
ar
X

iv
:1

10
2.

03
77

v1
  [

as
tr

o-
ph

.IM
]  

2 
F

eb
 2

01
1

High Performance Power Spectrum Analysis Using a FPGA Based
Reconfigurable Computing Platform

Yogindra Abhyankar, Sajish C, Yogesh Agarwal
Hardware Technology Development Group

Centre for Development of Advanced Computing
Pune 411 007, India
yogindra@cdac.in

C.R. Subrahmanya, Peeyush Prasad
Department of Astronomy and Astrophysics

Raman Research Institute
Bangalore 560 080, India

crs@rri.res.in

Abstract

Power-spectrum analysis is an important tool providing
critical information about a signal. The range of applica-
tions includes communication-systems to DNA-sequencing.
If there is interference present on a transmitted signal, it
could be due to a natural cause or superimposed forcefully.
In the latter case, its early detection and analysis becomes
important. In such situations having a small observation
window, a quick look at power-spectrum can reveal a great
deal of information, including frequency and source of in-
terference.

In this paper, we present our design of a FPGA
based reconfigurable platform for high performance power-
spectrum analysis. This allows for the real-time data-
acquisition and processing of samples of the incoming sig-
nal in a small time frame. The processing consists of com-
putation of power, its average and peak, over a set of input
values. This platform sustains simultaneous data streams
on each of the four input channels.

1. Introduction

The concept and use of power spectrum of a signal is
fundamental in engineering - in communication systems,
microwave and radars. Recently, it is also being used in
diverse applications such as gene identification. In a typ-
ical transmit-receive system, if the received signal is pure
and as expected, no filtering is required. However, on the
other-hand, any interference overriding the received signal
may require certain analysis in order to know more about
the interference. As the interference tends to pump addi-
tional power in the received waves, the power becomes a
useful criterion for such an analysis. Using the reverse-
engineering techniques, the excess power information with
the incoming signal may help in finding the characteristics

of the interface such as frequency, source etc.
A power spectrum [5] is a representation of the magni-

tude of the various frequency components of a signal. By
looking at the spectrum, one can find how much energy or
power is contained in the frequency components of the sig-
nal. Analysis or evaluation of the power spectrum is one of
the ways of isolating noise.

There are a couple of techniques for generating the
power spectrum. The most common one is by using the
Fourier transform [6]. The other techniques such as the
wavelet transform or the maximum entropy method can also
be used.

Experimentally, power spectrum can be determined in
three ways: (1) Using a spectrum or signal analyzer - a
commercial instrument [2] dedicated for displaying the real
time power spectra (2) Using a microcomputer based add-
on signal analyzer card, or (3) by digitizing experimental
data and performing a Fast Fourier Transform (FFT) on a
desktop machine.

In terms of cost and complexity, the above-mentioned
three options are in the descending order, while considering
the flexibility, they are in the ascending order. Dedicated
analyzers are some times used, however they may not be
cost effective, flexible or competent enough, to extract the
interference related information when the observation win-
dow is short.

In general, the second option provides additional flexi-
bility, especially when the Field Programmable Gate Array
(FPGA) is used.

In this paper we present our design of a very powerful
reconfigurable computing based design for solving com-
plex signal functions and real-time analysis. Although this
works as an add-on card for a workstation, it is extremely
powerful, flexible and relatively cost effective. The power
spectrum analysis uses modules developed by us for multi-
channel data acquisition and several signal processing oper-
ations performed simultaneously on four data channels.

http://arxiv.org/abs/1102.0377v1


The FPGA based solution allows for the real-time ac-
quisition and processing of samples of the incoming signal.
After the data acquisition and analysis, the data is passed to
the host, based on the selected options.

Our card sustains simultaneous data streams on each of
the four channels for complex algorithms.

We begin this paper by briefly discussing the mechanics
behind the power spectrum analysis. Section 3 outlines Re-
configurable Computing and the card used for this work. In
Section 4 and 5, we discuss the scheme used for our imple-
mentation of power spectrum analysis on the FPGA based
reconfigurable hardware and the experimental setup respec-
tively. Finally, we summarize this paper and indicate some
directions for future improvements.

2. Power Spectrum Analysis

It is very difficult to detect noise or interference if present
in the input signal by merely observing the time domain
samples. However, by mapping the signals [8] in frequency
domain, the analysis and detection of such signals becomes
easy. The signal processing technique, in particular the FFT
plays an important role. In 1965, it was practically used by
J.W. Cooley and J.W. Tukey of Bell Labs to filter the noisy
signals. This divide and conquer technique for a set of N
elements reduces the number of complex multiplications to
an order of N *log2 N from N2 otherwise required by the
Discrete Fourier Transform (DFT).

The power spectrum analysis uses FFT to represent the
magnitude of various frequency components of a signal. By
observing the spectrum, one can find how much energy or
power is contained in the different frequency components of
the signal. Analysis of the power spectrum allows isolating
noise and provides information related to its source.

3. Reconfigurable Computing (RC)

RC [7] explores the HW/SW solutions where the un-
derlying hardware is flexible and is modified at runtime
under software control to accelerate an application. Pre-
dominantly, RC uses FPGA, a VLSI chip whose hardware
functionality is user-programmable. Putting FPGAs on a
PC add-on card or motherboard allows FPGAs to serve as
compute-intensive co-processors. It is realized that consid-
erable acceleration may be achieved by targeting algorithms
in these application-specific, dynamically programmable
flexible parts.

Reconfigurable Computing- the paradigm to accelerate
applications using programmable hardware has sufficiently
matured. Now, HPC community is looking towards this
technology to further enhance the power of clusters for su-
percomputing needs.

Figure 1. RC card block diagram

The following subsections summarizes the Reconfig-
urable hardware and the system software used in this ex-
perimentation.

3.1. RC card

It is a FPGA based card [4] that can be plugged to a host
computer via the 64-bit, 66 MHz PCI bus. This card has two
Xilinx FPGAs [3]. Out of these, the larger device, XCV800
is used as a compute engine implementing the application
logic. The other FPGA is a XCV300 device that holds the
PCI controller and logic to control other devices. When
plugged into a PCI slot, the RC card can be assumed to work
as a co-processor to the host. Figure 1 shows the RC card
block diagram. There is an on-board 128MB of SDRAM
and 1MB of ZBT RAM. The SDRAM is useful for storing
input, intermediate and final results. The ZBT is suitable for
applications where caching is required. The card supports
DMA operations.

Input and output data to the card may be supplied from
the host using the PCI interface or it can directly come to
the card using the LVDS interface [1]. LVDS allows a high
speed data transfer in excess of 1 Gbps.

The system software interface for the RC card is imple-
mented over Red Hat Linux operating system. It provides
all the basic functionalities in terms of the data transfer and
card control irrespective of the intended application. The
device driver performs resource management and services
to allocate/free DMA buffers. The system software also
provides basic services to configure, setup/free resources,
send input data, receive output data, initiate computation
etc.

4. Power Spectrum Analyzer on RC

The power spectrum analyzer application has mainly two
components: the one running on the host system and the
other running on the RC card attached to the host. The
host controls the initial setup of the application. The raw
input data is pre-processed by the RC card, and power,
average-power and peak-power values determined. The



Figure 2. Power spectrum analyzer implemented on compute FPGA

host performs post-processing and other operations on the
processed data generated by the RC. This is required to
complete the power spectrum analysis.

As shown in figure 1, the input LVDS data-streams are
handled by the on-board receivers to provide compatible
signals for the compute engine.

The power spectrum computation block that resides
in the XCV800 compute FPGA is shown in figure 2.
It consists of six main components: Input Sampler and
buffers, Multi-channel FFT units, Channel Separator and
Power computation unit, Average and Peak Power Compu-
tational unit, Time-stamping and control, and the XCV800-
XCV300 interface. In the following subsections, we de-
scribe these components of the application.

4.1. Input Sampler and buffers

The spectrum analyzer application requires four LVDS
channels as inputs, each having a 4-bit data width. How-
ever, there are only eight dedicated differential lines forthe
channels. The channels are time-multiplexed in pairs, i.e.
channel-1 and channel-2 goes on four lines, while channel-
3 and channel-4 on the remaining four lines. A clock, serv-
ing as a strobe is provided. The data to the sampler unit,
changes on positive and negative edges of this clock.

The channel-multiplexed input data is passed to the Sam-
pler unit, de-multiplexed and forwarded to channel buffers
as well as to the input-data-buffers. The data from the chan-

nel buffers are input to the FFT block, while the data from
the input-data-buffers are stored in the SDRAM.

The channel buffering is necessary to collect a block of
data before the FFT computation. By using buffer pairs at
each FFT input, the data is read and processed by the FFT
unit in parallel to the input data streamed by the host in
the other buffer. When the FFT core finishes processing
the current input data, the memory banks are swapped and
the data load and computation continues on the alternate
memory bank.

4.2. Multi Channel FFT

This block uses two, 256-point complex-FFT units from
Xilinx CoreGen library, working in parallel on the four in-
put data channels. Instead of using them for complex FFT
computation having real and imaginary inputs, they are used
for processing two real data streams. The units calculate
complex FFT according to the following equation:

X(k) =
1

256 · s

∑
x(n)e

−jnk2π

256 (1)

Where,

x(n) is the input sequence n = 0,1,2,....255;

X(k) is the output sequence k = 0,1,2 ...255;

s is the scaling factor adjusted to 1;



4.3. Channel Separation and power Com-
putation

The channel separation and power computation block
separates the FFT values for the two real channels from the
complex FFT values, and computes power for each channel.

As a result of the complex FFT, real and imaginary val-
ues are obtained in the frequency domain. If the obtained
values are Re[256] and Im[256], the two channels are sepa-
rated using the following set of equations:

CH1 real[N ] = (Re[N ] +Re[256−N ])/(2)

CH2 real[N ] = (Im[N ]− Im[256−N ])/(2)

CH1 imag[N ] = (Im[N ] + Im[256−N ])/(2)

CH2 imag[N ] = (Re[256−N ]−Re[N ])/(2)

Similar equations hold good for channel 3 and 4.
The power values are calculated for each channel as per

the following equation:

CHx pwr[N ] = CHx real[N ]2 + CHx imag[N ]2

Where x represents channel number. The power values
are positive, 32-bit values, stored internally in Block RAMs.

4.4. Average and Peak Power Computation

The computation of the average of the power values and
the peak power values is done in this block. The computed
peak and average values are stored into the SDRAM. Aver-
aging of the results over a small period is done, to enable
the host software to read the results in parallel. The Power
Spectrum values are averaged over a period of 128 Blocks
(1Block = 256 points); along with averaging, the peak val-
ues observed at each frequency point are stored. All the
results obtained are written into the SDRAM. This is called
as one Short Term Accumulation (STA) cycle.

4.5. Time Stamp and Control

Time stamp and control block has two 32-bit counters,
Timestamp and Marker. These counters are used for time
stamping the input data, and operate on a reference clock
and a marker signal provided as input. The Timestamp
counter runs on the reference clock and is reset on every
marker pulse. The Marker-counter increments with every
marker pulse and is reset with a reset given to the XCV800.
These count values are updated at the very instant a first data
comes in a new cycle (1 Cycle = 128 STAs) and is given to
the host.

Figure 3. Experimental setup

4.6. XCV800-XCV300 Interface

The XCV800-XCV300 interface allows communication
between the compute and control engine. There are a set of
control and data lines, a set of registers and a well-defined
protocol that allows communication through the interface.

5. Experimental Setup

The experimental setup is shown in Figure 3, where the
RC card having LVDS input capturing capabilities is at-
tached to a PCI based host. Since the actual input for the
experimental setup is available in the form of RS-422 sig-
nals, a small signal converter board for RS-422 to LVDS is
designed and connected at the RC card input.

As mentioned in section 4, the code running on the host
uses a set of commands to control and initiate the applica-
tion on the RC card. First of all, XCV800, the compute
engine device is configured. After configuration, the device
is given a reset.

The SDRAM on the card is used as two circular buffers,
one for the input data and the other for the result. The size
of each circular buffer is set using the SETUP command.
The starting address for input is kept fixed to the1st lo-
cation of SDRAM; similarly, the end address for results is
kept fixed to the last location of SDRAM. Using the SETUP
command, we set the1st location of the last block address
for the input area and starting block address for the result
area.

Once the address is setup, the START command is is-
sued to start the compute engine. The Status, Timestamp
and Marker count registers are polled to control the appli-
cation. The Status register keeps a track of the SDRAM
address, where the application is currently writing the re-
sults. The Timestamp register indicates the current times-



tamp counter value. The Marker count register indicates the
current marker counter value.

The processing of the data is stopped by issuing a STOP
command. With this, the application neither processes the
data nor writes to the SDRAM until a START command is
issued.

Giving START after a STOP will restart the acquisition
and computation of data, and write results and input-data to
the SDRAM. These data values are written to the SDRAM
from the starting addresses provided by the SETUP com-
mand. The values of timestamp and marker counts, before
the STOP command and after the START command indi-
cates the time interval during which the data was not pro-
cessed.

Computed values of average power and peak power for
all the four channels are stored in the SDRAM. The aver-
ages are stored in the first 256 locations followed by the
peaks in the next 256 locations. The average power is stored
as a 32-bit value. The 32-bit peak power information car-
ries the peak power value and the corresponding block index
where the peak has occurred.

The host software read the results from the SDRAM in
parallel while the application is running. The software syn-
chronizes itself to the application by polling the status reg-
ister and performing a DMA for reading out the results. We
found that when a large DMA is done in parallel with the
application, some part of the input data is over-written. By
experimenting with various DMA sizes, an optimal DMA
size of 4K was obtained that doesn’t cause this data loss.

After reading out the results from the RC card, the host
performs graphical data analysis with numerous power-
frequency plots.

6. Results and Discussions

The hardware modules - Input-sampler-buffer, channel-
separator-power-computation, Average-Peak power-
computation, and Time-Stamping-Control are all written in
VHDL language, simulated using ModelSim 5.8 simulator
and synthesized using Xilinx ISE 5.1 tool. All the designed
modules were optimized and runs at 66 MHz. The 256-
point Complex FFT CoreGen component from Xilinx is
instantiated and used along with other modules. In this
application, a single 256-point complex FFT component
was used to emulate two parallel real FFT blocks. For the
256-point FFT an average of 3 clock cycles are required to
calculate one FFT value. Therefore our design can sustain
input data rates up to 22 MHz per channel.

We have also examined the reconfigurability of this card,
by selectively putting independent bit files for the average
power or peak power in the compute engine as per the user
requirement.

The complete application for Average power imple-
mented on a XCV800 compute FPGA utilizes around 80%
of slices and 92% of block RAM. The application with Peak
power computation utilizes around 83% of slices and 92%
of block RAM.

One can easily port this application on a Xilinx Virtex-
2Pro or Virtex-4 device with a possibility of putting more
than 8 FFT cores and multiple power computation units,
enhancing the performance by many folds. Here, we will
have an added advantage of having inbuilt LVDS signaling.

7. Conclusion

In this paper, we have presented a novel application of
reconfigurable computing for the detection of interference
using power spectrum analysis. It uses in-house developed
modules along with the Xilinx FFT core. The application
can also be reconfigured for computation of average power
or peak power based on the requirement.

Our design sustains simultaneous real-time data streams
on each of the four input channels.

References

[1] Lvds, national semiconductors.
http://www.national.com/appinfo/lvds/.

[2] National instruments, usa.http://www.ni.com.

[3] Xilinx application note, virtex series and xilinx ise 5.1
design environment.http://www.xilinx.com,
2001.

[4] Y. S. Abhyankar, C. Sajish, S. Ghotgalker, Y. Agar-
wal, and P. Kulkarni. Reconfigurable computing system
initiatives at centre for development of advanced com-
puting. In International conference on Reconfigurable
Computing and FPGAs, September 2004.

[5] C. Bingham, M. D. Godfrey, and J. W. Tukey. Modern
techniques of power spectrum estimation.IEEE Trans-
actions on audio and electroacoustics, AU-15(2), June
1967.

[6] E. O. Brigham.The fast fourier transform and it’s ap-
plication. Prentice Hall, 1988.

[7] K. Compton and S. Hauck. Reconfigurable computing:
a survey of systems and software.ACM Computing Sur-
veys, 34(2):171–219, June 2002.

[8] L. R. Rabiner and B. Gold.Theory and Application of
Digital Signal Processing. Prentice Hall, 1975.

http://www.national.com/appinfo/lvds/
http://www.ni.com
http://www.xilinx.com

	1 . Introduction
	2 . Power Spectrum Analysis
	3 . Reconfigurable Computing (RC)
	3.1 . RC card

	4 . Power Spectrum Analyzer on RC
	4.1 . Input Sampler and buffers
	4.2 . Multi Channel FFT
	4.3 . Channel Separation and power Computation
	4.4 . Average and Peak Power Computation
	4.5 . Time Stamp and Control
	4.6 . XCV800-XCV300 Interface 

	5 . Experimental Setup
	6 . Results and Discussions
	7 . Conclusion

