therefore not reported. Figure 10 and Table X
show the fitted distributions and obtained GOF metrics. As it
can be appreciated, the best fit for both busy and idle periods
is attained with the negative binominal distribution. For busy
periods, the Poisson and negative binominal distributionspro-
vide the same fit6 and are indistinguishable from each other in
Figure 10. For busy periods, the optimum fit with the Poisson
distribution is obtained with parameterλ = 2.9239. With the
negative binomial distribution, the optimum fit is obtainedwith
parametersr = 3.0294 · 103 andp = 0.9990 for busy periods
and parametersr = 0.7430 andp = 0.0734 for idle periods7.

E. Cordless telephone bands

The continuous-time distributions presented in Section V
were fitted to the channels measured in the DECT band,
which represents an example of a cordless telephone system.
However, no satisfactory fits were observed for this particular

6The negative binomial distribution converges to the Poissondistribution
as its parameterr tends towards infinity. Hence, they may closely resemble
each other forr sufficiently large.

7In its original definition, the negative binomial distribution is a discrete
probability distribution of the number of successes in a sequence of Bernoulli
trials before a specified (non-random) number of failures occurs. The distri-
bution is characterized by two parameters:r ∈ N

∗ (the number of failures
until the experiment is stopped) andp ∈ [0, 1] (the success probability in
each experiment). The original definition can be extended to real values of
the parameterr, which is sometimes referred to as the Pólya distribution. For
the purposes of this study, the distribution is regarded as adiscrete probability
distribution with two parameters that are fitted to empirical data.
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TABLE VIII
PARAMETERS OF BUSY AND IDLE PERIOD DISTRIBUTIONS FOR CELLULAR MOBILE COMMUNICATION BANDS (Ti IN TABLE I EXPRESSED IN

MILLISECONDS).

Period Fitted GOF metrics Parameters Duty
type distribution DKS D

sym
KL

DB µ (msecs) λ α cycle
Busy GP 0.13 3.09 0.37 0.5120 1.3692 −0.2669

0.23
Idle

GE 0.05 2.12 0.26 0.5120 0.1141 0.4502

G 0.07 2.13 0.26 0.5120 10.3225 0.4805

TABLE IX
CONSIDERED DISCRETE PROBABILITY DISTRIBUTION MODELS. DISTRIBUTION NAMES: GEOM (GEOMETRIC), POIS (POISSON), AND NBIN (NEGATIVE

BINOMIAL ). k REPRESENTS THE PERIOD LENGTH IN TERMS OF THE NUMBER OF TIME SLOTS. E {·} AND V {·} REPRESENT THE MEAN AND THE

VARIANCE OF THE DISTRIBUTION, RESPECTIVELY. Ix(α, β) IS THE REGULARIZED INCOMPLETE BETA FUNCTION[52, 6.6.2].

Distribution function Parameters Moments

FGeom(k; p) = 1− (1− p)k+1 k ∈ N0 = {0, 1, 2, 3, . . .}
0 ≤ p ≤ 1

E{k} =
1− p

p

V{k} =
1− p

p2

FPois(k;λ) = e−λ
k

∑

i=0

λi

i!
k ∈ N0 = {0, 1, 2, 3, . . .}

λ > 0

E{k} = λ

V{k} = λ

FNbin(k; r, p) = Ip(r, k + 1)
k ∈ N0 = {0, 1, 2, 3, . . .}

r > 0
0 ≤ p ≤ 1

E{k} =
(1− p)r

p

V{k} =
(1− p)r

p2
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Fig. 9. Empirical CDF and fitted distributions for cellular mobile commu-
nication bands.

system. Since DECT employs a time-slotted frame structure8,
the discrete-time distributions considered in Section VIII-D
were then fitted to the empirical data following a similar pro-

8The DECT radio interface [67] is based on a Multi Carrier, Time
Division Multiple Access, Time Division Duplex (MC/TDMA/TDD) radio
access methodology. The basic DECT frequency allocation defines 10 carrier
frequencies. In the time domain, each carrier frequency is divided in 10-ms
frames, which are composed of 24 time-slots of 417µs each. The first (last)
12 time-slots of a frame are used for downlink (uplink) transmissions.
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Fig. 10. Empirical CDF and fitted distributions for cellular mobile commu-
nication bands (discrete-time models).

cedure for the discretization of the continuous-time empirical
CDF. As an example of the results obtained in this case, Figure
11 shows the fitted distributions for a channel measured in the
DECT band. As it can be appreciated, busy periods appear to
be perfectly fitted with a geometric distribution. This result,
however, should be interpreted carefully. The empirical CDF
of Figure 11 indicates that the busy periods observed in the
field measurements were always one time-slot long, and in
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TABLE X
GOF METRICS FOR CELLULAR MOBILE COMMUNICATION BANDS

(DISCRETE-TIME MODELS).

Geometric Poisson Neg. binominal

B
us

y DKS 0.13 0.09 0.09
DsymKL 0.64 0.27 0.27
DB 0.09 0.01 0.01

Id
le

DKS 0.14 0.28 0.14
DsymKL 0.36 1.49 0.29
DB 0.13 0.32 0.10
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Fig. 11. Empirical CDF and fitted distributions for cordless telephone bands
(discrete-time models).

this particular case the geometric distribution perfectlyfits
the resulting simple CDF. Nevertheless, the suitability ofthe
geometric distribution for longer busy periods of two or more
time-slots cannot be concluded from the results of Figure
11. Unfortunately, this could not be verified with empirical
data since busy periods were always one time-slot long for
all the measured DECT channels. However, this circumstance
suggests that this may be the most common case in practice.
Concerning idle periods, the results of Figure 11 indicate that
the channel inactivity periods may either be 11 or 23 time-slots
long. None of the considered distributions can be fitted to the
resulting empirical CDF with a reasonable level of accuracy.

Although the previous discussion indicates that a probabilis-
tic modeling of busy and idle period lengths does not seem to
be valid for DECT channels, the results of Figure 11 suggest
an alternative, simpler modeling approach. In particular,two
well-defined cases can be inferred from Figure 11. The first
case corresponds to a base station transmitting broadcast in-
formation. A DECT base station is continuously transmitting,
on at least one channel, information about the base station
identity, system capabilities, status and paging information for
incoming call set-up. This information is transmitted in one
(busy) time-slot. If there are no active communications, the rest
of downlink and uplink time-slots in the frame will be empty
until the next broadcast message (time-slot). Therefore, in this
case the channel occupancy pattern is composed of one busy
time-slot followed by 23 idle time-slots. According to Figure

11, this occupancy pattern was observed for about 10% of the
time in the considered channel. The second inferrable case
corresponds to a single communication link between the base
station and one portable device. In this case, two time-slots
are used for communication, one in the downlink part of the
frame and the other one in the uplink part. In this other case,
the channel occupancy pattern is composed of one busy time-
slot followed by 11 idle time-slots. According to Figure 11,
this occupancy pattern was observed for about 90% of the time
in the considered channel.

Note that the two possible occupancy patterns inferred from
the results of Figure 11 are characterized by a completely
deterministic sequence of busy and idle periods, for which a
probabilistic modeling may not be well suited. In the eventual
case of busy periods of two or more time-slots (i.e., two or
more communication links with the base station), the length
of busy and idle periods would depend on the particular
position of busy time-slots within the DECT frame structure.
In this other case, a probabilistic modeling would be more
appropriate. However, as mentioned above, busy periods of
one time-slots appear to be the most common situation in real
DECT systems and in such a case the deterministic modeling
approach discussed above results more convenient.

Before concluding this section, it is worth noting that DECT
makes use of a continuous dynamic channel selection and
allocation mechanism. All DECT equipment is obliged to
regularly scan its local radio environment at least once every
30 seconds. After that period of time, the system may decide
to switch to a different operating carrier frequency. As a result,
a particular carrier frequency may exhibit in practice long
inactivity periods (while the system is operating over other
carrier frequencies) followed by periods of activity (while the
system is operating over that carrier frequency). During these
activity periods, the carrier frequency exhibits busy/idle inter-
vals at a much shorter timescale (i.e., at the slot level), which
is due to the the two aforementioned occupancy patterns. This
observation suggests that the real activity pattern of a channel
may be more appropriately described by means of a two-
layer approach: one modeling level describes channel usage
at a high timescale, while another modeling level describes
in detail the true occupancy pattern at a low timescale. This
modeling approach is discussed in Section IX.

IX. T WO-LAYER MODELING APPROACHES

This section explores two different approaches integrating
the models of Sections VII and VIII to simultaneously repro-
duce the statistical properties of spectrum usage at long and
short timescales.

The first proposed method comprises four distribution func-
tions. As illustrated in Figure 12(a), two distribution functions
are used to characterize the lengths of inactivity and activity
periods at long timescales,FL(T0) andFL(T1) respectively.
During the periods of primary activity, a sequence of idle and
busy periods are present at a shorter timescale as describedby
the distribution functionsFS(T0) andFS(T1). The functions
FL(T0) andFL(T1) can be generalized Pareto distributions
as concluded in Section VII, while the distribution functions
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Fig. 12. Two-layer modeling approaches for spectrum occupancy patterns in
the time domain: (a) general modeling approach, (b) modeling approach for
cellular mobile communication systems such as GSM/DCS.

FS(T0) andFS(T1) depend on the particular radio technology
considered, as observed in the results of Section VIII.

The previous modeling approach is motivated by the fol-
lowing observation. Low time resolution measurement de-
vices, such as spectrum analyzers, constitute a reasonable
choice to determine the length of long inactivity periods.
Although the real state of a channel might change between
consecutive channel observations without being detected by
the spectrum analyzer, this situation can be considered to
be rather unlikely in most cases as the effective sampling
period is not excessively long, and activity periods are not
short enough to go unnoticed between two consecutive channel
observations. The simultaneous monitoring of RF channels
with both measurement platforms confirmed this statement.
Therefore, the length of the idle periods reported by the spec-
trum analyzer can be considered as an acceptable estimation
of the channel inactivity periodsFL(T0). Spectrum analyzer
measurements can also be employed to determine when a
primary transmitter is active and therefore the length of its
activity periodsFL(T1), although in this case the length of
the real busy and idle periods at short timescales cannot be
determined due to the limited time resolution9. High time
resolution measurements can then be employed to extract the
real channel occupancy pattern in terms of busy and idle
periods when a primary transmitter is active, i.e.FS(T0) and
FS(T1). Based on this discussion, the models derived from
low and high time-resolution measurements can be combined
as mentioned above in order to jointly describe the channel
occupancy patterns at long and short timescales.

The spectrum usage patterns observed for various radio
technologies indicated that the previous modeling approach

9The employed spectrum analyzer, with the selected configuration, sweeps
at an approximated rate of 25 ms per megahertz of scanned bandwidth. This
means, for instance, that a 200-kHz GSM/DCS channel is averaged for a
time period of 5 ms (i.e., more than one GSM/DCS frame) and a 1.728-MHz
DECT channel is averaged for several DECT frames. If a single or a few
time-slots are busy within the frame with a sufficiently high power level, the
spectrum analyzer will report the carrier frequency as busy. However, the
exact time-slot(s) that are active cannot be determined.

is appropriate for channels of amateur, paging, PMR/PAMR
and cordless telephone bands. For channels of cellular mobile
communication systems such as E-GSM 900 and DCS 1800,
the existence of inactivity periods lasting for several seconds
is unlikely. For this particular case, a second modeling ap-
proach is proposed. This alternative considers two distribution
functions to describe the length of idle and busy periods at
short timescales,FS(T0) andFS(T1) respectively, which can
be negative binomial distributions as concluded from Section
VIII-D. The behavior at long timescales is included by means
of a DC model that describes the channel load variation
over time as illustrated in Figure 12(b). The deterministic
DC models proposed in [31] for cellular mobile communi-
cation systems can be employed to this end. Based on this
approach, the parameters of the distribution functionsFS(T0)
andFS(T1) are regularly adjusted according to (5) so as to
meet the corresponding DC at any time. Field measurements
indicated that this alternative modeling approach resultsmore
appropriate in the case of GSM/DCS systems.

In summary, the models developed in Sections VII and
VIII provide a simple yet realistic and accurate means to
characterize the statistical properties of channel occupancy
patterns at long and short timescales, and can be combined into
a two-layer modeling approach in order to provide a holistic
characterization of the spectrum usage patterns observed in
real wireless systems.

X. CONCLUSION

This work has analyzed the spectrum occupancy patterns
of various radio technologies in the time domain from the
point of view of the DSA/CR technology. The deficiencies
and limitations of previous works have been overcome by
performing a comprehensive, systematical and rigorous study
on the set of probability distributions that can be employedto
accurately describe the lengths of busy and idle periods in real
radio communication systems. The study has relied on field
measurements performed with two sophisticated measurement
platforms providing various levels of time resolution, which
guarantees the realism and accuracy of the models. Numerical
values for the models’ parameters, extracted from empirical
data, have been provided in order to facilitate the practical
application of the models.

The obtained results indicate that the assumption of expo-
nentially distributed busy and idle periods is invalid, meaning
that the CTMC model widely employed in the literature is
unrealistic. In real systems, other distributions are observed.
At long timescales, a single distribution function (generalized
Pareto) has been proven to adequatelly describe the state
holding times for all the considered bands. At short timescales,
however, the obtained results indicate that the most convenient
distribution depends on the considered radio technology. For
time-slotted systems, channel occupancy patterns can alsobe
described from a discrete-time viewpoint where state holding
times are expressed as an integer number of time-slots, fol-
lowing a negative binomial distribution. While a probabilistic
approach has been proven to be adequate for most radio
technologies, it may not be appropriate in some particular
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cases where the channel occupancy is characterized by strong
deterministic patterns as it has been observed in this studyfor
the DECT system. In such cases, other alternative modeling
approaches taking into account technology-specific features at
the physical and higher layers may result more convenient.
Finally, a two-layer modeling approach combining models at
long and short timescales has been proposed as a holistic
means to describe the spectrum occupancy patterns observed
in real radio communication systems.

REFERENCES

[1] J. Mitola, Cognitive Radio Architecture. Wiley-Interscience, Oct. 2006.
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[58] P. Embrechts, C. Klüppelberg, and T. Mikosch,Modelling extremal
events for insurance and finance. Springer, 1997.

[59] S. Kotz and S. Nadarajah,Extreme value distributions: Theory and
applications. World Scientific Publishing Company, 2001.

[60] N. G. Cadigan and R. A. Myers, “A comparison of gamma and
lognormal maximum likelihood estimators in a sequential population
analysis,” Canadian J. Fisheries & Aquatic Sci., vol. 58, no. 3, pp.
560–567, Mar. 2001.

[61] M. Evans, N. Hastings, and B. Peacock,Statistical distributions, 2nd ed.
Wiley, 1993.

[62] R. J. Larsen and M. L. Max,An introduction to mathematical statistics
and its applications, 4th ed. Pearson Prentice Hall, 2006.

[63] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical recipes: The art of scientific computing, 3rd ed. Cambridge
University Press, 2007.

[64] A. Bhattacharyya, “On a measure of divergence between two statistical
populations defined by their probability distributions,”Bulletin of the
Calcutta Mathematical Society, vol. 35, pp. 99–109, 1943.

[65] D. Chen, S. Yin, Q. Zhang, M. Liu, and S. Li, “Mining spectrum usage
data: a large-scale spectrum measurement study,” inProc. 15th ACM
Int’l. Conf. Mobile Computing & Networking (MobiCom 2009), Sep.
2009, pp. 13–24.

[66] O. C. Ibe,Markov processes for stochastic modeling. Academic Press,
2009.

[67] ETSI ETS 300 175-2, “Radio Equipment and Systems (RES); Digital
European Cordless Telecommunications (DECT); Common interface;
Part 2: Physical layer,” Oct. 1992.
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