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Abstract—This work addresses the problem of accurately (time dimension) or over a certain region (spatial dimension).
modeling the spectrum occupancy patterns of real radio com- This work focuses on the time dimension of DSA. Temporal
munication systems, an essential aspect in the study of Cogn't"’eopportunities arise when the primary system remains inactive

radio networks. The main drawbacks and limitations of previous f tai iod of ti S d tak fit of
works are identified and the methodological procedures on or a certain period or ime. Secondary USers take profit o

which they rely are improved and extended. Two sophisticated these inactivity periods (white spaces spectrum hole$9])
measurement platforms, providing low and high time resolutions, to opportunistically access the spectrum. The DSA/CR concept
are used to obtain extensive real-world data from a multi-band has been motivated by the results of spectrum measurement
spectrum measurement campaign, embracing a wide variety of .5 mnaigns performed all over the world over both wide fre-

spectrum bands of practical interest for cognitive radio applica- o .
tions. A comprehensive, systematical and rigorous analysis of the quency ranges [10]-{22] and specific bands [23]-[29], which

statistical properties observed in the measurement data is then demonstrated that spectrum remains idle most of the time. This
performed in order to find accurate models capable to capture suggests that new communication systems based on DSA/CR
and reproduce, within reasonable complexity limits, the statistical can coexist with legacy systems in the same spectrum, thus
properties of temporal patterns, at both short and long timescales, leading to a more efficient exploitation of the spectrum.

in real wireless systems. Innovative modeling approaches capable . . L
to simultaneously describe statistical properties at both timescales  OWing to the opportunistic nature of the DSA/CR principle,

are developed as well. In summary, this work contributes realistic the behavior and performance of a secondary ngtwork depends
and accurate time-dimension spectrum usage models for their on the spectrum occupancy patterns of the primary system.

application to the study and development of cognitive radio. A realistic and accurate modeling of such patterns becomes
Index Terms—Cognitive radio, dynamic spectrum access, spec- therefore essential and extremely useful in the domain of
trum usage models, time dimension. DSAJ/CR research [30]. Spectrum usage models can be em-
ployed in analytical studies, the design and dimensioning

|. INTRODUCTION of DSA/CR networks, the implementation of new simulation

OGNITIVE Radio (CR) has become one of the most int_ools and the developement of more efficient DSA/CR tech-

tensively studied paradigms in wireless communicatior%ques' However, the practical utility of such models depends

[1]-[4]. A CR is a context-aware intelligent radio capable of" (’;hielr oiegreetof realism an_(jj aiccuracy.tL(Jjnfort(;mately, thie
autonomous reconfiguration by learning from and adapti Cels of Spectrum usage widely accepted and commonly

to the communication environment. An important specifi ed to date by the research community are limited in scope,

A : . nd based on oversimplifications or assumptions that have
lication of CR is Dynami rum A DSA) [2 . . g .
application of CR s Dynamic Spectru ccess (DSA) [ Eot been validated with empirical measurement data. In this

[5]. Despite being a broader concept [6]-[8], DSA is com- toxt. thi K ; dels that ol ;
monly understood as an opportunistic spectrum access metff8g Xt IS WOTK presents modeis that accurately capiure
reproduce the statistical properties of temporal spectrum

whereby unlicensed (secondary) systems are allowed to acc&l ortunities i | radi cati ;

in a non-interfering manner, licensed bands not occupied 89_‘;? uni :jesi.m refa a tlo communication tsﬁls ﬁms.d_ .

the licensed (primary) systems for a certain time interv;F\I € modeling of spectrum occupancy in the ime dimension
rom a discrete-time viewpoint was addressed in [31]. In con-
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Control (MAC) protocols for spectrum sharing [32], [33],deterministic sojourn time in the busy state. The idle s@jou
MAC-layer sensing schemes [34]-[36], adaptive spectrutime is fitted to a generalized Pareto distribution [41], a
sensing solutions [37], the sensing-throughput trade®®i,[ mixture of uniform distribution (associated to the effeofs
[39], and the performance of DSA/CR sensor networks [40he contention window) and generalized Pareto distriloutio
However, the analysis of field measurements demonstradés ffassociated to truly unused channels) [42], [43], and a hype
the lengths of busy and idle periods in real systems are rielang distribution [42], [43], which represents a goodi&aff
exponentially distributed and the CTMC model is thereforeetween accuracy and tractability of the model.
unrealistic. An alternative channel model is the Contimtou While [41]-[43] considers an interference-controlled envi
Time Semi-Markov Chain (CTSMC) model, where the stat®onment with a single packet flow artificially generated,][44
holding times can follow any arbitrary distribution. Base@nalyzes the distribution of busy and idle periods in a real
on this modeling approach, previous works have attemptedvironment with heterogeneous wireless devices operatin
to characterize spectrum occupancy patterns [41]-[45], bbe 2.4 GHz ISM band. The study reported in [44] concludes
unfortunately, they lack of a sufficiently comprehensiveatr that complex models such as the hyper-exponential disimitou
ment of the problem. In this context, this work aims to coveprovide excellent fits, but simpler models such as the gen-
the deficiencies of previous studies. The main drawbacks agrdlized Pareto distribution still lead to good matcheshwit
limitations of previous works reported in the literaturee arempirical data, thus providing a reasonable tradeoff betwe
identified and the methodological approaches and proceducemplexity and accuracy.
on which they rely are improved and extended. A compre- The work reported in [45] performs a similar study over
hensive, systematical and rigorous analysis of the dtatist a wider set of spectrum bands and based on a spectrum
properties observed in field measurements of real wirele@salyzer. Spectrum analyzers are characterized by sigmilyc
systems is performed, and innovative modeling approaatees lwer sampling rates, which may result in under-sampling
developed as well. of the measured signals, but enable high dynamic ranges,
The remainder of this work is organized as follows. First)igh sensitivity levels and broadband measurements. Thie wo
Section Il reviews previous related studies. Section I#nth performed in [45] concludes that state holding times can
summarizes the main novelties of this work, highlightingppropriately be described by means of geometric distribu-
the differences with respect to related previous studies Ttions. For channels with low (high) loads, the duration of
sophisticated measurement platforms, providing low aigh hiidle (busy) periods increases notably, leading to heaWgea
time resolutions, are used to obtain real-world empiricahg distributions for which a log-normal model is found to praei
which are described in Section IV. The considered proltghbilimore accurate fits.
distribution models and the goodness-of-fit metrics emgiioy
to assess their suitability in fitting the empirical data are I1l. N OVELTIES OF THIS STUDY
presented in Sections V and VI, respectively. The mostisigita  This section identifies the main drawbacks and limitations
distribution models are discussed in Sections VII and VIIRf previous modeling studies reported in the literature and
based respectively on low and high time-resolution measugxplains how they are overcome in this work.
ments. Additionally, two innovative modeling approaches t « High time-resolution measurement equipments have been
simultaneously describe spectrum occupancy statistibstht employed in [41]-[43] (vector signal analyzer) and [44]
short and long timescales are proposed in Section IX. Binall ~ (wireless transceiver in a laptop) to obtain spectrum
Section X summarizes the work. occupancy data in the 2.4 GHz ISM band. Although high
time resolutions enable more accurate models, the studies
performed in [41]-[44] focus on the 2.4 GHz ISM band
exclusively. A wider set of spectrum bands have been
embraced by the study performed in [45], but making use

Il. PREVIOUS WORK

Based on a CTSMC, a model that statistically describes
the busy and idle periods of an IEEE 802.11b Wireless Local of a low time-resolution device (spectrum analyzer). This
Area Network (WLAN) is proposed in [41]-[43]. The model work jointly employs both low and high time-resolution
is based on data obtained from measurements performed with devices to measure the spectral activity in a wide range of
a vector signal analyzer in the 2.4 GHz ISM band, considering allocated spectrum bands and discusses the consequences
a controlled laboratory setup and under high Signal-tosBoi of different time resolutions on the resulting models.

Ratio (SNR) conditions. The experimental setup considers as As opposed to some previous works [41]-[43] where
traffic source of UDP packets with a constant packet length a single traffic flow is generated and measured, this

(512 bytes) and Poisson-distributed inter-departure dirae
different rates [41], as well as more realistic traffic s@src

such as FTP [42], VoIP [42] and HTTP [43] streams generated

by real applications. The high sampling rate provided byarec

chapter exhaustively measures the occupancy patterns of
a significantly high number of channels for each analyzed

spectrum band, which ensures that the resulting models
are representative of the true spectrum occupancy of

signal analyzers enables time accuracies down to the symbol channels in real wireless systems.

level and thereby the identification of the IEEE 802.11b MAC « Previous works have tried to fit a reduced number of
protocol behavior in the captured traces. The sequence of probability distributions to empirical data, in some cases
states corresponding to data transmission and acknowlenigm  considering complex models such as phase-type distri-
is found to be essentially deterministic, which results in a butions (e.g., hyper-Erlang or hyper-exponential) that ar
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Discone antenna ——, Discone antenna

obtained as a linear (weighted) combination of a numbe oxovse || omeez-tomoon  SpoT swieh

of simpler distributions of the same class. Such comple . 7 pe-teon: Spectrum analyzee
models have been shown to provide good accuracy leve’ | S e e
and can be implemented in simulation tools. However,%;g;;gg-;{;oy;gt:g Low_zsﬁ“er (| eenpnee —
their applicability in analytical studies appears to be 86106 MHz DG - 000 Wz J Noise figure: 4 — 4.5 i @
difficult due to their complex mathematical expressions = 0 saonme

and the high number of model parameters involved. By, ;.
contrast, this work analyzes the suitability of a wider set
of simpler distributions, some of which have not bee: biscone antenna
considered before, showing that satisfactory fits can k| & Ven
achieved as well.
o Model parameters have usually been derived from en /o
pirical data based on Maximum Likelihood Estimation | RF
(MLE) techniques [41]—[44]. This work also considers the e —
MethOd Of Moments (MOM) and evaluates the resu'“”g Radio Frequency (RF) | Intermediate Frequency (IF) | Base Band (BB)
fits under both inference methods. ‘ ! ‘
« The fits for various distribution models have solely bee
evaluated based odistance-type metricsThis type of
metrics provide a single indication on the goodness of the

fit for a certain probability model over th_e whole rang@unning the GNU Radio software, where signal samples are
of values of the parameter under study (i.e., the duratiQ@ed to files for off-line processing and analysis. A more
of busy and idle periods in this case). Although this typgetajled description of this platform can be found in [48].
of metrics is also considered in this work, the fit of the g4 measurement platforms provide complimentary char-
considered models in particular regions of the parametgfiqristics. On the one hand, USRP can handle up to 8 MHz
under study (i.e., short and long periods) is individuallyanqwidth, meaning that only one or a few RF channels can
evaluated as well. be measured at a time. Moreover, due to its high sampling
In summary, this work provides an adequate treatment efte (1 s between samples) and the resulting huge volume
the problem by performing a comprehensive, systematial asf generated data, a channel can be monitored continuously
rigorous study on the probability distributions that can bfr a relatively short period (20 minutes in our experiménts
employed to accurately describe the statistical propmerie However, high time-resolution measurements are useful to

Low time-resolution platform.

USRP
daughter board

USRP

Laptoj
mother board il

GNU
Radio

Iglg. 2. High time-resolution platform.

spectrum usage in real wireless systems. accurately extract the true occupancy pattern of RF channel
(see Figure 3). On the other hand, spectrum analyzers can

o ) . rates (in our experiments, 2.58-5.70 seconds between sampl
Two measurement platforms, providing low and high timgepending on the considered band), can be used for much
resolutions, are employed in this study. The first measufignger measurements (7 days in our experiments). The low
ment platform (see Figure 1) relies on a spectrum analyz&fective sampling rates of spectrum analyzers, howeest|t

setup where different external devices have been added;{o, gignificant under-sampling of the measured signals (the
improve the detection capabilities. The design is composgfannel state may change between two consecutive obser-

Of two broadband discone-type antennas (75-7075 MHZ,)’vétions as illustrated in Figure 3). The occupancy pattern
Single-Pole Double-Throw (SPDT) switch to select the (ws"observed in such a case, although inaccurate, is integestin

antenna, several filters to remove undesired out-of-bamd &tk it can be thought of as the perception of a DSA/CR user
overloading FM signals, a low-noise pre-amplifier to enfang, 1 periodically senses the channel and observes its atate
the sensitivity (the overall noise figure of the whole platio giscrete time instants. Thus, while USRP measurements are
is 4 dB), and a high performance spectrum analyzer to recqfgsfy| to accurately describe the true channel occupariey pa
the spectral activity. The spectrum analyzer is connedeal t o at short timescales, spectrum analyzer measurements a
laptop via Ethernet and controlled by a tailor-made soféva(;sefyl to model the occupancy pattern perceived by DSA/CR
based on the Matlab’s Instrument Control Toolbox. A Morgsers at longer timescales.

detailed description of this platform can be f_ound in [46,]_?][. Both measurement setups were employed to monitor spec-
The second measurement platform (see Figure 2) relies Ofgn pands allocated to amateur systems (144-146 MHz),
Universal Software Radio Peripheral (USRP). Target sin aging systems (157—174 MHz), Private/Public-Access Mobi
are captured with a broadband discone-type antenna (76-3@g, iq (PMR/PAMR) systems such as TETRA UL (410—

MHz) and down-converted by TVRX (50-860 MHz, 8 dB;>q MHz) and TETRA DL (420-430 MHz), cellular mobile
typical noise figure) and DBSRX (800-2400 MHz, 3-5 dB
typical noise figure) RF front-end boards to the Intermexiat For most radio technologies, a measurement period of 20 mingtes i
Frequency (”:) at which the main USRP board performs safffough to obtain a sufficiently large number of samples of thiegelurations

. . . L . and derive statistically reliable estimations of the emapiridistributions at
p“ng_ and filtering. Digital signal samples ar_e down-COM®Er g0t timescales. In a few particular cases, however, dewegasurement
(decimated) to Base Band (BB) and sent via USB to a laptegssions of 20 minutes were required to obtain a sufficieatlyel sample.
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for each RF channel and the corresponding empirical Cumu-
lative Distribution Function (CDF) was derived and compgare
to the probability distribution models shown in Table I. Som
complex distributions studied in previous works (phageety
distributions such as hyper-Erlang or hyper-exponentad)

not considered. Such distributions have been proven to be
accurate but involve complex mathematical expressions and
a high number of parameters, which hinders their applinatio
in analytical studies. By contrast, this work considers dewi

set of simpler and more tractable models, some of which have
not been considered before. The considered CDF models, as it
will be shown, can provide satisfactory fits to empiricaladat
o The exponential distribution is analyzed to determine the
communication systems such as E-GSM 900 UL (880-933idity of the widely employed CTMC model. The interest
MHz), E-GSM 900 DL (925-960 MHz), DCS 1800 ULyt the generalized exponential distribution [51] relies itm
(1710-1785 MHz) and DCS 1800 DL (1805-1880 MHZz),pjjity to reproduce other distributions with a single amiatl
cordless telephone systems such as DECT (1880-1900 MH&pression: for = 1 it becomes the exponential distribution,
and open bands such as ISM (2400-2500 MHz). Most of theggijle for certain ranges of the shapeand scale\ parameters
bands were measured from a strategically selected buildip@gdosmy resembles the log-normal, gamma, and Weibull
rooftop with direct line-of-sight to several transmitteasfew gjstributions, which are explicitly considered as well. €Th
tens or hundreds of meters apart. For the DECT and ISMy_normal distribution has been suggested as an adequate
bands, however, measurements were performed in indogbdel for heavy-tailed trends [45], while the suitabilitithe
environments, where short-range devices using these meds%zmma and Weibull distributions has not been studied before
commonly deployed. Measurement locations were carefuifhe pareto and generalized Pareto distributions, coresider
selected to maximize the receiving SNR and ensure a reliablgvious studies, are also analyzed.
and accurate estimation of the true busy/idle states for the; is worth noting that the exponential and Pareto distri-
measured channels. Although this work does not presgjikions are particular cases of their generalized couatep
detailed results for all the considered bands, extensie agneno — 1 and . = \/a, respectively. In such cases, the
detailed analyses were performed for all of them. relations icr = pp and \gp = Az hold for the former,
Binary busy/idle channel occupancy patterns were exwact@hiie \.p = Ap/ap andagp = 1/ap hold for the latter
from spectrum data based on energy detection [49]. POWgge Table I). There is a reason, however, to explicitly ictens
samples provided by the spectrum analyzer were procesggd particular cases, instead of solely considering theergen
individually, leading to the effective time resolutions me jjizeq distributions. When the particular cases are sufficie
tioned above (2.58-5.70 seconds between samples). USBRyrovide accurate fits, the numerical methods employed to

data were processed in blocks of 128 samples, resultingdgtimate the parameters of the generalized distributians d
an effective resolution of one channel state observati@nyev necessarily lead to numerical values satisfying= 1

128 us. This time resolution enables an accurate estimationéﬁdu = X a, and hence the need to explicitly consider the
the true channel activity patterns for the considered tlthn particular cases in order to identify those situations wher
gies'. Spectrum analyzer data were processed based on digipler distributions with fewer parameters suffice. In som
classical energy detection method [49] (as in [31]), while t c5ses, a better accuracy may be obtained with the particular
Improved Energy Detection (IED) scheme presented in [5@hses than with the generalized distributions, which isetyer
(with parameter, = 5) was used to extract binary occupancyp artifact of the employed numerical methods and indicates
information from USRP data. The IED method makes use fe syitability of the particular cases. This circumstaatss

past char'meliobservatlor)s to determlne. the current chanfgihlights the need to explicitly consider the particulases
state, which is not sensible when the time period betwegfithe general distributions in order to guarantee optimusy fi
consecutive observations is in the order of several secongg aspect that seems to have been neglected in previous, works
This prevents the application of the IED scheme 10 tgnhere only generalized distributions have been considered
spectrum analyzer data. However, the high time resolutfon 0 o5 mentioned in Section I, the distributions parameters
the USRP platform enables the application of the IED methogaye frequently been derived from the empirical data based o
which was experimentally observed to result in an w_nproquLE techniques [41]—[44]. MLE is also employed in this work
detection performance and a more accurate estimation of {§&stimate the best fitting parameters for the exponer@ajH

true channel occupancy. [55], generalized exponential [51], Pareto [56], geneeali
Pareto [57]-[59], log-normal [53], [54], [60], [61], gamma
V. CONSIDERED PROBABILITY DISTRIBUTIONS (53], [54], [60], [61], and Weibull [53]_[55] distribution:

~Based on the binary occupancy patterns extracted from eRygitionally, MOM inference techniques are also considere
pirical data, the length of busy and idle periods was computg hich consist in equating statistical moments with sample

2For instance, the time-slot duration is 14.167 ms in TETRA, &&7in moments and then solving those equat_|0ns for the estimated
GSM/DCS and 41%s in DECT. parameters [62]. MOM parameter estimates are computed

Fig. 3. Low versus high time-resolution measurements.
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TABLE |
CONSIDERED PROBABILITY DISTRIBUTION MODELS DISTRIBUTION NAMES: E (EXPONENTIAL), GE (GENERALIZED EXPONENTIAL), P (RRRETO), GP
(GENERALIZED PARETO), LN (LOG-NORMAL), G (GAMMA), AND W (WEIBULL). DISTRIBUTION PARAMETERS 1 (LOCATION), A (SCALE), AND «
(SHAPE). T; REPRESENTS THE PERIOD LENGTHE {-} AND V {-} REPRESENT THE MEAN AND THE VARIANCE OF THE DISTRIBUTIONRESPECTIVELY
1 (+) 1S THE DIGAMMA FUNCTION [52, 6.3.1]AND 9/ (+) IS ITS DERIVATIVE. (-, -) IS THE LOWER INCOMPLETE GAMMA FUNCTION[52, 6.5.2]AND I'(-)
IS THE (COMPLETE) GAMMA FUNCTION [52, 6.1.1].

Distribution function Parameters Moments
) E{T,})=p+1
Fg(Ty; A =1 — e MTi—w) Tz;ﬂgo {1} /1 A
> V{T:} = 5=
T >wpu>0 E{T;} = Ylatl)—y(1)
_ - =p+
FGE(Tj§[l,,>\,OC):[1—e AT H”a A>0 ’ b (1) =’ >‘1
vin) - Ysges
;> A E{T;} = &
fe g —
Fp(Tix o) =1- () x>0 iy e
) a>2 {Ti} = (a—1)2(a—2)
T > p(a>0) N A
- V/e i pl = E{Ti} =p+ 12
Fop(Tii A a) = 1— [14 <00 Tielppu—-3(a<0) | o) 5F
wA>0, a<1/2 T} = (1I—a)2(1—2a)
T; >0 E{T;} = ep,+/\2/2
. _ 1 InT;—p v .
Frn(Tisp, A) = 3 [1 +erf( Vare )] ‘;iﬂg V{T;} = (eAz - 1) e2ntA?
Tizw Tizp>0 E{T:} = p + Ao
FG(Ti;,uy)\va):w A>0 ¢ L},M2
() aso0 V{Ti} = N«
T;>wp>0 _ 1
L\ i Z E{T;} = p+ AT (1+ 3)
Fw (Tis A a) =1 —exp |— Lzt A>0 2 1
! [ ( A ” s V{Ti} =21+ 2)-T2(1+1)]

based on the sample mean and sample variance of the length &finally, the Bhattacharyya distance is also employed, kwhic
busy/idle periods (see Table I). While MLE is widely accepted defined as [64]:
as a preferred inference method, MOM can sometimes provide

K
better fits to empirical data. Dp=—In (Z \/ Formp (T - it (T}c)> 4)
k=1
VI. GOODNESSOF-FIT METRICS

o . These metrics provide a single numerical value indicating
In order to assess the suitability of the considered proba- . o
. S o o the GOF of a certain probability model over the whole range of
bility distributions in fitting the empirical data sets, seal

tests and their underlying Goodness-Of-Fit (GOF) metries aYr?lqutigingr Argdi'gﬁgacl)l]}/’ t:]hee C?ISFF ((:)c]:rtrr:ai c::g;ger?: Ircr)]vid::\Sd
employed. Based on the Kolmogorov-Smirnov (KS) test, tthe P 9 b 9

KS distance between the empirical CD¥,,,(T;) of period igh values off; will be evaluated as well.
lengthsT; (i € {0, 1} denotes the period type, with) and T}

being idle and busy periods, respectively) and the CDF model VII. L ONG TIMESCALE MODELS
Fyi+(T;) is computed as [63]: This section analyzes the suitability of the considered CDF
Dics = max {|Fump (T3) = Friy (T)|} (1) models in describing the length of busy and idle periods dase

on spectrum analyzer measurements. The high number of
A symmetric version of the Kullback-Leibler (KL) diver- factors involved in the analysis were handled as followsstFi
gence [63] is also employed: the CDF models of Table | were fitted to the empirical CDFs of
sym busy and idle periods (for every individual RF channel withi
ym __ 2 . )
Dier’ =Dxr (femp (T0) 1f5ir (T2) the measured bands) based on MLE and MOM. The resulting

+ D (frit (1) | femp (T3)) (2) GOF was evaluated for every individual combination of chan-

< femp (TF) nel, period type, CDF model and inference method. Given the
:Zfemp (Tik) In 7T,i high number of RF channels within a single spectrum band,

k=1 Ty ( i ) the GOF metrics were averaged over channels belonging the

K . frie (TF) same band in order to obtain a single representative GOF
+ foit (Tz )ln W 3 value per analyzed spectrum band. It was observed that the
k=1 AT best fitting CDF model for a given combination of period
where fen, (TF) and fr;, (TF) represent the empirical Prob-type, GOF metric and inference method was the same for all
ability Density Function (PDF) and the evaluated PDF modehe analyzed bands, and it could also be concluded from the
respectively, assumed to be computed for a discrete humbszan value of the GOF metrics averaged over all bands. As
of K values of the period lengtll;, 7F (k = 1,2,...K) an example, Table Il shows the KS distance for the fit of the
represents thé:-th value of T;, and Dk, (fal|fs) denotes considered distributions to the idle periods of some setect
the KL divergence between PDHFg and f5. bands based on MLE. As it can be appreciated, the generalized
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TABLE I TABLE Il
KS METRIC OF IDLE PERIODS FOR VARIOUS DISTRIBUTIONS AND BANDS GOFMETRICS FOR LOW TIME RESOLUTION MEASUREMENTS
BASED ON THEMLE METHOD.

E GE P GP LN G \W

MLE | 0.23| 0.15| 0.20 | 0.11 | 0.14 | 0.15 | 0.26
MOM | 1.59 | 1.88 | 241 | 1.39 | 1.34 | 1.82 | 1.46
MLE | 1.59 | 1.38 | 164 | 1.29 | 1.32 | 1.38 | 1.70
MOM | 0.19 | 0.28 | 0.31 | 0.17 | 0.23 | 0.27 | 0.19
MLE | 0.19 | 0.18 | 0.23 | 0.16 | 0.20 | 0.18 | 0.22

Average 0.23| 015| 0.20 | 0.11 | 0.14 | 0.15 | 0.26

Idle periods

Band E |GE| P |GP|LN | G | W »| 2] MOM | 020 023 035 0.18 | 0.21 | 0.22| 0.19
Amateur | 0.22 | 0.14| 0.17 | 0.08 | 0.12 | 0.14 | 0.23 S| Q[ MLE [020] 019 | 0.23 | 0.16 | 0.20 | 0.19 | 0.43
Paging | 0.26] 0.17] 0.23 | 0.13 | 015 0.16 | 0.25 [ E<| MOM | 200 | 2.32 | 2.55 | 1.96 | 1.88 | 2.29 | 2.11
Ty Lo lononon oo ot lon] | | e ool 1o 2| 1o dor| 25
DCS 1800 DL | 0.24 | 0.416 | 0.16 | 0.12 | 0.16 | 0.15 | 0.30 @| &|MOM | 025]030] 082] 0.24] 0.82] 030 | 0.27
' : : ' ' ' ' MLE | 0.25 | 0.23 | 0.29 | 0.24 | 0.28 | 0.24 | 0.34
DECT 0.25 | 0.15 | 0.19 | 0.07 | 0.09 | 0.14 | 0.15 I e e e
ISM 018 0.18 | 0.22 | 0.16 | 0.21 | 0.18 | 0.43 & : : : : : - :

)

Qq

Q

Pareto distribution provides the best fit in all cases, witiah
also be concluded based on the average KS distance. Similar
trends were observed for other GOF metrics and inference
methods, for both busy and idle periods, thus indicating tha The previous analysis has been based solely on distance
the analysis can be undertaken in terms of average valygstrics, which provide a single numerical value as an indica
since such values are sufficiently representative of theltees tion of the GOF of a certain probability model over the whole
obtained for individual bands. Based on this appreciatibe, range of values df;. The fitting accuracy in particular regions
GOF metrics were averaged over all bands in order to obtajfithe CDF is analyzed in the following. Figures 4 and 5 show
the average GOF metrics shown in Table IIl. the empirical and fitted distributions based on the MLE and
In order to compare the fitting accuracy of the considerédOM methods, respectively. These figures correspond to a
distributions, the minimum value of the GOF metrics resigiti single selected channel from a particular spectrum band but
from the MLE and MOM approaches was selected as tlage representative of the behavior observed for other eiann
representative result. Notice that the best possible fihg¢ei and bands. Each figure is composed of four graphs. Upper
MLE or MOM) is the one that really indicates the ability ofgraphs show the statistics of busy periods, while lower lgsap
a distribution function to describe a set of empirical datashow the statistics of idle periods. The graphs on the lefich
Thus, the comparison among the considered distributionssisle show the empirical and fitted CDFs with the abscissa
performed based on the minimum values obtained for eaakis in logarithmic magnitude, which enables a finer dethil o
GOF metric, which are shown in bold in Table Ill. As it carappreciation of the fitting accuracy for low values®f (i.e.,
be appreciated, all the considered GOF metrics indicate tl&ort periods). The graphs on the right-hand side show the
the best fit for idle periods is attained with the generalizeshme information in terms of the Complementary Cumulative
Pareto distribution. For busy periods, the generalize&tBar Distribution Function (CCDF) with both axes in logarithmic
distribution is the most accurate model according to the Kfagnitude, which allows for a finer detail of appreciation of
distance, but not from the point of view of the symmetric Klthe fitting accuracy for high values df; (i.e., long periods).
divergence and the Bhattacharyya distance. However, Bethe The first interesting observation from Figures 4 and 5
two cases it is interesting to note that the fitting accurddh® is that the exponential distribution is not able to describe
generalized Pareto distribution is only marginally worsarnt with sufficient accuracy the length of busy and idle periods
the best fit, thus indicating that the GOF of the generalizesbserved in real channels, meaning that the CTMC channel
Pareto distribution in these cases can be considered to-beraodel widely employed in the literature is unrealidtitt is
ceptable. Based on these observations, the generalizetbPamportant to note that the exponential distribution coasid
distribution can be selected as an appropriate model for tinethis study (see Table 1) includes a location parameter
lengths of both busy and idle periods in real systems. Othat is not usually considered in the conventional expdaknt
alternative models such as the generalized exponenti@, ldistribution widely employed in the literature. Withoutcu
normal, gamma and Weibull distributions are able to achieWgcation parameter (i.ey = 0), the resulting accuracy was
comparable (or slightly better) GOFs in some particulaesasobserved to be notably worse, thus confirming that a CTMC
of Table Ill. However, the generalized Pareto distributien does not constitute an adequate model. In terms of accuracy,
the only model that provides an acceptable fit (i.e., the besiilar comments can be made for the Pareto distribution,
fit, or a fit very close to the best one) over the wide rangghich suggests that simple one/two-parameter distribstao
of considered spectrum bands, for both busy and idle periodet seem to be adequate models.
The possibility to characterize the lengths of both perioih For the rest of distributions, it is interesting to note that
a single CDF model irrespective of the considered band makesch inference method improves the fitting accuracy in one
of the generalized Pareto distribution an attractive model particular region at the expense of degrading the fit in the
opposite region. With some particular exceptions, the best

3An exhaustive analysis for all channels and bands indictitaiapproxi-
mately 75% of the channels were best fitted with the MLE methberdfore, “4Previous work [65] has shown that the PDF of channel vacancgtions
MLE outperforms MOM in general, but not always provides thethi (see can be fitted with an exponential-like function of the forf(7;) ~ a + b -
for example the Weibull distribution in Table III). exp(—c - T;), with a, b, ¢ € RT, which isnot an exponential distribution.
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Fig. 4. Empirical CDF and fitted distributions based on the Mifproach. Fig. 5. Empirical CDF and fitted distributions based on the M@pproach.

fitting accuracies in the region of short periods is normaliyn Section VII. An individual analysis for each channel was
achieved by the MLE method, while the best fit for londeasible in this case and, as a result, the GOF metrics were
periods is in general attained with the MOM approach. Howot averaged over channels belonging to the same band. As
ever, the generalized Pareto distribution is the only mtlumti opposed to Section VI, no single distribution was obserteed
simultaneously provides acceptable fits for both short ang | provide acceptable fits for all bands, thus indicating thedne
periods, regardless of the inference method applied, wisichof an individual analysis for each considered band. Morgove
not observed for any other of the considered distributidhgs there was no clear predominance of an inference method over
observation confirms the suitability of the generalizedeRar the other. The results shown for each distribution corredpo
distribution for the state holding times of the CTSMC chdnné¢o the inference method providing the best fitting accuracy
model. The obtained results demonstrated that the geredaliin each case. In general, the three considered GOF metrics
Pareto distribution provides a remarkably good fitting aacy showed agreement on the inference method attaining the best
for short/long busy/idle periods in channels with low/higfiit. In those cases where some disagreement was observed,
loads over a wide range of spectrum bands and technologid® inference method indicated by any two of the three GOF
In order to facilitate to researchers the application of thetrics was selected (i.e.,maajority votecriterion).
CTSMC model, Table IV provides numerical values for the An individual analysis for each band is provided in the
distribution’s parameters extracted from field measuremenfollowing®. The results shown for each band are representative
Various channel loads are shown in terms of the channel Digyamples of the typical channel loads observed in each case.
Cycle (DC). To reproduce an arbitrary D@, the parameters Other load levels can be reproduced by selecting the parame-
of the distribution need to be chosen such that the followirigrs of the distribution based on (5).
equality holds [66]:

E{T1} A. Amateur bands

v (®)

Figure 6 shows the fitted distributions for a channel mea-

T E{T0} + E{T}}
. sured in amateur bands. Two of the three GOF metrics
where {7y} and E{T: } represent the mean idle and busy, . .o that the generalized Pareto distribution presithe

periods, respectively, which are related with the paramet%est fit for busy periods. The KS distance, however, inditate

1, A anda as shown in Table I. The values shown in Tabl ' N
IV for the location parameter are determined by the time at the bgst f|t_corr.esponds to the log-normal distribution
s appreciated in Figure 6, the latter provides the best fit

resoluti . Thi . :
lution of the spectrum analyzer. This parameter coald 2r long busy periods, but it cannot accurately model the

tailored to the particular s i i aam . . ) .
P cenario under study in order minimum period duration. Therefore, it can be concluded

the co_n_sud_ered .spectrum Sensing period or the m|n|mumqber|t%at the generalized Pareto distribution provides a bditer
of activity/inactivity of a primary RF channel.

over the whole range of busy period durations. For idle
periods, the most precise models are the generalized Raréto
VIII. SHORT TIMESCALE MODELS Weibull distributions, but similar accuracies are attalineth
This section analyzes the suitability of the considered COpe generalized exponential and gamma models. To faeilitat
models in describing the length of busy and idle periods dasée application of these models, Table V provides the vabfies
on measurements performed with the USRP platform. GivensThe activity patterns of IEEE 802,11 systems operating in2HeGH
— . I . | I z
the limited bandwidth capabllltles _Of the USRP ) hardwar%M band have already extensively been studied in [41]{##}g high time-
selected channels were analyzed instead of entire bandseasiution devices and will not be considered in this sectio
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PARAMETERS OF THE GENERALIZEDPARETO DISTRIBUTION FOR BUSY AND IDLE PERIODS EXTRACTED FRONEMPIRICAL MEASUREMENT RESULTS BY

TABLE IV

MEANS OF MLE (T; IN TABLE | EXPRESSED IN SECONDJ

Busy periods Idle periods
Load Duty cycle u (secs) A fe" L (secs) A le%
Very low 0.09 3.5150 | 1.6960 | 0.0284 | 3.6100 | 38.3633| 0.2125
Low 0.29 35150 | 2.6240 | 0.1884| 3.5780 | 10.9356| 0.1784
Medium 0.51 3.5150 | 5.1483 | 0.1978| 3.5160 | 4.6583 | 0.2156
High 0.71 3.5470 | 10.7968| 0.1929 | 3.5310 | 2.6272 | 0.2119
Very high 0.93 3.5940 | 52.8611| 0.2377| 3.5160 | 1.6609 | 0.0068
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the fitted parameters, along with the corresponding valdies ; usy periods 10 DUy periods
the GOF metrics and a typical DC value observed in channt 0.8 107"
of the amateur band. w06 W 107
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. . . . . -5
Figure 7 shows the fitted distributions for a channel me. e 10,2 1 5
sured in paging bands. The numerical results of GOF metri Period duration (msecs) Pe”°d| "lura"‘?” (msecs)
indicated that the best fit for busy periods is attained wif ; deperiods g eperiods
the Weibull distribution. Nevertheless, Figure 7 shows the 08 /” o TR
generalized exponential and gamma distributions are &l a | o6 dies W, Emp N
to provide a comparable fitting accuracy, even slightlydrett 3 / =l g0 5 W
p p g Y, gntly 0.4 o :

. . . . Al ——GP _af| ——o¢cP N
over the whole range of busy period lengths, which indicat 02 / oW 107w \
that these distributions are adequate models as well. fer i 0 v 107 z :
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periods, the best fit corresponds to the Pareto distribufian
ble VI provides the values of the fitted distribution paraenst
GOF metrics and typical DC value.

Period duration (msecs) Period duration (msecs)

Fig. 8. Empirical CDF and fitted distributions for PMR/PAMRiuts.

C. Private/public access mobile radio bands

Figure 8 shows the fitted distributions for a channel meand (generalized) Pareto distributions for idle periodsisT
sured in the TETRA DL band, which represents an exampt&cumstance indicates that both busy and idle periodseén th
of a PMR/PAMR system. The best fit for busy periods iSETRA DL band can indistinctly be modeled with the Weibull
attained with the generalized Pareto distribution. Nénadess, and (generalized) Pareto distributions (in some casesgvew
the simpler Pareto distribution is able to attain a simitasel the Pareto distribution was observed not be accurate enough
of accuracy as well. For idle periods, the Weibull distribnt and only the generalized Pareto distribution was accegtabl
provides the best fit to empirical data. It is worth notingable VII provides the values of the fitted parameters, GOF
that other channels within the TETRA DL band showed metrics and typical DC value. The results in this case are
slightly better fit with Weibull distributions for busy peds shown for two different channels.
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TABLE V
PARAMETERS OF BUSY AND IDLE PERIOD DISTRIBUTIONS FOR AMATEURBANDS (T IN TABLE | EXPRESSED IN MILLISECONDS.

Period Fitted GOF metrics Parameters Duty
type | distributon | Dixs | DY | Dg o (msecs) A a cycle
Busy GP 0.15 2.80 | 0.35 | 6.8659-10% | 6.0417-10% | —0.4559

GP 0.07 1.13 | 0.14 | 2.2208-10% | 1.0230-10* | —0.1395
dle w 0.07 1.13 0.14 | 2.2208 - 102 9.7262 - 103 1.1801 0.09
GE 0.07 1.15 0.14 | 2.2208-10% | 1.3271-10~ % 1.3263
G 0.07 1.15 | 0.14 | 2.2208-10% | 7.0195-103 1.2790
TABLE VI
PARAMETERS OF BUSY AND IDLE PERIOD DISTRIBUTIONS FOR PAGING 8NDS (7; IN TABLE | EXPRESSED IN MILLISECONDS.
Period Fitted GOF metrics Parameters Duty
type | distribution | Dxs | DZ;" | D | p (msecs) A a cycle
w 0.13 0.25 0.05 0.2560 0.5922 | 0.5866
Busy GE 0.16 0.26 0.11 0.2560 0.4204 | 0.2808 0.46
G 0.14 0.26 0.10 0.2560 3.0029 | 0.3058
Idle P 0.05 0.15 0.02 —_ 0.2560 | 1.2233
TABLE VII

PARAMETERS OF BUSY AND IDLE PERIOD DISTRIBUTIONS FOPPMR/PAMRBANDS (T; IN TABLE | EXPRESSED IN MILLISECONDS.

Period Fitted GOF metrics Parameters Duty
type | distribution | Dxs | D3Z;" | D | p (msecs) A « cycle
GP 0.08 0.21 0.03 0.2560 0.0621 | 0.3861
Busy
P 0.12 0.24 0.03 — 0.2560 | 3.5311 0.06
Idle w 0.04 0.23 0.05 0.2560 3.1084 | 0.5451
Busy w 0.08 0.21 0.03 0.2560 0.4192 | 0.6656 0.06
Idle P 0.11 0.35 0.08 — 0.2560 | 1.0186
D. Cellular mobile communication bands considered, but it was observed to be unable to fit empirical

. _ o data and it is therefore not reported. Figure 10 and Table X
Figure 9 shows the fitted distributions for a channel meghow the fitted distributions and obtained GOF metrics. As it
sured in the E-GSM 900 DL band, which represents an exagan be appreciated, the best fit for both busy and idle periods
ple of a cellular mobile communication system (the resuts &s attained with the negative binominal distribution. Faisp
also representative of the DCS 1800 system). The genedalizferiods, the Poisson and negative binominal distributjmos
Pareto distribution provides the best fit for busy perioderovvide the same fitand are indistinguishable from each other in
t.he. wholg range.of period durat!ons. For idle penoc_is, .thH.bEFigure 10. For busy periods, the optimum fit with the Poisson
fit is attained with the generalized exponential distribnfi distribution is obtained with parametar= 2.9239. With the
although the gamma distribution provides a similar acguragegative binomial distribution, the optimum fit is obtaineith
Table VIII provides the values of the fitted distribution paparameters: = 3.0294 - 10® andp = 0.9990 for busy periods
rameters, GOF metrics and typical DC value. The locatiathd parameters = 0.7430 andp = 0.0734 for idle periods.
parameter (i.e., minimum period duration) should be equal t
the GSM/DCS time-slot durationu(= 0.577 ms). The value
shown in Table VIl is affected by the time resolution of 0812 E- Cordless telephone bands
ms of the measurement device (see Section V). The continuous-time distributions presented in Section V
It is worth noting that the stair-shaped empirical CDF iivere fitted to the channels measured in the DECT band,
Figure 9 is a natural consequence of the time-slotted streictwhich represents an example of a cordless telephone system.
employed by the multiple access mechanism of the GSM/D¢®wever, no satisfactory fits were observed for this paldicu
system, which defines a frame structure with 8 time slots, S S
of 577 us each. This circumstance suggests the pOSSibilitg{The negative binomial distribution converges to the Poisdistribution
. . . L. as its parameter tends towards infinity. Hence, they may closely resemble
of modeling busy/idle periods in time-slotted systems frohch other for- sufficiently large.
a discrete perspective, where period lengths are desciibed 7In its original definition, the negative binomial distriborti is a discrete
terms of the number of time-slots. Based on this observati&ﬁ‘)babi"ty distributiqn of the number of successes in_ a saga of Bern_ou!li
. . . . .. trials before a specified (non-random) number of failures cctihe distri-
and cons@enng a t'me'S|_0t dur?‘t'on of of i3, the empirical bution is characterized by two parameterse N* (the number of failures
CDF of Figure 9 was discretized and compared to severatil the experiment is stopped) ande [0, 1] (the success probability in
discrete-time CDF models. In particular, geometric, Rmiss each experiment)._Th(_e origina_l definition can be extende_(b&a_tb ve_llues of
d . bi ial distributi fitted h .the parameter, which is sometimes referred to as th@ly distribution. For
fan negative binomial distri Utl(_)ns V_Vere_ 'tt_e FO the empifye purposes of this study, the distribution is regardeddisaete probability
ical data (see Table IX). The binomial distribution was alsdistribution with two parameters that are fitted to empiricafad
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TABLE VI

PARAMETERS OF BUSY AND IDLE PERIOD DISTRIBUTIONS FOR CELLULR MOBILE COMMUNICATION BANDS (77 IN TABLE | EXPRESSED IN
MILLISECONDS).

CONSIDERED DISCRETE PROBABILITY DISTRIBUTION MODELSDISTRIBUTION NAMES: GEOM (GEOMETRIC), POIS (POISSON), AND NBIN (NEGATIVE
BINOMIAL ). kK REPRESENTS THE PERIOD LENGTH IN TERMS OF THE NUMBER OF TIME 6IS. E {-} AND V {-} REPRESENT THE MEAN AND THE

Period Fitted GOF metrics Parameters Duty
type | distribution | Dixgs | D;Y[" | Dp | p (msecs) A o cycle
Busy GP 0.13 3.09 0.37 0.5120 1.3692 —0.2669
dle GE 0.05 2.12 0.26 0.5120 0.1141 0.4502 0.23

G 0.07 2.13 0.26 0.5120 10.3225 0.4805
TABLE IX

VARIANCE OF THE DISTRIBUTION, RESPECTIVELY II((L ﬁ) IS THE REGULARIZED INCOMPLETE BETA FUNCTION52, 6.6.2].
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Empirical CDF and fitted distributions for cellular niebcommu-

nication bands (discrete-time models).

system. Since DECT employs a time-slotted frame struéture

the discrete-time distributions considered in Sectionl-DlI
were then fitted to the empirical data following a similar pro

Division Multiple Access, Time Division Duplex (MC/TDMA/TD) radio

access methodology. The basic DECT frequency allocationeefiO carrier
frequencies. In the time domain, each carrier frequency iglelivin 10-ms
frames, which are composed of 24 time-slots of 4i7each. The first (last
12 time-slots of a frame are used for downlink (uplink) transmoiss.

Fig. 10. Empirical CDF and fitted distributions for cellular bile commu-

cedure for the discretization of the continuous-time eiogir
CDF. As an example of the results obtained in this case, Eigur
11 shows the fitted distributions for a channel measureddn th
8The DECT radio interface [67] is based on a Multi Carrier, TithECT band. As it can be appreciated, busy periods appear to
be perfectly fitted with a geometric distribution. This risu
however, should be interpreted carefully. The empiricalFCD
y of Figure 11 indicates that the busy periods observed in the
field measurements were always one time-slot long, and in
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TABLE X

GOFMETRICS FOR CELLULAR MOBILE COMMUNICATION BANDS 11, this occupancy pattern was observed for about 10% of the

(DISCRETETIME MODELS).

time in the considered channel. The second inferrable case
corresponds to a single communication link between the base

Geometric | Poisson | Neg. binominal station and one portable device. In this case, two timesslot
2 Dsf;i 0.13 0.09 0.09 are used for communication, one in the downlink part of the
a ng g‘gg g‘sz 8'(2)1 frame and the other one in the uplink part. In this other case,
fos .14 598 .14 the channel occupancy pattern is compose'd of one busy time-
2 Do 036 149 029 slot followed by 11 idle time-slots. According to Figure 11,
~ [ Dp 0.13 0.32 0.10 this occupancy pattern was observed for about 90% of the time
in the considered channel.
Note that the two possible occupancy patterns inferred from
Busy periods the results of Figure 11 are characterized by a completely
0;: R T deterministic sequence of busy and idle periods, for which a
woel 7T probabilistic modeling may not be well suited. In the evahtu
Soar | — o case of busy periods of two or more time-slots (i.e., two or
0.2t ~ ~ Geometic more communication links with the base station), the length
or ‘ ‘ ‘ -~ Negative binomial | of busy and idle periods would depend on the particular
1 Numbgr of Slofs Of3417us 4 5 position of busy time-slots within the DECT frame structure
Idle periods In this other case, a probabilistic modeling would be more
1F e P appropriate. However, as mentioned above, busy periods of
0.8f e one time-slots appear to be the most common situation in real
& 0.6¢ i DECT systems and in such a case the deterministic modeling
Co4r —_ Empirical. approach discussed above results more convenient.
02 7 - Poisson Before concluding this section, it is worth noting that DECT

——Negative binomial

12 18 24 30 36 42 48 54 60
Number of slots of 417 us

makes use of a continuous dynamic channel selection and
allocation mechanism. All DECT equipment is obliged to

regularly scan its local radio environment at least oncayeve
30 seconds. After that period of time, the system may decide
to switch to a different operating carrier frequency. Assutg
a particular carrier frequency may exhibit in practice long
inactivity periods (while the system is operating over othe
this particular case the geometric distribution perfedity carrier frequencies) followed by periods of activity (venthe
the resulting simple CDF. Nevertheless, the SUltabl'lt}ﬂTﬂ: system is operating over that carrier frequency)_ Dur|r@ﬁq
geometric distribution for longer busy periods of two or Boractivity periods, the carrier frequency exhibits busyiditer-
time-slots cannot be concluded from the results of Figu{gls at a much shorter timescale (i.e., at the slot leveljchvh
11. Unfortunately, this could not be verified with empiricals due to the the two aforementioned occupancy patterns. Thi
data since busy periods were always one time-slot long fepservation suggests that the real activity pattern of améla
all the measured DECT channels. However, this CirCUmStar}ﬁgy be more appropriate|y described by means of a two-
suggests that this may be the most common case in practigger approach: one modeling level describes channel usage
Concerning idle periods, the results of Figure 11 indicht t at a high timescale, while another modeling level describes
the channel inactivity periods may either be 11 or 23 tinwss!| in detail the true occupancy pattern at a low timescale. This
long. None of the considered distributions can be fitted & tinodeling approach is discussed in Section IX.
resulting empirical CDF with a reasonable level of accuracy
Although the previous discussion indicates that a proisabil
tic modeling of busy and idle period lengths does not seem to
be valid for DECT channels, the results of Figure 11 suggestThis section explores two different approaches integgatin
an alternative, simpler modeling approach. In particulag the models of Sections VIl and VIII to simultaneously repro-
well-defined cases can be inferred from Figure 11. The fiduce the statistical properties of spectrum usage at lodg an
case corresponds to a base station transmitting broadeastshort timescales.
formation. A DECT base station is continuously transmittin  The first proposed method comprises four distribution func-
on at least one channel, information about the base statitoms. As illustrated in Figure 12(a), two distribution fifions
identity, system capabilities, status and paging inforomafor are used to characterize the lengths of inactivity and igtiv
incoming call set-up. This information is transmitted ineonperiods at long timescale$;,” (7,) and F'Z(T}) respectively.
(busy) time-slot. If there are no active communications,rést During the periods of primary activity, a sequence of idlel an
of downlink and uplink time-slots in the frame will be emptybusy periods are present at a shorter timescale as desbiibed
until the next broadcast message (time-slot). Therefarthis the distribution functiong™*(Ty) and F°(T). The functions
case the channel occupancy pattern is composed of one bf$y(7,) and FZ(T}) can be generalized Pareto distributions
time-slot followed by 23 idle time-slots. According to Figu as concluded in Section VII, while the distribution functso

Fig. 11. Empirical CDF and fitted distributions for cordlesiephone bands
(discrete-time models).

IX. TWO-LAYER MODELING APPROACHES
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FT)  FXT) FY(T,) ST FK(T,) ‘ is appropriate for channels of amateur, paging, PMR/PAMR
j— — and cordless telephone bands. For channels of cellularlenobi
ey  communication systems such as E-GSM 900 and DCS 1800,
e | P o the existence of inactivity periods lasting for severalosets
1 AEEL e, e, is unlikely. For this particular case, a second modeling ap-
proach is proposed. This alternative considers two digioh
(@) functions to describe the length of idle and busy periods at
short timescalest™® (T,) and F°(T7) respectively, which can
be negative binomial distributions as concluded from ®ecti
VIII-D. The behavior at long timescales is included by means
teeshours)  Oof @ DC model that describes the channel load variation
- A : over time as illustrated in Figure 12(b). The deterministic
T B - DC models proposed in [31] for cellular mobile communi-
cation systems can be employed to this end. Based on this
(®) approach, the parameters of the distribution functiBrigZ})
Fig. 12. Two-layer modeling approaches for spectrum ocanppatterns in - &nd F3(T) are regularly adjusted according to (5) so as to
the time domain: (a) general modeling approach, (b) modelingoagh for meet the corresponding DC at any time. Field measurements
cellular mobile communication systems such as GSM/DCS. indicated that this alternative modeling approach resutise
appropriate in the case of GSM/DCS systems.

s s ) ) In summary, the models developed in Sections VII and
£°(To) and > (1) depend on the particular radio technology;y; provide a simple yet realistic and accurate means to
considered, as observed in the results of Section VIIl. characterize the statistical properties of channel oautpa

The previous modeling approach is motivated by the folaiterns at long and short timescales, and can be combited in
lowing observation. Low time resolution measurement d%‘two-layer modeling approach in order to provide a holistic

vices, such as spectrum analyzers, constitute a reasongigracterization of the spectrum usage patterns obsenved i
choice to determine the length of long inactivity periodseg| wireless systems.

Although the real state of a channel might change between
consecutive channel observations without being detecyed b
the spectrum analyzer, this situation can be considered to X. CONCLUSION

be rather unlikely in most cases as the effective samplingThis work has analyzed the spectrum occupancy patterns
period is not excessively long, and activity periods are ngf various radio technologies in the time domain from the
short enough to go unnoticed between two consecutive changgint of view of the DSA/CR technology. The deficiencies
Observations. The Simultaneous monitoring Of RF Chann%ﬁd |imitations Of previous Works have been overcome by
with both measurement platforms confirmed this Statemeabrforming a Comprehensive' Systematical and rigorouiystu
Therefore, the length of the idle periods reported by the&speyn the set of probability distributions that can be emploted
trum analyzer can be considered as an acceptable estimafigpyrately describe the lengths of busy and idle periodeah r
of the channel inactivity period&™"(Tp). Spectrum analyzer radio communication systems. The study has relied on field
measurements can also be employed to determine whepm@asurements performed with two sophisticated measutemen
primary transmitter is active and therefore the length ef ip|atforms providing various levels of time resolution, wihi
activity periodsF*(Ty), although in this case the length ofguarantees the realism and accuracy of the models. Nurherica
the real busy and idle periods at short timescales cannot es for the models’ parameters, extracted from empirica
determined due to the limited time resolufforHigh time gata, have been provided in order to facilitate the practica
resolution measurements can then be employed to extract gg,%ncation of the models.
real channel occupancy pattern in terms of busy and idleThe optained results indicate that the assumption of expo-
periods when a primary transmitter is active, if€3(Ty) and nentially distributed busy and idle periods is invalid, mieg
F(T1). Based on this discussion, the models derived frofjat the CTMC model widely employed in the literature is
low and high time-resolution measurements can be combingstealistic. In real systems, other distributions are plesé
as mentioned above in order to jointly_ describe the channg| long timescales, a single distribution function (gefiesal
occupancy patterns at long and short timescales. Pareto) has been proven to adequatelly describe the state
The spectrum usage patterns observed for various ragi@lding times for all the considered bands. At short timkesca
technologies indicated that the previous modeling approagowever, the obtained results indicate that the most coemen
distribution depends on the considered radio technology. F
9The employed spectrum analyzer, with the selected confignragweeps  tjme-slotted systems, channel occupancy patterns carbalso
at an approximated rate of 25 ms per megahertz of scanned bahdWwids described from a discrete-time viewpoint where state holdi
means, for instance, that a 200-kHz GSM/DCS channel is agdrégr a
time period of 5 ms (i.e., more than one GSM/DCS frame) and a IMi28- times are expressed as an integer number of time-slots, fol-
DECT channel is averaged for several DECT frames. If a singla &w  |owing a negative binomial distribution. While a probatiitis
time-slots are busy within the frame with a sufficiently highweo level, the approach has been proven to be adequate for most radio

spectrum analyzer will report the carrier frequency as biliywever, the ] ) ) ' :
exact time-slot(s) that are active cannot be determined. technologies, it may not be appropriate in some particular

L), P | LRy FX(T)

"y Py oeay  opay




IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, FINAL MANUSCRIPT, JNUARY 2013

13

cases where the channel occupancy is characterized bystrpa] K. A. Qarage, H. Celebi, A. Gorcin, A. El-Saigh, H. Arslaand M.-
deterministic patterns as it has been observed in this gardy
the DECT system. In such cases, other alternative modeling
approaches taking into account technology-specific featat [20] A. Martian, I. Marcu, and I. Marghescu, “Spectrum ocanpy in an
the physica' and h|gher |ayers may resu't more Convenient_ urban environment:Acognitive radio approach,”HrDc. 6th Advanced
Finally, a two-layer modeling approach combining models ?}1]
long and short timescales has been proposed as a holistiC in Amsterdam using mobile monitoring vehicles,” Rroc. IEEE 71st
means to describe the spectrum occupancy patterns observedVehic. Tech. Conf. (VTC Spring 2010jay 2010, pp. 1-5.

in real radio communication systems.
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