
Copyright (c) 1997 Institute of Electrical and Electronics Engineers. Reprinted, with permission, from 1997 Preceedings of
The IEEE Symposium on FPGAs for Custom Computing Machines..

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE
endorsement of any of Hewlett-Packard Company products or services. Internal or personal use of this material is permitted.
However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective
works for resale or redistribution must be obtained from the IEEE by sending a blank e-mail message to info.pub.permis-
sion@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright law protecting it.



Defect Tolerance on the
Teramac Custom Computer

W. Bruce Culbertson, Rick Amerson, Richard J. Carter, Philip Kuekes, Greg Snider

Hewlett-Packard Laboratories
1501 Page Mill Road, Palo Alto CA 94304

Abstract

Teramac is a large custom computer which works correctly
despite the fact that three quarters of its FPGAs contain
defects. This is accomplished through unprecedented use of
defect tolerance, which substantially reduces Teramac’s
cost and permits it to have an unusually complex intercon-
nection network. Teramac tolerates defective resources, like
gates and wires, that are introduced during the manufac-
ture of its FPGAs and other components, and during
assembly of the system. We have developed methods to pre-
cisely locate defects. User designs are mapped onto the sys-
tem by a completely automated process that avoids the
defects and hides the defect tolerance from the user. Defec-
tive components are not physically removed from the sys-
tem.

1 Introduction

The Teramac custom computer [1] makes unprecedented
use of defect tolerance, which substantially reduces its cost
and enables it to have an interconnection network of unusu-
ally high complexity. Teramac is FPGA-based, designed for
architectural exploration [2], scalable, and capable of run-
ning million-gate user designs at one megahertz.

Defect tolerance is a technique that permits Teramac to per-
form correctly in spite of large numbers of defects intro-
duced during the manufacture of its components and during
assembly of those components into the system. Diagnostic
tests locate defective resources (gates, wires, etc.) in the
completed system and record them in a defect database.
Testing methods have been developed to precisely locate
defective user resources within the FPGAs and other sys-
tem components. Compiling software reads the database
and uses only resources which are not defective when map-

ping user designs onto the system. Defective components
are not physically removed from the system.

Teramac may not produce correct results if new failures
occur while executing user designs. However, following
such failures, it can be returned to reliable operation by
rerunning the diagnostic tests and recompiling the user
designs.

2 Related work

Most previous proposals for defect tolerant machines use a
physical architecture with a very regular and symmetric
structure [3-6]. Typically the structure is a two dimensional
array. Defect tolerance is achieved by introducing one or
more extra rows or columns, plus a routing network which
can be programmed to select the working rows or columns,
leaving those with bad cells unused.

The European Large SIMD Array (ELSA) [6] is an exam-
ple of such a machine. ELSA contains wafer-scale devices
which are 2D arrays of chips. The chips are logically 12
columns by 6 rows of 1-bit processors. Physically, the chips
have seven rows, from which six working rows are selected
by making cuts with a laser.

Another wafer scale device, WASP (WSI Associative
String Processor) [7], also uses a regular architecture. It
makes use of two wafers, one for processing elements and
local connections, and the other for long distance connec-
tions. The wafers are bumped together. The interconnect
wafer includes a partial crossbar to replace a defective pro-
cessing element with a working spare while keeping the
order of all of the bits on a bus logically unchanged.

The defect-tolerance schemes described above modify
defective devices, possibly all different physically, to pro-



duce repaired devices which are all identical logically. This
is fundamentally different from the Teramac scheme, in
which every specific machine is different. In the case of a
reconfigurable machine, the former scheme presents a tar-
get for user designs that is stable across machines. The lack
of a stable design target across Teramac machines is not a
problem because Teramac includes tools to quickly remap
designs. In fact, the same tools created to map many
designs onto a single Teramac also provide the ability to
remap a single design onto many different instances of
Teramac.

Schemes using spare rows or columns are inefficient in the
sense that a single defective cell causes the entire row or
column to become useless. However, swapping whole rows
or columns simplifies the repair network. When Teramac
has a defective resource, it can usually be avoided without
forcing other good resources to be unused. Teramac needs a
rich routing network for mapping user designs and the same
network is rich enough to route around single defects.

In the machines described above, symmetrical architectures
were chosen to simplify repair. Symmetrical architectures
are good targets for memories and systolic arrays but most
other interesting logic designs are not symmetrical and are
difficult to map onto symmetrical targets. Teramac does not
favor user designs of any particular topology.

The possibility of using defect tolerance with FPGAs has
been previously described [8-13] but we are not aware of
systems that have actually been built. One group [9] con-
cludes that the cost of locating defects and recompiling
designs for each FPGA is prohibitive. This is probably true
in the case of a mass-produced product that uses an FPGA
as an ASIC replacement. Teramac has shown that it is not
true in the case of FPGAs used in a custom computer.

One effort [14] has explored the possibility of building a
wafer-scale FPGA. Defects in user resources are avoided
using the same scheme Teramac uses. The difficult problem
of power shorts and defective critical signals is solved using
laser cutting. A test chip has been fabricated.

3 Why use defect tolerance?

When components like integrated circuits are manufac-
tured, many are rejected because a tiny fraction of the
resources they contain are defective. If a system can toler-
ate such defects and use the remaining resources, compo-
nent yield increases and cost drops, in exchange for a
negligible loss of resource capacity. For this reason, defect
tolerance substantially reduces Teramac’s cost. Quantitative
examples of component cost reductions are given later in
this paper.

In addition to reducing cost, defect tolerance is particularly
appropriate for Teramac because of two goals we have for
the system—goals that are unusual among existing custom
computers.

First, we have the objective that Teramac be able run user
designs of arbitrary topology—that it would not be limited,
for example, to systolic designs. Richard Rent [15]
observed that, for typical digital designs, the number of sig-
nals crossing the boundary of a logic design partition was
roughly proportional to the square root of the number of
gates in the partition. So, to accommodate arbitrary user
designs, Teramac includes a hierarchical interconnect net-
work satisfying Rent’s rule at every level. Figure 1 is an
example of such a network.

Crossbar

16

Crossbar

32

161616

64

Crossbar

16

Crossbar

32

161616 16

Crossbar

32

161616 16

Crossbar

32

161616

Partition with 256 gates

Figure 1. The lower levels of a typical hierarchical interconnect network. Networks which satisfy Rent’s rule are suf-
ficient for routing almost all digital designs, regardless of topology. Rent’s rule says that the number of wires connect-
ing a subdesign to the rest of the design is proportional to the square root of the number of gates in the subdesign. In
this example, the number of wires leaving a partition of the network is exactly the square root of the number of gates
in the partition.



Teramac’s interconnect network is implemented in FPGAs,
multichip modules (MCMs), and printed circuit boards
(PCBs). Rent’s rule predicts that we need roughly 38,000
distinct signals running between PCBs in a 16-board Tera-
mac. We are not aware of a practical way to implement that
many inter-board signals with acceptable reliability if no
defects are allowed. A similar problem exists with the
MCMs, which need about 6000 signals. Thus, it is not fea-
sible to build the Teramac interconnect network without
defect tolerance. Using defect tolerance, Teramac operates
successfully with inexpensive ribbon cables connecting its
PCBs, as shown in figure 2. Teramac also successfully uses

MCMs, shown in figure 3, with twice the number of layers
recommended by the MCM manufacturer [16].

Defect tolerance also permits the interconnect components
to be larger and denser. Sizes of the FPGAs, MCMs and
PCBs are shown in table 1. This helps keep the total num-
ber of components and the volume of the complete system
within practical limits.

The second goal that makes defect tolerance appropriate is
the desire to completely automate the process of mapping
user designs onto Teramac. To be fast and have a high like-
lihood of success, automatic routers need abundant routing
resources. So this is another reason, in addition to Rent’s
rule, for Teramac to have a very ample interconnect net-
work.

Also, automatic design mapping provides a natural way to
shield the user from the additional complexity that arises
due to defect tolerance. No manual steps are required for
the mapping software to read the defect database and map
around the defects. Thus, Teramac achieves the benefits of
defect tolerance without inconveniencing users and, in fact,
the majority of Teramac’s users have been unaware of its
use of defect tolerance.

4 The Teramac defect tolerance scheme

Defect tolerance is implemented on Teramac by first detect-
ing and precisely locating the defective resources using
diagnostic tests. Information about the defects is then
stored in a defect database. Finally, when user designs are
mapped onto Teramac, the mapping software reads the
database and maps the design only onto good resources.
This is shown in figure 4.

4.1 Finding defects

Several things complicate the problem of locating the
defects. For example, it is not possible to energize and
sense arbitrary points in an integrated circuit. Conse-

Figure 2. A portion of a Teramac system, showing the
PCBs and ribbon cables that implement a part of Tera-
mac’s hierarchical interconnect network.

Figure 3. The Teramac MCMs measure 6.1 by 7.4
inches and carry over 6000 signals in 39 layers. This
level of complexity would be impractical to manufac-
ture without defect tolerance.

Component Size Complexity

FPGA 16.2mm by 16.2mm 0.8 micron CMOS

MCM 15.57cm by 18.80cm 39 layers

PCB 44.45cm by 73.66cm 14 layers

Table 1. Defect tolerance permitted us to design larger
and denser components. With more gates per compo-
nent, signals cross between fewer components and,
thus, are faster.



quently, resources cannot be tested individually. Instead, we
combine many resources into test circuits that include some
resources that can be probed. A further complication is that
no resources are known to be good at the outset of testing.
Hence, it is not possible to construct test circuits with many
known-good resources and just a single resource-under-
test. Thus, when a test fails, there’s no easy way to distin-
guish the bad resources that cause the failure from the good
resources which are also involved in the same test.

Most of our diagnostic tests combine numerous resources
into signature generators, circuits that produce long, non-

repeating sequences of pseudo-random numbers. On each
clock cycle, a new number is produced as a function of its
predecessor. A correctly operating signature generator, ini-
tialized with a specific value and clocked a given number of
cycles, will compute a unique final number, called a signa-
ture. Any error computed by the circuit will be propagated
to the end of the sequence, resulting in an incorrect signa-
ture. Thus, signature generation is a sensitive test of the
resources constituting the generator. Our signature genera-
tor circuits store the current value of the sequence on each
clock cycle in FPGA registers. The FPGA scan chain per-
mits the registers to be read and written, which in turn
allows the sequence to be initialized and the final signature
to be checked.

If a test fails (i.e. a signature generator circuit computes the
wrong signature), the circuit must contain a defective
resource. Unfortunately, a failing circuit usually also con-
tains many good resources. Since we cannot distinguish the
bad resources from the good in a failing circuit, we build
the defect database entirely from information obtained from
passing tests. For the moment, assume that if a test passes,
then all the resources used by the test must be good.

In order to find all the good resources despite failing test
circuits, we use redundant testing. Specifically, each
resource is tested many times, each time grouped with dif-
ferent other resources. This makes it very likely that a good
resource will eventually be tested in a group composed
entirely of good resources and, hence, will be shown to be
good. When all the redundant tests are complete, resources
that have not been shown to be good are declared to be bad
and are noted in the defect database. Redundant testing is
illustrated in figure 5.

Unfortunately, the scheme just described occasionally fails
to detect a defect. We observe test failures which are unex-
plained: tests that fail but all of whose resources are shown
to be good by other tests. This occurs when there is a
resource which is defective in such a way that it works cor-
rectly in some test circuits but not in others. Figure 6 is an
example of how such a situation can arise when a crossbar
wire is shorted to ground through a significant resistance.
When the wire is configured to be driven directly by a
buffer, the short is too weak to have an effect. However,
when the same wire is driven via several crossbar switches,
which themselves have significant resistance, the short
overpowers the signal. We call such defects weak.

We studied the actual unexplained failures that occurred in
testing some Teramac FPGAs and noticed an obvious pat-
tern. Typically, if there were any unexplained failures, there
would be 50 to 100. The sets of resources used by these
tests would have almost no overlap with one conspicuous
exception: there would be one resource that was common to

Mapping
software

User designs

Teramac
configuration

Diagnostic
software

Defect database

•••

Figure 4. The Teramac defect tolerance scheme. Diag-
nostic software precisely locates the defects in the sys-
tem. Mapping software implements users designs in
such a way that defective resources are not used.

f

p

p

p

p

Test
configuration 1

pppp f

Test
configuration 2

= good resource

= bad resource
p = passing test
f = failing test

Figure 5. Resources are grouped into test circuits and are
declared good after they have participated in a passing
test. Thus, after test configuration 1 is run, all the
resources except those in the fourth row are declared
good; the status of those in row 4 remains unknown. In
configuration 2, the resources are grouped differently
and tested again. After both configurations are run, all
the good resources are identified and, indirectly, the
defect is located.



every unexplained failure. The common resource was a
weak defect.

The pattern suggested a fairly simple way to improve our
defect-finding scheme so it would find weak defects. The
improved scheme, and in fact any successful scheme, relies
on the set of tests being sufficiently rich that every defective
resource will fail at least one test. For example, every cross-
bar wire must be tested in a circuit that drives it via several
crossbar switches. Also, the set of tests must be rich
enough, and the weak defects rare enough, that every weak
defect will be the only defect used in some test.

The improved scheme first performs all the previously
described steps: the tests are run, the resources used by
passing tests are assumed to be good, and the resources
which are used by no passing tests are added to the defect

database. The improved scheme then creates a list of all the
failed tests which are unexplained. The list is searched to
find the resource which is used by the largest number of
unexplained failures. If that resource is used by many tests,
it is declared bad and added to the defect database. The
tests in the list which used that resource are no longer con-
sidered unexplained and are deleted from the list. The
search is repeated until the list is empty or the search fails
to find a resource which is used by many tests. In the later
case, which occurs very infrequently, all the resources used
by the remaining unexplained tests are added to the defect
database. We have found this scheme to be reliable after
several years of use.

Some resources produce logically correct results but are
slow, with the result that user designs using them fail at
their predicted speed. We treat such resources like other
defects, i.e. we don’t use them. Alternatively, it would be
possible to use them if we used their actual delays in our
timing analyzer.

We developed a method for measuring the speed of
resources. We configure part of Teramac as a frequency
counter. We also configure a free-running ring oscillator
that includes the resource we want to measure and is con-
nected to the input of the counter. The ring oscillator also
includes many other elements to reduce its frequency into
the range of our frequency counter. Running this circuit, we
measure the period of the ring oscillator. The precision of
this measurement is excellent since it is determined by the
crystal-controlled system clock that clocks the counter.

Next, we modify the ring oscillator to delete the resource
being measured but, otherwise, change the oscillator as lit-
tle as possible. The period of the new oscillator is measured
by running this circuit. Subtracting the two periods, we
obtain the delay through the deleted resource. In addition to
finding slow resources, we have used this technique to ver-
ify the predicted speed of our FPGAs and to measure pro-
cess variations across the ICs.

4.2 Mapping around defects

The algorithms for mapping user designs onto custom com-
puters are similar to those used for VLSI design. A gate or
wire in the user design is assigned a physical gate or wire in
the target system. The physical resource is then removed
from the pool of resources available for assignment. This
continues until all gates and wires in the user design are
assigned. Adapting this algorithm for defect tolerance is
easy—defective resources are simply removed from the
pool of available resources before assignment begins.

Mapping user designs is difficult and, as a result, mapping
tools are never able to use 100% of the available resources.

crossbar

defect

crossbar

defect

Figure 6. A set of resources is shown in two different
configurations. One crossbar line is defective—it is
shorted to ground through some resistance. In the top
configuration, the defective line is driven directly by a
buffer that overpowers the defect, causing the circuit
to perform correctly. In the bottom configuration, the
defective line is driven via two crossbar switches,
which also have significant resistance. Here, the signal
is weaker than the defect and the circuit fails. We call
defects, like this one, weak if they cause some circuits
to fail but not others.



Consequently, custom computer designers always add an
extra margin of gates and wires beyond the target capacity.
We did not substantially increase the margin to support
defect tolerance on Teramac.

5 Design and construction for defect
tolerance

Defect tolerance had a large impact on the design and con-
struction of Teramac. Many features were added to the
design to minimize the chance that defects would substan-
tially decrease the capacity of a system. Several steps in the
assembly of Teramac systems differ from systems without
defect tolerance.

The Teramac FPGAs, MCMs, and PCBs each contain criti-
cal areas, areas in which a defect would cause a substantial
loss of capacity. To maximize yields of these components, a
considerable effort was made to minimize their critical
areas. The critical areas of components are thoroughly
tested before the components are assembled into systems
and failing components are rejected. The noncritical areas
of components are not comprehensively tested and the test-
ing must detect many noncritical defects for a part to be
rejected.

The FPGAs include state machines for reading and writing
configurations and scan chains. A defect in a state machine
renders the entire chip useless so the state machines are
considered critical. Careful design limited the critical area
of the FPGA to 7%. The critical area of the FPGAs is tested
during wafer testing. The MCMs and PCBs carry many
wires which are part of the interconnect hierarchy. These
wires are not regarded as critical. Other wires carry clock
and control signals to the FPGAs. Defects in these wires
make FPGAs unusable; hence, they are considered critical.
There are also MCM wires which carry signals from
FPGAs to memories; these are also regarded as critical.
MCMs contain 6030 wires, of which 4.6% are critical.
PCBs contain 8198 wires, of which 7.8% are critical.

Although the critical wires are tested before assembly,
some redundancy was nevertheless included in their design.
For example, four copies of each FPGA control signal are
supplied to each MCM, each copy connecting to a quarter
of the chips. If one of these control lines is shorted to
ground during assembly of the MCM, for example, only a
quarter of the FPGAs would become unusable. This would
be unfortunate but not fatal. There is also redundancy in the
memory signals. For example, more than one FPGA can
drive each memory signal.

The FPGAs on an MCM are connected in a cylindrical
mesh network for the purpose of reading and writing con-

figurations and scan chains. This is shown in figure 7. Mes-
sages from a controller board to a specific FPGA are first
routed to an FPGA at the top end of the cylinder. The mes-
sages contain routing headers, with a sequence of “go-
down” and “circle” instructions, to direct them to their des-
tination FPGAs. As a result, there are multiple paths
between each FPGA and the controller board. If one path to
an FPGA is blocked by another FPGA which has failed, an
alternate path can be found.

The noncritical area of the FPGAs is spot-checked during
wafer testing; wafer testers are too limited to permit thor-
ough testing. After considerable trial-and-error, we estab-
lished a criterion for scoring these tests such that chips that
passed had a good likelihood of having high capacity in the
system. Testing was complicated by the fact that wafer
testers normally reject chips and stop testing after the first
test fails, a policy that is incompatible with defect toler-
ance. It was not easy to make our tester implement our sys-
tem of scoring multiple tests.

6 Results

Two Teramac systems have been built, one with 8 boards
and one with a single board. They have received heavy use
and many of the users have been experts in neither defect
tolerance nor custom computers. Teramac has met both its
performance and capacity goals in spite of thousands of

Destination FPGA

Controller

0
1 2

3

= FPGA

Figure 7. The message network for sending data and
configurations between the controller and the FPGAs.
To better tolerate defects, the network is redundant. A
message following the example path would start with a
routing header as follows: “channel 1, down, down, cir-
cle, down, down”.



defects in the systems. Table 2 lists the quantities of various
kinds of defects found in an actual system.

6.1 Cost reduction due to defect tolerance

Defect tolerance significantly reduced the cost of most of
the Teramac components. The FPGAs, MCMs, and inter-
board cables are good examples. The eight-board Teramac
system contains 864 FPGAs. Two hundred and seventeen of
these are free of defects. Thus, defect tolerance increased
the yield (and, hence, decreased the cost) of usable FPGAs
by a factor of four. When first approached, the MCM ven-
dor had no idea how to price an MCM with defective wires.
A contract was finally negotiated in which Hewlett-Packard
paid the standard price for perfect MCMs and, for every
perfect MCM, also received, free of charge, another MCM
with only critical wires guaranteed to be perfect. This, in
effect, cuts the MCM price in half. We verified that all the
free MCMs we received did, in fact, have defects. Thus,
defect tolerance at least doubles the MCM yield. Defect tol-
erance allows us to interconnect PCBs with one of the least
expensive interconnect technologies: ribbon cables and
insulation-displacement connectors.

6.2 Costs and problems due to defect tolerance

In the process of designing and building Teramac, we
encountered some extra costs and problems due to our use
of defect tolerance. Some of these are intrinsic to defect tol-
erant systems while others can be avoided with hindsight.

Ideally, a defect affecting a fraction of the physical area of a
part will cause at most a loss of a similar fraction of the
functional capacity of the part. We experience two kinds
situations in which Teramac loses functional capacity out of
proportion to the defect area. The first kind is caused by

single physical structures that affect many logical struc-
tures. For example, the Plasma configuration memory is
composed of 128-bit words and the programmable gates
have approximately a hundred configuration bits. Unfortu-
nately, there are configuration words that control the pro-
gramming of 32 different gates. As a result, a defective
configuration word, which can be caused by a very small
physical defect, can render 32 gates unusable. This could
have been avoided by dedicating a single configuration
word for the programming of each gate.

Rent’s Rule is the second reason we lost disproportionately
large amounts of functional capacity. Rent’s Rule says that
a partition of N gates will be connected to the rest of the cir-
cuit by a number of wires that is proportional to the square
root of N. The automatic mapping of designs depends on
Rent’s Rule being satisfied. Hence, if some fraction F of
wires in the L’th hierarchy level are defective, then only

((1 - F)2)L

gates may be used in the part of the hierarchy below the
defective wires. For example, if 1% of the wires in the third
hierarchy level are defective, 5.9% of the gates cannot be
used.

The diagnostic tests have costs associated with them. First,
it takes time to write them and they are far more compli-
cated than tests that merely detect defects, rather than
locate them. Second, development of an effective suite of
tests requires experimentation. Early versions of our suite
missed certain types of defects so additional tests had to be
written. Third, it takes time to run the tests. Currently, it
takes a week to run the suite on a single board. There are
obvious ways to make our tests run faster but we have not
had time to implement them. For example, we currently test
one FPGA at a time, although the hardware supports testing
hundreds simultaneously.

Although the critical areas on all the FPGAs are tested dur-
ing wafer test, the critical areas on a few FPGAs neverthe-
less have failed to operate in the MCMs. Increased attention
to static discharge during MCM assembly has improved,
but not eliminated, this problem. To date, we have not
developed a process to replace these chips, which number
about 2% of the total in our eight-board system. Although
disappointing, this failure rate has not prevented Teramac
from attaining its capacity goal.

7 Conclusion

Teramac is a large, working custom computer that has
many users. It makes unprecedented use of defect toler-
ance, which substantially reduces its cost. For example, the
cost of its FPGAs is reduced by a factor of four. Further-

Resource type Number
Number
defective

Percent
defective

Programmable logic cell 221,000 23,000 10.4%

Interchip signal 145,000 13,800 9.5%

Crossbar line 4,880,000 146,000 3.0%

Crossbar buffer 2,420,000 37,000 1.5%

Total 7,670,000 220,000 2.9%

Table 2. Actual defects in the prototype eight-board
Teramac system. Interchip defects can be caused by
defects in chip I/O pads, chip wire bonds, MCM wires,
PCB wires, and/or ribbon cable wires.



more, defect tolerance makes it possible to build a hierar-
chical interconnect network that is dense enough to route
arbitrary user designs. The network uses inexpensive and
readily available ribbon cables and MCM technology that
would have been prohibitively unreliable without defect
tolerance. We have developed new strategies for designing
and building defect-tolerant systems and locating their
defects. We have also developed design mapping software
that automatically maps around defects and shields the user
from the complexity that arises from defect tolerance. The
result is a robust custom computer that runs applications a
hundred times faster than a workstation and is built largely
from components that normally would have been discarded.

References

[1] R. Amerson, R. Carter, B. Culbertson, P. Kuekes, G.
Snider, Teramac—Configurable Custom Computing,
Proceedings of the 1995 IEEE Symposium on
FPGA’s for Custom Computing Machines.

[2] B. Culbertson, R. Amerson, R. Carter, P. Kuekes, G.
Snider, Exploring Architectures for Volume Visual-
ization on the Teramac Custom Computer, Proceed-
ings of the 1996 IEEE Symposium on FPGA’s for
Custom Computing Machines.

[3] J. L. Kelly and P. A. Ivey, Defect Tolerant SRAM
based FPGAs, IEEE International Conference on
Computer Design, 1994, pages 479-482.

[4] R. Libeskind-Hadas and C. L. Liu, Fast Search Algo-
rithms for Reconfiguration Problems, IEEE Interna-
tional Workshop on Defect and Fault Tolerance in
VLSI Systems, 1991, pages 260-273.

[5] W. Che and I. Koren, Fault Spectrum Analysis for
Fast Spare Allocation in Reconfigurable Arrays,
IEEE International Workshop on Defect and Fault
Tolerance in VLSI Systems, 1993, pages 60-69.

[6] A. Boubekeur, J. L. Patry, G. Saucier, M. Slimane-
kadi, and J. Trilhe, Lessons Learnt from Designing a
Wafer Scale 2D Array, IEEE International Workshop
on Defect and Fault Tolerance in VLSI Systems,
1993, pages 137-146.

[7] M. B. A. Hussaini, H. Bolouri, and R. M. Lea, Defect
and Fault Tolerant Interconnection Strategies for
WASP Devices, IEEE Transactions on Components,
Packaging, and Manufacturing Technology - Part B,
Vol. 18, No. 3, August 1995, pages 416-423.

[8] K. T. Johnson et al, General Purpose Systolic Arrays,
IEEE Computer, November 1993, pages 20-31.

[9] Neil J. Howard, Andrew M. Tyrrell, Nigel M. Allin-
son, The Yield Enhancement of Field-Programmable
Gate Arrays, IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, Vol 2, No. 1, March
1994.

[10] Jason L. Kelly, Peter A. Ivey, Defect Tolerant SRAM

based FPGAs, Proceedings of the IEEE International
Conference on Computer Design, 1994, pages 479-
482.

[11] Nobuo Tsuda, Tsutomu Ishikawa, Yukihiro Naka-
mura, Totally Defect-Tolerant Arrays Capable of
Quick Broadcasting, Proceedings of the IEEE Inter-
national Workshop on Defect and Fault Tolerance in
VLSI Systems, November 1995, pages 117-125.

[12] Adit D. Singh, ADTS: An Array Defect-Tolerance
Scheme for Wafer Scale Gate Arrays, Proceedings of
the IEEE International Workshop on Defect and
Fault Tolerance in VLSI Systems, November 1995,
pages 126-133.

[13] S. Goldberg, S. J. Upadhyaya, Utilizing Spares in
Multichip Modules for the Dual Function of Fault
Coverage and Fault Diagnosis, Proceedings of the
IEEE International Workshop on Defect and Fault
Tolerance in VLSI Systems, November 1995, pages
234-242.

[14] G. H. Chapman and B. Dufort, Making Defect Avoid-
ance Nearly Invisible to the User in Wafer Scale
Field Programmable Gate Arrays, IEEE Interna-
tional Symposium on Defect and Fault Tolerance in
VLSI Systems, 1996, pages 11-19.

[15] B. Landman and R. Russo, On a Pin vs. Block Rela-
tionship for Partitions of Logic Graphs, IEEE Trans-
actions on Computers, December 1971, pages 1469-
1479.

[16] R. Amerson, P. Kuekes, The Design of an Extremely
Large MCM-C—A Case Study, The International
Journal of Microcircuits and Electronic Packaging,
Volume 17, Number 4, Fourth Quarter 1994, pages
337-382.


