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Abstract— Classical tracking methods are often insufficient 
when dealing with complex scenarios. In order to solve 
tracking errors, innovative techniques based on the use of 
information about the context of the scene have been proposed. 
Context information ranges from precise measures computed 
on the pixels of the object neighborhood to high level 
representations of the entities and the activities of the scene. In 
this work, we focus on the second approach and propose an 
ontology-based extension of a general tracking procedure that 
reasons with abstract context descriptions to improve its 
accuracy. We describe the design of this extension and how 
reasoning is performed, as well as its advantages in 
surveillance scenarios. 

Keywords—object  tracking; context; ontologies; automatic 
reasoning 

I.  INTRODUCTION 
Tracking algorithms, mostly based on quantitative 

estimation methods, usually fail when dealing with complex 
scenarios. Complex scenarios present interactions between 
objects (both static and tracked, e.g. occlusions, unions, or 
separations), changes in the scene appearance (e.g. 
illumination), and modifications of the objects (e.g. 
deformations), which are difficult to manage and frequently 
result in tracking errors [1]: track discontinuity, inconsistent 
track labeling, inconsistent track size, etc. These problems 
are especially challenging in surveillance applications, since 
they require accurate identification of the entities of the 
scene and precise tracing of their movements.  

Context knowledge has been proposed to be incorporated 
to computer vision systems in order to tackle complex 
scenario issues [2]. Context has been usually considered at a 
low abstraction level, in such a way that the context of an 
object is a numerical measure computed on the values of the 
pixels that are within its surroundings [3, 4]. This 
approximation to context exploitation is primarily 
quantitative, and aims at developing numerical procedures 
that implicitly take into account larger image sections and a 
priori knowledge. 

Fewer approaches however have studied context from a 
more abstract perspective [5]. In the broadest sense, context 
can be considered to encompass all the additional 
information not directly provided by the visual sensors that 
can be used to understand what is happening in the scenario. 
From this point of view, context includes [6]: (i) information 
about the scene environment (structures, static objects, 
illumination and behavioral characteristics, etc.); (ii) 
information about the parameters of the recording (camera, 

image, and location features); (iii) information previously 
computed by the vision system (past detected events); (iv) 
user-requested information (data provided by human users). 
This approximation requires the use of symbolic knowledge 
formalisms, and aims at accomplishing cognitive 
interpretation of the scene as a whole by reasoning with 
explicit representations of perceptual and contextual data. 

In this work, we study the advantages of this second 
approach to the use of context knowledge in object tracking. 
We investigate how to represent general context knowledge 
and how to reason with it to improve tracking processes. 
Context aids to interpret the situation and, in accordance with 
it, it can be applied to complete or rectify the tracking 
results, and attune the tracker. That is, context is used not 
only to recognize the scene, but also to provide feedback to 
the tracking algorithm in the form of suggestions or 
corrections. For instance, with a global description of the 
scene and the entities participating in it, it can be deduced 
that a group of people is moving together and performs a 
common action. Accordingly, the tracking algorithm should 
be recommended not to merge the individual tracks but to 
keep all of them in presence of occlusions and interactions. 

We propose the use of ontologies encoded with the 
Ontology Web Language (OWL) [7] for context 
representation and reasoning. Ontologies are used to build 
abstract descriptions of the scene, in terms of symbolic 
entities. These descriptions are the input of the reasoning 
procedures, which detect or predict tracking errors 
incompatible with the current situation, and alert the tracking 
algorithm. Some advantages of using OWL ontologies are 
that they: (i) separate declarative and procedural knowledge, 
which facilitates decoupling track processing and context 
representation; (ii) support reasoning and deduction of new 
knowledge, since they are based on well-known Description 
Logics; (iii) promote reusability, extensibility, and 
standardization, which facilitates the reutilization of the 
models in diverse domains. 

In this paper we present an ontology-based extension of a 
tracking system (such as the one described in [8]) that, based 
on perceptual and contextual information, supports scene 
recognition and improves tracking. The contextual layer 
receives the (quantitative) results obtained by the general 
tracking layer, processes this information in accordance with 
the context knowledge, and provides as an output a set of 
recommended actions to be performed by the tracking 
procedure. We describe the structure and the composition of 
the proposed model and how it proceeds to generate tracking 
recommendations. We illustrate the advantages of our 
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approach with an example of the use of the extended 
tracking system in surveillance. By creating appropriate 
domain-specific knowledge bases, the system architecture 
can be applied in other applications.  

The remainder of the paper is organized as follows. In 
Sect. 2, we overview some related work pertaining to the use 
of context knowledge in computer vision and surveillance. In 
Sect. 3, we describe the architecture of the extended system. 
In Sect. 4, we introduce the ontologies that compose the 
context model and explain the transformation from 
quantitative to qualitative knowledge. We assume the reader 
to be familiar with the use of ontologies for knowledge 
representation. In Sect. 5, we clarify the details of the 
computation of tracking recommendations, paying special 
attention to the interaction between the tracking and the 
context layer. In Sect. 6, we exemplify the functioning of the 
system with a practical case on surveillance. Finally, the 
paper concludes with a brief discussion on the results and 
plans for future research work. 

II. RELATED WORK 
The use of context knowledge to improve the cognitive 

capabilities of vision systems is a widely studied topic in 
computer science. Context has proved to be a crucial factor 
to recognize perceived scenes in different domains, and 
specifically in surveillance applications. In contrast to the 
predominant quantitative approaches, some early works 
proposed the creation of explicit knowledge representations 
to incorporate context information to the process of 
interpreting visual inputs [6, 9]. These works remark that the 
sources of context data are multiple: non-visual sensors, 
human inputs, measures on the environment, parameters of 
the capture, etc. 

Most of the subsequent similar approximations have used 
ad hoc first order logic-based representation mechanisms 
(e.g. [10]) or specific-purpose models of the scene objects 
(e.g. [11]). Recently, ontologies have been acknowledged as 
suitable formalisms for representing context knowledge, 
especially from the data fusion perspective [12]. Ontologies 

promote interoperation between systems and knowledge 
reuse, which is essential in this area.  

The research work in [13] presents an OWL ontology 
enhanced with rules to represent objects and actors in 
surveillance systems. Similarly, in [14] the authors depict a 
system for scene interpretation based on Description Logics 
and supported by the reasoning features of RACER 
(Renamed Abox Concept Expression Reasoner), an inference 
engine for OWL ontologies.  

The scene interpretations (obtained by relying on formal 
context representations) can be used to refine less abstract 
image-processing procedures. Object identification problems 
have been solved by applying contextual information [15]. 
To the best of our knowledge, very few works have explored 
this possibility in tracking. The works in [5, 16] are 
preliminary approaches to the issues tackled in this paper. 

III. SYSTEM ARCHITECTURE 
The structural architecture of the context-based extension 

of the tracking system is depicted in Fig. 1. The schema 
shows the tracking system (the GTL, general tracking layer) 
and, built upon it, the context-based extension (the CL, 
context layer). 

The GTL is a software program that executes the video 
chain to process raw images captured by a camera. The GTL 
usually encompasses various modules, which correspond to 
the successive stages of the tracking process: foreground 
detection, association, initialization / deletion, and trajectory 
generation. The GTL defines its particular programming-
language data structures to represent image and track 
information.  

The CL acts in cooperation with the GTL. The CL 
receives from the GTL tracking information, processes it, 
and provides as a result a set of recommendations or actions 
that should be performed by the GTL. Since the CL uses 
context knowledge to accomplish this objective, it 
additionally has context information as input, and scene 
interpretations as output. The key novelty of our approach is 
that the information in the CL is represented with a formal 

GTL/CL Interface

General Tracking Layer

Context Layer

Image Tracks

Context 
description

Scene 
interpretationCL Model

CL Model Instantiation

Perceptions Recommendations

Figure 1. Structural architecture of the GTL and the CL. 
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knowledge model implemented as set of ontologies. The 
ontologies of the CL provide a terminology (concepts, 
relations, etc.) to describe scenes and context which is 
instantiated (with ontology individuals) in each execution 
with the data of a video sequence.  

Fig. 2 depicts the functional architecture of the CL. On 
the left side, the schema shows the structure of the ontology-
based representation model in various levels, from less 
abstract (track data) to more abstract (activity descriptions). 
Interpretation of acquired data (correspondence and 
recognition) can be seen as a transformation from 
knowledge expressed in a lower level ontology to 
knowledge expressed in a higher level ontology. Tracking 
data provided by the tracking system is transformed into 
ontology instances by accessing an intermediate interface, 
which updates the CL abstract scene model. More details of 
this knowledge representation and the transformations 
between levels are explained in Sect. 4. 

 

 
Figure 2. Functional architecture of the CL. 

The eventual objective of the CL is to provide the GTL 
with appropriate recommendations that, according to the 
current scenario and context, can be used to correct and 
enhance its behavior. The calculation of these suggestions is 

performed in parallel to scene interpretation, since they can 
be obtained at different levels, as depicted on the right side 
of Fig. 2. This procedure is explained in Sect. 5. 

The communication between the GTL and the CL is 
performed by means of an intermediate interface. The 
interface provides methods to access the model and to 
retrieve reasoning results. When tracks are created, 
modified, deleted, etc., the GTL invokes the input methods 
of the interface, and tracking data is transformed to the 
ontological representation. When CL reasoning processes 
are fired, resulting recommendations are placed in the 
actions queue, which is a data structure accessible to the 
tracking system. This interface allows maintaining 
independence between the GTL and the CL. 

IV. ONTOLOGICAL REPRESENTATION AND ABDUCTIVE 
REASONING 

A schema of the ontologies used to represent CL 
knowledge is depicted in Fig. 3. The modularization of the 
ontology has been designed in compliance to the JDL (Joint 
Directors of Laboratories) model for data fusion [17], 
specifically to the L1 (object assessment), L1½ (object 
relations) [18], and L2 (situation assessment) processing 
levels. We have separate ontologies to represent tracking 
data, scene objects, and activities, which are the main 
concepts of the model (marked in grey in the schema): 

• Tracking data (JDL L1). The TREN (TRacking 
ENtities) ontology is a vocabulary to describe data 
from the tracking algorithm: tracks and track 
properties (color, position, velocity), frames, etc. 

• Scene objects (JDL L1½). The SCOB (SCene 
OBjects) ontology is a vocabulary to describe real-
world entities of the scene, properties, and relations: 
moving and static objects, topological relations, etc. 

• Activities (JDL L2). The ACTV (ACTiVities) 
ontology is a vocabulary to describe behaviors: 
grouping, approaching, picking/leaving an object, 
etc. 

We have developed a general version of these ontologies, 
in such a way that they can be specialized in each domain-
specific application (Fig. 3). We provide a skeleton of the 
model that includes general concepts and relations. The 
developer must refine this vocabulary and extend the 
ontologies according with her objectives. For instance, the 
SCOB ontology defines a generic entrance object concept. In 
an indoor surveillance application, a door concept should be 
created by specialization of entrance object. 

Another notable aspect of the ontological model is that 
we are interested in representing the temporal evolution of 
the scene, instead of its state in a given instant. That is, we 
want to keep all the information related to scene objects 
during the complete sequence, which changes between 
frames, and not only the lastly updated values. We have 
applied an ontology design pattern that solves this problem 
by creating an observation concept, which is related to the 
observed concept [19]. For example, in the TREN ontology, 
we have the Track and TrackSnapshot concepts. A Track 
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instance is associated to several TrackSnapshot instances, 
each one of them encoding the values of the properties of a 
track (position, color, velocity, etc.) during some frames in 
which they do not change. 
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 Figure 3. Excerpt of the CL ontology-based model (generic and specific) 

Standard ontology reasoning procedures can be 
performed with the ontological representation of the CL 
knowledge: consistency tests, inclusion check, etc. 
Nevertheless, it does not state how the symbolic 
descriptions are built from the quantitative output of the 
tracking algorithm and the additional information. 
Therefore, it is necessary to incorporate tracking data into 
the ontological model, and to transform less abstract 
information to more abstract knowledge. In other words, 
mechanisms to reason between ontologies, and not only 
within ontologies, are required. The ‘recognition’ and 
‘correspondance’ procedures depicted in Fig. 2 are 
examples of such reasoning tasks.  

This procedure can be regarded as abductive reasoning, 
in contrast to the deductive reasoning performed within each 
ontology. Abductive reasoning takes a set of facts as the 
input and finds a suitable hypothesis that explains them. For 
instance, determining if a track (represented with an instance 
of the L1 ontology TREN) corresponds to a person or to a 
moving object (represented with instances of the L1½  
ontology SCOB) is an example of this type of reasoning. 
Abductive reasoning is out of the scope of classical 

Description Logics [20], but in our case, it can be simulated 
by using customized procedures or, more interestingly, by 
defining transformation rules. Abduction rules can be created 
in a rule language and processed by an ontology-based 
reasoning engine, for instance the previously mentioned 
RACER. In Sect. 6, we show an example of the creation and 
the use of abduction rules. 

V. REASONING FOR TRACKING IMPROVEMENT AND 
INTERACTION WITH THE GTL 

The objective of the CL is not only to interpret activities 
with abductive procedures, but to enhance the results of the 
tracking algorithm. Once we have represented the observed 
scene with the CL ontological model, it is easy to define 
additional reasoning rules that, according to the high-level 
interpretation, detect tracking errors and suggest corrections 
to be considered by the tracking system, which only has a 
quantitative low-level perspective of the scene. 
Consquently, tracking-enhancement rules have a scene 
description in the antecedent and a recommendation 
specification in the consequent. Tracking-enhancement rules 
must be defined in a suitable language and processed by a 
reasoning engine (such as RACER). In Sect. 6, we present 
an example of tracking-enhancement rules. 

The scene description of the antecedent of the tracking-
enhancement rules is an expression built upon the terms 
defined in the ontologies of the CL. Hence, the concepts and 
the relations of the TREN, SCOB, and ACTV ontologies are 
used to create the if part of the rules, plus other specific 
predicates. The antecedent may be constructed at different 
abstraction levels. For example, at track level, a valid scene 
description is that a track is located in a determined position. 
At activity level, a valid scene description is that an object is 
about to leave the scene through a door. Terms at different 
abstraction levels could be even mixed in the same rule. 

The recommended actions that participate in the 
consequent of the tracking-enhancement rules have been 
also defined with an ontology. The RECO 
(RECOmmendations) ontology is a vocabulary to describe 
suggestions to be the GTL. Recommendations are described 
at track level, i.e. they abstractly specify the action to be 
performed and the tracks that are implicated in this action. 
For example, a recommendation that suggests not creating a 
new track will be asserted to involve a track, and this track 
will be associated with property values. Instances of the 
RECO ontology are created as a result of CL calculations. 
The abstract RECO recommendations must be eventually 
converted to instructions that the GTL can execute. 

An important element of the system architecture is the 
actions queue, which has been implemented to guarantee 
interoperability between the GTL and the CL. When one of 
the tracking-enhancement rules is fired, a recommendation is 
placed in the pending queue. Recommendations are marked 
with a time stamp and translated to concrete GTL actions by 
the interface. The incorporation of the actions queue is very 
convenient, since it decouples CL reasoning and GTL 
processing. The image-processing procedure does not need 
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to be substantially changed, since commun
out by the interface methods, which make it
developer may even deactivate the context p
by changing a configuration option. The enc
recommendations queue also facilitates the
conditional access mechanisms, e.g. priority
CL results, and asynchrony between the GTL

VI. EXAMPLE: CL IN SURVEILL
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middle of the image) into an office room
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3. person1 values match AR2, which fires and creates 
act, a new instance of Entering that has associated 
person1 and door1. 

4. act values match TR1, which fires and creates rec, a 
new instance of NewTrackRecommendation that has 
associated t, the track related to person1. 
 

 
Figure 5. New moving entity is detected. 

As the final result of the first call to the interface, a new 
recommendation is created and inserted in the queue. The 
GTL will subsequently consult the queue by using a suitable 
interface method in order to fetch pending recommendations 
and to act in consequence. 

VII. CONCLUSIONS AND FUTURE WORK 
In this paper, we have presented an extension of a 

tracking system that uses ontologies to represent and reason 
with context knowledge in order to avoid issues arisen in 
complex scenarios. Ontologies are applied to build a 
knowledge model that supports recognition of scenes and 
tracking improvement. The architecture is extensible to 
other application, which will require the development of 
suitable representation models. To reduce this effort, we 
have provided a set of reference ontologies to be extended 
in each case. The model is readable, which additionally 
facilitates the incorporation of soft entries to the system. 
Particularly, the approach can be applied to surveillance 
applications. 

We plan to continue this research work by fully 
integrating the context layer with the tracking software. This 
will probably require adapting the ontological model and the 
procedures of the CL, which may be too resource-
consuming for computer vision. The implementation will be 
extensively tested with existing datasets to demonstrate 
beyond the presented example that the contextual layer 
effectively reduces tracking errors, and to quantify the 
improvement with respect to other methods. 
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