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Cooperative Control of Mobile Sensor Networks:
Adaptive Gradient Climbing in a

Distributed Environment
Petter Ögren, Member, IEEE, Edward Fiorelli, Member, IEEE, and Naomi Ehrich Leonard, Senior Member, IEEE

Abstract—We present a stable control strategy for groups of
vehicles to move and reconfigure cooperatively in response to
a sensed, distributed environment. Each vehicle in the group
serves as a mobile sensor and the vehicle network as a mobile and
reconfigurable sensor array. Our control strategy decouples, in
part, the cooperative management of the network formation from
the network maneuvers. The underlying coordination framework
uses virtual bodies and artificial potentials. We focus on gradient
climbing missions in which the mobile sensor network seeks out
local maxima or minima in the environmental field. The network
can adapt its configuration in response to the sensed environment
in order to optimize its gradient climb.

Index Terms—Adaptive systems, cooperative control, gradient
methods, mobile robots, multiagent systems, sensor networks.

I. INTRODUCTION

I N THIS PAPER, we present a method and proof for stably
coordinating a group of vehicles to cooperatively perform

a mission that is driven by the sensed environment. Each ve-
hicle carries only a single sensor, and yet, with cooperation, the
vehicle group performs as a mobile and reconfigurable sensor
network adapting its behavior in response to the measured en-
vironment.

Technological advances in communication systems and the
growing ease in making small, low-power and inexpensive
mobile systems now make it feasible to deploy a group of
networked vehicles in a number of environments. Furthermore,
network solutions offer potential advantages in performance,
robustness, and versatility for sensor-driven tasks such as search,
survey, exploration, and mapping.

A cooperative mobile sensor network is expected to outper-
form a single large vehicle with multiple sensors or a collection
of independent vehicles when the objective is to climb the gra-
dient of an environmental field [2]. The single, heavily equipped
vehicle may require considerable power to operate its sensor
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payload, it lacks robustness to vehicle failure and it cannot adapt
the configuration or resolution of the sensor array. An indepen-
dent vehicle with a single sensor may need to perform costly
maneuvers to effectively climb a gradient (see algorithms in [5]
and [12]), for instance, wandering significantly to collect rich
enough data much like the “run and tumble” behavior of flagel-
lated bacteria [3].

A cooperative network of vehicles, each vehicle equipped
with a single sensor, has the potential to perform efficiently,
much like animal aggregations. Fish schools, for example,
efficiently climb nutrient gradients to find the densest source of
food. They do so using relatively simple rules at the individual
level with each fish responding only to signals in a small neigh-
borhood. Biologists have developed a number of models for the
traffic rules that govern fish schools and other animal groups
(see, for example, [11], [23], [25], [26], and the references
therein), and these provide motivation for control synthesis. In
[27], for example, flocks were simulated on the computer using
rules motivated from biology.

We aim for the cooperative network to behave as an intelli-
gent interacting array of sensors and in this regard the biology
provides inspiration. We do not try, however, to perfectly mimic
the biology since there may be very different constraints asso-
ciated to the vehicle group as compared to an animal group. For
instance, in principle we can freely adapt intervehicle spacing,
whereas fish maintain a certain average spacing for needs that
include reproduction and waste management.

A motivating application for this effort is the Autonomous
Ocean Sampling Network II (AOSN-II) project [7] and the ex-
periment in Monterey Bay, CA, August 2003 [15]. The long-
term goal of AOSN-II is the development of a sustainable and
portable, adaptive, coupled observation/modeling system. “The
system will adapt deployment of mobile sensors to improve per-
formance and optimize detection and measurement of fields and
features of particular interest” [1]. In the experiment of August
2003, the theory developed in this paper was used to coordinate
a group of underwater gliders in the presence of strong currents
and significant communication delays [9]. Gradients in temper-
ature fields (among others) were estimated from the glider data;
these are of interest for enabling gradient climbing to locate and
track features such as fronts and eddies.

Our approach to cooperative control deliberately aims to
decouple, in part, the central problems of formation maintenance
and maneuver management. This eases the design and analysis
of the potentially complex, network behavior. At the lowest level,
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each individual in the group uses control forces that derive from
inter-vehicle potentials similar to those used to model natural
swarms [10], [20]. These provide group cohesion and help
prevent collisions. The framework is based on that presented
in [16]. This framework leads to distributed control designs
in which each vehicle responds to its local environment. No
ordering of vehicles is necessary and this provides robustness
to vehicle failures or other changes in the number of operating
vehicles.

To accomplish the decoupling of the formation stabilization
problem from the overall performance of the network mission,
we introduce to the group a virtual body. The virtual body is a
collection of linked, moving reference points. The vehicle group
moves (and reconfigures) with the virtual body by means of
forces that derive from artificial potentials between the vehicles
and the reference points on the virtual body. The virtual body
can translate and rotate in three-dimensional space, expand and
contract. The dynamics of the virtual body are designed in two
steps. In one step, extending [21], we regulate the speed of the
virtual body using a feedback formation error function to en-
sure stability and convergence properties of the formation. In
the other step, we prescribe the direction of motion of the virtual
body to accomplish the desired mission, e.g., adaptive gradient
climbing in a distributed environment. The development of [21]
concerns coordination along prespecified trajectories.

The prescription of virtual body dynamics requires some
centralized computation and communication. Each vehicle in
the group communicates its state and field measurements to
a central computer where the updated state of the virtual
body is computed. The configuration of the virtual body is
communicated back to each vehicle for use in its own local
(decentralized) control law. This scenario was most practical in
the AOSN-II experiment because the gliders surfaced regularly
and established two-way communication with the shore station.

For gradient climbing tasks, the gradient of the measured
field is approximated at the virtual body’s position using the
(noisy) data available from all vehicles. Centralized computa-
tion is used. We present a least-squares approximation of the
gradient and study the problem of the optimal formation that
minimizes estimation error. We also design a Kalman filter and
use measurement history to smooth out the estimate.

Our framework makes it possible to preserve symmetry when
there is limited control authority in a dynamic environment. For
example, in the case of underwater gliders in a strong flow field,
the group can be instructed to maintain a uniform distribution
as needed, but be free to spin, and possibly wiggle, with the
currents.

Of equal importance are the consequences of delays, asyn-
chronicity, and other reliability issues in communications. In
[17], for example, stability of chain-like swarms is consid-
ered in the presence of sensing delays and asynchronism. We
assume in this paper that the communication is synchronized
and continuous (the implementation in the Monterey Bay ex-
periment was modified to address these kinds of realities [9]).
We note that centralized computation may become burden-
some for large groups of vehicles, e.g., when addressing the
nonconvex optimization of formations for minimization of es-
timation error.

Artificial potentials were introduced to robotics for obstacle
avoidance and navigation [13], [29]. In the modeling of animal
aggregations, forces that derive from potentials are used to
define local interactions between individuals (see [23] and
the references therein). In recent work along these lines, the
authors of [10] and [20] investigate swarm stability under
various potential function profiles. Artificial potentials have also
recently been exploited to derive control laws for autonomous,
multiagent, robotic systems where convergence proofs to desired
configurations are explicitly provided (see, for example, [19],
[16], [24], and [31]).

Translation, rotation and expansion of a group is treated in
[33] using a similar notion of a virtual rigid body called a virtual
structure which has dynamics dependent on a formation error
function. However, the formation control laws and the dynamics
of the virtual structure differ from those presented here, and an
ordering of vehicles is imposed in [33].

Gradient climbing with a vehicle network is also a topic
of growing interest in the literature (see, for example, [2] and
[10]). In [18], gradient climbing is performed in the context of
distributing vehicle networks about environmental boundaries.
In [6], the authors use Voronoi diagrams and a priori informa-
tion about an environment to design control laws for a vehicle
network to optimize sensor coverage in, e.g., surveillance
applications.

The paper is organized as follows. In Section II, we review the
formation framework of [16] based on artificial potentials and
virtual leaders. Formation motion is introduced in Section III
and the partially decoupled problems of formation stabilization
and mission control are described. The main theorem for forma-
tion stabilization is presented in Section IV. Adaptive gradient
climbing missions are treated in Section V. We provide final re-
marks in Section VI. An earlier version of parts of this paper
appeared in [22].

II. ARTIFICIAL POTENTIALS, VIRTUAL BODIES AND SYMMETRY

In this section, we describe the underlying framework for dis-
tributed formation control based on artificial potentials and a vir-
tual body. The framework follows that presented in [16] (with
some variation in notation). Each vehicle in the group is mod-
eled as a point mass with fully actuated dynamics. Extension to
underactuated systems is possible. In [14], the authors use feed-
back linearization to transform the dynamics of an off-axis point
on a nonholonomic robot into fully actuated double integrator
equations of motion.

Let the position of the th vehicle in a group of vehicles,
with respect to an inertial frame, be given by a vector ,

as shown in Fig. 1. The control force on the th
vehicle is given by . The dynamics are for

.
We introduce a web of reference points called virtual

leaders and define the position of the th virtual leader with re-
spect to the inertial frame to be , for .
Assume that the virtual leaders are linked, i.e., let them form
a virtual body. The position vector from the origin of the iner-
tial frame to the center of mass of the virtual body is denoted

, as shown in Fig. 1. In [16], the virtual leaders move
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Fig. 1. Notation for framework. Solid circles are vehicles and shaded circles
are virtual leaders.

with constant velocity. In this section we specialize to the case
in which all virtual leaders are at rest. Motion of the virtual body
will be introduced in Section III.

Let and . Between
every pair of vehicles and we define an artificial potential

which depends on the distance between the th and th
vehicles. Similarly, between every vehicle and every virtual
leader we define an artificial potential which depends
on the distance between the th vehicle and th virtual leader.

The control law is defined as minus the gradient of the sum
of these potentials plus a linear damping term

(II.1)

where is a positive–definite matrix.
We consider the form of potential that yields a force that is

repelling when a pair of vehicles is too close, i.e., when
, attracting when the vehicles are too far, i.e., when
and zero when the vehicles are very far apart

, where and are constant design parameters. The po-
tential is designed similarly with possibly different design
parameters and (among others), see Fig. 2.

Each vehicle uses exactly the same control law and is influ-
enced only by near neighbor vehicles, i.e., those within a ball of
radius , and nearby virtual leaders, i.e., those within a ball of
radius . The global minimum of the sum of all the artificial
potentials consists of a configuration in which neighboring ve-
hicles are spaced a distance from one another and a distance

from neighboring virtual leaders. In [16], we discuss further
how to define a virtual body for certain vehicle formations. For
example, the hexagonal lattice formation shown in Fig. 3 is an
equilibrium for , and .

The global minimum will exist for appropriate choice of
and , but it will not in general be unique. For the example of
Fig. 3, the lattice is at the global minimum; however, it is not
unique since there is rotational and translational symmetry of
the formation and discrete symmetries (such as permutations
of the vehicles). Translational symmetry of the group results
because the potentials only depend upon relative distance. The

Fig. 2. Representative control forces derived from artificial potentials.

Fig. 3. Hexagonal lattice formation with ten vehicles and one virtual leader.

Fig. 4. Equilibrium solutions for a formation in two dimensions with two
vehicles. (a) With one virtual leader there is S symmetry and a family of
solutions (two are shown). (b) With two virtual leaders the S symmetry can
be broken and the orientation of the group fixed.

rotational symmetry can, if desired, be broken with additional
virtual leaders as shown in Fig. 4.

It is sometimes of interest to have the option of breaking sym-
metry or not. Breaking symmetry by introducing additional vir-
tual leaders can be useful for enforcing an orientation, but it
may mean increased input energy for the individual vehicles.
Under certain circumstances, it may not be feasible to provide
such input energy and instead more practical to settle for a group
shape and spacing without a prescribed group orientation.

We define the state of the vehicle group as
. In [16], local asymptotic stability

of corresponding to the vehicles at rest at the global
minimum of the sum of the artificial potentials is proved with
the Lyapunov function

(II.2)

III. FORMATION MOTION: TRANSLATION, ROTATION,
AND EXPANSION

In this section, we introduce motion of the formation by pre-
scribing motion of the virtual body. This motion can include
translation, rotation, expansion and contraction of the virtual
body and, therefore, the vehicle formation. By parameterizing
the virtual body motion by the scalar variable , we enable a
decoupling of the problem of formation stabilization from the
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problem of formation maneuvering and mission control. In Sec-
tion IV, we prescribe the virtual body speed which de-
pends on a feedback of a formation error (see also [21]), and we
prove convergence properties of the formation. In Section IV, we
prescribe the direction of the virtual body motion, e.g., ,
for gradient climbing in a distributed environment and prove
convergence properties of the virtual body, and thus the vehicle
network, to a maximum or minimum of the environmental field.

A. Translation and Rotation

The stability proof of [16] is invariant with respect to
action on the virtual body. This simply means that the frame-
work described in Section II is independent of the position and
orientation of the virtual body. Given the positions of the vir-
tual leaders, the SE(3) action produces another set of virtual
leader positions

where . This action can be
viewed as fixing the positions of the virtual leaders with respect
to a “virtual body frame” and then moving the virtual body to
any arbitrary configuration in .

We exploit this symmetry by prescribing a trajectory
of the virtual body in , which we parameterize by

such that

with the 3 3 identity matrix. Here,
, is the initial position of the th virtual

leader with respect to a virtual body frame oriented as the
inertial frame but with origin at the virtual body center of mass.

B. Expansion and Contraction

We similarly observe that the framework of Section II is in-
variant to a scaling of all distances between the virtual leaders
and all distance parameters , by a factor

. We define the configuration space of the virtual body to be
and exploit this additional symmetry by introducing

a prescribed trajectory of the virtual body in , again
parameterized by , which now includes expansion/contraction:

such that

(III.3)

with and .

C. Retained Symmetries

As discussed in Section II, it may be desirable to keep cer-
tain symmetries while controlling the formation. In the special
case where the virtual body is a point mass, rotational symmetry
would be preserved while translational symmetries are broken.
More generally, certain symmetries can be kept by allowing the
vehicles to influence the virtual leader dynamics; see [22] for
details.

D. Sensor-Driven Tasks and Mission Trajectories

A third maneuver control option, distinct from prescribed
trajectories and free variables, is to let translation, rotation, ex-
pansion, and contraction evolve with feedback from sensors on
the vehicles to carry out a mission such as gradient climbing.
This results in an augmented state–space for the system given
by . However, it is only the directions and not the
magnitude of the virtual body vector fields that we can influence
since is prescribed to enforce formation stability. To
see this decoupling of the mission control problem from the for-
mation stabilization problem, note that the total vector fields for
the virtual body motion can be expressed as

The prescription of , given in Section IV, controls the speed
of the virtual body in order to guarantee formation stability and
convergence properties. For the mission control problem Sec-
tion V, we design the directions and .

IV. SPEED OF TRAVERSAL AND FORMATION STABILIZATION

We now explore how fast the system can move along a trajec-
tory while remaining inside some user defined subset of the re-
gion of attraction. In Theorem 4.1, we prove that the virtual body
traversing the trajectory from to
with speed prescribed by (IV.4) will guarantee the formation to
converge to the final destination while always remaining inside
the region of attraction, formulated as an upper bound on
the Lyapunov function . Here, we will be interested in
the Lyapunov function , [21], that extends the Lyapunov
function given by (II.2) where and are replaced
with and according to (III.3).

A. Convergence and Boundedness

Theorem 4.1 (Convergence and Boundedness): Let
be a Lyapunov function for every fixed choice of with

. Let be a desired upper bound on the value
of this Lyapunov function such that the set
is bounded. Let be a nominal desired formation speed and
a small positive scalar. Let be a continuous func-
tion with compact support in and .
If the endpoint is not reached, , let be given by

(IV.4)

with initial condition . At the endpoint and beyond,
, set . Then, the system is stable and asymptotically

converges to . Furthermore, if at initial
time , then for all

.
Proof: Boundedness: We directly have
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If we get . If, on the other
hand, , we get

(IV.5)

Now, assume that . This gives

and . Thus

Therefore, if then along trajecto-
ries in both cases. Thus, for all if

.
Asymptotic Stability: Let the extended state of the system

be , and

Since and , the limit
exists. By the boundedness property of , is invariant and
bounded. Thus, on the -limit set exists, is invariant
and . For , we must have

and, therefore, . We will now show that
is the largest invariant set in and, therefore,

.
implies that is a Lyapunov function with re-

spect to (since is fixed). Thus, every trajectory candidate
approaches , where . This implies (by
the choice of in (IV.4)) that (due to the term, un-
less where the trajectory is completed and we let
halt). Therefore, is the only invariant set in .
Thus, and the system is asymptotically
stable.

Simulation of a two-vehicle planar rotation using a virtual
body consisting of two virtual leaders [as shown in Fig. 4(b)]
is presented in [22].

Remark 4.2: A typical choice of is

if

if

Here, guaranteeing asymptotic stability and
giving at . because of the min-operator in
(IV.4). Its support is limited to , thus not affecting
the property.

Remark 4.2: If the Lyapunov function is locally positive
definite and decresent and is locally positive definite, then
one can find a class function such that

In this case, stronger results can be proved, as in [21].

V. GRADIENT CLIMBING IN A DISTRIBUTED ENVIRONMENT

In this section, we present our strategy for enabling the
vehicle group to climb (or descend) the gradient of a noisy,
distributed environment. We assume that the field is unknown
a priori, but can be measured by the vehicles along their paths.
In our framework, the virtual body is directed to climb the
gradient estimated from all the (noisy) measurements. The
vehicles move with the virtual body to climb the gradient.

We compute a least-squares approximation of the gradient of
field using noisy measurements from a single sensor per
vehicle. We also study the optimal formation problem to mini-
mize error in the gradient estimate. In the case of gradient de-
scent, where the gradient is estimated to be , we prescribe

so that the virtual body moves in the direction of steepest de-
scent. (For gradient climbing, we use .) Using this setup
and our least-squares estimate with Kalman filtering, we prove
convergence to a set where the magnitude of the gradient is close
to zero, thus containing all smooth local minima.

Given a computed optimal intervehicle spacing, we can
also adapt the resolution of our group to best sort out the
signal from the noise. For instance, one would expect to want a
tighter formation, for increased measurement resolution, where
the scalar field varies greatly. Given a desired intervehicle
distance , we could let evolve according to

, with a scalar constant and the initial
inter-vehicle equilibrium distance, see Fig. 2. The can be
taken either from the closed-form analysis in Lemma 5.3 or
from a numerical solution of the optimization problem (V.7)
in Lemma 5.2.

We describe an alternate approach to gradient estimation
using the gradient of the average value of the field contained
within a closed region. As shown in [32], this average can
be expressed as a function of the field values along only the
boundary of the closed region. We present a case in which
this approach is equivalent to the least-squares approach; this
elucidates when we can view the least-squares estimate as an
averaging process.

A. Least Squares and Optimal Distances

Fix a coordinate frame to the formation at the center of mass
of the virtual body depicted in Fig. 1, and let the position of the
th vehicle be the vector or , in this frame.

Given is a set of measurements
where is a single, possibly noisy measurement, taken
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by the th vehicle at its current position . We seek to esti-
mate , i.e., the true gradient and value
at of the scalar field . (Note that here
is completely different from the used above to represent the
vehicle group state.) To find the estimate we make an affine
approximation of the field, and then use

. We calculate and using a least-squares for-
mula and call the estimate .

Lemma 5.1 (Least-Squares Estimate): The best, in a
least-squares sense, approximation of a continuously
differentiable scalar field from a set of measurements

at positions is
given by

...
...

It is assumed that the ’s are such that has full rank. Fur-
thermore, the error due to second-order terms and measurement
noise can be written

where

...

...

...

...

is measurement noise and is the Hessian of the field.
Proof: A Taylor expansion around the origin together with

an assumed measurement noise at each point gives the mea-
sured quantity

Ignoring the higher order terms and writing the equations in ma-
trix form we get . Applying the least squares
estimate [30], minimizing , we get

yielding the estimation error

Remark 5.1: Note that if the measurements are to
be useful for estimating , then the distances must
be small enough to make the lower order terms in the Taylor
expansion dominate.

To formulate the optimal formation problem, we move to
a stochastic framework and define the stochastic variables

, and corresponding to the deterministic
(measurement error) and (combined measurement and

higher order terms error). Let , i.e., is
Gaussian with zero mean and variance . Since the second
derivative of the field in general is unknown and hard to estimate
well (from noisy measurements), we replace it with a stochastic
scalar variable times a matrix, , where
and is a very rough estimate of the Hessian . We let

be a function of and .

Lemma 5.2 (Optimal Formation Problem): View the esti-
mate error as a stochastic variable

...

...

...

...

Let , where de-
pends on as in Lemma 5.1. The expected value of the square
error norm is

(V.6)

An optimal formation geometry problem can now be formulated
as

(V.7)

Proof: From Lemma 5.1, we directly have

Further, giving

since and are uncorrelated.
Remark 5.2: One can argue that . This gives a

slightly different expression, but the numerical results are sim-
ilar. can be argued to incorporate uncertain higher order
terms. In this case, is not so much a rough Hessian estimate
as an estimate of which directions have large higher order terms
in general.

Remark 5.3: If the symmetry is broken by the demands on
sensing, i.e., an irregular formation shape is required, then the
control law must break the symmetry as well. For example, an
ordering of vehicles could be imposed and the different values of
the parameters , etc., communicated to the different vehicles.

The aforementioned optimization problem is nonconvex and
therefore numerically nontrivial, i.e., standard algorithms only
achieve local results. Examination of those results, however, re-
veals a clear pattern of regular polyhedra (deformed if )
around the origin with size dependent on and . Results
for the two-dimensional case with three to eight vehicles can be
found in Table I. For larger numbers of vehicles the minimiza-
tion algorithm terminates in local minima different from regular
polyhedra.

In the three-dimensional, four-vehicle, case we get an equilat-
eral tetrahedron. The scaling and deformation effects of
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TABLE I
LOCAL RESULTS FOR N VEHICLES H = I; � = � = 1

and are investigated in closed form for a nonsymmetric spe-
cial case in Lemma 5.3.

To illustrate nonconvexity of problem (V.7) we look at the
local minimum corresponding to an equilateral triangle. Fixing
the positions of two of the vehicles and plotting the objective
function as the position of the third one is varied, we get the
surface of Fig. 5. Note how the error increases when all three
vehicles are aligned.

For a better understanding of dependence, we con-
sider a special case with restricted two-dimensional geometry
and investigate the closed-form gradient approximation error
and optimal distances in detail.

Lemma 5.3 (Optimal Formation: Three-Vehicle Case): In the
two-dimensional case with three vehicles at

and , we get the familiar, finite-difference
approximation estimate

The estimation error variance is furthermore

(V.8)

which is minimized by choosing

(V.9)

Proof: For and

We now have

Looking at the errors, we get

Evaluating according to (V.6)
gives (V.8). Setting the partial derivatives of (V.8) with respect
to and to zero we get (V.9).

Remark 5.4: The expressions for the optimal choice of and
implies the following reasonable rule of thumb for different

numbers of vehicles: when the noise, i.e., , increases then
the distance between vehicles should increase and when the
second derivative, i.e., , increases then should decrease.

B. Kalman Filter

To additionally improve the quality of the gradient estimates,
we use a Kalman filter and thus take the time history of mea-
surements into account. Using the simplest possible model of
the time evolution of the true quantities, , we get an observer
driving the estimation toward the momentary least squares esti-
mate .

Lemma 5.4 (Kalman Filter Estimate): Let the time evolution
of the true gradient and scalar field, , and the
measurements, , be given by the
linear system

where and are white noise vectors, is a
scalar and is given in Lemma 5.1.

Let

so that and . Then, the time
evolution of the optimal estimate is

(V.10)

If, on the other hand, we use the simpler noise model
where is the identity matrix and
. Then, (V.10) simplifies to

(V.11)

Proof: For a general linear system,
, the steady-state Kalman filter [28] is

Letting and we get (V.10). Plugging
into this makes

which is equivalent to (V.11).
Remark 5.5: If the Kalman filter estimate

is driven toward the momentary Least Squares estimate,
. The speed of this motion

is proportional to (since ); faster if
changes fast, i.e., large , and slower if there is a lot of mea-
surement noise, i.e., large .
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Fig. 5. Nonconvexity. The positions of two vehicles, p and p , are fixed in the optimal triangular formation at p � (�0:9;�0:8) and p � (�0:2; 1:2), and
the position of the third vehicle p is varied while evaluating g(p ; p ; p ). Note how having p close to the line through p and p gives a large error due to the
loss of rank of C C . Due to this singularity, log(g) is plotted.

C. Convergence

To investigate how close the formation descending the gra-
dient will get to the true local minimum in the measured field,
we first translate the quantification of the estimation error back
to a deterministic framework and then investigate the size of the
estimation error.

Definition 5.1: Let the function
be implicitly defined by the equation

where is the probability density function [4] for

The integration is in and is the part of the
covariance matrix , i.e.,

Remark 5.6: Note that and that it is monoton-
ically increasing in . It also increases with a scalar resizing of

. should be interpreted as a confidence level in the gradient
estimate. For example, if one sets , then with 99.9%
confidence .

Assumption 1 (Stochastic to Deterministic): In order to
move back to a deterministic framework, we let the upper
bound on the gradient estimation error be given by the

function defined previously in terms of the covariance
matrix and the confidence level . That is, we assume that
has been chosen large enough so that it is reasonable to ignore
the % worst cases when studying the long term
evolution of the dynamics. We proceed under the assumption
that always holds.

Theorem 5.1 (Convergence): Let the formation be given by
a set of vectors . Furthermore, use the field measurements
at these points to calculate an estimate , from
Lemma 5.4. If Assumption 1 holds, is continuously differ-
entiable and bounded below and the direction of motion of the
virtual body is set to , then the virtual
body position will converge to a set

Here, denotes the matrix square root and is an arbitrary
small positive scalar.

Remark 5.7: Since is continuously differentiable, the
set contains all local minima. grows with increased noise
level and increased confidence level . Larger also implies
a larger set but as shown later yields faster convergence to

.
Proof of Theorem: We use the notation ,

where is calculated from . Since
we can use as a Lyapunov

function. This makes
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In Theorem 4.1 it was shown that converges to the user
defined endpoint . Therefore, if we can find such that

(V.12)

outside the region and choose big enough, then the trajec-
tory must converge to . To see this we choose

, where is a lower bound on and .
converging to now implies that converges to , (since

), or enters where the bound is not valid. Converging
to however implies converging to a global minimum, which
by the previous remark must be in . Thus, we need to show
that the bound (V.12) is indeed valid outside .

Letting with the bound ,
we get

Outside of , we get

implying

and we can choose . As argued above this
makes the vehicles converge to .

Remark 5.8: In this, we have assumed the ’s to be constant.
This is, however, not the case in many applications. Depending
on the magnitude of the deviations one can either let them be ac-
counted for by the sensor noise, , or make the matrix time
dependent. The last option requires a nonsteady-state Kalman
filter making the equations a bit longer. The used in Assump-
tion 1 must furthermore be replaced by an upper bound on .

D. Gradient-of-the-Average Approximation

Motivated by the problem of gradient climbing in a noisy
environment, we examine in this subsection an alternative
approach to gradient estimation: we compute the gradient of an
average of the scalar environmental field values (measurements)
over a closed region. This gradient is formulated as an integral
over a continuous set of measurements and is approximated
using the finite set of measurements provided by the vehicle
group. We focus on showing that for a particular choice
of discretization, i.e., numerical quadrature, and for certain
distributions of vehicles over a circle in and a sphere
in , this gradient-of-the-average estimate is equivalent to
the least-squares estimate. The class of vehicle formations for
which this equivalence holds includes the optimal formations
computed in Section V-A.

The average of a scalar field, , inside a disc of radius is
given by

where is the disc of radius centered at .

For a gradient climbing (or descent) problem, we seek the
gradient of with respect to . In view of our disc ex-
ample, we can view as specifying the best direction
to move the center of the disc so as to maximize (minimize) the
average of over . As shown by Uryasev [32], this gradient
can be written as

where is the boundary of .
Suppose we are given only noisy measurements of at

points , i.e., one from each vehicle. We can ap-
proximate the aforementioned integral using numerical quadra-
ture. Consider the case in which the vehicles are uniformly
distributed over the boundary. Using the composite trapezoidal
rule, we obtain

where , i.e., the measurement location
relative to , and . Changing coordinates such
that the origin coincides with

(V.13)

Similarly, to compute the gradient of the average value of
within a ball of radius in , we obtain

(V.14)

for vehicle distributions that permit equal area partitions of
the sphere with each vehicle located at a centroid of a partition,
and where all vehicles do not lie on the same great circle.

Lemma 5.5 (Least Squares Equivalence): Consider vehi-
cles in . Suppose for that the vehicles are
uniformly distributed around a circle of radius . Suppose in
the case that the vehicles are distributed over a sphere
of radius such that the formation partitions the sphere into
equal-area spherical polygons, where each vehicle is located at
a centroid, and all vehicles do not lie on the same great circle.
Denote , the position vector of the th vehicle
relative to the center of the circle or sphere. Each vehicle takes a
noisy measurement . Define where

is the th coordinate of .
Assume that the group geometry satisfies

and

where and

for
for

and is the standard inner product on . Then, the least
squares gradient estimate is equivalent to the gradient-of-the-
average estimate as given in (V.13) and (V.14).

Proof: A proof is only presented for formations in ; the
result in follows analogously.
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In terms of

It follows from the hypotheses on group geometry that
. Furthermore

...

...

Thus, the least squares estimate is given by

which is equivalent to (V.13).
Remark 5.9: For vehicles in , the assumptions on the

group geometry are satisfied for equally spaced vehicles on the
circle. These formations are -sided, regular polyhedra that co-
incide with the optimal formations for .

Remark 5.10: For vehicles in , the group geometry as-
sumptions are not so easily satisfied; indeed, the specifications
may not be achievable for arbitrary . Examples of formations
meeting the assumptions include vehicles placed at the vertices
of one of the five Platonic solids, i.e., tetrahedron , oc-
tahedron , cube , icosahedron , and
dodecahedron . Recall that the tetrahedron was found
to be an optimal formation in Section V-A.

Remark 5.11: When numerically integrating periodic func-
tions, composite trapezoidal quadrature typically outperforms
other methods such as the standard Simpson’s Rule, high-order
Newton–Cotes, and Gaussian quadratures [8]. In our numer-
ical experiments with gradient estimation in quadratic and
Gaussian temperature fields, the trapezoidal rule consistently
outperformed the high-order Newton–Cotes methods by ex-
hibiting smaller gradient estimation error. When equivalency
holds, the averaging method may provide insight into when
the least-squares linear approximation is appropriate for these
kinds of fields.

VI. FINAL REMARKS

We have shown how to control a mobile sensor network to
perform a gradient climbing task in an unknown, noisy, dis-
tributed environment. A key result is the partial decoupling of
the formation stabilization problem from the gradient climbing
mission. An approach to gradient estimation and optimal for-
mation geometry design and adaptation were presented. The
latter allows for the vehicle network as sensor array to adapt its
sensing resolution in order to best respond to the signal in the
presence of noise. A final theorem was proved that guarantees
convergence of the formation to a region containing all local
minima in the environmental field. In [9], we describe applica-
tion of these results to an autonomous ocean sampling glider
network, including formation and gradient climbing examples
and detailed simulations.
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