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ALGORITHMS SEMINAR,1995-1996Bruno Salvy(Editor)AbstractThese seminar notes represent the proceedings of a seminar devoted to the analysis ofalgorithms and related topics. The subjects covered include combinatorics, symbolic com-putation, asymptotic analysis and average-case analysis of algorithms and data structures.
S�EMINAIRE ALGORITHMES,1995-1996AbstractCes notes de s�eminaires repr�esentent les actes, en anglais, d'un s�eminaire consacr�e �al'analyse d'algorithmes et aux domaines connexes. Les th�emes abord�es comprennent : com-binatoire, calcul formel, analyse asymptotique et analyse en moyenne d'algorithmes et destructures de donn�ees.





ALGORITHMS SEMINAR1995{1996Bruno Salvy1(Editor)AbstractThese seminar notes represent the proceedings of a seminar devoted to the analysis ofalgorithms and related topics. The subjects covered include combinatorics, symbolic com-putation, asymptotic analysis and average-case analysis of algorithms and data structures.This is the �fth of our series of seminar proceedings. The previous ones have appeared as INRIAResearch Reports numbers 1779, 2130, 2381 and 2669. The content of these proceedings consistsof English summaries of the talks, usually written by a reporter from the audience2.The primary goal of this seminar is to cover the major methods of the average-case analysis ofalgorithms and data structures. Neighbouring topics of study are combinatorics, symbolic compu-tation and asymptotic analysis.The study of combinatorial objects|their description, their enumeration according to variousparameters, or their random generation|arises naturally in the process of analyzing algorithmsthat often involve classical combinatorial structures like strings, trees, graphs, and permutations.Computer algebra plays an increasingly important rôle in this area. It provides a collection oftools that allows one to attack complex models of combinatorics and the analysis of algorithms viagenerating functions; at the same time, it inspires the quest for developing ever more systematicsolutions and decision procedures for the analysis of well-characterized classes of problems.Asymptotic analysis is an essential ingredient in the interpretation of quantitative results suppliedby the resolution of combinatorial models. Various asymptotic methods are found to be relevantto the analysis of particular algorithms.The thirty-two articles included in this book represent snapshots of current research in theseareas. A tentative organization of their contents is given below.PART I. COMBINATORICSThe enumeration of self-avoiding walks in dimension d is a very old open problem of combina-torics. In [1], a related simpler problem is solved. A class of partitions of integers having nice andsurprising generating functions is studied in [2]. An introduction to symmetric functions, togetherwith work involving q-analogues of the Catalan numbers is given in [3]. Sums of powers of harmonicnumbers divided by powers of the variable are related to special values of Riemann's � function.A uniform approach to the computation of these sums is given in [4]. A logics viewpoint on somecombinatorial objects is taken in [5]. The last summary [6] takes a formal language approach toproblems related with the study of DNA sequences.1This work was supported in part by the Long TermResearch Project Alcom-IT (#20244) of the EuropeanUnion.2The summaries for the past �ve years are available on the web at the URLhttp://www-rocq.inria.fr/algo/seminars. i



[1] Three-Dimensional Convex Polygons. Mireille Bousquet-M�elou[2] Lecture Hall Partitions. Mireille Bousquet-M�elou[3] D�eterminants, nombres de Catalan et fonctions sym�etriques de Macdonald. DominiqueGouyou-Beauchamps[4] Sommes d'Euler. Philippe Flajolet[5] A 0-1 Law for Planar Maps. Kevin Compton[6] Grammaires et s�equences biologiques. Fabrice LefebvrePART II. SYMBOLIC COMPUTATIONThis part starts with a survey [7] of numerous algorithms related to linear recurrences andlinear di�erential equations, mostly in the univariate case. New algorithms for the multivariatecase are described in [8] and [9]. The numerical resolution of systems of polynomials is studiedfrom di�erent viewpoints in [10] and [11]. An algorithm from computational number theory isdeveloped in [12]. The next two summaries study speci�c problems: [13] answers the question ofdescribing the functions satisfying all the di�erential equations satis�ed by a given function; [14]describes polynomials analogous to the Chebyshev polynomials, but much harder to compute. Thispart ends with a short presentation of the computation of Pad�e approximants of various kinds [15].[7] Linear Recurrences, Linear Di�erential Equations and Fast Computation. Bruno Salvy[8] Creative Telescoping and Applications. Fr�ed�eric Chyzak[9] @-Finite Functions. Fr�ed�eric Chyzak[10] Computing the Distance of a Point to an Algebraic Hypersurface and Application to Ex-clusion Methods. Xavier Gourdon[11] M�ethodes matricielles pour la r�esolution de syst�emes alg�ebriques. Ioannis Z. Emiris[12] Le calcul de grandes valeurs de la fonction �(x). Marc Del�eglise[13] Sur un probl�eme de Rubel. John Shackell[14] Les polynômes de Tch�ebychev entiers. Bruno Salvy[15] Algebraic Computation of Matrix-like Pad�e Approximants. George LabahnPART III. ASYMPTOTIC ANALYSISThe asymptotic analysis of a class of staircase polygons is studied in [16]. It involves a non-linear q-equation for the generating function, and asymptotics where the Airy function arises. Therelevance of this and similar problems to statistical mechanics is the topic of [17]. Partitions ofintegers give rise to very subtle asymptotic analyses. A historical survey of the litterature in thatarea is given in [18]; and [19] studies a speci�c problem. Asymptotic techniques from probabilitytheory are used in [20] to study a network that models self-service electrical car pools.[16] The Tricritical Scaling Function of Partially Directed Vesicles. Thomas Prellberg[17] The Statistical Mechanics of Vesicles. Thomas Prellberg[18] Partitions d'entiers et m�ethode de Meinardus. Philippe Dumas[19] Measures of distinctness for partitions and compositions. Hsien-Kuei Hwang[20] �Etude asymptotique et charge critique pour les grands r�eseaux ferm�es �a forme produit viale th�eor�eme de la limite centrale. Jean-Marc LasgouttesPART IV. ANALYSIS OF ALGORITHMS AND DATA STRUCTURESThe Quickselect algorithm uses the partitioning process of Quicksort to �nd the k-th elementamong n without sorting them. Its average-case analysis is described in [21], as well as analyses ofvariants of Quickselect. Next, [22] shows the relevance of basic hypergeometric series to the analysisii



of digital search trees and of an approximate counting algorithm. Tools from probability theory areused in the analysis of bin-packing [23]. In [24], a problem from computational learning theory isattacked with urn models and involves modi�ed Bessel functions. The last four papers [25{28] arerelated to pattern-matching and strings.[21] Analysis of Quickselect. Helmut Prodinger[22] Basic hypergeometric series, digital search trees, approximate counting. Helmut Prodinger[23] Biased Random Walks, Lyapunov Functions, and Stochastic Analysis of Best Fit Bin Pack-ing. Claire Kenyon[24] Un mod�ele d'urnes pour l'apprentissage. Dani�ele Gardy[25] Pattern Matching Image Compression: Theory, Algorithms and Experiments. WojciechSzpankowski[26] Fast Approximate Pattern Matching. Ricardo Baeza-Yates[27] Rotation of Periodic Strings and Short Superstring. Dany Breslauer[28] Recherche de motifs : combinatoire et probabilit�es. Mireille R�egnierPART V. MISCELLANYWorst-case analyses of algorithms give rise to equations with a max operator. An algebraicframework for such equations is surveyed in [29]. Next, [30] gives an introduction to DNA com-puters and the biology involved in them. Applications of the Mellin transform in signal processingare listed in [31]. The last summary [32] is concerned with random boolean formul�.[29] Le semi-anneau (max,+) : une introduction. St�ephane Gaubert[30] Computation with DNA. Alain H�enaut and Didier Contamine[31] Utilisation de la transform�ee de Mellin en traitement de signaux fractals. Jacques L�evy-Vehel[32] �Evolution de la satis�abilit�e et de la di�cult�e de formules bool�eennes al�eatoires. Applica-tions pour la r�esolution. Olivier DuboisAcknowledgements. The lectures summarized here emanate from a seminar attended by a commu-nity of researchers in the analysis of algorithms, from the Algorithms Project at INRIA (the organiz-ers are Philippe Flajolet, Fran�cois Morain and Bruno Salvy) and the greater Paris area|especially�Ecole Polytechnique (Jean-Marc Steyaert), University of Paris Sud at Orsay (Dominique Gouyou-Beauchamps) and litp (Mich�ele Soria).The editor expresses his gratitude to the various persons who actively supported this joint en-terprise, most notably: Philippe Dumas for his careful rereading, Eithne Murray for straighteningout some English texts, and Fr�ed�eric Chyzak, Pierre Nicod�eme and Philippe Dumas for writingmore than their share of summaries. Thanks are also due to the speakers and to the authors ofsummaries. Many of them have come from far away to attend one seminar and kindly accepted towrite the summary.We are also greatly indebted to Virginie Collette for making all the organization work smoothly.The EditorB. Salvyiii
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Three-Dimensional Convex PolygonsMireille Bousquet-M�elouLaBRI, Universit�e Bordeaux 1February 26, 1996[summary by Eithne Murray]AbstractA method to enumerate self-avoiding convex polygons, which in theory will work forall dimensions, is presented. The generating series for polygons of dimensions 2 (alreadyknown) and 3 are given. They are both the quotients of two D-�nite series, and it appearsthat this property might hold for higher dimensions.1. IntroductionA very old open problem is to enumerate self-avoiding walks (self-avoiding polygons) in dimen-sion d. This talk answers a slightly more restricted problem by presenting a method of enumeratingconvex self-avoiding polygons. The 2-dimensional case has already been solved in [3] and [6], butthis method works in higher dimensions, and provides a combinatorial interpretation of the 2-dimensional result.Some basic de�nitions are required. An (oriented) polygon of perimeter 2n is a closed path(s1; s2; : : : ; s2n) of vertices onZd such that si and si+1 are neighbours for 1 � i � 2n and s2n+1 = s1.It is de�ned up to cyclic permutations of its vertices. The rooted polygon (s1; s1; : : : ; s2n) representsall the polygons formed by the cyclic permutations. A self-avoiding polygon is such that si 6= sj for1 � i 6= j � 2n; in other words, it never crosses itself except at the start/end point. A non-emptyself-avoiding polygon is also called a loop. Note that the polygon (s1; s2) is a loop.Polygons are often represented as words over an alphabet. This representation means thepolygons are de�ned up to a translation in Zd, which is a requirement for counting them, andalso gives a convenient method to de�ne additional properties of the polygons. Thus a rootedpolygon of perimeter 2n will often be regarded as a word u = u1u2 � � �u2n on the alphabetA = f1; 2; : : : ; dg [ f�1; �2; : : : ; �dg. Then if (e1; : : : ; ed) is the canonical basis of Zd, and ui = k(resp. �k), then ui is a unitary step from the vertex si to si+1 along ek (resp. �ek). Note that forall k � d, the number of occurrences of k in u, denoted jujk, is equal to the number of occurrencesof �k in u. Conversely, any word u on A that satis�es jujk = juj�k for 1 � k � d is a rooted polygon.For example, the polygon 12�1�2 would be a unit square. More examples can be seen in �gure 1.This representation is used to de�ne dimension, unimodal polygon and convex polygon (see be-low). These concepts are important since the method to count the convex polygons involves de-composing them into their unimodal parts, and counting their loops of each dimension.The dimension of a polygon is the dimension of its convex hull, which is equal to the number ofk such that jujk > 0. For example, the loop (s1; s2), represented by u = k�k, has dimension 1.3



?t t t� ?t ?t tt t tt tt ttt t t t t tttt tt t t t t� t1 1 1 2 2 1 �2 1 �2 �1 �1 �1 �2 �2 �1 2 �1 2(a) (b) (c)2 1 1 2 �1 �2 �2 �1 2 2 1 �2 1 �1 �2 �1Figure 1. (a) staircase (b) unimodal (c) convex polygonsA polygon is unimodal if, for each direction k, the polygon can be written u = vw with jvj�k =jwjk = 0. In other words, all the k's come before all the �k's in its representative word u, and so allthe steps taken in a given direction occur before all the steps taken to return from that direction.A polygon is convex if for each k there is a cyclic permutation of the polygon such that all the k'scome before all the �k's. More intuitively, for each k, and each a 2 R, the intersection of a convexpolygon with the half-space f(a1; : : : ; ad) : ak � ag is connected. Another characteristic is that thelength of the perimeter of a convex polygon is equal to the length of the perimeter of the smallestbounding box of the polygon. A unimodal polygon is a convex polygon that contains the vertex ofminimal coordinates of its smallest bounding box. See �gure 1.2. Enumeration MethodTo count the self-avoiding convex polygons, the idea is to count all convex polygons and thenremove those that are not self-avoiding. Let P represent the number of all convex polygons ofdimension d, and Pk be the number of convex polygons of dimension d with a k-dimensional loopbut no loops of dimension < k. ThenP = P1 + P2 + � � �+ Pd:(1)Polygons will be enumerated by using a generating function based on their perimeters. If P is aset of polygons, then the perimeter generating function for the elements of P isXu2P tjuj=2;where juj stands for the number of letters of u; and the multi-perimeter generating function isXu2P xjuj11 � � �xjujdd :A staircase polygon is a pair of directed paths having the same end-points, so all the steps takenin positive directions (words on f1; : : : ; dg) occur before all the steps taken in negative directions(words on f�1; : : : ; �dg). The multi-perimeter generating function for staircase polygons, where ni isthe number of steps taken in direction ei in Zd, isZd(x1; : : : ; xd) = Xn1;:::;nd n1 + � � �+ ndn1; : : : ; nd !2xn11 � � �xndd4



(see [4]). This series is D-�nite, that is, it satis�es a linear di�erential equation with polynomialcoe�cients [7]. Moreover,Z2(x1; x2) = Xn1;n2 n1 + n2n1; n2 !2xn11 xn2d = 1p1� 2x1 � 2x2 � 2x1x2 + x21 + x22(2)is algebraic. This series has a generalization to Z� where � is a partition [4].Theorem 1. The multi-perimeter generating function of the number of d-dimensional convexpolygons that have no 1-dimensional loops isP � P1 = E �(d� 1)!x1 � � �xd(1� x1)2 � � �(1� xd)2(1� x1 � � � � � xd)d �where if f(x1; : : : ; xd) =Pn1;:::;nd an1;:::;ndxn11 � � �xndd , then the even part of f isE [f(x1; : : : ; xd)] = Xn1;:::;nd a2n1;:::;2ndx2n11 � � �x2ndd :The proof of this theorem uses the inclusion/exclusion principle and a decomposition of theword-representations of the polygons.The following gives the formula which will be applied to count convex loops. The idea is thatfor a convex polygon having loops of dimension d, two cases can occur: either it has only one loop(it itself is a d-dimensional loop), or it can have two loops. There are 2d possible loop structures,and the loops are unimodal. If the polygon is represented by ul1vl2, where the li are loops, thenuv is essentially a staircase polygon, and so counted by Zd. Details are presented in [2].Theorem 2. In dimension d, let Pd and Zd be de�ned as above, and let Ud be the multi-perimetergenerating function for unimodal polygons having only loops of dimension d, and Cd be the gener-ating function for convex polygons having only loops of dimension d. ThenPd = Cd + 2d�1ZdU2d :Since a convex polygon of dimension d which has only loops of dimension d is self-avoiding, Cdcounts the d-dimensional self-avoiding convex polygons. Now Ud can be calculated for all d byrewriting it in terms of Zd using induction. An important element of the proof is that a loop ofa rooted unimodal polygon is unimodal, and hence if a rooted unimodal polygon u0l1u1l2u2 hasloops li in Ii � f1; : : : ; dg, then I1 \ I2 = ;. Thus a unimodal polygon is made up of a sequenceof unimodal loops separated by staircase polygons where the structure of the distribution of theloops can be described by a partition of d. The generating function for unimodal polygons havingloops corresponding to this partition can be expressed in terms of Z�, � the partition of d, and Uk,k � d. Then this result, together with equation (1) and theorem 2 gives a means of calculating thenumber of self-avoiding convex polygons.3. 2-D PolygonsIn dimension d = 2, P � P1 = P2, so combining theorems 1 and 2 givesE �x1x2(1� x1)2(1� x2)2(1� x1 � x2)2 � = C2 + 2Z2U225



Setting � = 1� 2x1 � 2x2 � 2x1x2 + x21 + x22, and solving for C2 using U2 = 2x1x2p� and (2) givesC2 = 2x1x2A�2 � 8x21x22�3=2where A = 1� 3x1 � 3x2 + 3x21 + 3x22 + 5x1x2 � x31 � x32 � x21x2 � x1x22 � x1x2(x1 � x2)2:This was �rst proved by Lin and Chang [6], and is a re�nement of a result by Delest and Viennot [3].Alternate proofs are found in [1] and [5]. This work gives a nice combinatorial interpretation ofeach of the two parts of C2 in terms of convex polygons having no one-dimensional loops, therebysolving an open problem due to Viennot.4. 3-D PolygonsThis time, the situation is more complicated. Given P �P1 = P2+P3, where P �P1 is calculatedusing theorem 1, and P3 = C3 + 4Z3U23 by theorem 2, it remains to �nd a way to count P2, thenumber of polygons in Z3 having 2-dimensional loops but no 1-dimension loops. This can be doneby a case-by-case analysis of the 7 possible loop structures. The result isC3 = A(t) + B(t)Z3where A(t) and B(t) are algebraic in t, and Z3 is D-�nite. A(t) is of degree 16, and B(t) hasdegree 8. (The exact value of C3 would take up a quarter of the page.)5. ConclusionThis method works because the loops of unimodal polygons are non-overlapping. In theory thismethod is extensible to higher dimensions, though of course in practice the calculation of the Pi'sfor i < d would become di�cult. Since for each d the series Zd is D-�nite and the series Ud can bewritten in terms of Zd, is seems reasonable from the formula to believe that the result will continueto be a quotient of two D-�nite series. There may be generalizations to polygons that are convexalong d� 1 directions, and 3-choice polygons.Bibliography[1] Bousquet-M�elou (M.). { Codage des polyominos convexes et �equations pour l'�enum�eration suivant l'aire.Discrete Applied Mathematics, vol. 48, 1994, pp. 21{43.[2] Bousquet-M�elou (Mireille) and Guttmann (Anthony J.). { Enumeration of three-dimensional convexpolygons. { Technical Report n�1132, Laboratoire Bordelais de Recherche en Informatique, Bordeaux,France, July 1996.[3] Delest (M.-P.) and Viennot (G.). { Algebraic languages and polyominoes enumeration. Theoretical Com-puter Science, vol. 34, 1984, pp. 169{206.[4] Guttmann (A. J.) and Prellberg (T.). { Staircase polygons, elliptic integrals, Heun functions and latticeGreen functions. Phys. Rev. E, vol. 47, 1993, pp. R2233{R2236.[5] Kim (D.). { The number of convex polyominoes with given perimeter. Discrete Mathematics, vol. 70,1988, pp. 47{51.[6] Lin (K. Y.) and Chang (S. J.). { Rigorous results for the number of convex polygons on the square andhoneycomb lattices. Journal of Physics Series A: Math. Gen., vol. 21, 1988, pp. 2635{2642.[7] Stanley (R. P.). { Di�erentiably �nite power series. European Journal of Combinatorics, vol. 1, n�2,1980, pp. 175{188. 6



Lecture Hall PartitionsMireille Bousquet-M�elouLaBRI, Unversit�e de Bordeaux 1February 26, 1996[summary by Dominique Gouyou-Beauchamps]AbstractA well-known theorem of Euler [2, Chap. 16] says that the number of partitions of aninteger N into distinct parts is equal to the number of partitions of N into odd parts.The talk gives a �nite version of this theorem that says that the number of \lecture hallpartitions of length n" of N equals the number of partitions of N into small odd parts:1; 3; 5; : : :; 2n� 1. This work is a common work with Kimmo Eriksson [1].1. Lecture hall partitionsLet D be the set of integer partitions with distinct parts. For n � 1, let Ln be the following setof partitions (having possibly some empty parts):Ln = f(�1; : : : ; �n) : 0 � �1=1 � �2=2 � � � � � �n=ng :We call the members of Ln lecture hall partitions of length n, since they describe all possible waysof designing a lecture hall with space for up to n rows of seats placed on integer heights, suchthat at every seat there is a clear view of the speaker without obstruction from the seats in front(Figure 1).Removing the empty parts puts Ln in one-to-one correspondence with the following subset of D:Dn = �(�1; �2; : : : ; �m) :m � n and 0 < �1n �m+ 1 � �2n�m+ 2 � � � � � �mn � :We will prove the following remarkable theorem.Theorem 1 (Lecture Hall Theorem). The generating function for lecture hall partitions oflength n is Ln(q) = X�2Ln qj�j = n�1Yi=0 11� q2i+1 ;where the weight j�j of a partition � = (�1; : : : ; �m) is �1 + � � �+ �m.Equivalently, the generating function for the partitions of Dn is Ln(q). Observe that Dn � Dn+1and D = limn!1Dn, so in the limit this theorem yields the familiar Euler identity [2, Chap. 16]:the generating function for the elements of D is equal to the generating function for the elementsof O, the set of integer partitions with odd parts:X�2D qj�j =Yi�1(1 + qi) =Yi�1 1� q2i1� qi =Yi�0 11� q2i+1 = X�2O qj�j:7



1 2 4 6Figure 1. The design of a lecture hall of four rows corresponding to the lecturehall partition (1,2,4,6).We will prove a re�nement of the Lecture Hall Theorem. We de�ne the even and odd weights j�jeand j�jo of a partition � = (�1; : : : ; �n) byj�je = X0�k�b(n�1)=2c�n�2k and j�jo = X0�k�bn=2c�1�n�2k�1:Of course, j�j = j�je+ j�jo. We will prove the bivariate identityX�2Ln xj�jeyj�jo = n�1Yi=0 11� xi+1yi :This identity is a corollary of Theorem 3 in section 4, taking k = l = 2.We will in fact discuss a generalization to other sets of partitions of the form f(�1; �2; : : : ; �n) :0 � �1=a1 � �2=a2 � � � � � �n=ang where (a1; a2; : : : ; an) is a given non-decreasing sequence ofintegers. We de�ne now Ln and S(a1;a2;:::;an) as:Ln = f(�1; : : : ; �n) : 0 � �1=a1 � �2=a2 � � � � � �n=ang and S(a1;a2;:::;an) = X�2Ln qj�j:Here are surprisingly simple values of S(a1;a2;:::;an):S1;2;5;8 = 1(1� q)(1� q3)(1� q8)(1� q13) ;S1;2;5;8;19 = 1(1� q)(1� q4)(1� q7)(1� q11)(1� q27) ;S1;2;5;8;19;30 = 1(1� q)(1� q3)(1� q8)(1� q13)(1� q31)(1� q49) ;S1;2;7;12;41 = 1(1� q)(1� q5)(1� q9)(1� q31)(1� q53) :2. Reduction of lecture hall partitionsFix a non-decreasing sequence a = (ai)i�1 of positive integers, and �x a positive integer n. Ann-tuple � = (�1; �2; : : : ; �n) 2 Nn is a lecture Hall partition if and only if �i � d�i�1ai=ai�1e for2 � i � n. For 1 � i � n, let �(i) = (0; : : : ; 0ai; ai+1; : : : ; an) 2 Nn. If � belongs to Ln, then thesum �+ �(i) also belongs to Ln.Lemma 1. Let � be a lecture hall partition belonging to Ln. Then � � �(i) belongs to Ln if andonly if �i � d�i�1ai=ai�1e � ai for 1 � i � n. 8



Definition 1. A lecture hall partition of length n is said to be reduced if 0 � �i�d�i�1ai=ai�1e <ai for 1 � i � n. The set of reduced partitions of Ln will be denoted by Rn.Lemma 2. Let � be a lecture hall partition of length n. Then there exists a unique reduced lecturehall partition � and a unique sequence of integers (ki)1�i�n such that � = �+Pni=1 ki�(i).Consequently, the generating function for lecture hall partitions of length n isSn = X�2Ln xj�jeyj�jo = Pn(x; y)Qni=1(1� xj�(i) jeyj�(i)jo)where the polynomial Pn(x; y) =P�2Rn xj�jeyj�jo enumerates reduced lecture hall partitions.3. An involution on RnFor � 2 Rn, let �� = (��1; : : : ; ��n) be the unique n-tuple such that8<:��n�2k = �n�2k for n � 2k � 1��n�2k�1� lan�2k�1an�2k�2��n�2k�2m = jan�2k�1an�2k �n�2kk� �n�2k�1 for n � 2k � 1 � 1:Theorem 2. The correspondence � 7! �� de�nes an involution on the set Rn.We can extend the involution � 7! �� into a bijection f fromRn�[0; an+1] ontoRn+1, by de�ningf (�1; : : : ; �n; i) = ���1; : : : ; ��n; �an+1an ��n� + i� :It is clear that: jf(�; i)jo = j��je = j�je ;jf(�; i)je = i� j�jo +Xk ��an�2k+1an�2k �n�2k� + �an�2k�1an�2k �n�2k�� :4. The (k � l)-sequencesBy a (k� l)-sequence we shall mean a sequence a de�ned by the initial values a1 = 1 and a2 = land the following recurrence relations:(a2n = la2n�1� a2n�2 for n � 2a2n+1 = ka2n � a2n�1 for n � 1where k; l � 2 are two integers. We obtainjf(�; i)jo = j�je ;jf(�; i)je = i� j�jo + (kj�je if n is even,lj�je if n is odd.This implies that the generating functions Pn(x; y) = P�2Rn xj�jeyj�jo for reduced lecture hallpartitions can be computed inductively via the following recurrence relations:P2n+1(x; y) = 1� xa2n+11� x P2n(xky; x�1) and P2n(x; y) = 1� xa2n1� x P2n�1(xly; x�1)with the initial condition P0 = 1. 9



The sequence a� is de�ned by a�0 = 0, a�1 = 1 and the recurrence relations:(a2n = la2n�1� a2n�2 for n � 2a2n+1 = ka2n � a2n�1 for n � 1:Theorem 3. Given a (k; l)-sequence a, the generating functions Sn =P�2Ln xj�jeyj�jo for lecturehall partitions of even and odd length are given by:S2n = 2nYi=1 11� xaiya�i and S2n+1 = 2n+1Yi=1 11� xa�i+1yai�1 :5. Limit theoremsTaking the limit n!1 in Theorem 3 leads to the following results:Theorem 4. For k 2 N and k � 2, the bivariate generating function of partitions (�1; : : : ; �n)such that �i+1�i > k+pk2�42 is: X� xj�jeyj�jo =Yi�1 11� xaiyai�1with a0 = 0, a1 = 1 and ai+1 = kai � ai�1.Theorem 5. For k 2 N and k � 2, the generating function of partitions (�1; : : : ; �n) such that�i+1�i > k+pk2�42 is: X� qj�j =Yi�1 11� qeiwith e1 = 1, e2 = k + 1 and ei+1 = kei � ei�1.Example. k = 2. In that case �i+1 > �i and we obtain the Euler identity [2, Chap. 16]:X�2D qj�j =Yi�0 11� q2i+1 :Example. k = 3. In that case �i+1 > 3+p52 �i and:X�2Ln qj�j = 1(1� q)(1� q4)(1� q11)(1� q29)(1� q76) � � � =Yi�1 1(1� qei) ;with e1 = 1, e2 = 4 and ei+1 = 3ei � ei�1. In fact ei = F2i�3 + F2i�1 where Fi is the ith Fibonnacinumber. 6. Questions(1) Give a characterization of the sequences (a1; : : : ; an) that have a simple expression for thecorresponding generating functions.(2) Find �nite version of other theorems like the Rogers-Ramanujan theorem for instance.Bibliography[1] Bousquet-M�elou (M.) and Eriksson (K.). { Lecture Hall Partitions. { Rapport LaBRI n�1107-96, Labo-ratoire Bordelais de Recherche en Informatique, Universit�e de Bordeaux I, 1996.[2] Euler (L.). { Introductio in analysin in�nitorum. { Marcum-Mich�lem Bousquet, Lausann�, 1748.10



Determinants, Catalan numbers and Macdonald's symmetric functionsDominique Gouyou-BeauchampsLRI, OrsayMarch 25, 1996[summary by Bruno Salvy]AbstractA famous conjecture in the theory of symmetric functions states that the coe�cients ofMacdonald's polynomials in the basis of Schur's symmetric functions are positive. F. Berg-eron, A. M. Garsia and M. Haiman have introduced a linear operator r whose eigenvaluesare related to Macdonald's polynomials. Properties of this operator in a special case are re-lated to combinatorial determinants which can be evaluated by the Gessel-Viennot techniquerelating them to non-intersecting paths.1. Introduction to symmetric functionsThis section and the following one are based on [4].Partitions and symmetric functions are strongly related. A partition is an in�nite decreasingsequence of positive integers � = (�1; �2; : : :), with �nitely many non-zero elements. The indexof the last non-zero element in the partition is called its length and is denoted `(�); the sum ofthe �i's is called the weight of the partition and is denoted j�j. For n � `(�), � is identi�ed withthe n-tuple of its �rst elements. Then if x = (x1; : : : ; xn) is a n-tuple of indeterminates, x� denotesthe monomial x�11 � � �x�nn and S�n denotes a maximal set of distinct permutations of �.A fundamental basis of symmetric functions is constituted by themonomial symmetric functions,indexed by the partitions: for n � `(�),m�(x1; : : : ; xn) = X�2S�n x�(�):Clearly, the set of m�'s, when � runs through all partitions of length at most n is a basis of thesymmetric polynomials in n variables. The set � of symmetric functions is de�ned as the vectorspace generated by the m�'s.Three important sets of symmetric functions, er = m(1r) (elementary), hr =Pj�j=rm� (complete)and pr = m(r) (power sum), have simple generating functions:E(t) =Xr�0 ertr = 1 + tXi xi + t2Xi<j xixj + � � � =Yi>0 (1 + xit);H(t) =Xr�0 hrtr = 1 + tXi xi + t2Xi�j xixj + � � � =Yi>0 11� xit ;P (t) =Xr�0 prtr =Xi xi + tXi x2i + � � � =Xi>0 xi1� xit :11



Each of these three sets of symmetric functions generates � as a ring. In all three cases, de�ningfor a partition � a function f� = f�1f�2 � � � , where f is e, h or p yields a basis of � as a vectorspace, when � runs through the set of partitions.Formul� giving the coordinates of one of these functions in terms of the other families areobtained by extracting the coe�cient of tn in the following straightforward relations between thegenerating functions: E(t)H(�t) = 1; P (t) = H 0(t)H(t) ; P (�t) = E0(t)E(t) :(1)The last two equations yield the classical Newton formul� between power sums and elementarysymmetric functions. Integrating these equation also yieldsH(t) = expXr>0 pr trr =X� p� tj�jz� ; E(t) =X� (�1)j�j�`(�)p� tj�jz� ; with z� =Yi>0 imimi!;where mi is the number of occurrences of the part i in �.Another family of symmetric functions, the Schur functions, is de�ned for n � `(�) bys�(x1; : : : ; xn) = det(x�j+n�ji )1�i;j�ndet(xn�ji )1�i;j�n :The s�'s are indeed polynomials, since the numerator is a polynomial in the xi's which vanisheswhenever xi = xj with i 6= j, and thus is a multiple of the Vandermonde determinant in thedenominator. The s� form another basis of �. They are related to the complete and elementarysymmetric functions by the Jacobi-Trudi identities:s� = det(h�i�i+j)1�i;j�n; s� = det(e�0i�i+j)1�i;j�m;(2)where �0 is the conjugate of �, i.e. the partition whose Ferrers diagram is the re
exion of that of �with respect to the diagonal.Recall that a Young tableau of shape � is a Ferrers diagram of shape � with squares numbered byconsecutive positive integers 1; 2; : : : ; r, the numbers increasing strictly in each column and weaklyalong each row. The weight w(T ) of a tableau T is the r-tuple (m1; : : : ; mr),mi counting the numberof occurrences of i. The tableau is called standard when it contains each number 1; 2; : : : ; j�j exactlyonce, i.e. its weight is (1j�j). The Schur functions are related to tableaux bys� =XT xw(T );summed over all tableaux T of shape �. From this follows that the coordinates K�� of s� in thebasis m� are positive integers counting the number of tableaux of shape � and weight � and thusare positive integers. Macdonald's conjecture is a generalization of this property.All these symmetric functions can also be related by expanding in several ways the doubly in�niteproduct P (x; y) = Q(1� xiyj)�1. Thus one getsYi;j 11� xiyj =X� z�1� p�(x)p�(y) =X� h�(x)m�(y) =X� m�(x)h�(y) =X� s�(x)s�(y):(3)This motivates the de�nition of a scalar product by hh�; m�i = ��� for all partitions �, �, where ���is the Kronecker delta. The relations (3) show that the p�'s form an orthogonal basis, while the s�'sform an orthonormal basis of �. This property characterizes the Schur functions.12



The next step is to consider the Hall-Littlewood symmetric functions with one parameterP�(x1; : : : ; xn; t) = X�2S�n �0@x�Yi<j xi � txjxi � xj 1A:These functions interpolate between the monomial symmetric functions|obtained when t = 1|andthe Schur symmetric functions|obtained when t = 0. They form a Z[t]-basis of �[t]. Therefore,one may consider the polynomials K��(t) de�ned bys�(x) =X� K��(t)P�(x; t):The polynomials K��(t) turn out to have positive coe�cients, and this has been proved by Lascouxand Sch�utzenberger who gave an expression of the formK��(t) =XT tc(T );summed over all tableaux T of shape � and weight �, where c(T ) is a certain combinatorial functionof the tableau (its charge). Several expansions of the product P (x; y; t) = Qi;j (1� txiyj)=(1� xiyj)lead to results very similar to those obtained above and to the de�nition of a scalar product on �[t]with values in Q(t) with respect to which the P�(x; t) are orthogonal. Also hP�; m�i = 0 when � 6� �(the Ferrers diagram of � is not included in that of �), and together with their orthogonality thischaracterizes the P�. The basis which is dual to the Schur functions s�(x) with respect to thisscalar product is denoted S�(x; t), i.e., hS�(x; t); s�(x)i = ���.2. Macdonald's conjectureMacdonald's conjecture concerns the Macdonald symmetric functions, which have two parame-ters. The doubly in�nite product�(x; y; q; t) =Yi;j (txiyj ; q)1(xiyj ; q)1 ; where (a; q)1 = 1Yr=0 (1� aqr);can be expanded as�(x; y; q; t) =X� 1z�(q; t)p�(x)p�(y); with z�(q; t) = z� `(�)Yi=1 1� q�i1� t�i :This motivates the de�nition of a scalar product byhp�; p�iq;t = ���z�(q; t):The Macdonald symmetric functions are de�ned uniquely by two properties: they are orthogonalwith respect to this scalar product and they decompose in the basis of the monomial symmetricfunctions as P�(x; q; t) = m� +X�<� u��m�:When q = t, they reduce to the Schur functions s�, and when q = 0 to the Hall-Littlewoodfunctions P�(x; t).For a partition � and a cell c = (i; j) of its Ferrers diagram, one de�nes the arm of c tobe a(c) = �i � j and its leg to be l(c) = �0j � i. Now we can state Macdonald's conjecture.13



Conjecture 1 (Macdonald). The coe�cients K��(q; t) of the following decomposition arepolynomials with positive coe�cients:~H�(x; t) := c�(q; t)P�(x; q; t) =X� K��(q; t)S�(x; t); where c�(q; t) = Yc2�(1� qa(c)tl(c)+1):(4)These coe�cients possess a lot of structure. For instance, for � = (3; 1), Eq. (4) becomes~H(3;1) = S(4) + (q2 + t+ q)S(3;1)+ (t+ q)qS(2;2)+ (tq + q2 + t)qS(2;1;1) + tq3S(1;1;1;1):Only special cases of Macdonald's conjecture have been proved.3. Combinatorial properties of r when t = 1In order to study the polynomials ~H�, Bergeron, Garsia and Haiman have introduced a linearoperator r which is diagonal in the basis ~H�, with eigenvalues T�(q; t) = qn(�0)tn(�), where n(�) =P (i� 1)�i. The matrix of r in the Schur basis turns out to have a fascinating structure of whichmuch is still only conjectured [2].The aim of [1] is to study this operator in more detail in the special case t = 1. Then thebasis ~H�(x; q) := ~H�(x; q; 1) becomes multiplicative: ~H�(x; q) = ~H(�1)(x; q) ~H(�2)(x; q) � � � and rbecomes multiplicative too. Thus any identity involving symmetric functions gives rise to a similaridentity for its image byr. In particular, from (2) followsr(s�) = det(re�0i+j�i)1�i;j�m. Moreover,still when t = 1, the coordinate r(en)jen of r(en) on en is a q-Catalan number Cn, with generatingfunction C(x) de�ned by C(x) = 1+ xC(x)C(xq). Hence D(�) := r(s�)jen = det(C�0i+j�i)1�i;j�m,and the idea of [1] is to use the Gessel-Viennot technique [3] to evaluate determinants of this typefor various classes of partitions �. Typical results are summarised in the following theorem.Theorem 1.D((kk)) = (�1)(k2)q k(k�1)(4k+1)6 ; D((kk+1)) = (�1)(k+12 )q k(k+1)(4k�1)6 ;D((kk+2)) = (�1)(k+22 )+1q k(k+1)(4k�1)6 +k2 [k + 1]; D((k+ 1)k) = (�1)(k2)q k(k�1)(4k+7)6 [k + 1];D((k+ 2)k) = (�1)(k2)q k(k�1)(4k+13)6 [k + 1][k + 2]([k+ 1] + q[k + 2])[2][3] ;where [k] = 1 + q + q2 + � � �+ qk�1.Another linear operator diagonal in the basis ~H� is also studied in [1]. Similar techniques applyand results of a similar kind are obtained.Bibliography[1] Bergeron (Fran�cois), Bousquet-M�elou (Mireille), and Gouyou-Beauchamps (Dominique). { Preprint,1996.[2] Bergeron (Fran�cois), Garsia (Adriano), and Haiman (Mark). { New identities and conjectures for Mac-donald's ~H�[x; q; t] polynomials. { Preprint, 1995.[3] Gessel (I.) and Viennot (G.). { Binomial determinants, paths and hook length formulae. Advances inMathematics, vol. 58, 1985, pp. 300{321.[4] Macdonald (Ian Grant). { Symmetric functions and Hall polynomials. { Oxford University Press, 1995,2nd edition, Oxford Mathematical Monographs. 14



Euler sumsPhilippe FlajoletINRIA RocquencourtJanuary 29, 1996[summary by Jean-Paul Allouche]In 1742 Goldbach wrote a letter to Euler proposing the study of the sumsSp;q := 1Xn=1� 11p + 12p + � � �+ 1np� 1nq = 1Xn=1 H (p)nnq ;where H (r)n and Hn = H (1)n are the harmonic numbers de�ned byH (r)n := nXj=1 1jr :Euler was able to compute all the sums Sp;q for p+ q � 13, for example1Xn=1�11 + 12 + � � �+ 1n� 1n2 = 2�(3):Then, in 1906, Nielsen gave relations linking the sums Sp;q having the same weight w = p + q.Hence the Sp;q of odd weight are polynomials in the values of zeta, for exampleS2;5 = 1Xn=1 H (2)nn5 = 5�(2)�(5) + 2�(3)�(4)� 10�(7):Many similar identities have then been found or conjectured. Some of them involve multiple zetafunctions; see the papers of Bayley, D. and J. Borwein, De Doelder, Don Zagier, Girgensohn,Ho�man, Markett.The authors [1] propose a simple and unifying method that gives most of the known resultsabout these identities. Furthermore they are able to prove some conjectures. The key idea is touse a contour integral with a well-chosen kernel.1. The idea of the authors: a simple caseLet us denote by I(p; q) the integralI(p; q) = 12i� ZC( (�s) + 
)2 dssq ;where C is a circle whose radius goes to in�nity, and where  is the logarithmic derivative of the� function. Denoting by 
 the Euler constant, we have (z) = ddz log �(z) = �
 � 1z + 1Xn=1� 1n � 1n + z� :15



Hence, when s tends to a positive integer m, then( (�s) + 
)2 =s!m 1(s�m)2 + 2Hm 1s�m + � � � :If s tends to 0, we use the relation  (s) + 
 = �1=s + �(2)s � �(3)s2 + � � � : Hence, by residuecomputation the Euler sum S1;q can be expressed as an explicit quantity which is \homogeneous"of degree 2 in the zeta values.In the general case the authors consider integrals12i� ZC r(s)�(s) ds;where r is a rational function, and � a suitable kernel. They then obtain numerous results: someof them were already known, but some of them were only conjectures.2. A zoo of beautiful identitiesThe authors obtain the following results.Theorem 1 (Euler). Let q be an integer � 2. ThenS1;q = 1Xn=1 Hnnq = �1 + 12q� �(q + 1)� 12 q�2Xk=1 �(k + 1)�(q � k):For example 1Xn=1 Hnn2 = 2�(3); 1Xn=1 Hnn3 = 54�(4); 1Xn=1 Hnn4 = 3�(5)� �(2)�(3):Theorem 2 (Euler, Borwein et al.). If the weight m = p+ q is odd, then1Xn=1 H (p)(n)nq = �(m) "12 � (�1)p2  m� 1p !� (�1)p2  m� 1q !#+ 1� (�1)p2 �(p)�(q)+ (�1)p b p2 cXk=1 m� 2k � 1q � 1 !�(2k)�(m� 2k) + (�1)p b q2 cXk=1 m� 2k � 1p� 1 !�(2k)�(m� 2k);where any occurrence of �(1) has to be replaced by 0.If we then use the symmetry Sp;q + Sq;p = �(p)�(q) + �(p+ q), we obtain5 1Xn=1 H (2)nn6 + 2 1Xn=1 H (3)nn5 = �212 �(8) + 10�(3)�(5)+ 92�(4)2;7 1Xn=1 H (2)nn8 + 2 1Xn=1 H (3)nn7 = �33�(10) + 14�(3)�(7)+ 15�(4)�(6)+ 8�(5)2;7 1Xn=1 H (2)nn8 � 2 1Xn=1 H (4)nn6 = �2295 �(10) + 14�(3)�(7)+ 21�(4)�(6)+ 10�(5)2;9 1Xn=1 H (2)nn10 + 2 1Xn=1 H (3)nn9 = �1432 �(12) + 18�(3)�(9)+ 21�(4)�(8)+ 24�(5)�(7)+ 252 �(6)2;16



8 1Xn=1 H (2)nn10 � 1Xn=1 H (4)nn8 = �5757 �(12) + 16�(3)�(9)+ 24�(4)�(8)+ 28�(5)�(7)+ 29521 �(6)2;7 1Xn=1 H (2)nn10 + 1Xn=1 H (5)nn7 = �73�(12) + 28�(5)�(7)+ 21�(4)�(8)+ 14�(3)�(9)+ 353 �(6)2:Then 1Xn=1 H (2)nn2 = 74�(4); 1Xn=1 H (3)nn3 = 12�(3)2 + 12�(6); 1Xn=1 H (2)nn4 = �(3)2 � 13�(6):Theorem 3 (Borwein et al.). The following relations hold.1Xn=1 (Hn)2nq � S2;q = qS1;q+1 � q(q + 1)6 �(q + 2) + �(2)�(q):For example 1Xn=1 (Hn)2n3 = 72�(5)� �(2)�(3);1Xn=1 (Hn)2n5 = 6�(7)� �(2)�(5)� 52�(3)�(4);1Xn=1 (Hn)2n7 = 556 �(9)� �(2)�(7)� 72�(3)�(6)� 52�(4)�(5) + 13�(3)3;and 1Xn=1 H2nn6 � 1Xn=1 H (2)nn6 = 9112�(8)� 8�(3)�(5)+ �(2)�(3)2;1Xn=1 H2nn8 � 1Xn=1 H (2)nn8 = 47340 �(10)� 10�(3)�(7)� 5�(5)2 + �(4)�(3)2 + 2�(2)�(3)�(5);1Xn=1 (Hn)2n2 = 174 �(4);1Xn=1 (Hn)2n4 = 30724 �(6)� 5�(2)�(4)� 2�(3)2:Theorem 4. If i+ j + k is odd, with i > 1, j > 1, k > 1, then[(�1)k + (�1)i+j]Xn�1H (i)n H (j)nnk + A+ B + C +D + E + F = 0;whereA = (�1)i+j+k�(i)�(j)�(k) + (�1)i+k�(i)Sj;k + (�1)j+k�(j)Si;k;B = �2(�1)k Xq+2r+t=i j + q � 1q ! k + t� 1k � 1 ![(�1)qSj+q;k+t + (�1)j�(j + q)�(k+ t)]�(2r);C = �2(�1)k Xp+2r+t=j  i+ p� 1p ! k + t� 1k � 1 ![(�1)pSi+p;k+t + (�1)i�(i+ p)�(k + t)]�(2r);17



D = �2(�1)k X2r+t=i+j  k + t� 1k � 1 !�(2r)�(k+ t);E = (�1)i+j [�Si;j+k � Sj;i+k � �(j)Si;k� �(i)Sj;k+ �(i+ j + k) + �(i+ k)�(j) + �(j + k)�(i) + �(i)�(j)�(k)];F = Xp+q+r=i+j+k �(2r)�(i)p �(j)q ;and �(i)0 = 1; �(i)1 = �(i)2 = � � � = �(i)i�1 = 0; �(i)i+t = (�1)i�(t) t+ i� 1i� 1 !:The summations are over the indices � 0. One has to replace �(0) by �12 , and �(1) by 0.Corollary 1 (Borwein and Girgensohn). Let c > 1. If the weight a + b + c is even, thetriple zeta function �(a; b; c) =P0<n1<n2<n3 1na1nb2nc3 can be reduced to linear Euler sums.Theorem 5. (i) The cubic expression P1n=1 (Hn)3nq � 3Pn�1 HnH(2)nnq can be expressed in terms ofthe zeta values, for any weight.(ii) For even weights, P1n=1 (Hn)3nq can be computed in terms of S2;q+1 and polynomials in the zetavalues.As a consequence, this gives a proof of conjectures of Bailey, Borwein and Girgensohn:Corollary 2. We have1Xn=1 (Hn)3(n+ 1)2 = 152 �(5) + �(2)�(3)1Xn=1 (Hn)3(n+ 1)3 = �3316�(6) + 2�(3)21Xn=1 (Hn)3(n+ 1)4 = 11916 �(7)� 334 �(3)�(4)+ 2�(2)�(5)1Xn=1 (Hn)3(n+ 1)6 = 19724 �(9)� 334 �(4)�(5)� 378 �(3)�(6) + �(3)3 + 3�(2)�(7):3. Other relations?If the reader wants to discover other relations, including relations on alternating Euler sums,read the details of the proofs, check that he was able to discover tricky integration contours, orknow where some of these relations naturally occur in theoretical computer science, he should readthis very nice paper. He will certainly enjoy it.Bibliography[1] Flajolet (Philippe) and Salvy (Bruno). { Euler Sums and Contour Integral Representations. { ResearchReport n�2917, Institut National de Recherche en Informatique et en Automatique, June 1996.18



A Zero-One Law for MapsKevin ComptonUniversity of Michigan, Ann Arbor, U.S.A.June 10, 1996[summary by Fr�ed�eric Chyzak]AbstractA class of structures has a 0{1 law when any property expressible in a certain logic haslimiting probability 0 or 1 as the size of the structures tends to in�nity. We prove 0{1 lawsfor classes of maps of a given genus. This is a joint work with E. Bender and B. Richmond [1].1. De�nition of the problemLet S be a set of primitive elements called sorts. A vocabulary � consists of a collection ofconstant and relation symbols, together with a mapping from each constant symbol to a sort, anda mapping from each relation symbol to a sequence of sorts, the arity of the relation (see [4] for anintroduction to model theory). A multi-sorted structure A over � then consists of{ a collection of disjoints sets (or universes) As, one for each sort s;{ elements cA 2 As, one for each constant symbol c of sort s;{ relations RA � As1 � � � � � Asp , one for each relation symbol R of arity (s1; : : : ; sp).A class of structures is a set of structures de�ned on the same vocabulary. In the study of randomstructures, one says that a class of �nite structures has a 0{1 law when any property expressiblein a certain logic has limiting probability 0 or 1 as the size of the structures tends to in�nity. Therelational signature of a class of structures over � is the common set of relation symbols in thevocabulary �, together with their arities. A famous theorem by Glebski��, Kogan, Liogon'ki�� andTalanov [9], and proved independently by Fagin [7], states that if C is the class of all structuresfor a given relational signature, then C has a �rst-order 0{1 law. However, deciding the limitingprobability of a given property is a di�cult problem, as formalized by a theorem by Grandjean:when a class C has a 0{1 law, the set of �rst-order sentences of limiting probability 1 is PSPACE-complete.A mapM is an embedding of a connected graph G into a closed surface S such that all connectedcomponents of S n G, the faces of M, are homeomorphic to a disc. Let t = 1 � (v � e + f)=2 bethe genus ofM, with v, e and f its number of vertices, edges and faces respectively. When t is aninteger, the map is called orientable. The size jMj of a map is e. The purpose of this expositionis to provide similar results to the theorems mentioned above for maps, even in the non-orientablecase. Our main result is the following theorem [1].Theorem 1. The class of all maps on surfaces of �xed genus has a 0{1 law. The set of �rst-ordersentences of limiting probability 1 for this class has lower bound complexity of DTIME(exp1(cn)),for some c > 0. 19



(Recall that exp1(n) = 22���2 , with n nested exponentiations.)The 0{1 law theorem for structures cannot be applied to maps, since the latter do not form afull class of structures of a given relational since. Besides, we have to explain how maps can berepresented as structures.2. Representation of maps as structuresAny naive attempt of representing a map M on a surface S by its graph, i.e., by its set ofedges, is bound to fail. Indeed, this representation would not encapsulate any information aboutthe embedding ofM into S: easy examples show that isomorphic graphs need not correspond tohomeomorphic maps, and that the order of edges around a vertex has to be taken into account.However, on a non-orientable surface there is no consistent way to choose an edge order aroundeach vertex.A solution stems from an idea of Edmonds [5], later elaborated by Tutte [10] as a basis for acombinatorial theory of maps: to each edge, one associates a pair of darts, pointing in oppositedirections. On orientable surfaces, a possible representation of maps is then given by an involution �on the set of darts, mapping a dart to its opposite dart, together with a permutation � whose cyclesconsist of all darts out of a vertex, listed clockwise. Then, �� is a permutation whose cycles consistof all darts around a face, listed counter-clockwise. One is thus able to determine the embeddingusing � and �. In the context of possibly non-orientable surfaces, a map is analogously describedas a structure by the sets Uv, Ud and Uf of its vertices, darts and faces, together with incidencerelations I(xv; xd) and J(xf ; xd) of darts with vertices and faces, a co-dart relation C(xd; xd0) anda dart adjacency relation A(xd; xd0 ; xf). The co-dart relation is an analogue for �, while the dartadjacency relation encapsulates the information formerly supplied by �, specifying a face to supplythe orientable information. 3. Ehrenfeucht-Fra��ss�e gamesThe 0{1 law theorem for structures still does not apply to maps: not all structures of signa-ture (I; J; C; A) are maps. We overcome this di�culty in the case of the class of all maps onsurfaces of a �xed genus by determining subclasses of limiting probability 1.The sentences of �rst-order logic under consideration for our 0{1 laws can all be written inthe form S = �1x1 : : : �rxr�(x1; : : : ; xr), where the �i's are quanti�ers, either 8 or 9, the xi's arevariables and � is a boolean expression free from quanti�ers built on the xi's using conjunctionsand disjunctions. The rank of the sentence S is the integer r. Let A and B be two structureswith same relational signature. We write A �m B when both structures satisfy exactly the samesentences of rank m. This de�nes an equivalence relation between structures. The next paragraphdescribes this equivalence relation by a game-theoretic approach.The Ehrenfeucht-Fra��ss�e game is anm-round game between two players called Spoiler and Dupli-cator and played on a pair of structures A and B of same relational signature. In each round, Spoilerpicks any element from either structure and Duplicator responds by picking any element from theother structure. This yields two substructures A0 = fa1; : : : ; amg � A and B0 = fb1; : : : ; bmg � B,with relations induced in a natural way. Duplicator wins if he is able to choose his responses so asto make A0 and B0 isomorphic; if not, Spoiler wins. Duplicator has a winning strategy if and only ifhe is capable of winning for any choices made by Spoiler. A fundamental result used in the sequelis the Ehrenfeucht-Fra��ss�e theorem [6, 8] which states that Duplicator has a winning strategy inthe m-round �rst-order game played on two structures A and B if and only if A �m B.20



Now, the relation �m de�nes a �nite number of (possibly in�nite) equivalence classes on theambient class. It can be proved that one of these classes has limiting probability 1, and this su�cesto prove our theorem. For the sake of clarity, we present the idea of the proof on a simpli�edexample only. 4. A 0{1 law by a 3r�k strategy for a simpli�ed problemFor this example, the class of structures under consideration is the set of square toroidal gridswith a unary relation (we simply tag some vertices). We play r-round Ehrenfeucht-Fra��ss�e gameson pairs of grids. The crucial fact we use is that any �xed square plane grid with vertices taggedat random appears in a toroidal grid with limiting probability 1.It follows that Duplicator has a strategy to win almost surely, i.e., with limiting probability 1.De�ne a distance between two vertices of a grid by the minimum number of edges in a connectingpath. The ball N(c1; : : : ; cp; d) is the set of vertices at distance at most d from any ci. Let Aand B be two structures. Assume we are in round k + 1 and that a1; : : : ; ak have already beenpicked out of A, b1; : : : ; bk out of B in a way such that N(a1; : : : ; ak; 3r�k) and N(b1; : : : ; bk; 3r�k)are isomorphic, when viewed as substructures with naturally induced relations. Now, Spoilerpicks an element out of either structure, say ak+1 out of A|the case bk+1 out of B is symmet-ric. If N(a1; : : : ; ak+1; 3r�k�1) � N(a1; : : : ; ak; 3r�k), then Duplicator can trivially choose bk+1in N(b1; : : : ; bk; 3r�k) so that N(a1; : : : ; ak+1; 3r�k�1) and N(b1; : : : ; bk+1; 3r�k�1) are isomorphic.Otherwise, there is almost surely a ball in the complement of N(b1; : : : ; bk; 3r�k�1) in B which isisomorphic to N(ak+1; 3r�k�1). Duplicator then chooses bk+1 to be its center. After r rounds,the balls N(a1; : : : ; ar; 1) and N(b1; : : : ; br; 1) are almost surely isomorphic. Thus, Duplicator winsalmost surely by following the strategy that we have just described. By the Ehrenfeucht-Fra��ss�etheorem, A �r B almost surely. Therefore, one of the (�nitely many) equivalence classes of �r haslimiting probability 1. Call it Er.Consider now a �rst-order sentence S of rank r on toroidal grids. By the Ehrenfeucht-Fra��ss�etheorem, the set of all grids satisfying S is either contained in Er , or disjoint from Er. In the formercase S has limiting probability 1, in the latter 0. We have thus proved a 0{1 law for the class oftoroidal grids with a unary relation.5. A 0{1 law for maps of a given genusWe �rst recall two di�cult results on maps.The �rst result [2, Sec. 5] plays the rôle of the crucial fact we used in the previous section, namelythe limiting probability 1 of the appearance of a �xed plane grid in a toroidal grid. It states thatfor a class C of maps of �xed genus, there is a c > 0 such that for any given planar map P , theproperty for maps in C to contain more than cn disjoint copies of P has limiting probability 1.The second result [3] is about representativity of maps. The representativity of a mapM on asurface S is the smallest number of intersections a non-contractible curve in S has with M. Theresult is that for a class of maps of �xed genus, there is a c > 0 such that the property for maps tohave representativity more than c lnn has limiting probability 1. This result is used in the proofof Theorem 1 to ensure the planarity of certain submaps built on balls playing a rôle similar tothe N(a1; : : : ; ak; 3r�k) of the previous section.Next, the proof of Theorem 1 runs as for the example of the previous section: we prove a �rst-order 0{1 law for the class of all maps of a given genus by showing that for each r, Duplicator hasan almost surely winning strategy in r-round Ehrenfeucht-Fra��ss�e games. More speci�cally, thisstrategy is a 3r�k strategy using balls around elements picked by Spoiler and Duplicator. However,the notion of distance used is not that of the previous section. The proper distance to prove the21



result is by means of quadrangulations of maps. For a given mapM on a surface, add a new pointon each edge and a point in each face. Next add new edges from the new points on the edges to thenew points in the faces. The quadrangulation ofM is then the new map on the same surface builtin this way. This construction induces a natural mapping from a mapM to its quadrangulation Q.We extend this map to the dart representation ofM by mapping both co-darts de�ned by an edgeto the image of this edge in Q. A distance is then de�ned on the set Uv [ Ud [ Uf of all vertices,darts and faces of the dart representation, as the distance between the images in Q. This distanceis not a metric, since two co-darts are at distance 0 for each other. However, the concept of ballsit induces is su�cient for the proof of Theorem 1.6. ConclusionsTheorem 1 has been re�ned for several classes of maps on a surface of �xed genus [1] (see thisreference for missing de�nitions): the class of all maps; the class of smooth maps; the class of k-connected maps where k is 2 or 3; the class of k-connected triangulations where k is 1, 2 or 3.However, the question of a 0{1 law for planar graphs remains open, though we believe it should betrue.As for complexity results, we proved an exp1(cn) lower bound for the complexity of the set of�rst-order sentences of limiting probability 1 in the case of the dart representation. Another resultholds for an extended dart representation (see [1] for the de�nition): in this extended representation,we proved undecidability. What we have not been able to prove is an upper bound in the case ofthe dart representation, though we feel exp1(dn) is a good candidate for such an upper bound.Finally, all results presented here concern sentences of �rst-order logic. An extension to otherlogics seems reasonable, in particular to MSO (monadic second-order) logic, with application tothe theory of databases. Bibliography[1] Bender (Edward A.), Compton (Kevin J.), and Richmond (L. Bruce). { Zero-one laws for maps. { Inpreparation, 1996.[2] Bender (Edward A.), Gao (Zhi-Cheng), McCuaig (William D.), and Richmond (L. Bruce). { Submapsof maps I: General 0-1 laws. Journal of Combinatorial Theory, vol. 55, n�B, 1992, pp. 104{117.[3] Bender (Edward A.), Gao (Zhi-Cheng), and Richmond (L. Bruce). { Almost all rooted maps have largerepresentativity. Journal of Graph Theory, vol. 18, 1994, pp. 545{555.[4] Chang (Chen Chung) and Keisler (H. Jerome). { Model theory. { North-Holland, Amsterdam, 1990,third edition, Studies in Logic and the Foundations of Mathematics, vol. 73.[5] Edmonds (Jack R.). { A combinatorial representation for polyhedral surfaces. Notices of the AmericanMathematical Society, vol. 7, 1960, p. 646.[6] Ehrenfeucht (A.). { An application of games to the completeness problem for formalized theories.Fundamenta Mathematicae, vol. 49, 1961, pp. 129{141.[7] Fagin (Ronald). { Probabilities on �nite models. Journal of Symbolic Logic, vol. 41, 1976, pp. 50{58.[8] Fra��ss�e (Roland). { Sur quelques classi�cations des syst�emes de relations. { Technical report, Universit�ed'Alger, 1954. English summary.[9] Glebski�� (Y. V.), Kogan (D. I.), Liogon'ki�� (M. I.), and Talanov (V. A.). { Range and degree ofrealizability of formulas in the restricted predicate calculus. Cybernetics, vol. 5, 1969, pp. 142{154. {English translation.[10] Tutte (William T.). { Combinatorial oriented maps. Canadian Journal of Mathematics, vol. 31, 1979,pp. 986{1004. 22



A grammar-based uni�cation of several alignment and folding algorithmsFabrice LefebvreLIX - �Ecole PolytechniqueJune 24, 1996[summary by Pierre Nicod�eme]AbstractWe show that many popular models of folding and/or alignment may be described by anew formalism: multi-tape S-attribute grammars (MTSAGs). This formalism relieves thedesigner of biological models of implementation details. We present also a tool which, givena MTSAG, will output an e�cient parser for this grammar and show that MTSAGs o�er anew, e�cient and useful way to handle stochastic context-free grammars. This summary isan extended abstract of [7]. 1. IntroductionWe shall see here that most popular models of alignment and/or folding of DNAs, RNAs orproteins, HMMs (Hidden Markov Models) [5], SCFGs (Stochastic Context-Free Grammars) [8] andCMs (Covariance Models) [3] share a common representation in terms of a new formalism: Multi-Tape S-Attribute Grammars (MTSAGs). This formalism is not only a help for the description ofold or new methods. We designed and implemented a tool which, from the high-level descriptiongiven by a MTSAG, will automatically generate the C source of an e�cient C parser which is able tocompute alignments and foldings. The speed and memory requirements of such generated parsersstand the comparison with programs manually written from dynamic programming relations. As aconsequence, we show how to automatically build SCFGs from sets of unaligned, unfolded RNAs.2. De�nitionsWe de�ne a special \m-tape" alphabet which will handle sequence alignments, and then a \m-tape" extension of context-free grammars which will handle structures of alignments.Definition 1. A m-tape alphabet � is a product of m alphabets �(i) augmented with the emptystring: � = Ni=1:::m��(i) [ f�g�. An element a1 � � �al of the free monoid ��, generated by formalconcatenation of m-tape elements of �, is called a m-tape alignment of length l. The emptyalignment of �� is denoted by �.Example. (abba; dcd) is a 2-tape input string on �(1) = fa; bg and �(2) = fc; dg. We shall alsowrite this 2-tape input string as abbadcd , which is a somewhat more natural notation in the contextof alignments. This 2-tape input string has a 2-tape input substring bbdc .Definition 2. Given any m-tape alignment a1 � � �al, we get a m-tape input string by concate-nation, or �-deletion, of symbols of the projection of a1 � � �al on every tape.�� �! h��i; a1 � � �al �! ha1 � � �ali:23



start �! frame0 (0)frame0 �! frame0�XX � j ��� � (0)j frame0�XY � (2)j frame1��X � j frame2�X� � (1)frame1 �! frame1�XX � (1)j frame1�XY � (3)j frame0�X� � j frame2� �X � (3)frame2 �! frame2�XX � (1)j frame2�XY � (3)j frame0��X � j frame1�X� � (3)Figure 1. In this weighted left-regular grammar, weights arewritten in parentheses after eachgroup of productions having thesame weight. Later on, weightswill be turned into attribute eval-uation functions. tape 1

tape 2Figure 2. Derivation tree of analignment of two RNAs.Example. Our 2-tape input string abbadcd may be de�ned as an �-deletion of the alignments
� �d �� a� �� b� �� bc �� ad �� or 
� a� �� bd �� �c �� b� �� ad ��.Searls did show that the alignment of two strings according to some edit-distance may be carriedout by some simple 2-tape nondeterministic �nite automaton (NFA) with weighted transitions [9].The sought alignment has a minimal total weight. The set of alignments recognized by a Searls'NFA is a regular language over our 2-tape terminal alphabet, and may be described by a regulargrammar with weighted productions (see �gure 1).As regular grammars are a proper subset of context-free grammars, we found natural to generalizethis idea of alignment to m-tape (i.e. the terminal alphabet is a subset of a m-tape alphabet)context-free grammars (MTCFGs) and their recognizing devices, namely m-tape nondeterministicpushdown automata (NPDA). Weighted transitions of NFA are easily translated into weighted pop-transitions of NPDA. The sought alignment is obtained from a sequence of pop-transitions of theNPDA which has an optimal (minimal for some problems, maximal for others, etc...) total weight.Figure 2 shows how alignments and structures may be deduced from a single m-tape derivation.The underlying grammar may be easily recovered. Base pairings are inferred from derivations ofDS (Double-Strand) and they are given below each tape. Notice that a double-strand has beende�ned as a substructure whose ends must be paired on at least one tape, whereas a single-strand(SS) may only have unpaired bases on both tapes.Definition 3. A m-tape context-free grammar G = (VT ; VN ; P; S) consists of a �nite set ofterminals VT such that VT is a subset of a m-tape alphabet, a �nite set of nonterminals VN suchthat VN \ VT = ;, a �nite set of productions (rewriting rules) P and a start symbol S 2 VN . LetV = VT [ VN denote the vocabulary of the grammar. Each production in P has the form A ! �,where A 2 VN and � 2 V �. A is the left-hand side of the production and � its right-hand side.A derivation tree is a planar representation of a sequence of derivations (replacements of anonterminals A in a string of V � by strings � such that A ! �) and it is a result of parsing. Thelanguage L(G) is the set of m-tape input strings generated by G: L(G) = fhui 2 hV �T i j S !� ug.24



Example. The following toy MTCFG will align two properly parenthesized strings interspersedwith a: S ! h (( iSh )) i �� � aa � �� � a� � �� � �a � �� � �� � �� SSIn this MTSAG, the structure de�ned by parentheses must be the same on both tapes, but sub-strings of a may be aligned with gaps (denoted by � in terminals instead of �, because a dash isappropriate, and even expected, in the context of alignments).Definition 4. Let G = (VT ; VN ; P; S) be a proper m-tape context-free grammar. For every tapei (1 � i � m), de�ne the projected grammar G(i) as the conversion of the grammar (V (i)T ; VN ; P (i); S)into a proper grammar, where V (i)T and P (i) are the sets of values on tape i of all the elements ofVT and P respectively.Example. The MTCFG of the preceding example has the same projected grammar on bothtapes : S ! (S) j () j a j SSProjected grammars are useful for the study of the complexity of our parsing algorithm as afunction of the ambiguity of MTCFGs.We said earlier that we could assign a cost to each alignment or folding produced by a NPDA,thanks to weights on pop-transitions. This cost-evaluation step is essential for the determinationof an optimal cost alignment or folding.We use the general mechanism of synthesized attributes, or S-attributes which, together withMTCFGs, give us m-tape S-attribute context-free grammars, or MTSAGs. S-attributes are at-tributes which are assigned to every vertex of a derivation tree and which are computed from thebottom of a derivation tree (i.e. every terminal has a known S-attribute) to its root by means ofattribute evaluation functions associated to grammar productions. Thanks to these functions, thecomputation of the �nal attribute of the derivation tree does not have to rely on a �xed, prede-termined, operation (summation, multiplication, ...), as it would have been the case with weightedproductions. In our implementation, attribute evaluation functions are C functions. We have al-ready shown the e�ectiveness of S-attributes with our adaptation of the thermodynamic model offolding to context-free grammars [6]. This algorithm uses a parse table to store the shared forestof derivation trees of a m-tape input string.Definition 5. A m-tape S-attribute grammar is denoted by G = (VT ; VN ; P; S;A; SA; FP ). Itis an extension of a m-tape context-free grammar G = (VT ; VN ; P; S), where an attribute x 2 A isattached to each symbol X 2 V and a string of attributes � 2 A� to each string � 2 V �. SA is afunction from VT to A assigning attributes to terminals. FP is a set of functions from A� to A. Afunction fA!� is in FP i� A! � is in P .The attribute � of a string � is the concatenation of the attributes of the symbols in �. Whena function fA!� is applied to the attribute � of a string � derived from A, it returns the attributex of A (hence the bottom-up computation of attributes).3. Syntax analysis for MTSAGsA generalization of Cocke-Younger-Kasami's algorithm (CYK) would be an easy algorithm toparse m-tape input strings. This algorithm has a time complexity of O(n3) and a space complexityof O(n2) when only one tape of size n is considered [1]. A generalization to m tapes, each of sizen, would lead to an algorithm having a complexity of O(n3m) in time and O(n2m) in space.25



To overcome the limitations of CYK's algorithm, we generalized our parsing algorithm for 1-tapeMTSAGs [6].When constructing the parse table, a minimum condition of usefulness is applied. This conditionmeans that an item is never add to an entry if it has no chance of being used in a derivation tree,up to the already parsed part of the m-tape input string. This condition is akin to a conditionveri�ed by Earley's parsing algorithm and it is the key to the lower parsing complexities of ouralgorithm when some projections of the underlying MTSAG are unambiguous.In fact, out algorithm may be considered as an improvement of Earley's algorithm, where Earley'sitems [� ! � � �; i]; (�; � 2 V �) which share the same � and i are factorized into a single item[� * �; i]. Also, non-kernel items of Earley's algorithm are replaced by much smaller sets ofexpected non-terminals.Proposition 1 (1-tape complexity). Let G be a proper 1-tape MTSAG and let r � 1 be themaximum number of nonterminals appearing at the right-hand side of a production of G. For atape of length n, the time and space complexities of the previous parsing algorithm are, in order ofdecreasing constraints on G:{ Equal and at most O(n) if G is LR(k) and not right-recursive (this encompasses left-regulargrammars);{ equal and at most O(n2) if G is unambiguous;{ O(nr+1) and O(nr) for a generic proper MTSAG.Proposition 2 (m-tape complexity). Let G be a proper m-tape MTSAG. The time com-plexity of our parsing algorithm on G is equal to the product of the parsing complexities of the samealgorithm applied on each tape i with each projected grammar G(i). The same kind of result holdsfor space complexities. Hence the time complexity is at most O(nm(r+1)), and the space complexityis at most O(nmr), for m-tapes of size nIn practice, MTSAGs that we used veri�ed r � 2 and thus the time and space complexities ofour parsers for those grammars were respectively O(n3m) and O(n2m) at most, but were sometimesmuch better. 4. Stochastic Context-Free GrammarsAn essential aspect of MTSAGs is the ability to easily generate e�cient parsers from grammars.On the basis of the tool we had already written to generate parsers from 1-tape S-attribute gram-mars, we designed a new tool, MTSAG2C, which automatically generates the C source of a parserfrom a given MTSAG. The generated parser is able to read tapes (thanks to a lexical analyzer pro-vided by the user), parse tapes, and then output a single derivation tree which satis�es constraintsgiven in the MTSAG.When using 2-tape MTSAGs for SCFGs, we transfer on the �rst tape the high-level descriptionof a family of RNAs usually used with SCFGs, and on the second tape the RNA to be folded andaligned. All rules used by the traditional SCFG generating tool to generate a SCFG from its highlevel description are then written down as a single, �xed, MTSAG. This has the additional bene�tof shortening the development cycle (see �gure 3b).We compared the parser generated from a 1-tape version of a 97 nonterminals SCFG (this parseralready proved to be quite fast [6]) to the parser generated from the 2-tape version of this SCFG(�gure 4(a)).Tests done on an Alpha 2100-500MP give the results:26
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(((((((..((((********)))).(((((.......)))))********(((((.......)))))))))))).CCUUCUGUAGCUCAAUUGGUAGAGCAUGUGACUGUAGAGUAUGCGGGUAUCACAGGGUCGCUGGUUCGAUUCCGGCCGGAAGG(a) unaligned 2-tape input string.(((((((..((((********)))).(((((.......)))))*******----------*(((((.......)))))))))))).CCUUCUGUAGCUCAAUUGGUAGAGCAUGUGACUGUAGAGUAUGC--GG-GUAUCACAGGGUCGCUGGUUCGAUUCCGGCCGGAAGG(b) 2-tape alignment of the previous 2-tape input string.Figure 4. Unaligned and aligned version of a 2-tape input string. The �rst tape ofthis 2-tape input-string has a cloverleaf-like structure. This structure has two singlestrands which may have a variable length around 8 bases. The second tape is theRNA DY6050 extracted from a well known freely available compilation of tR-NAs [10].used instead of dynamic programming relations because these relations hinder the inventiveness ofdesigners of new sequence analysis models.We also gave a sketch of a method to build stochastic models from unaligned, unfolded RNAs.However, divide and conquer methods may be a prerequisite for long RNAs [2, 4]. We will try toapply MTSAGs to these methods. Bibliography[1] Aho (Alfred V.) and Ullman (Je�rey D.). { The Theory of Parsing, Translation, and Compiling. {Prentice-Hall, 1972, vol. 1.[2] Corpet (Florence) and Michot (Bernard). { RNAlign program: alignment of RNA sequences usingboth primary and secondary structures. Computing Applications in the Biosciences, vol. 10, n�4, 1994,pp. 389{399.[3] Eddy (Sean R.) and Durbin (Richard). { RNA sequence analysis using covariance models. Nucleic AcidsResearch, vol. 22, n�11, 1994, pp. 2079{2088.[4] Grate (Leslie). { Automatic RNA secondary structure determination with stochastic context-free gram-mars. In Third International Conference on Intelligent Systems for Molecular Biology. pp. 136{144. {AAAI Press, 1995.[5] Krogh (A.), Brown (M.), Mian (I. S.), Sj�olander (K.), and Haussler (D.). { Hidden Markov models incomputational biology: Applications to protein modeling. Journal of Molecular Biology, vol. 235, 1994,pp. 1501{1531.[6] Lefebvre (Fabrice). { An optimized parsing algorithm well suited to RNA folding. In Third InternationalConference on Intelligent Systems for Molecular Biology. pp. 222{230. { AAAI Press, 1995.[7] Lefebvre (Fabrice). { A grammar-based uni�cation of several alignment and folding algorithms. InFourth International Conference on Intelligent Systems for Molecular Biology. pp. 143{154. { AAAIPress, 1996.[8] Sakakibara (Yasubumi), Brown (Michael), Hughey (Richard), Mian (I. Saira), Sj�olander (Kimmen),Underwood (Rebecca C.), and Haussler (David). { Stochastic context-free grammars for tRNA modeling.Nucleic Acids Research, vol. 22, 1994, pp. 5112{5120.[9] Searls (David B.) and Murphy (Kevin P.). { Automata { theoretic models of mutation and alignment.In Third International Conference on Intelligent Systems for Molecular Biology. pp. 341{349. { AAAIPress, 1995.[10] Steinberg (S.), Misch (A.), and Sprinzl (M.). { Compilation of tRNA sequences and sequences of tRNAgenes. Nucleic Acids Research, vol. 21, 1993, pp. 3011{3015.28



Part 2Symbolic Computation





Linear recurrences,linear di�erential equations,and fast computationBruno SalvyINRIA RocquencourtNovember 13, 1995[summary by Philippe Dumas]Linear recurrences and linear di�erential equations with polynomial coe�cients provide a �niterepresentation of special functions or special sequences. Many algorithms are at our disposal; somegive a way to automate the computation of recurrences or di�erential equations; some providesolutions to recurrences or di�erential equations; and some give the asymptotic behaviour of thesesolutions, directly from the recurrence or di�erential equation. All of this provides a method toe�ciently compute special functions and special sequences.1. Classical algorithms concerning formal power seriesIn the sequel, we use the ring A [[x]] of formal power seriesF (x) = +1Xn=0 fnxnwith coe�cients fn in a commutative ring A ; this ring is assumed to contain the �eld Q of rationalnumbers, even though it is possible to consider a more general situation. Practically, one dealswith truncated series F (x) = NXn=0 fnxn + O(xN+1);that is to say essentially polynomials. It must be noted that there exist lazy algorithms to dealwith truncated series of arbitrary order, but their cost is generally excessive. We indicate how todeal with basic operations [7, Chap. 4].Product of polynomials. The naive method to obtain the product of two polynomials of degree Nhas complexity O(N2) arithmetic operations. A better way is Karatsuba's algorithm, which hascomplexity O(N log2 3) = O(N1:59). The idea behind the algorithm resides in writingP (x) = P0(x) + xkP1(x); Q(x) = Q0(x) + xkQ1(x);P (x)Q(x) = P0(x)Q0(x) +R(x)xk + P1(x)Q1(x)x2k;R(x) = (P0(x) + P1(x))(Q0(x) +Q1(x))� (P0(x)Q0(x) + P1(x)Q1(x));with k ' N=2; this formula needs only three multiplications of polynomials of degree less than kinstead of four multiplications, and this leads to an e�cient recursive computation.31



From a practical standpoint, Karatsuba's method becomes e�cient in Maple for an N greaterthan about a hundred. The fast Fourier transform algorithm needs a much larger value of N to beuseful.Composition. Here the goal is the computation of the �rst N coe�cients of the series F (G(x)),where g0 = 0. The naive method leads to a computation with O(N) series multiplications. Brentand Kung's algorithm [2] has a better behaviour. It consists of three steps; �rst write F (x) asF (x) = F0(x) + F1(x)xk + F2(x)x2k � � �+ Fk�1(x)xk(k�1);where F0(x), F1(x), : : : , Fk�1(x) are the series obtained by factoring out the powers of xk, wherek = �(N + 1)1=2�; next compute the powers Gi(x) for i from 2 to k � 1, and the series Fi(G(x));�nally, compute T (x) = Gk(x) and F (G(x)) using a Horner scheme.The algorithm uses 3k series multiplications and O(N) coe�cient multiplications, hence it hascost O(N1=2) if the unit cost is series multiplication. Via Karatsuba's algorithm, this gives a cost ofO(N2:09) expressed in terms of coe�cient multiplications, while the naive method has cost O(N3).Powering and simple functions. Powering and simple functions are a particular case of composi-tion, but in this case it is possible to be more e�cient. We show the idea for the case of powering.If H(x) = F�(x), then H(x) satis�es the equationH 0(x)F (x) = �F 0(x)H(x);therefore the coe�cients of H(x) are provided by the following recurrencenXk=0khkfn�k = � nXk=0(n � k)hkfn�k:This makes it possible to compute the �rst N coe�cients at a cost of O(N2) coe�cient multiplica-tions, instead of O(N2:09).Newton iteration. An ever better way to compute elementary functions is Newton's method. Ifwe search for a series y(x) such that �(x; y(x)) = 0, we use the recurrenceyk+1(x) = yk(x)� �(x; yk(x))@�=@y(x; yk(x)) mod x2k+2:We start from y0(x) = 0 and the formula is iterated until 2k + 2 > N . The number of correctcoe�cients is doubled at each step. For example, the reciprocal y(x) = 1=F (x) satis�es the equation�(x; y) = 1=y�F (x) = 0 and the recursion is yk+1 = 2yk�F (x)y2k. In the same way one can computethe logarithm ln(F (x)), the exponential exp(F (x)), and solutions of simple di�erential equations.In all these cases the complexity of the computation is the complexity of the multiplication, thatis O(N1:59).For the reversion of series the same method can be used. Given F (x) with f0 = 0, f1 6= 0, onelooks for a series y(x) such that F (y(x)) = x. This is carried out by Newton's method applied tothe equation F (y)� x = 0; hence the recurrence isyk+1(x) = yk(x)� F (yk(x))� xF 0(yk(x)) mod x2k+2:The cost is of the same order as the composition cost, because of the terms F (yk(x)) and F 0(yk(x)).32



Linear di�erential equations. Assume that the power series F (x) satis�es a linear di�erentialequation a0(x)y(k) + a1(x)y(k�1)+ � � �+ ak(x)y = 0;whose coe�cients are polynomials. If 0 is an ordinary point, this di�erential equation translatesinto a linear recurrence for the coe�cients of F (x). This leads to an algorithm whose cost is O(N),while the preceding ones use at best O(N1:59) basic operations.Obviously, the complexity O(N) is optimal, therefore for large N there is great interest in �ndinga linear di�erential equation with F (x) as a solution, if possible. In the sequel, we will focus ourattention on such power series. 2. Univariate holonomic seriesA power series is said to be holonomic if it is a solution of a linear di�erential equation withpolynomial coe�cients. In the same manner, a sequence is said to be holonomic if it is a solutionof a linear recurrence with polynomial coe�cients.It is easy to see that rational series, exp(x), sin x, cosx, log(1+x), and the Bessel functions J�(x)are all holonomic. Rational, factorial, Fibonacci, and hypergeometric sequences are all holonomicsequences. Recall that a sequence is hypergeometric if the sequence of quotients of consecutiveterms is a rational sequence.Both de�nitions are related by the following property: a sequence is holonomic if and only if itsgenerating series is holonomic. The proof is easy and uses the simple but basic correspondenceswhich may be summarized as follows,F (x)  ! fn;xkF (x)  ! fn�k;xF 0(x)  ! nfn:Closure properties. The set of holonomic series is closed with respect to sum, Cauchy product,Hadamard product, Borel transform, and Laplace transform [10]. We give a sketch of the prooffor the Cauchy product. If F (x) satis�es a di�erential equation of order s and G(x) satis�es adi�erential equation of order t, we formally compute the derivatives of H(x) = F (x)G(x) and, usingthe equations satis�ed by F (x) and G(x), we express them as linear combinations of the productsF (i)(x)G(j)(x) where the indices i and j vary from 0 to s � 1 and from 0 to t � 1 respectively.The space of such combinations has a �nite dimension, hence the derivatives of H(x) satisfy adependance relation, that is a linear di�erential equation.There is a similar result for holonomic sequences: the sum, product, and convolution of twoholonomic sequences are holonomic; the inde�nite summation of a holonomic sequence is holonomic.Both types of closure properties are interrelated, and the proofs use whichever is easier.Identity proving. An application of holonomy, widely exempli�ed by D. Zeilberger, is identityproving [12]. The idea is the following: to prove F (x) = G(x), build the equation satis�ed byF (x)�G(x), and compute su�ciently many initial conditions to ensure F (x)� G(x) = 0.Here is a simple example. Suppose we want to prove the identitypxJ1=2(x) = r 2� sin x;where J1=2(x) is a Bessel function of index 1=2. This function satis�es a second order di�erentialequation, while the square root satis�es a �rst order equation; hence the product is a solution of33



an equation of order not greater than 2. On the other hand, sine satis�es a second order equation;therefore the di�erence of the two sides of the formula satis�es an equation of order not greaterthan 4. It su�ces to verify that the power series of the di�erence is O(x4), using the di�erentialequations and the initial conditions de�ning the components. The alert reader may think we werelucky, because pxJ1=2(x) has a power series expansion at 0, while J1=2(x) has not. But, if this hadnot been the case, we would have used use another point than 0.Algebraic functions. Algebraic functions are holonomic. Comtet [4] gave an algorithm to computethe di�erential equation satis�ed by a function F (x) solution of P (x; y) = 0, where P is an irre-ducible polynomial. The idea is to �nd a Bezout relation UP +V Py = 1 by the extended Euclideanalgorithm and use Px + PyF 0 = 0 to express the successive derivatives of F (x) as polynomials inF (x) of degree less than d = degy P . The family of powers 1, F (x), : : : , F d�1(x) is a basis ofthe space generated by the derivatives of F (x), and there is a dependance relation between F (x),F 0(x), : : : , F (d)(x).Algebraic substitution. If F (x) is holonomic and G(x) is algebraic, then F (G(x)) is holonomic bythe same kind of technique as above. An immediate application of this result is the following: if fnis a holonomic sequence, then its Euler transformhn = nXk=0(�1)k nk!fkis holonomic too. This is obvious because the two generating functions are connected by H(x) =F (�x=(1� x))=(1� x). 3. Search for solutionsRecurrence relations and di�erential equations almost never have explicit solutions, but if anexplicit solution exists it might be important to recognize it, and �nd the solution. Above all anexplicit solution gives a global information about the equation.Rational solutions to recurrences. Abramov [1] gives a method to obtain the rational solutionsun = P (n)=Q(n) of a recurrencea0(n)un+k + � � �+ ak(n)un = b(n);where a0, : : : , ak, and b are polynomials. The principle which guides the algorithm is: the zerosof the coe�cients must match the poles of un and its shifts un+`. As a consequence, Q must be amultiple of gcd(a0(n�k); : : : ; ak(n)) if the roots of Q do not di�er by an integer. The last conditionis not necessarily ful�lled; to avoid this problem one considers a recurrence satis�ed by the sequencevn = unh, where h is the maximal di�erence between two roots of Q. It must be noted that thenumber h is not greater than the maximal di�erence between the roots of ak(n) and a0(n� k).Inde�nite hypergeometric summation. The inde�nite sum [6] of fk is equivalent to �nding a closedformula for Fn =Pn fk where fk is a given sequence. This relation meansFn � Fn�1 = fnfor all n. If fn is assumed to be hypergeometric, and we look for a hypergeometric Fn, the relation1� Fn�1=Fn = fn=Fn shows that the sequence un = Fn=fn must be rational. Hence we are led to34



search for a rational solution of the equationun � fn�1fn un�1 = 1:Hypergeometric solutions to recurrences. Petkov�sek's algorithm [8] provides the hypergeometricsolutions of a linear recurrence a0(n)un+k + � � �+ ak(n)un = 0;where a0, : : : , ak, and b are polynomials. Writing un+1=un = P (n)=Q(n) and substituting leads toa non-linear equation, which is not tractable. There exists a decompositionun+1un = P (n)Q(n)A(n + 1)A(n)in which all pairs (A(n); P (n)), (A(n); P (n)), (P (n); Q(n)), (P (n); Q(n+1)), : : : , (P (n); Q(n+k))are relatively prime. With this decomposition a substitution givesa0(n)A(n+ k)P (n + k) � � �P (n) + a1(n)A(n+ k � 1)P (n+ k � 1) � � �P (n)Q(n+ k)+ � � �+ ak(n)A(n)Q(n+ k) � � �Q(n) = 0:This equation is still non-linear, but it shows that P (n) divides ak(n), and Q(n+ k) divides a0(n).Finally it su�ces to test all pairs of factors of a0(n� k) and ak(n).Note that this algorithm is a powerful tool; it is equivalent to �nding factors of order 1 on theright of the recurrence.Symbolic solutions to di�erential equations. Searching for generalized hypergeometric solutions isa �rst approach to a linear di�erential equation: the recurrence satis�ed by the coe�cients of theseries is computed; the hypergeometric solutions to this recurrence are found; �nally the result istranslated from sequences to generating functions.The more general class of Liouvillian functions may be used. Liouvillian functions are obtainedfrom rational functions with rational coe�cients by repeated use of the four elementary operations,taking exponentials and logarithms, integration, and algebraic extensions. Singer gives a purelytheoretic algorithm to obtain Liouvillian solutions of linear di�erential equations of arbitrary order.Kovacic's algorithm for equations of order 2 is partially implemented in most computer algebrasystems. The theory behind all these algorithms is di�erential Galois theory. It is di�cult to use,because for each order it is necessary to classify the Galois groups which come into play [11].4. Asymptotic analysisEven when no explicit solution of a di�erential equation is known, it is possible to perform anasymptotic analysis. The theory of linear di�erential equations prescribes the asymptotic behaviourof a solution near a singularity and this asymptotic behaviour is strongly related to the asymptoticbehaviour of the Taylor coe�cients of the solution.Singular points. The solutions of a linear di�erential equationa0(x)y(k)(x) + � � �+ ak(x)y(x) = 035



may only have singularities at the roots of the dominant coe�cient a0(x), and possibly at in�nity.In addition all formal solutions to the equation are known. A logarithmic sum is a formal series�(z) = z� JXj=1Xi�0 cijzi logj z;and a formal solution in the neighbourhood of the root a of a0(x) is a �nite combination of loga-rithmic sums y(x) = KXk=0�k(z) exp(Pk(z)); z = 1(1� x=a)1=r ;which formally satis�es the di�erential equation. All quantities involved in these formulae canbe explicitly computed. In the case where the point a is a regular singular point, that is to saya`(x) = (x�a)k�`A(x) for ` = 0, : : : , k, and A`(x) is analytic in the neighbourhood of a, the formalsolutions are logarithmic sums and locally de�ne actual solutions, with a possible rami�cationpoint at a. Conversely, in the case of an irregular singular point the formal solutions are generallydivergent series, but provide asymptotic expansions for actual solutions in a sector with origin a.The preceding classi�cation demonstrates that the composition of two holonomic functions isnot necessarily holonomic. For instance 1= sin x, which is the composition of the two holonomicfunctions sin x and 1=x, is not holonomic because it has an in�nite number of singularities. Thesequence of Bell numbers is not holonomic because its exponential generating function exp(ex � 1)does not have the right form, given by the formula above (after changing x into 1=x).Singularity analysis. The smallest singularity � of a function analytic in a neighbourhood of zeroprescribes the behaviour of the Taylor coe�cients of the function. This rough correspondence maybe strongly re�ned [5]; indeed an asymptotic expansion in some su�ciently large neighborhood ofthe singularity a of smallest modulusf(x) =x!a c0(1� x=a)�0 log�0 11� x=a + c1(1� x=a)�1 log�1 11� x=a + � � �translates into an asymptotic expansion for the coe�cient of the Taylor expansion of f(x) at 0fn =n!1 ��n n��0�1�(��0) log�0 n�c0 + d1logn + � � �� :This result leads to the following idea: to study the asymptotic behaviour of a sequence whichsatis�es a linear recurrence it su�ces to translate the recurrence into a di�erential equation for thegenerating function; next a singularity analysis of this function gives the asymptotic behaviour ofthe sequence. This simple method presents a di�culty. The function is determined as a solution ofa di�erential equation and some initial conditions, which are speci�ed at the point 0. The study ofthe di�erential equation provides a basis of formal solutions near the smallest singularity, but thereis no direct way to express the generating function with respect to this basis. Obviously if a closedform of the function is available it is possible to realize the connection between the data at 0 andthe behaviour at the smallest singularity; but in that case more direct procedures may be used.Generally, it is necessary to use analytic continuation and a resummation method [9]. Note thatsuch a method needs to know about the singularities of the Borel transform of the function; and wehave seen that it is possible to compute the di�erential equation satis�ed by the Borel transformof a holonomic function. 36



5. Multivariate holonomyThe machinery of holonomic sequences or functions is so powerful that it is tempting to generalizeholonomy for sequences or functions with more than one variable.Weyl algebra. The Weyl algebra AN(K) is an algebra of linear operators which is de�ned overthe space of polynomials K[x] = K[x1 ; : : : ; xN ]. These operators are the partial derivatives @j , themultiplications by the variable xi's, and all their combinations. The generators @1, : : : , @N , x1, : : : ,xN satisfy the following commutation rules:@i@j = @j@i; xixj = xjxi@ixj = xj@i for i 6= j; @ixi = xi@i + 1:Then, an element f of a module over the Weyl algebra is D-�nite if the submodule spannedby f and all its derivatives @�f has a �nite dimension over the �eld of rational functions K(x).An equivalent de�nition is obtained as follows: for f from an AN (K)-module, consider the set ofall equations P (x;@)f = 0 satis�ed by f ; the polynomials P (x;@) are elements of the left idealAnn(f) in the Weyl algebra; then f is D-�nite if the quotient AN (K)=Ann(f) of the Weyl algebraby the annihilator ideal Ann(f) has a �nite dimension over K(x) as a vector space.A more e�ective de�nition uses the idea of a rectangular system. A set of N polynomials Pk(x;@)from the Weyl algebra is a rectangular system if each polynomial involves only one partial derivative@i, and each partial derivative appears in exactly one of these polynomials Pk(x;@). One provesthat f is D-�nite if and only if there exists a rectangular system contained in the annihilator idealAnn(f). As a consequence a D-�nite element f satis�es a special set of equations of the formP1(x; @1)f = 0; P2(x; @2)f = 0; : : : ; PN(x; @N)f = 0:In addition, Bernstein worked out the concept of multivariate holonomy. The Weyl algebra isnaturally graded by the degree: the degree of the monomial x�@� is j�j+ j�j, and the componentFd of the natural �ltration is composed of the polynomials of degree not greater than d. For f froma module over the Weyl algebra, this induces a �ltration of the submodule AN (K)f ; the component�d is merely Fdf . It turns out that the dimension of �d over K is expressed as a polynomial in dfor all su�ciently large d. The degree of this polynomial is the Bernstein dimension of the moduleAN (K)f . Moreover it is shown that the Bernstein dimension of AN(K)f is greater or equal to N .Now, f is holonomic if the Bernstein dimension of AN (K)f is exactly N .Kashiwara's theorem proves that D-�niteness and holonomy are the same concept. But eachone has its own merits. The D-�niteness property makes it easy to show that sums and productsof holonomic functions are holonomic too. On the other hand, de�nite integration with respect toone of the xi's preserves holonomy, and this is more easily shown using the de�nition of holonomy.The link between sequences and generating functions is not as nice in the multivariate case as inthe univariate case. A sequence u� , where the index � is an N -tuple (n1; : : : ; nN) is P -�nite if thesequence u� and all its shifts u�+� span a �nite dimensional space over K(�1 ; : : : ; �N). An equivalentformulation of the P -�niteness can be written as follows: there exists a rectangular systemP1(�; S1)u = 0; P2(�; S2)u = 0; : : : ; PN(�; SN)u = 0;where Si is the shift operator de�ned by Siu� = un1;::: ;ni+1;::: ;nN . One proves that a sequence isP -�nite if its multivariate generating function is D-�nite. The reciprocal assertion is false.The study of P -�nite sequences shows it is interesting to consider a more general concept thanWeyl algebras. This leads to Ore algebras, which are de�ned as polynomial algebras with some37



commutation rules for the variables [3]. For instance, the �nite di�erence calculus in one variableis formalized by the algebra Khn;�i with �n = (n+ 1)� + 1.Creative telescoping. We search for a recurrence relation for the de�nite sum Un =Pk un;k, wherethe double sequence un;k is P -�nite. The idea is to �nd an equation P (n; Sn;�k)u = 0, wherethe variable k does not occur, Sn is the shift operator with respect to n, and �k is the di�erenceoperator with respect to k; then, U satis�es P (n; Sn;�k)U = 0. Contrary to the case of holonomicfunctions such an equation does not exist a priori; but if it exists, it is possible to �nd it by aGr�obner basis technique. As an example we want to rederive the Franel relation on the sumUn = nXk=0 nk!3:First we give a rectangular system for the double sequence un;k = �nk�3,[(n� k + 1)3Sn � (n+ 1)3]u = 0; [(k+ 1)3Sk � (n� k)3]u = 0:Here the analogue to the Bernstein dimension is 2, hence elimination provides a relation P (n; Sk; Sn)u =0. Next the summation with respect to k, and the substitution Sk = 1, or equivalently �k = 0,give the desired formula:�(n+ 3)3(3n+ 4)S3n � (18n3 + 114n2 + 232n+ 148)S2n�(3n+ 5)(15n2 + 55n+ 48)Sn� 8(n+ 1)2(3n+ 7)�U = 0:Bibliography[1] Abramov (S. A.). { Rational solutions of linear di�erential and di�erence equations with polynomialcoe�cients. USSR Computational Mathematics and Mathematical Physics, vol. 29, n�11, 1989, pp. 1611{1620. { Translation of the Zhurnal vychislitel'noi matematiki i matematichesckoi �ziki.[2] Brent (R. P.) and Kung (H. T.). { Fast algorithms for manipulating formal power series. Journal of theACM, vol. 25, 1978, pp. 581{595.[3] Chyzak (Fr�ed�eric) and Salvy (Bruno). { Non-commutative Elimination in Ore Algebras Proves Multi-variate Holonomic Identities. { Research Report n�2799, Institut National de Recherche en Informatiqueet en Automatique, February 1996.[4] Comtet (L.). { Calcul pratique des coe�cients de Taylor d'une fonction alg�ebrique. L'EnseignementMath�ematique, vol. 10, 1964, pp. 267{270.[5] Flajolet (Philippe) and Odlyzko (Andrew M.). { Singularity analysis of generating functions. SIAMJournal on Discrete Mathematics, vol. 3, n�2, 1990, pp. 216{240.[6] Gosper (R. William). { Decision procedure for inde�nite hypergeometric summation. Proceedings of theNational Academy of Sciences USA, vol. 75, n�1, January 1978, pp. 40{42.[7] Knuth (Donald E.). { The Art of Computer Programming. { Addison-Wesley, 1981, 2nd edition, vol. 2:Seminumerical Algorithms.[8] Petkov�sek (Marko). { Hypergeometric solutions of linear recurrences with polynomial coe�cients. Jour-nal of Symbolic Computation, vol. 14, 1992, pp. 243{264.[9] Ramis (Jean-Pierre). { S�eries divergentes et th�eories asymptotiques. { Soci�et�e Math�ematique de France,1993, Panoramas et Synth�eses, vol. 121.[10] Stanley (R. P.). { Di�erentiably �nite power series. European Journal of Combinatorics, vol. 1, n�2,1980, pp. 175{188.[11] Tournier (�Evelyne) (editor). { Computer Algebra and Di�erential Equations. { Academic Press, 1990.Proceedings of CADE 89.[12] Zeilberger (Doron). { A holonomic systems approach to special functions identities. Journal of Compu-tational and Applied Mathematics, vol. 32, n�3, 1990, pp. 321{368.38



Creative Telescoping and ApplicationsFr�ed�eric ChyzakINRIA RocquencourtJanuary 15, 1996[summary by Bruno Salvy]AbstractCreative telescoping is a method to compute de�nite sums and integrals. Numerous ex-amples are given, together with an introduction to algorithmic techniques based on Gr�obnerbases of linear operators.Creative telescoping applies to solutions of systems of linear recurrences and linear di�erentialequations. It yields a linear recurrence or di�erential equation satis�ed by the de�nite sum or inte-gral of the solutions. It can be used to \compute" generating functions, to extract their coe�cients,and to prove identities. 1. ExamplesA typical example is the sum Sn =Pnk=0 �nk�. One starts with a system of equations de�ning thesummand:Au := (n+ 1� k)un+1;k � (n+ 1)un;k = 0; Bu := (k + 1)un;k+1 � (n� k)un;k = 0:The aim is to derive a recurrence satis�ed by Sn from these equations. This is done by �rst �ndingan equation satis�ed by un;k where k does not appear in the coe�cients. Such an equation is givenby Pascal's triangle rule un+1;k+1 = un;k+1 + un;k which can be deduced from the above equationsas (Sk+1)A+SnB, where Sk (resp. Sn) denotes the shift with respect to k (resp. n). This equationis then rewritten in a form suitable for summation with respect to k:(un+1;k+1 � un+1;k)� (un;k+1 � un;k) + un+1;k � 2un;k = 0:Since the binomial coe�cient �nk� is 0 when k < 0 or k > n, summing over k simply yields the desiredresult Sn+1 � 2Sn = 0 (this is where telescoping takes place). Using the initial condition S0 = 1,any solver of recurrence equations would then produce Sn = 2n.A similar example is provided by Un =Pnk=0 �nk�2. The system of equations is a simple modi�ca-tion of the former one. Finding an equation which does not involve k in the coe�cients is slightlyharder. One �nds(n+ 1)un+2;k+2� (2n+ 3)un+1;k+2+ (n+ 1)un;k+2� (2n+ 3)un+1;k+1 � 2(n+ 1)un;k+1 + un;k = 0:Again, this is rewritten in a form where telescoping will take place by repeatedly expressing vk+1 =(vk+1 � vk) + vk. Summing then yields(n+ 1)Un+1 � 2(2n+ 1)Un = 0:Again, with the initial condition U0 = 1, it is easy to conclude that Un = �2nn �.39



Exactly the same computation applies to de�nite integrals. For instance, to compute F (x) =R +1�1 exp(�xy2) dy, one starts from a system satis�ed by the integrandDx + y2 = 0; Dy + 2xy = 0;where Dx denotes di�erentiation with respect to x (and similarly for Dy). Then we look for anequation satis�ed by f without y in the coe�cients. It is not di�cult to �nd that such an equationis (D2y + 4x2Dx + 2x)f = 0. Since for any value of x, exp(�xy2) and its derivatives with respectto y tend to 0 at �1, integrating this equation over y yields 4x2F 0(x) + 2xF (x) = 0. The initialcondition F (1) = p� leads to F (x) = p�=x.2. Ore algebrasA very natural framework to describe creative telescoping is provided by a special case of skewpolynomial rings called Ore algebras. These are algebras of linear operators which generalize thedi�erence and di�erential operators.Definition 1. Let K be a (possibly skew) �eld. Let @1; : : : ; @r be de�ned by the followingcommutation rules with all the elements P in A = K(x1 ; : : : ; xp)[y1; : : : ; yq]:@iP = �i(P )@i + �i(P );where �i is a ring endomorphism of A and �i is an additive endomorphism which satis�es thefollowing Leibniz rule: �i(ab) = �i(a)�i(b) + �i(a)b; 8a; b 2 A:Then K(x1 ; : : : ; xp)[y1; : : : ; yq]h@1; : : : ; @ri is called an Ore algebra.Examples of Ore operators are given in Table 1. These can be combined in an algebra whereeach operator acts on a di�erent variable. For instance, the Jacobi polynomials P (�;�)n (x) can bedescribed in Q(�; �; x; n)hSn; Dxi by a linear di�erential equation and a linear recurrence.More complicated examples arise when one of the @i has a special commutation rule with severalof the commutative variables. For instance, in Q(n; q; qn)hS(q)n i, the q-shift operator satis�es thefollowing commutation rule: S(q)n ni(qn)j = qj(n+ 1)i(qn)jS(q)n :In this framework, creative telescoping becomes an elimination process. Given a set of operatorsgenerating an ideal of operators which vanish on the function we want to sum or integrate, the mainOperator @ �(a) �(a) Commutation Action of @Di�erentiation a(x) a0(x) @x = x@ + 1 f(x) 7! f 0(x)Shift a(x+ 1) 0 @x = (x+ 1)@ f(x) 7! f(x+ 1)Di�erence a(x+ 1) a(x+ 1)� a(x) @x = (x+ 1)@ + 1 f(x) 7! f(x+ 1)� f(x)q-Dilation a(qx) 0 @x = qx@ f(x) 7! f(qx)q-Di�erence a(qx) a(qx)� a(x) @x = qx@ + (q � 1)x f(x) 7! f(qx)� f(x)q-Di�erentiation a(qx) a(qx)�a(x)(q�1)x @x = qx@ + 1 f(x) 7! f(qx)�f(x)(q�1)xEulerian operator a(x) xa(x) @x = x@ + x f(x) 7! xf 0(x)et-Di�erentiation a(x) xa(x) @x = x@ + x f(t) 7! f 0(t) (x = et)Mahlerian operator a(xp) 0 @x = xp@ f(x) 7! f(xp) (p � 2)Table 1. Ore operators40



step of creative telescoping asks for an operator in the ideal that does not involve the variable withrespect to which we want to integrate or sum. It turns out that under mild conditions on the �i'sand �i's, Ore algebras are Noetherian and an extension of Buchberger's algorithm can be used tocompute Gr�obner bases. The elimination necessary for creative telescoping can thus be performedautomatically provided we have a good description of the ideal.Given an ideal I and an operator @ of the Ore algebra O = K[x1 ; : : : ; xn]h@1; : : : ; @ki, let x bethose elements of fx1; : : : ; xng which commute with @. The �rst step of creative telescoping istherefore to �nd a basis of the ideal J = I \ K[x]h@1; : : : ; @ki by elimination. The elements of Jcan be written @A+B;(1)where B does not involve @. Since this is an element of I, it cancels whatever function f the idealI was cancelling. Now assuming Af to be 0 on the \borders" of the domain, multiplying by @�1shows that B is the result we are after (see [2] for a more rigourous description and the applicationto inde�nite operations). 3. More examplesThe computation of Gr�obner bases of Ore algebras has been implemented by F. Chyzak in hisMgfunMaple package available at the URL http://www-rocq.inria.fr/algo/. We now illustratesome uses of this package.3.1. Generating Function of the Jacobi Polynomials. The idea is �rst to de�ne operatorsannihilating P (�;�)n (x)yn and then to compute the sum over n by creative telescoping.We start with two operators in Dx and Sn annihilating P (�;�)n (x) (omitted here for space reasons):G:=[...,...]:We then load the package and de�ne the Ore algebra in which this computation will take place.with(Mgfun):A:=orealg(diff=[Dx,x],diff=[Dy,y],shift=[Sn,n],comm=[alpha,beta]):This expresses that there are two variables with a di�erentiation-like commutation rule, one variablewith a shift-like commutation rule and two commutative variables. From the operators annihilat-ing P (�;�)n (x), it is easy to derive operators annihilating P (�;�)n (x)yn:G:=map(primpart,map(numer,[op(subs(Sn=Sn/y,G)),y*Dy-n]),[Sn,Dx,Dy]):Then we are ready for elimination: we create an appropriate term order and then compute aGr�obner basis with respect to it:T:=termorder(A,lexdeg=[[n],[Sn,Dx,Dy]]):GB:=gbasis(G,T,ratpoly(rational,[x,y,alpha,beta])):We �nally select those operators in this basis which do not involve n, and sum over n, which isequivalent to taking the remainder of the division by �n:subs(Sn=1,remove(has,GB,n)):The computation has taken 17 seconds (on a Dec Alpha). After a further fast Gr�obner basiscomputation, the result is reduced to a system of two equations, a large one of order 2 in Dy andanother one linear in Dx and Dy. It is then possible to interact with a di�erential equation solverand, using the initial conditions, obtain the closed-form formulaF (x; y) = 1R(1� y +R)a(1 + y + R)b ; R = p1� 2xy + y2:41



3.2. q-Dixon identity. The aim is to show thatXk (�1)kq k(3k+1)2  a+ ba+ k!q b+ cb+ k!q a + cc+ k!q =  a+ b+ ca; b; c !q:(2)The algebra is Q(q; qa; qb; qc; qk)hSa; Sb; Sc; Ski which has only q-shift operators:A:=orealg(comm=[q],qshift=[Sa,qa,q],qshift=[Sb,qb,q],qshift=[Sc,qc,q],qshift=[Sk,qk,q]):The operators de�ning the summand are all of order 1 and can be obtained in Mgfun byG:=subs([q^a=qa,q^b=qb,q^c=qc,q^k=qk], hypergeomtoholon((-1)^k*q^(k*(3*k+1)/2)*qbinomial(a+b,a+k)*qbinomial(a+c,c+k)*qbinomial(b+c,b+k),A)):Then we eliminate qk and proceed with the telescoping:T:=termorder(A,lexdeg=[[qk],[Sa,Sb,Sc,Sk]]):GB:=gbasis(G,T,ratpoly(rational,[q,a,b,c,qa,qb,qc])):CT:=subs(Sk=1,remove(has,GB,[k,qk])):This yields a system of operators symmetrical in a; b; c. Using one more Gr�obner basis computation,one obtains an operator involving only Sa. By symmetry similar operators in Sb and Sc can be found.Then checking that the right-hand side of (2) satis�es these equations and that su�ciently manyinitial condition coincide proves the identity. It is also possible to use Abramov and Petkov�sek'sq-version of Petkov�sek's algorithm to �nd the right-hand side.4. Takayama's algorithmThe computation of A and B in (1) is slightly more than what is strictly necessary. Actually weonly need to compute B. N. Takayama gave an algorithm for doing so in the Weyl algebra, andthis algorithm generalizes to Ore algebras.The idea is that it is possible to throw away all the right multiples of @ during the computationas long as we know they will only be multiplied by polynomials which commute with @ during latercomputations (so that they will remain right multiples of @). This is done by working in increasinglylarge modules where multiplication by the xi's which do not commute with @ is forbidden. Theoperator @ can then easily be eliminated in a preprocessing phase.This results in an algorithm which is generally faster than the general one, but which is onlyguaranteed to terminate when there is an element free of the undesirable variables in the ideal.Bibliography[1] Abramov (Sergei A.) and Petkov�sek (Marko). { Finding all q-hypergeometric solutions of q-di�erenceequations. In Leclerc (B.) and Thibon (J. Y.) (editors), Formal power series and algebraic combinatorics.pp. 1{10. { Universit�e de Marne-la-Vall�ee, 1995. Proceedings SFCA'95.[2] Chyzak (Fr�ed�eric) and Salvy (Bruno). { Non-commutative Elimination in Ore Algebras Proves Multi-variate Holonomic Identities. { Research Report n�2799, Institut National de Recherche en Informatiqueet en Automatique, February 1996.[3] Ore (Oystein). { Theory of non-commutative polynomials.Annals of Mathematics, vol. 34, 1933, pp. 480{508.[4] Petkov�sek (Marko), Wilf (Herbert), and Zeilberger (Doron). { A=B. { A. K. Peters, Wellesley, Mass.,1996.[5] Takayama (Nobuki). { An algorithm of constructing the integral of a module | an in�nite dimensionalanalog of Gr�obner basis. In Symbolic and algebraic computation. pp. 206{211. { ACM, 1990. Proceedingsof ISSAC'90, Kyoto. 42



@-�nite functionsFr�ed�eric ChyzakINRIA RocquencourtJanuary 15, 1996[summary by Bruno Salvy]AbstractThe algebra of @-�nite functions and sequences enjoys several closure properties usefulwhen computing a description suitable for creative telescoping. A simple description of@-�niteness can be given in the context of Ore algebras. In the special case of the Weylalgebra, a special property called holonomy plays a crucial role.We consider an Ore algebra A = K(x1 ; : : : ; xn)h@1; : : : ; @ki (see previous summary). A functionis @-�nite with respect to A when its pseudo-derivatives @�f = @�11 � � �@�kk f with �i 2 N for i =1; : : : ; k span a �nite-dimensional vector space over K(x1 ; : : : ; xn). Examples of @-�nite functions inthe univariate case are: hypergeometric power series and sequences, solutions of linear recurrencesand solutions of linear di�erential equations. In several variables, it becomes necessary to specifywith respect to which operators one considers @-�niteness; for instance, all sequences of orthogonalpolynomials are @-�nite with respect to shift of the index and di�erentiation in the argument.An equivalent de�nition is that f is @-�nite when the module M = A � f is �nitely generated:M = ��2AK(x)@�f , for a �nite set of indices A. If Ann f denotes the ideal of the elementsof A vanishing on f , then A=Ann f is isomorphic to A � f , and this yields a purely ideal-theoreticde�nition of @-�niteness which avoids the introduction of functions. An ideal I of A is thus called @-�nite when A=I is �nitely generated as a K(x)-module.1. Closure propertiesWhat makes @-�nite functions so useful is that it is possible to compute with these functionswithout reference to any sort of \closed-form". Many computations can be performed directly onsets of generators of their annihilating ideal. In particular, sum and product of @-�nite functionscan be obtained this way.1.1. Rectangular systems. Before giving the algorithms for sum and product we note thata @-�nite function f is always annihilated by a rectangular system of polynomials, which is suchthat each @i of the algebra is involved in exactly one of the polynomials. Consequently, each of thepolynomials involves only one @i. That this is so follows from the �nite dimension of PnK(x)@ni f ,which implies the existence of a linear relation between a �nite number of @ni f . Rectangular systemsare useful to prove @-�niteness of various constructions, or in the case where Gr�obner bases are notavailable. In other cases, they generally describe an ideal which is smaller than the one we wouldlike to work with, and this leads to slower computations.Example. In A = Q(x; y)h@x; @yi, the sum of the Bessel functions J�(x) and J�(y) is annihilatedby the rectangular system S = f@x(x2@2x + x@x + x2 � �2); @y(y2@2y + y@y + y2 � �2)g. If �(x; y)43



is a solution of S, and I is the ideal generated by S in A, then it is easily checked that A=I isgenerated by f�; @x�; @2x�; @y�; @x@y�; @2x@y�; @2y�; @x@2y�; @2x@2y�g and thus is of dimension 9. How-ever, the annihilating ideal of f = J�(x) + J�(y) also contains @x@y. The ideal generated by theadjunction of this polynomial to the rectangular system above is Ann f and A=Ann f is generatedby ff; @xf; @2xf; @yf; @2yfg and is only of dimension 5.1.2. Sum. If f and g are two @-�nite functions, then by linearity @�(f + g) 2 Af +Ag whichis �nite-dimensional. Hence a sum of @-�nite functions is @-�nite.Given a rectangular system for f and a rectangular system for g a rectangular system for f + gis obtained by reducing hn = @ni f + @ni g for increasing values of n. These reductions use the initialrectangular systems and right Euclidean division, which works in any Ore algebra. All the hn's arethus rewritten in a �nite basis ff; @f; : : : ; @Jf; g; @g; : : : ; @Kgg. The value of n is increased until alinear relation between the hn's is found by Gaussian elimination.1.3. Product. We assume that for each @i in the algebra, the morphisms �i and �i de�ned bythe commutation rule @ip = �i(p)@i + �i(p)are polynomials in @i over K(x1 ; : : : ; xn). This is not a severe restriction. Then by the same kindof argument as above, the product of two @-�nite functions is @-�nite. The algorithm to produce arectangular system for the product out of two rectangular systems for the functions being multipliedis exactly the same as above.1.4. Generalizations. Actually, the same algorithm extends to the direct computation of arectangular system for any polynomial h in some @�i;jfi's given the rectangular systems de�ningthe fi's.The FGLM algorithm [3] provides another generalization: given rectangular systems de�ningthe fi's and a term order T on the @�'s, this algorithm returns a Gr�obner basis for T . Roughlyspeaking, this algorithm considers all the monomials @�h in the order T and stops when it hasfound su�ciently many relations. More precisely we start with F = fhg, the resulting basis isset to L = fg and the basis of A:h is set to R = fg. At each step the smallest element t of Fwith respect to T is selected and reduced by the rectangular systems de�ning the f 0is. Gaussianelimination is then performed to detect a linear dependency between t and the elements of R. Ifno linear dependency is found, t is added to R, removed from F , and all the @it are added to F .Otherwise, the dependency is added to L. The algorithm stops when F is empty, and returns L.Note that the Gr�obner basis returned by this method is not necessarily a basis of Ann f since, aswe have already seen, the rectangular systems do not necessarily generate a su�ciently large ideal.Yet another extension consists in using any Gr�obner basis for the fi's instead of a rectangularsystem. In the reduction step, the Euclidean division is replaced by a reduction using the Gr�obnerbases.Once again, when it is available, the advantage of this approach over manipulating only rect-angular systems is that it results in modules of a smaller dimension, and therefore lessens thecomplexity of further computations.1.5. Example. The following identity between Ap�ery numbers and Franel numbers was provedby V. Strehl: nXk=0 nk!2 n+ kk !2 = nXk=0 nk! n+ kk ! kXj=0 kj!3:(1) 44



A system is easily found for �kj�3 which is hypergeometric:(k + 1� j)3Sk � (k + 1)3; (k � j)3Sj � (j + 1)3:Then using creative telescoping (see previous summary), one gets an equation for the sum over j:(k + 2)2S2k � (7k2 + 21k + 16)Sk � 8(k + 1)2:Again, a system is easily found for �nk��n+kk � which is hypergeometric:(n + 1� k)Sn � (n+ 1+ k); (k + 1)2Sk � (n(n+ 1)� k(k + 1)):The product of this with the previous equation yields a system for the summand of the right-handside of (1) whose �rst equation is the �rst one above (obviously!) and whose second equation is:(k + 2)4S2k + (n� k � 1)Sk + 8(n+ k + 2)(n+ k + 1)(n� k)� (7k2 + 21k+ 6)(n+ k + 2):Now, creative telescoping yields an equation for the right-hand side of (1):(n+ 2)3S2n � (2n+ 3)(17n2 + 51n+ 39)Sn + (n+ 1)3:(2)The same process is then applied to the left-hand side. First, �nk�2�n+kk �2 is hypergeometric andsatis�es (n+ 1� k)2Sn � (n+ 1 + k)2; (k + 1)4Sk � (n(n+ 1)� k(k + 1))2:Creative telescoping then yields (2) again. The identity is then proved by checking that twoinitial conditions coincide, which they do. The whole computation takes less that 10 seconds on aDec Alpha. 2. HolonomyThe algorithms for creative telescoping which we have described in the previous summary dependon the existence of a polynomial free of one of several variables in the ideal we are working in. Itis thus very important to be working in the proper ideal and to be able to check whether such apolynomial exists or not. In the Weyl algebra case, holonomy theory provides such a guarantee.We describe elements of this theory, and give some hints on what remains valid in the more generalOre algebra case.2.1. Hilbert dimension. Let A be an Ore algebra: A = K[x]h@i. Let deg denote the totaldegree with respect to x and @. We consider the graduation Fn of A where Fn contains the elementsof A of degree at most n. Finally, let hn = dimK(Fn � f).Example. For f = 1 in the algebra K[x1; : : : ; xp]h@1; : : : ; @pi, one has hn = �n+pp � � np=p!.For f = exp(x2) in K[x]h@xi, it is easy to compute the �rst few values and be convinced that hn =n+ 1.For f = (s3 � s2 + sx)�1=2 in K[s; x]h@x ; @yi, the �rst values indicate that hn = 3n2 + 2.For f = exp(sin(x)) in K[x]h@xi, one gets hn = n2=2 + 3n=2 + 1.Finally, for f = �nk� in K[n; k]hSn; Ski, hn = 2n+ 1.A general theorem of Hilbert implies that asymptotically, hn � cnd with d an integer which iscalled the Hilbert dimension of the ideal. The relevance of this notion to creative telescoping is ofa combinatorial nature: if B is obtained by forming all the monomials in q of the variables (x;@),then Fn \B contains �n+qq � monomials. As soon as this number grows faster than nd where d is theHilbert dimension of the annihilating ideal of some f , then a linear combination of elements of Bhas to vanish on f , which means that the ideal contains elements of B.45



2.2. Weyl algebra. The Weyl algebra is a special case of a polynomial Ore algebra Ap =K[x1 ; : : : ; xp]h@1; : : : ; @pi where @i is the di�erentiation operator with respect to the correspond-ing xi, for i = 1; : : : ; p. A fundamental theorem of Bernstein states that in this case, the Hilbertdimension of an ideal is always larger than p. Those ideals for which the Hilbert dimension isexactly p are called holonomic. By extension, a function whose annihilating ideal in a Weyl algebrais holonomic will be called holonomic too. In the examples above, exp(x2) and (s3 � s2 + sx)�1=2are holonomic functions, while exp(sin x) is not.Holonomy of functions is preserved under sum and product, algebraic functions are holonomic,algebraic substitution preserves holonomy, the diagonal of a holonomic function is holonomic [4, 5].In addition, a result due to Kashiwara states that when an ideal I in the rational Ore alge-bra K(x1 ; : : : ; xp)h@1; : : : ; @pi is @-�nite, then I\A is a holonomic ideal. This means that all @-�nitefunctions with respect to di�erentiation are also holonomic. Finally, creative telescoping alwaysworks in holonomic ideals. 3. ConclusionsThe algorithms we have given work in a very general context of Ore algebras. However, creativetelescoping is never guaranteed a priori to give an answer in the general case, unless the existenceof the result is ensured, for instance by holonomy. An advantage of our approach is that it maywell return results in non-holonomic cases.An important di�culty will be the subject of future work. Even in the Weyl algebra case, theideals I we are dealing with have a natural description in rational Ore algebras K(x)h@i. However,for creative telescoping what we need is a basis of I \ K[x]h@i. At the moment, we do not haveany algorithm to produce this basis. However, algorithms exist to deal with the same problem inthe commutative case, and they might extend to this framework.This problem is illustrated by the computation of the diagonal of 1=(1 � x � y). This can beobtained via a residue computation as the de�nite integral of f = (s2�s+x)�1 which is holonomic.Thus creative telescoping applies and there exists an operator free of s in the ideal. The annihilatingideal Ann f of f in K(s; x)h@s ; @xi is generated by S = f(s2� s+ x)@s+ 2s� 1; (s2� s+ x)@x+ 1g.However, the ideal generated by S in the Weyl algebra A = K[s; x]h@s; @xi is smaller than Ann f\Aand does not contain any polynomial free of s. To get such a polynomial, it is necessary toaugment S, for instance with (s2 � s+ x)@s@x + 2@s.Bibliography[1] Cartier (Pierre). { D�emonstration `automatique' d'identit�es et fonctions hyperg�eom�etriques. Ast�erisque,vol. 206, 1992, pp. 41{91. { S�eminaire Bourbaki.[2] Chyzak (Fr�ed�eric) and Salvy (Bruno). { Non-commutative Elimination in Ore Algebras Proves Multi-variate Holonomic Identities. { Research Report n�2799, Institut National de Recherche en Informatiqueet en Automatique, February 1996.[3] Faug�ere (J. C.), Gianni (P.), Lazard (D.), and Mora (T.). { E�cient computation of zero-dimensionalGr�obner bases by change of ordering. Journal of Symbolic Computation, vol. 16, 1993, pp. 329{344.[4] Lipshitz (L.). { The diagonal of a D-�nite power series is D-�nite. Journal of Algebra, vol. 113, 1988,pp. 373{378.[5] Lipshitz (L.). { D-�nite power series. Journal of Algebra, vol. 122, n�2, 1989, pp. 353{373.[6] Petkov�sek (Marko), Wilf (Herbert), and Zeilberger (Doron). { A=B. { A. K. Peters, Wellesley, Mass.,1996. 46



Computing the Distance of a Point to an Algebraic Hypersurfaceand Application to Exclusion MethodsXavier GourdonAlgorithms Project, INRIA RocquencourtFebruary 12, 1996[summary by Pierre Nicod�eme]AbstractWe compute lower bounds for the distance in Cn from a point u to an algebraic sur-face Z. Such lower bounds or proximity tests give an approximation of Z. We present testsbased on both Taylor's formula and a generalization of the Dandelin-Grae�e process to themultivariate case, and their application to the exclusion method [2].1. IntroductionGiven a point a in C n , and an algebraic hypersurfaceZ(P ) = f(z1; : : : ; zn) 2 C n jP (z1; : : : ; zn) = 0g;with P 2 C [z1; : : : ; zn], we want to evaluate the distance d(a;Z) corresponding to the normkzk = max1�k�n jzij:By shifting the variable z, we can restrict to the case a = 0.2. Univariate PolynomialsLet P (z) = Pdi=0 aizi 2 C [z] ; ad 6= 0, and Z(P ) = fU1; : : : ; Udg. We want to evaluate d(0;Z) =mini jUij. In Henrici [4, vol. 1], Theorems 6.4.d and 6.4.i give the following classical bound forZ(P ):Proposition 1. If �(P ) is the nonnegative root of the equation ja0j =Pdj=1 jaj j�j, then�(P ) � d(0;Z)� 121=d � 1�(P ) � dlog 2�(P ):Grae�e Iteration. With P (z) = adQdi=1(z � Ui), we considerP (z)P (�z) = (�1)da2d dYi=1(z2 � U2i ) = P h1i(z2):We note P h1i the classical Grae�e iterate; the roots of P h1i are the squares of those of P , andd(0;Z(P h1i)) = d(0;Z(P ))2; we have�(P h1i) � d(0;Z(P h1i)) � �(P h1i)21=d � 1;47



so with �1 = q�(P h1i), we get �1 � d(0;Z(P ))� �1(21=d � 1)1=2 :Generally, we de�ne P hki = Grae�e(P hk�1i) ; then, we get d(0;Z(P hki)) = d(0;Z(P ))2k; with�k = �(P hki)1=2k, we have �k � d(0;Z(P ))� �k(21=d � 1)1=2k :The upper bound tends rapidly to the lower bound as k increases, thus we have obtained an e�ectiveprocess to compute d(0;Z).Computing the P hki. With A(z) =Pi�0mod2 aizi=2 and B(z) =Pi�1mod2 aiz(i�1)=2, we haveP (z)P (�z) = A(z2)2 � z2B(z2)2;and therefore, Grae�e(P ) = A(z)2 � zB(z)2:A practical problem is that the coe�cient size doubles at each Grae�e iteration.3. Multivariate PolynomialsIn the multivariate case, the polynomial P (z)P (�z) can not be written as Q(z2) where Q(z)is a polynomial, thus we need to modify the de�nition. We generalize the Grae�e process to themultivariate case as follows:Definition 1. We call the N -th Grae�e iterate of P (z) 2 C [z1 ; : : : ; zn] the polynomial P [N ](z)de�ned by P [N ](z) = 2N�1Yj=0 P (!jz); ! = exp�2i�2N � ; i2 = �1;where !jz denotes the point (!jz1; : : : ; !jzn).Proposition 2. For all non negative integer N , the N -th Grae�e iterate of P (z) writes asP [N ](z) =Xj�0B[N ]j (z);where the B[N ]j 's are homogeneous polynomials of degree 2Nj. The (N + 1)-st Grae�e iterate canbe computed from the N -th thanks to the formulaP [N+1](z) = P [N ]0 (z)2 � P [N ]1 (z)2; P [N ]k (z) = Xj�kmod2B[N ]j (z):With the multivariate Grae�e process, we easily generalize the univariate algorithm to computed(0;Z) in the multivariate case.Theorem 1. Let P (z) be a polynomial in C [z1 ; : : : ; zn] of total degree d. Let P [N ](z) =Pj�0B[N ]j (z)be its N -th Grae�e iterate and RN the non-negative solution of the equation in RjP [N ](0)j =Xj�1 kB[N ]j k1Rj;(1) 48



d r0=d r1=d r2=d r3=d r4=d2 0.7673 0.9725 0.9996 1.0000 1.00005 0.6525 0.9479 0.9973 1.0000 1.00007 0.6325 0.9400 0.9960 0.9999 1.000015 0.6067 0.9271 0.9938 0.9999 1.0000Table 1. Some values of rN=d(0;Zn;d)for n = 2. d r0=d r1=d r2=d r3=d2 0.5832 0.6338 0.8108 0.82243 0.4802 0.5108 0.6478 0.7561Table 2. Some values ofrN=d(0;Zn;d) for n = 7.where kB[N ]j k1 = supkzk=1 kBj(z)k. Then we haverN � d(0;Z)� � 121=d � 1�2�N rN ; rN = R2�NN :(2)Computing kB[N ]j k1 raises a di�cult practical problem; therefore, we make use of the normkP� a�z�k =P ja�j; easy to compute. Our main result is stated using this norm; one demonstratesthe equivalence of the norms k � k1 and k � k by combination of the Parseval identity and of theCauchy-Schwarz inequality.Theorem 2. Let �N be the unique nonnegative solution ofjP [N ](0)j = dXj=1 kB[N ]j k�j(3)The distance from 0 to Z satis�es rN � d(0;Z)� �NrN ;(4)where rN = �2�NN and �N = 0@ 121=d � 1vuut 2N + n� 1n� 1 !1A1=2N :Moreover limN!1 �N = 1, which implies limN!1 rN = d(0;Z).4. ExamplesWe take a polynomial of degree d in n variables: Pn;d =Pnj=1(1� zj)d� 1:With Zn;d = Z(Pn;d),we have d(0;Zn;d) = 1� 1n1=d :Tables 1 and 2 give the value of the ratio rN=d(0;Zn;d) of Theorem 3 for several values of n, dand N . The computations were performed in Maple. These examples show that the bound is quitegood for a small value N of Grae�e iterates.5. Exclusion methodsWe give the principle of the method for a polynomial of one variable P (z) 2 C [z].{ Let the exclusion function be: z0 7! �(z0), with � given by theorem 2 after a proper shiftof the variable, and(1) �(z0) = 0() P (z0) = 0;(2) P has no zero in jz � z0j < �(z0), which is equivalent to �(z0) � d(z0;Z);{ then, the exclusion test is: let C be a square of centre z0 and half-side a > 0. If �(z0) � p2a,C contains no zero of P . 49
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xFigure 2. Intersection of thecurves x3+y3�2xy = 0 (Descartesfolium) and y4� 2y3+ y2� 3x2y+2x4 = 0 (petal).Exclusion algorithm.{ Consider the reciprocal polynomial R(z) of P (z); compute by Grae�e a lower bound of thesmallest root of R(z), which gives an upper bound bu of the largest root of P (z);{ Start from a big square centred at the origin, with side 2bu, which contains all the roots ofP (z);{ Recursively split the square in four squares of equal size, discarding by the exclusion testsquares containing no zeros;{ Stop the recursion when the desired precision is reached (the surface of the area coveringthe zeros decreases exponentially fast to zero).Figure 1 shows an application of the exclusion method to localize an algebraic curve in R2.For an algebraic variety Zi = Z(Pi) and Z = TiZ(Pi), with P1; : : : ; Pm 2 C [z1; : : : ; zn], let�i(z0) be an exclusion function de�ned by theorem 2 for Pi; (1 � i � m); we can de�ne an exclusionfunction for the variety as �(z0) = sup1�i�m �i(z0).An application of exclusion method to localize the intersection of two curves in R2 is given inFigure 2. Bibliography[1] Bareiss (Erwin H.). { Resultant procedure and the mechanization of the Grae�e process. Journal of theACM, vol. 7, 1960, pp. 346{386.[2] Dedieu (Jean-Pierre), Gourdon (Xavier), and Yakoubsohn (Jean-Claude). { Computing the distancefrom a point to an algebraic hypersurface. { July 1996. Seminar of the American Mathematical Society.Park City. 8 pages. In press.[3] Dedieu (Jean-Pierre) and Yakoubsohn (Jean-Claude). { Localization of an algebraic hypersurface by theexclusion algorithm. Applicable Algebra in Engineering, Communication and Computing, vol. 2, 1992,pp. 239{256.[4] Henrici (Peter). { Applied and Computational Complex Analysis. { John Wiley, New York, 1977. 3 vol-umes.[5] Pan (V.). { Solving a polynomial equation: some story and recent progress. { 1995. Preprint.50



Matrix-based methods for solving polynomial systemsIoannis EmirisProjet SAFIR, Inria Sophia-Antipolis11 mars, 1996[summary by Fr�ed�eric Chyzak]AbstractWe present a uniform approach to the elimination of variables between polynomials andthe construction of matrices that express resultants. Building a matrix whose determinantis a multiple of the resultant reduces the solving of a polynomial system to a generalizedeigenvalues/eigenvectors problem for a square matrix. Several such matrices are of interest,in particular the Newton and B�ezout/Dixon matrices, which lead to e�cient calculations.1. Classical resultants versus sparse resultantsClassically, the resultant is a single polynomial which characterizes the solvability of a system ofdense polynomials [7]. We introduce another concept of resultant which takes the structure of thecoe�cients into account.Let f1(c; x); : : : ; fn+1(c; x) be n + 1 polynomials in the n indeterminates x1; : : : ; xn and withcoe�cients that are polynomial in c1; : : : ; cN over a �eld K. A sparse resultant R(c) with respectto a sub�eld L of the algebraic closure K is an irreducible polynomial of K[c1 ; : : : ; cN ] that vanishesat a specialization 
 of the ci's if and only if the corresponding specializations of the fi's have acommon zero. In other words, the resultant satis�es8
 2 LN (R(
) = 0() 9� 2 Ln 8i = 1; : : : ; n fi(
; �) = 0) :For some applications, one requires that the coe�cients of the fi's be generic, i.e., that one cibe introduced for each coe�cient. Special cases are of particular interest. In the case of densehomogenized polynomialsfi(x0; x1; : : : ; xn) = Xa0+���+an=di ca0;:::;anxa00 : : :xann ;we recover the classical homogeneous resultant [7]. In the case of two (dense) univariate polyno-mials, we recover Sylvester's classical notion of the univariate resultant [6], whose expression asa determinant is recalled in the next section. In the case of (possibly sparse) polynomials withgeneric coe�cients, i.e., when fi(x1; : : : ; xn) = riXj=1 ci;jxai;j;11 : : :xai;j;nnfor non-zero undetermined coe�cients ci;j that are transcendental over the �eld K, the resul-tant R(c) is called the sparse resultant of the fi's.51



A major di�erence between the classical and the sparse resultants is that the former expresssimultaneous solvability in a projective space Pn�K� whereas the latter express simultaneous solv-ability in the torus �K��n which is a proper subset of Pn�K�.2. Expression of the resultant as a determinantTwo important examples of classical resultants are given as the determinant of a matrix. First, inthe case of dense linear polynomials fi = ci;0+ ci;1x1+ � � �+ ci;nxn, the corresponding homogeneousresultant [7] is R(c) = det24 c1;0 : : : c1;n... ...cn+1;0 : : : cn+1;n 35 :Second, in the case of dense univariate polynomials f(a; x) = anxn+ � � �+ a0 and g(b; x) = bmxm +� � �+ b0, the univariate resultant [6] is the following determinantR(a; b) = det26666666664 an an�1 an�2 : : : a2 a1 a0 0 : : : 00 an an�1 an�2 : : : a2 a1 a0 0 0... ... . . . . . . . . . . . . . . . .. . ...0 : : : 0 an an�1 an�2 : : : a2 a1 a0bm bm�1 bm�2 : : : b2 b1 b0 0 : : : 00 bm bm�1 bm�2 : : : b2 b1 b0 0 0... ... . . . . . . . . . . . . . . . .. . ...0 : : : 0 bm bm�1 bm�2 : : : b2 b1 b0 37777777775 ;where the matrix has constant values on diagonals and each row corresponds to the product ofeither polynomial times a power of x, written in the basis (xmax(n;m); : : : ; x; 1). Sparse resultantscan be expressed as the determinant of a matrix. More precisely, we proceed to give an expression ofa multiple of the resultant in the case of sparse polynomials with generic undetermined coe�cients.To give this expression, de�ne the support of a polynomial f =Pa1;:::;an ca1;:::;anxa11 : : :xann as theset Supp(f) � Nn of those (a1; : : : ; an) such that ca1;:::;an 6= 0. Note thatSupp(fg) � Supp(f) + Supp(g) and Supp(f + g) � Supp(f)[ Supp(g):With this de�nition, we now construct matrices that represent the specialization applicationof polynomials fi(c; x) on a point � 2 Kn . For i = 1; : : : ; n, let Si be a subset of Nn. Nextde�ne S0 to be Sni=1 (Si + Supp(fi)). For i = 0; : : : ; n, call Pi the set of polynomials f 2 K[c; x]such that Supp(f) � Si. Then, the applicationM from P1�� � ��Pn to P0 given byM(l1; : : : ; ln) =Pni=1 lifi is a well-de�ned linear application. For i = 0; : : : ; n, write Si = fsi;1; : : : ; si;Nig � Nn.Then M has a matrix representation, M = [m(i;i0);j(c)], where, for convenience, we number therows of M by (i; i0) and the columns by j. This matrix is given byxsi;i0fi(c; x) = N0Xj=1m(i;i0);j(c)xs0;j ; for i = 1; : : : ; n and i0 = 1; : : : ; Ni.Under this representation, the evaluation ofM at the tuple �PN1j=1 l1;j(c)xs1;j ; : : : ;PNnj=1 ln;j(c)xsn;j�of P1 � � � � � Pn is given by the product:[ l(1;1)(c) : : : l(n;Nn)(c) ]24 m(1;1);1(c) : : : m(1;1);N0 (c)... . .. ...m(n;Nn);1(c) : : : m(n;Nn );N0 (c) 3524 xs1;1...xsn;Nn 35 :52



On the other hand, the product of M by a column vector yields the simultaneous specialization ofmultiples of the fi's at a point � 2 Kn :24 m(1;1);1(c) : : : m(1;1);N0 (c)... . .. ...m(n;Nn);1(c) : : : m(n;Nn);N0 (c) 3524 �s0;1...�s0;N0 35 = 24 �s1;1f1(c; �)...�sn;Nn fn(c; �) 35 :From this second fact, it follows that if � 2 �K��n is a common zero of the specializations ofthe fi(c; x) at c = 
, there exists v
 = [�s1;1 ; : : : ; �sn;Nn ]T 6= 0 such that M(
)v
 = 0. Moreover,when M is a square matrix, we have that detM(
) is zero. More is true: in the case when sucha v
 exists, R(c) divides detM(c), and the matrix M is called a matrix of the resultant. One thuscomputes a multiple of the resultant as the determinant of the matrix M above. It only remainsto determine suitable sets Si, for which possible constructions are alluded to in Section 4.3. Numerically solving polynomial systemsIn this section, we assume that f1; : : : ; fn 2 K[x1 ; : : : ; xn] is a well-determined system of poly-nomials with determined coe�cients, whose variety is zero-dimensional, i.e., the roots are isolated.We assume further that the ideal (f1; : : : ; fn) is radical, i.e., that the roots are simple. Then, whenthe matrix M above is a matrix of the resultant, it can be used to numerically solve the system.To do so, we look at an over-determined system in place of the well-determined system, so as tointroduce genericness in the coe�cients. Two such over-determined systems are available:(1) either we add fn+1 = r1x1 + � � � + rnxn + u for ri in K, and view the fi's as elementsof K[u][x1; : : : ; xn], and we look for their sparse resultant in K[u];(2) or we conceal one variable, say xn, and view the fi's as elements of K[xn ][x1; : : : ; xn�1], andwe look for their sparse resultant in K[xn ].If the second system is chosen, we change n into n� 1, then xn+1 into u, so that in both cases, welook for the sparse resultant R(u) 2 K[u] of polynomials fi(u; x) 2 K[u][x1 ; : : : ; xn]. In either case,let us assume that the matrix M(u) is a matrix of the resultant.Again, let L be an algebraic �eld extension of K in K and (�; �) 2 Ln� L be a solution in (x; u)of the over-determined system. Then detM(�) = 0 and M(�)v� = 0. If case (1) above was chosen,we only need to determine �. If case (2) above was chosen, we need to determine both � and �.In both cases, we look for (�; �), or equivalently for (v�; �). This reduces the initial problem ofsolving a polynomial system to a generalized eigenvalues/eigenvectors problem, for which optimizednumerical algorithms are available. More speci�cally, this problem takes several possible forms,amongst which both following extreme cases:{ if the matrix M(u) is linear in u, M(u) = M1u +M0, with M1 invertible, the problem is a(simple) eigenvalues/eigenvectors problem:M(�)v� = 0() ��M�11 M0 � �Id� v� = 0;{ if the matrix M(u) is non-linear in u, M(u) = Mdud + � � �+M0, with Md non-invertible,the problem is a generalized eigenvalues/eigenvectors problem:M(�)v� = 0() 0B@264 0 1 0... . ..0 0 1�M0 �M1 : : : Md�1 375� �264 1 0 0. .. ...0 1 00 : : : 0 Md 3751CA264 v��v�...�d�1v� 375 = 0:53



To reduce the size of the matrices and achieve more e�ciency, we perform operations on rowsand permutations on columns of M beforehand, rewriting M and v� in the form~M(u) = � ~M1;1 ~M1;2(u)~M2;1(u) ~M2;2(u) � and ~v� = h w�w0� i ; respectively.It follows thatM(�)v� = 0() ~M(�)~v� = 0() � ~M1;1 ~M1;2(u)0 ~M2;2(x)� ~M2;1(u) ~M�11;1 ~M1;2(u) � h w�w0� i = h 00 i ;whenceM 0(x) = ~M2;2(x)� ~M2;1(u) ~M�11;1 ~M1;2(u) satis�esM 0(x)w0� = 0. Solving this smaller problemyields possible roots of the initial problem.4. Mixed volume and various matrices of resultantsThe mixed volume of convex polyhedra Q1; : : : ; Qn � Rn is classically de�ned by the sin-gle mapping VM to R which is multilinear with respect to the addition of polyhedra and suchthat VM(Q; : : : ; Q) = n! Vol(Q), where Vol is the Euclidean volume. We next de�ne the Newtonpolytope of a polynomial f as the convex hull of its support. A famous theorem by Bernstein [1]states the number of isolated roots of a polynomial system counted with multiplicity is boundedby the mixed volume of the Newton polytopes of the polynomials, a bound which is much betterin case of sparse polynomials than the older B�ezout's bound for dense polynomials. An e�cientalgorithm is given in [2, 5], where the construction of the Newton matrix of a resultant is derived.Another matrix of a resultant is of interest, the B�ezout-Dixon matrix [3], which is de�ned byintroducing new indeterminates ai as264 f1(x) : : : f1(a1;:::;ai;xi+1 ;:::;xn )�f1(a1;:::;ai�1 ;xi ;:::;xn )ai�xi : : : f1(a)�f1(a1;:::;an�1 ;xn)an�xn... ... ...fn+1(x) : : : fn+1(a1;:::;ai;xi+1 ;:::;xn )�fn+1(a1;:::;ai�1 ;xi ;:::;xn)ai�xi : : : fn+1(a)�fn+1(a1;:::;an�1 ;xn)an�xn 375 :Bibliography[1] Bernstein (D. N.). { The number of roots of a system of equations. Functional Analysis and Applications,vol. 9, n�2, 1975, pp. 183{185.[2] Canny (J.) and Emiris (I.). { An e�cient algorithm for the sparse mixed resultant. In Cohen (G.), Mora(T.), and Moreno (O.) (editors), Applied Algebra, Algebraic Algorithms and Error-Correcting Codes.Lecture Notes in Computer Science, pp. 89{104. { Springer Verlag, 1993. Proceedings AAECC'93, May,Puerto Rico.[3] Dixon (A. L.). { The eliminant of three quantics in two independent variables. Proceedings of the LondonMathematical Society, vol. 6, 1908, pp. 49{69 and 209{236.[4] Emiris (I. Z.). { Sparse Elimination and Applications in Kinematics. { PhD thesis, Computer Sci-ence Division, Dept. of Electrical Engineering and Computer Science, University of California, Berkeley,December 1994.[5] Emiris (I. Z.) and Canny (J.F.). { E�cient incremental algorithms for the sparse resultant and the mixedvolume. Journal of Symbolic Computation, vol. 20, n�2, August 1995, pp. 117{149.[6] Sylvester (J. J.). { On a theory of syzygetic relations of two rational integral functions, comprisingan application to the theory of Sturm's functions, and that of the greatest algebraic common measure.Philosophical Transactions, vol. 143, 1853, pp. 407{548.[7] van der Waerden (B. L.). { Modern Algebra. { Frederick Ungar Publishing Co., New-York, 1950, thirdedition. 54



Computation of large values of �(x)Marc Del�egliseUniversit�e Lyon-1February 12, 1996[summary by Philippe Dumas and Fran�cois Morain]Every textbook about number theory explains the sieve of Eratosthenes [3], which is one of theoldest known algorithms. This algorithm enables us to compute the prime numbers less than a�xed number x. It consists in successively striking out the multiples of the already known primenumbers, the �rst one being 2. The cost of the algorithm is O(x1+") for all " > 0. Pritchard hasgiven a lot of theoretical algorithms that perform in sublinear time (see [8] for new results and abibliography on this topic). From a practical point of view, many tricks can be used to �nd allprimes less than 1012 in a fast way, as explained for example in [1].Clearly the enumeration of all the primes less than x cannot have a lower cost than �(x). Besidesthe computation of �(x), the number of primes less or equal to x, does not need to �nd all the primesless than x. This fact is set up by the formula of Legendre, which uses the prime numbers less orequal to px. Next, the works of Meissel and Lehmer provides more subtle formul�, which reducethe amount of computation. As an example Meissel computed the value of �(108). Nevertheless,these methods all have a cost of O(x1+"). Lagarias, Miller, and Odlyzko gave a method which for the�rst time had a complexity O(x�) with � < 1. More precisely the time complexity is O(x2=3+") andthe space complexity is O(x1=3+"). This permits them to compute the value of �(1016). Del�egliseand Rivat [2] lessen the time complexity by a logarithmic factor using a slight modi�cation of theprevious method, hence they obtained the value of �(1018).All these methods use the idea of sieve, but Lagarias and Odlyzko [5] proposed an entirelydi�erent way to compute �(x). The method is based on an analytic formula, and its expected costis O(x1=2+"). It has never been implemented.1. Sieve functionLet us assume that we use the sieve of Eratosthenes. We write all the integers between 1 and x,and we strike out successively the multiples of p1 = 2, p2 = 3, and so on. We stop when we haveused the a-th prime number pa. The number of integers which remain is �(x; a). The function�(x; a) is the partial sieve function. As a convention, we set �(x; 0) = bxc. A mere combinatorialargument gives the following recursion rule,�(x; a) = �(x; a� 1)� �(x=pa; a� 1):A raw application of this rule gives the formula�(x; a) = Xm�xP (m)�pa �(m)bx=mc;where �(m) is the M�obius function and P (m) is the largest prime factor of m.55



�(x; a)��� @@@�(x; a� 1) ��(x=pa; a� 1)��� @@@ ��� @@@�(x; a� 2) ��( xpa�1 ; a� 2) ��( xpa ; a� 2) �( xpapa�1 ; a� 2)Figure 1. A computation tree for �(x; a). The sum of the leaves is �(x; a).In the sequel, an important point will be a clever re�nement in the use of the recursion rule.Indeed the last formula contains too many terms. The recursion rule may be viewed as an expansionrule, which provides a computation tree for �(x; a) (see Fig. 1). The problem is to give a stoppingcriterion in order to avoid an excessive growth of the number of leaves.The partial sieve function �(x; a) is used in the following manner. Let us denote by Pk(x; a) thenumber of integers less or equal to x with exactly k equal or distinct prime factors, those primefactors being all greater than pa. With the equality P0(x; a) = 1, we have immediately�(x; a) = P0(x; a) + P1(x; a) + P2(x; a) + P3(x; a) + � � � :But it is manifest that P1(x; a) = �(x)� a;hence the following basic formula�(x) = �(x; a)� 1 + a+ P2(x; a) + P3(x; a) + � � � :(1)With a = �(px), the quantities Pk(x; a) are zero for k > 2 because any composite number withthree prime factors larger than px is larger than x. Hence, we obtain Legendre's formula [9]�(x) = �(x; a) + a� 1; a = �(px):An expanded form of this formula is�(x) = �(px)� 1 +XH (�1)#Hbx=pHc;where H runs through the subsets of f1; 2; : : : ; �(px)g and pH = Qh2H ph. The computation of�(x) based on this formula has cost O(x).2. Meissel and LehmerMeissel chose the value a = �(x1=3) in the basic formula (1), hence the formula reduces to�(x) = �(x; a) + a� 1 + P2(x; a); a = �(x1=3):(2)The most time consuming part of the formula is the term �(x; a) and Lehmer proposed the followingtruncation rule for the computation tree of Figure 1:Do not split a node labelled ��(x=n; b) if either of the following holds:(i) x=n < pb,(ii) b = 5. 56



Lehmer used a = �(x1=4) and the tree has leaves labelled by ��(x=n; b) for n a product of fourprime numbers between p6 = 13 and pa; this leads to a number of leaves essentially of order x. Fora detailed description of the implementation, see the original article of Lehmer [6] or the problem[7, Probl�eme 5]. 3. Lagarias, Miller, and OdlyzkoIn [4], Lagarias, Miller, and Odlyzko use a sharper truncation rule, namelyDo not split a node labelled ��(x=n; b) if either of the following holds:(i) b = 0 and n � x1=3,(ii) n > x1=3.They use a = �(x1=3) and for this value the number of leaves of the computation tree is no more thanO(x2=3). The leaves associated with the case (i) are the ordinary leaves, and the leaves associatedwith the case (ii) are the special leaves.According to (2) there are two terms to compute: �(x; a) and P2(x; a). The computation hasfour steps; �rst a preparatory step; next the computation of P2(x; a); then the computation of thecontribution of the ordinary leaves; �nally the computation of the special leaves. The sum whichcorrespond to �(x; a) is the sum of these last two quantities.Preparatory step. Using an ordinary Eratosthenes sieve, one �nds all the primes p1, p2; : : : ; pabelow x1=3. During the sieving, several quantities are also computed and stored for a later use.When sieving with pi, the values of the M�obius function �(n) for n � x1=3 can be updated. Thevalues of the function f which gives the least prime factor of an integer n in the interval is computedtoo. Having sieved with the i-th prime, the value of �(x1=3; i) is known and stored.Finally, the value �(x1=4) is computed. All this has a cost O(x1=3+") arithmetic operations andspace cost O(x1=3).Computation of P2(x; a). The quantity P2(x; a) is computed according to the formulaP2(x; a) =  a2!�  a02!+ Xx1=3<p�x1=2 �(x=p); a = �(x1=3); a0 = �(x1=2):The computation of the Meissel sum Xx1=3<p�x1=2 �(x=p)needs to count the prime numbers in the interval [x1=3; x2=3]. This interval is sieved slice by slice,where the slices are intervals of width x1=3. The computation uses for each slice an auxiliary sieve,in order to determine the prime numbers p such that x=p falls in the current slice. The value of �is updated during the handling of the slice. The value of �(x1=2) is stored when the suitable sliceis processed.Estimating the contribution of ordinary leaves. During the preceding step the sum associated tothe ordinary leaves X1�n�x1=3 �(n)bx=ncis also computed. 57



Estimating the contribution of special leaves. This is the most intricate part of the method. Wehave to evaluate S = X(n;b)�(n)�(x=n; b)for all special leaves (n; b), i.e., n = pa1 � � �par with a � a1 > a2 > � � � > ar = b+ 1 and n � x1=3 �n=pb+1.We will evaluate this sum by sieving the interval [x1=3; x2=3] by subintervals of length x1=3. LetN = bx1=3c. Suppose the number x=n is in the k-th subinterval [(k � 1)N + 1; kN ]. Then (n; b) isa special leaf if and only if n = n�pb+1, f(n�) > pb+1 andx(kN + 1)pb+1 < n� � x((k� 1)N + 1)pb+1 :In other words, n� belongs to an interval [L;M ] and the contribution of (x=n; b) to the sum S isnon-zero if and only if �(n�) 6= 0. This shows the process: we loop through those numbers m in[L;M ] such that f(m) > pb+1 and for which �(m) 6= 0. This is easy using the tables precomputedin phase 1. In order to complete the evaluation, one must set up the computations in a clever way,described in the original paper (see also [2]). This crude description yields an algorithm with timeO(x2=3) which can be lowered to O(x2=3= log x) using a trick due to Miller and described in thepaper.At the end, the values of a, P2(x; a) and �(x; a) are combined and �(x) is obtained. The totaltime for computing �(x) is thus O(x2=3= log x) operations and O(x1=3 log2 x log log x) space.4. Del�eglise and RivatIn [2], the authors describe a variant of the above approach that uses O(x2=3= log2 x) operationsand O(x1=3 log3 x log log x) space. They have computed all values of �(x) for x � 1015 up to 1018for which �(1018) = 24739954287740860. Bibliography[1] Brent (R. P.). { The �rst occurrence of large gaps between successive primes. Mathematics of Computa-tion, vol. 27, n�124, October 1973, pp. 959{963.[2] Del�eglise (M.) and Rivat (J.). { Computing �(x): The Meissel, Lehmer, Lagarias, Miller, Odlyzkomethod. Mathematics of Computation, vol. 65, n�213, January 1996, pp. 235{245.[3] Hardy (G. H.) and Wright (E. M.). { An Introduction to the Theory of Numbers. { Oxford UniversityPress, 1979, �fth edition.[4] Lagarias (J. C.), Miller (V. S.), and Odlyzko (A. M.). { Computing �(x): The Meissel-Lehmer method.Mathematics of Computation, vol. 44, n�170, April 1985, pp. 537{560.[5] Lagarias (J. C.) and Odlyzko (A. M.). { Computing �(x): an analytic method. Journal of Algorithms,vol. 8, 1987, pp. 173{191.[6] Lehmer (D. H.). { On the exact number of primes less than a given limit. Illinois Journal of Mathematics,vol. 3, 1959, pp. 381{388.[7] Morain (F.) and Nicolas (J.-L.). { Math�ematiques / Informatique { 14 probl�emes corrig�es. { Vuibert,1995, Enseignement Sup�erieur et Informatique.[8] Pritchard (P.). { Improved incremental prime number sieves. In Adleman (L.) and Huang (M.-D.)(editors), ANTS-I. Lecture Notes in Computer Science, vol. 877, pp. 280{288. { Springer-Verlag, 1994.First Algorithmic Number Theory Symposium - Cornell University, May 6{9, 1994.[9] Riesel (Hans). { Prime Numbers and Computer Methods for Factorization. { Birkh�auser, 1985, Progressin Mathematics, vol. 57. 58



On a problem of RubelJohn ShackellUniversity of Kent at Canterbury, U.K.April 22, 1996[summary by Fr�ed�eric Chyzak]AbstractFor a given function f , we study all the functions that satisfy every algebraic di�erentialequation with constant coe�cients which is satis�ed by f . This question was suggested byLee Rubel in [3, Problem 22]. Here the author characterizes this set of functions, �rst when fis a linear combination of exponential functions, next when f is a Liouvillian function.Finally, he applies these results to the computation of a series expansion of solutions ofalgebraic di�erential equations.1. Exponential functionsFor two functions f and g, de�ne g � f to mean that g satis�es every algebraic di�erential equa-tion with constant coe�cients which is satis�ed by f . Let f be the following C -linear combinationof exponential functions nXk=1ake�kx:Trivially, g � f implies that g = Pnk=1Ake�kx with Ak 2 C , since the di�erential polynomial L(y)de�ned by the linear operator Qnk=1 � ddx � �k� vanishes at f . (We refer the reader to [2] for anintroduction to di�erential algebra.) This necessary condition for g � f is not always su�cient.Two cases occur, according to the dimension d of the Q-vector space generated by the �k. Notethat this dimension is also the transcendence degree of C (e�1x; : : : ; e�nx) over C .Transcendence degree d = n. In this case, no equation of order less than d is satis�ed by f . If P (y)is another di�erential polynomial of order d that vanishes at f , Lmust divide P . Otherwise, using Lto rewrite f (d) as a polynomial in the derivatives of f of lower orders yields a di�erential polynomialof order less than d. This polynomial must then be zero, which gives a contradiction. Therefore, gsatis�es any equation of order d satis�ed by f . Next, let Q(y) be a di�erential polynomial satis�edby f . Di�erentiating L su�ciently many times makes it possible to rewrite all the derivatives of fof order greater or equal to d that occur in Q as polynomials in derivatives of order less than d.Once again, L divides Q so that Q(g) = Q(f) = 0. Hence, g � f .Transcendence degree d � n. In this case, assume that �1; : : : ; �d are linearly independent over Q,whereas �i = dXj=1 ci;j�j for ci;j 2 Q, when i = d+ 1; : : : ; n.(1) 59



Taking n�1 derivatives of the equation f =Pnk=1 ake�kx yields a linear system relating the ake�kx'sand the derivatives of f . This system has a Vandermonde determinant, hence we obtain linearexpressions ake�kx = Rk(f; : : : ; f (n�1)) = Rk, for k = 1; : : : ; n.(2)Combining equations (1{2) so as to eliminate the �k's yields the equationsabii dYj=1a�
j;ij = Rbii dYj=1R�
j;ij = Sj(f; : : : ; f (n�1)), i = d+ 1; : : : ; n,(3)where bi is a least common multiple for the denominators of the ci;j's and each 
i;j = bjci;j is aninteger. Now, if g � f , the function g also satis�es the second equality in (3). In addition, it is ofthe form g =Pnk=1Ake�kx and therefore,abii dYj=1a�
j;ij = Abii dYj=1A�
j;ij , i = d+ 1; : : : ; n.(4)We have obtained necessary and su�cient conditions for g� f when f is of the formPnk=1 ake�kx.Another approach based on di�erential ring homomorphisms. We now give another derivation ofthese conditions. This second approach follows methods similar to methods of di�erential Galoistheory and will prove very fruitful when generalizing to Liouvillian functions.We have a tower of function rings�0 = C � � � � � �k = C [e�1x; : : : ; e�kx] � � � � � �n = C [e�1x; : : : ; e�nx]:Write �̂k for the quotient �eld of �k. It follows from (1) that the �eld extensions �̂k : �̂k�1 aretranscendental for k = 1; : : : ; d and algebraic for k = d+ 1; : : : ; n, with minimal polynomialsmk �e�kx� = �e�kx�bk � dYi=1 �e�ix�
k;i :(5)For complex constants Ck, consider the ring homomorphism T : �n ! �n given by T �e�kx� =Cke�kx for k = 1; : : : ; n. We want to constrain the Ck's so that T is also a di�erential ringhomomorphism that maps f = Pnk=1 ake�kx to g = Pnk=1Ake�kx. Necessarily, Ak = Ckak and theminimal polynomials (5) are mapped to themselves, modulo non-zero multiplicative constants �k 2C , so thatT �mk �e�kx�� = �Cke�kx�bk � dYi=1 �Cie�ix�
k;i = �k �mk �e�kx�� = �k �e�kx�bk � dYi=1 �e�ix�
k;i! :It follows that �k = Cbkk = Qdi=1 C
k;ii , so that condition (4) is also a necessary and su�cientcondition for T to be a di�erential ring isomorphism.In the next section, we construct a set of di�erential ring homomorphisms and investigate itsconnection to the set fg j g � fg when f is a Liouvillian function.60



2. Liouvillian functionsWe now turn to di�erential extension towers of the form�0 = C � � � � � �k = �k�1[zk] � � � � � �n = �n�1[zn];(6)where the extension �k = �k�1[zk] is either(i) an algebraic extension given by the minimal polynomialmk(zk) = 0 with coe�cients in �k�1;(ii) an exponential extension given by zk = exp(wk�1), for wk�1 2 �̂k�1;(iii) an integral extension given by zk = R wk�1, for wk�1 2 �̂k�1.In cases (ii) and (iii), write wk�1 = �k�1=�k�1 for coprime �k�1; �k�1 2 �k�1. An element of a�eld �̂k corresponding to a tower (6) is called a Liouvillian function.We now proceed to de�ne sets Gk of di�erential ring homomorphisms from �k to rings of Liou-villian functions. This construction generalizes that of T in the previous section. We take G0 tobe the singleton of the identity on C and de�ne the Gk's by induction on k, considering the threecases above separately. For any di�erential polynomial P 2 �kfyg and any � 2 Gk, let ~�(P ) denotethe di�erential polynomial in �(�k)fyg obtained by applying � to each coe�cient of P .Algebraic extensions. For any � 2 Gk�1 and any choice of root s of ~�(mk), � extends to �k asa di�erential ring homomorphism by mapping zk to s. We de�ne Gk to be the set of all theseextensions.Exponential extensions. For any � 2 Gk�1 such that �(�k�1) 6= 0, �(wk�1) is well-de�ned and �extends to �k as a di�erential ring homomorphism by mapping zk toK exp(�(wk�1)). We de�neGkto be the set of all these extensions.Integral extensions. For any � 2Gk�1 such that �(�k�1) 6= 0, �(wk�1) is well-de�ned and � extendsto �k as a di�erential ring homomorphism by mapping zk to K R �(wk�1). We de�ne Gk to be theset of all these extensions.The main theorem. The previous construction yields the following theorem. A proof is given in [5].Similar results are also presented in [4, Proposition 2].Theorem 1. Let the Liouvillian extension tower ( 6) and Gn be as above. Let f = f1=f2 2 �̂n,with coprime f1; f2 2 �n. Then g � f if and only if there exists an open dense subset W of C suchthat g belongs to the closure of the setn�(f)���� 2 Gn; �(f2) 6= 0oin the topology of uniform C1 convergence on compact subsets of W .3. An exampleAs an example, we compute the set of functions g such that g � f with f = (exp(ex) � 1)=ex.An algebraic di�erential equation satis�ed by f isff 00 � f 02 � ff 0 � f 0 + f � f2 = 0:(7)We have the tower of Liouvillian extensions C � C [x] � C [x; ex ] � C [x; ex ; eex] 3 f . The �rstextension is given by x = R 1; the latter two are exponential extensions. The di�erential ringhomomorphisms T are de�ned such that: 61



(i) they are the identity on C T jC = T0 : 1 7! 1;(ii) they extend to the integral extension C [x] by introducing a constant K0T jC[x] = T1 : x 7! Z T0(1) = x+K0;(iii) they extend to the �rst exponential extension C [x; ex ] by introducing a constant K1T jC[x;ex] = T2 : ex 7! KeT1(x) = K1ex;(iv) they extend to the second exponential extension C [x; ex; eex ] by introducing a constant K2T = T3 : eex 7! K 0eT2(ex) = K2eK1ex :Finally, the set of functions g such that g � f is the closure of the set(K2eK1ex � 1K1ex �����K1; K2 2 C ; K1 6= 0) :Making K2 = 1, next K1 tend to 0 yields the function 1, which is indeed a solution of (7). We havethus proved that 1� (exp(ex)� 1)=ex.4. Series expansionTheorem 1 can be used to help compute a series expansion for a solution of an algebraic dif-ferential equation belonging to a Hardy �eld [1]. It can be proved that the number of possiblenested (asymptotic) forms f0 for a solution is �nite. This number grows exponentially with theorder of the equation. Writing f in the form f0(1 + �), and substituting it into the equation yieldsan equation for the rest �, of possibly doubled order. It follows that the exponential complexity ofthis �rst, naive method makes it impracticable.Assume f can be written in the form F + g, where F is the sum of a �nite number of �rstterms in an asymptotic expansion and g is the rest, of smaller asymptotic growth. If f does notbelong to the closure under consideration in Theorem 1 applied to the Liouvillian function F ,then there is a di�erential polynomial P (y) that vanishes on F but not on f . From the equationde�ning f , the �nitely many possible orders of growth of P (f) can be computed. Next, each termin P (f) = P (F + g) contains g or one of its derivatives. This yields a number of possible orders ofgrowth for g, hopefully smaller than the one obtained by the general method.Bibliography[1] Bourbaki (N.). { �El�ements de Math�ematiques, Chapter V: Fonctions d'une variable r�eelle (appendice),pp. 36{55. { Hermann, Paris, 1961, second edition.[2] Ritt (Joseph Fels). { Di�erential Algebra. { A.M.S., 1950, A.M.S. Colloquium, vol. XXXIII.[3] Rubel (Lee A.). { Some research problems about algebraic di�erential equations. Transactions of theAmerican Mathematical Society, vol. 280, 1983, pp. 43{52.[4] Shackell (John R.). { Growth orders occuring in expansions of Hardy �eld solutions of algebraic di�erentialequations. Annales de l'Institut Fourier, vol. 45, 1995, pp. 183{221.[5] Shackell (John R.). { On a problem of Rubel concerning the set of functions satisfying all the algebraicdi�erential equations satis�ed by a given function. { Preprint, 1995.62



On integer Chebyshev PolynomialsBruno SalvyINRIA RocquencourtJanuary 29, 1996[summary by Xavier Gourdon]AbstractWe deal with the problem of minimizing the supremum norm on [0; 1] of non zero poly-nomials of degree at most n with integer coe�cients.1. IntroductionWe consider the supremum norm on polynomials kPk1 = max[0;1] jP (t)j. We denote by Zk[x]the set of polynomials with integer coe�cients of degree � k. We consider the polynomials Pk inZk[x] and the quantities Ck such thatkPkk1 = minP2Zk[x]nf0g kPk1; and Ck = �1k log kPkk1:(1)According to [1], the polynomials Pk are called integer Chebyshev polynomials in [0; 1]. Thesepolynomials appeared in the literature because as we discuss below, it was thought that theycould be used to obtain an elementary proof of prime number theorem. Aparicio showed that infact, one cannot prove the prime number theorem in this way. However, the problem of �ndingthe polynomials Pk is interesting in itself. According to Borwein and Erd�elyi, \Even computinglow-degree examples is di�cult".2. The prime number theoremLet dn denote the lowest common multiple of 1; 2; : : : ; n. Proving the prime number theorem canbe elementary reduced to proving the inequalitylim infn!1 log dnn � 1:An idea to obtain this result is to use the fact that P 2 Zm[x] implies R 10 P (x) dx 2 Z=dm+1.Applying this to the polynomial P 2nk leads tokPkk2n1 � Z 10 P 2nk (x) dx � 1d2kn+1 ; thus lim infn!1 log dnn � � log kPkk1k = Ck:Therefore, if we had lim supk!1Ck = 1, one could prove the prime number theorem in this way.Indeed, it appears that this is not the case. The sequence (Ck) converges to a limit C, and Borweinand Erd�elyi [1] showed that C 2 (0:8586616; 0:8657719). Thanks to our new results, we improvethe lower bound on C. 63



3. Related problems3.1. Integer trans�nite diameter. Our problem can be stated in terms of integer trans�nitediameter. The trans�nite diameter of a set S of complex numbers is de�ned byt(S) := limn!1 supz1;:::;zn2SYi<j jzi � zj j1=(n2):A theorem of Fekete states thatt(S) = infP2C[x];P monicmaxx2S jP (x)j1=deg(P ):The integer trans�nite diameter of a subset S of R is de�ned bytZ(S) = infP2Z[x];deg(P )>0maxx2S jP (x)j1=deg(P ):Thus, our problem can be rephrased as: �nding the integer trans�nite diameter of the interval[0; 1]. If I is the interval [a; b] with a < b, it is known that t(I) = jI j=4, with jI j = b� a. If jI j � 4,we have the equality tZ(I) = t(I). For jI j < 4, the best known result is due to Fekete and statesthat t(S) � tZ(S) � pt(S).3.2. Trace of totally positive algebraic integers. Let �1 be an algebraic integer of d,�2; : : : ; �d its conjugates. We say that �1 is totally positive if all the �i are real and positive. Siegelhas proved in 1945 that except for �nitely many exceptions, we have the following lower bound ontotally positive algebraic integers �1 + � � �+ �dd � 1:733:A general result states that this problem is related to the integer trans�nite diameter:Theorem 1 (Borwein, Erd�elyi). Let m be a positive integer.If tZ��0; 1m�� < 1m+ � then �1 + � � �+ �dd � �for totally positive algebraic integers, with �nitely many exceptions.4. Structure of the polynomialsThe set Ek = fP 2 Zk[x] : P (1 � x) = (�1)kP (x)g is related to our problem by the followinglemma [2].Lemma 1. For any nonnegative integer k, we haveE2k =Zk[x(1� x)] and E2k+1 = (1� 2x)Zk[x(1� x)];and there exists an element F of degree k in Ek for whichCk = �1k log kFk1:64



5. Computation of minimal polynomialsThe previously known integer Chebyshev polynomials had small degrees. We now brie
y describethe techniques used to compute a polynomial Pk of degree k satisfying (1) for k up to 75. Theoutline of the algorithm goes as follows:(1) Find a good upper bound for kPkk1;(2) Repeat{ use this bound to determine factors of Pk,{ use these factors to improve the bound,until no more factors are found;(3) Perform an exhaustive search for the missing factors.5.1. First upper bound. A good bound is given by ck = min0<`<k kP`Pk�`k1.5.2. Bounds and factors. We use the following facts to �nd factors of G 2Zg[x].{ If qgjG(p=q)j < 1 then (qx� p) is a factor of G.{ This technique extends to multiple factors via Markov's inequality:maxa�x�b jG(r)(x)j � 2r(b� a)r n2(n2 � 12) � � �(n2 � (r� 1)2)1 � 3 � � �(2r� 1) maxa�x�b jG(x)j:{ At x = 0, we have a better bound due to Borwein and Erd�elyi:G(x) = xg�pQ(x) =) jQ(0)j � p2p+ 1 g + p+ 1g � p !kGk1:{ More generally, we can �nd higher degree factors. Let F = a0xn + � � � + an 2 Z[x] beirreducible, �1; : : : ; �n its roots. The expression R = ag0G(�1) � � �G(�n) is an integer (it isa resultant). If jRj < 1, then F is a factor of G.Once factors have been obtained in this way, we have Pk(x) = F (x)G(x(1� x)), where F is knownand G unknown. Bounds on G(x) at a given x can be obtained using the fact that jF (u(x))G(x)j �kPkk1 � ck with u(x) = 12(1�p1� 4x): This enables to �nd other factors. This technique providesall the integer Chebyshev polynomials of degree � 12.To get tighter bounds on the value of G at a given x, we then turn to Lagrange interpolation. Ifx0; : : : ; xg are g + 1 distinct points in [0; 1=4] thenG(x) = gXi=0 G(xi)Yj 6=i x� xjxi � xj thus jG(x)j � ck gXi=0 1jF (u(xi))jYj 6=i ���� x� xjxi � xj ���� :This gives a bound on jG(x)j, which can be further improved by �nding a set fx0; : : : ; xgg whichminimizes the right-hand side of the inequality. By this technique, all Chebyshev of degree � 30are found.5.3. Exhaustive search. By plugging values of x in the inequality jF (u(x))j � jG(x)j � ck,we get linear inequalities satis�ed by the coe�cients of the factor G. These inequalities de�ne apolyhedron whose interior integer points we have to determine. We solve this problem by using asimplex method to compute bounds on each coordinate. Then if the size of the bounding polyrect-angle is not too large, we check each of its points to see whether it belongs to the polyhedron. Forlarger polyrectangles, we select the variable with least variation and apply recursively the sametechnique. In this way, we test a �nite set of polynomials. This technique is reasonable for n � 13(i.e., degree 24). 65



5.4. A detailed example: P37. We show how to �nd P37 using our algorithm.A �rst upper bound is obtained from the previous polynomialskP37k1 � c37 = min` kP`P37�`k1 = 0:283 10�13:We then look for factors of P37. At each stage, we have P37(x) = F (x)G(x(1� x)) with F knownand G unknown, g = deg(G).{ Since 37 is odd, a factor is F = 1� 2x by lemma 1 (g = 18).{ We have 518c37 < jF (u(1=5))j thus 518jG(1=5)j< 1, and a factor is F := F � (5x2 � 5x+ 1)(g = 17).{ Using the Borwein-Erd�elyi bound, we �nd the factor F := F � x9(1� x)9 (g = 8).{ Using Lagrange interpolation, we �nd jG(0)j < 1, thus a factor is F := F �x(1� x) (g = 7).{ The same technique applied with the new factor F gives jG(0)j < 1, thus a factor is F :=F � x(1� x) (g = 6).{ The same technique gives 46jG(1=4)j< 1, thus F := F � (4x2 � 4x+ 1) (g = 5).{ The same technique gives 295 �����G 11 +p558 !G 11�p558 !����� < 1thus F := F � (29x4� 58x3 + 40x2 � 11x+ 1) (g = 3).{ The same technique gives jG(0)j< 1 thus F = F � x(1� x) (g = 2).{ The same technique gives 42jG(1=4)j< 1, thus F := F � (4x2 � 4x+ 1) (g = 1).The step of exhaustive search �nally yields 6 solutions, and only one has the right k�k1. Eventually,we �nd P37(x) = x12(1� x)12(1� 2x)5(5x2 � 5x+ 1)2(29x4 � 58x3 + 40x2 � 11x+ 1):6. A new factorThe only factors of all the 75 �rst polynomials are the following, expressed in the variableu = x(1� x),A1 = u; A2 = 4u� 1; A3 = 5u� 1; A4 = 6u� 1; A5 = 29u2 � 11u+ 1;A6 = 169u3 � 94u2 + 17u� 1; A7 = 961u4 � 712u3 + 194u2 � 23u+ 1;A8 = 4921u5 � 4594u4 + 1697u3� 310u2 + 28u� 1:The factor A8 is a new one, and it has four non real root, which gives a negative answer to an openproblem from [1]: Do all the integer Chebyshev polynomials on [0; 1] have all their zeros in [0; 1] ?Thanks to this new factor we can improve the bound on C. Following the lines of [1], we usea simplex method to compute a polynomial Q = A�11 A�22 � � � of degree d = 1010 � 9 such that�1d log kQk1 = 0:8591978, thus C > 0:8591978.Bibliography[1] Borwein (Peter) and Erd�elyi (Tam�as). { The integer Chebyshev problem. Mathematics of Computation,1995. { To appear.[2] Habsieger (Laurent) and Salvy (Bruno). { On integer Chebyshev polynomials. Mathematics of Compu-tation, 1996. { To appear. 66



Algebraic Computation of Matrix-like Pad�e ApproximantsGeorge LabahnUniversity of Waterloo, CanadaJune 10, 1996[summary by Bruno Salvy]AbstractPad�e approximants are rational approximants to functions represented as power series.There are many classes and generalizations of Pad�e approximants, with various kinds ofapplications. After reviewing some of these approximants and their use, this work presentsa uni�ed way of computing them.1. A gallery of Pad�e approximantsGiven a formal power series A(z), a Pad�e approximant of type (m;n) is a pair of polynomi-als (u(z); v(z)) of degrees at most m and n respectively, such that A(z)� u(z)=v(z) = O(zm+n+1):Hermite-Pad�e approximants constitute a natural generalization of Pad�e approximants. Instead ofone power series, the input consists in ` power series A1(z); : : : ; A`(z) and ` integers n1; : : : ; n`. Theapproximant is then an `-tuple of polynomials (p1(z); : : : ; p`(z)), with pi(z) of degree at most ni�1,such that p1(z)A1(z) + � � �+ p`(z)A`(z) = O(zN�1);where N =Pni.The extended Euclidean algorithm can be seen as the calculation of a Hermite-Pad�e approxi-mant. Given two polynomials P (z) and Q(z), the extended Euclidean algorithm computes threepolynomials U(z), V (z) and G(z), such that G(z) is the gcd of P (z) and Q(z), and the B�ezoutidentity holds U(z)P (z) + V (z)Q(z) = G(z):This is the same as computing a Hermite-Pad�e approximant for the reciprocal polynomials of P (z)and Q(z).Hermite-Pad�e approximants are used in gfun [3] to guess linear di�erential equations or algebraicequations satis�ed by a formal power series A(z). In this context, one starts with Ai(z) = A(i�1)(z)or Ai(z) = Ai�1(z).A generalization of these approximants is obtained by considering vectors or matrices of powerseries, leading to vector and matrix Hermite-Pad�e approximants. Vector Hermite-Pad�e approxi-mants are used in algorithms factoring linear di�erential operators [4].Another kind of generalization called simultaneous Pad�e approximants was introduced by Her-mite in 1873 in order to prove the transcendence of e. As in the case of Hermite-Pad�e approximantsone starts with ` power series A1(z); : : : ; A`(z). Given `+ 1 integers (n0; n1; : : : ; n`), the aim is to�nd `+ 1 polynomials q(z); p1(z); : : : ; p`(z) such that Aj(z) = pj(z)=q(z) +O(zK).Again, vector and matrix versions are of interest.67



2. ComputationAll these approximants can be computed by linear algebra algorithms, since they correspond tosolving an equation of the type AX = B, where X is a vector of the unknown coe�cients of theapproximants, A encodes the product modzN by the initial data in the basis 1; z; z2; : : : and Brepresents the desired right-hand side modzN . Thus e�cient algorithms for Gaussian eliminationand fraction free versions of these can be used. The solution set has the structure of a module.In many cases, this module has dimension one, so that any approximant generates all of them. Inother cases, it might be useful to compute a basis of this module.Example. This example helped discover a nice generating function [3]. The coe�cients of theseries y(z) = 3 + 19z + 193z2 + 2721z3+ 49171z4+ 1084483z5+ 28245729z6+ 848456353z7+ 28875761731z8+O(z9)are the numerators of convergents to e = exp(1) of index 3k+1. We are looking for a Hermite-Pad�eapproximant of (1; y; y0) with degree constraints (1; 2; 2). The matrix version of this problem is266641 0 3 0 0 19 0 00 1 19 3 0 386 19 00 0 193 19 3 8163 386 19... ... ... ... ... ... ... ... 37775 �X = 0:A basis of the kernel is readily found to be t(�3;�1; 1;�6;�1; 0; 0;�4), so that y(z) satis�es thefollowing di�erential equation up to O(z8):4z2y0(z)� (1� 6z � z2)y + 3+ z = 0:Another way of viewing the same computation, which preserves sparseness, is as a standardbasis computation. For instance, in the case of Hermite-Pad�e approximants, one introduces newvariables t; a1; : : : ; a` and computes a standard basis for the set of seriesa1 � tA1(z); : : : ; a` � tA`(z); zN�1;with respect to any ordering such that t > z and z > z2 > � � � are smaller than the ai's. Thepolynomials of the basis are linear in the ai's, those which do not contain t generate the module ofapproximants. Bibliography[1] Beckermann (B.) and Labahn (G.). { A uniform approach for Hermite Pad�e and simultaneous Pad�eapproximants and their matrix-type generalizations. Numerical Algorithms, vol. 3, 1992, pp. 45{54.[2] Beckermann (Bernhard) and Labahn (George). { A uniform approach for the fast computation of matrix-type Pad�e approximants. SIAM Journal on Matrix Analysis and Applications, vol. 15, n�3, July 1994,pp. 804{823.[3] Salvy (Bruno) and Zimmermann (Paul). { Gfun: a Maple package for the manipulation of generating andholonomic functions in one variable. ACM Transactions on Mathematical Software, vol. 20, n�2, 1994,pp. 163{177.[4] Van Hoeij (Mark). { Formal Solutions and Factorization of Di�erential Operators with Power SeriesCoe�cients. { Report n�9528, University of Nijmegen, July 1995.68



Part 3Asymptotic Analysis





The tricritical scaling function of partially directed vesiclesThomas PrellbergUniversity of OsloOctober 9, 1995[summary by Helmut Prodinger]This talk is largely based on [4]; some other \Prellbergs" are cited therein1. The author considersstaircase polygons. They are de�ned as the set of all polygons on the square lattice whose perimeterconsists of two fully directed walks with common start and end points.rrFigure 1. A staircase polygon with width 10, height 8, and area 45If cnx;nym denotes the number of all staircase polygons with 2nx horizontal and 2ny vertical stepswhich enclose an area of size m, then the generating functionG(x; y; q) =X cnx;nym xnxyny(1)ful�lls the functional equationG(x; y; q) = �G(qx; y; g)+ qx��G(x; y; g)+ y�:(2)From this, an explicit expression is available;G(x; y; q) = y�H(q2x; qy; q)H(qx; qy; q) � 1� with H(x; y; q) = Xn�0 (�x)nq(n2)(q; q)n(y; q)n ;(3)where (y; q)n := (1� y)(1� yq)(1� yq2) � � �(1� yqn�1).1One might wonder why, then, the titles of talk and paper are so drastically di�erent: \Vesicle" is a\closed 
uctuating membrane", but combinatorialists think about polygons. And \tricritical" means thatthe generating function of interest has three ranges with a somehow di�erent behaviour. The whole studyis devoted to asymptotics of the generating function of interest, if the argument approaches the \tricritical"point. 71



= + + +G(x) =G(qx)y+G(qx)G(x)+ qxy+qxG(x)Prellberg derives this functional equation by setting up a symbolic equation which he translatesinto a functional equation for the generating function | very much in the tradition of the Algorithmseminar.If we forget about the area, then we obtain the perimeter generating functionG(x; y; 1) = 1� x � y2 �s�1� x� y2 �2 � xy:(4)The author concentrates in getting the following theorem.Theorem 1. Set � = � log q. Then, as q ! 1,G(x; y; q)� 1� x� y2 +s�1� x � y2 �2 � xy  Ai0(���2=3)�1=2��1=3Ai(���2=3)! :(5)Here, � is some complicated function of x and y which simpli�es to�(x; y) � � 41� (x� y)2�4=3 �1� x� y2 �2 � xy!(6)for (1� x� y)2 � 4xy. Ai(x) is the Airy function (see [5]).Everything boils down to a study of the function H(x; y; q), and the author comes up with alemma.Lemma 1. For x 2 C , j arg(x)j < �, y 2 C , y 6= q�n for non-negative integers n and 0 < q < 1,we have H(x; y; q) = (q; q)1(y; q)1 12�i Z �+i1��i1 (y=z; q)1(z; q)1 z� logx= log qdz; 0 < � < 1:(7)Such a representation is no surprise at all; check out the wonderful survey papers [2] and [3].The basic idea is to use the formulaXn�0(�x)ncn = 12�i ZC xs c(s) �sin�s ds(8)where C encloses the points 0; 1; : : : in the counter-clock direction. The function c(s) is an analyticcontinuation of the sequence cn. Ramanujan was very fond of this formula, and it is also relatedwith the names of Abel, Plana, and Lindel�of.To do asymptotics, the author needs a better understanding of the `ingredients' in his functionH(x; y; q) (a q-Bessel function), as q ! 1.Interchanging sums, log(t; q)1 = �Xm�1 1m tm1� qm :(9) 72



From here, Euler's summation formula gives for jarg(1� t)j < �log(t; q)1 = 1log q Li2(t) + 12 log(1� t) + O(log q);(10)with Euler's dilogarithm Li2(t) = Xm�1 tmm2 = � Z 10 log(1� u)u du:(11)For (q; q)1 the author uses a modular transformation, viz. (see [1])log(q; q)1 = (r; q)1=24s 2�� log q 1(r; r)1(12)to get log(q; q)1 = �26 log q + 12 log1=q(2�) + O(log q):(13)(The Mellin transform would also give this result.)Continuing with approximations, the author notes the following.Lemma 2.H(x; y; q) = 12�i Z �+i1��i1 exp �1� � log(z) log(x) + Li2(z)� Li2(y=z)��s1� y=z1� z dz� exp �1� (Li2(y)� �26 )�s 2��(1� y) �1 +O(�)�:(14)The asymptotic evaluation of this integral will be done with the saddle-point method. There aretwo saddle points, and the whole thing becomes complicated when they coalesce (see [6] for anintroduction to this problem).A change of variable brings the functionV (�) = 12�i ZC0 eu3=3��u du(15)into the picture (C 0 a certain contour). It is expressible by the Airy function Ai(�).Prellberg then presents his main lemma.Lemma 3. Let 0 < x; y < 1 and q = e��. ThenH(x; y; q) = �p0�1=3Ai(���2=3) + q0�2=3Ai0(���2=3)�� exp �1� (Li2(y)� �26 + log(x) log(y)=2)�s 2��(1� y) �1 + O(�)�;(16)where 43�3=2 = log(x) log zm �pdzm +pd + 2Li2(zm �pd)� 2 Li2(zm +pd)(17) 73



with z1;2 = zm �pd zm = 1 + y � x2 and d = z2m � y(18)and p0 = ��d�1=4 (1� x� y); q0 = �d��1=4 :(19) Bibliography[1] Andrews (George E.). { The Theory of Partitions. { Addison-Wesley, 1976, Encyclopedia of Mathematicsand its Applications, vol. 2.[2] Flajolet (Philippe), Gourdon (Xavier), and Dumas (Philippe). { Mellin transforms and asymptotics:harmonic sums. Theoretical Computer Science, Series A, vol. 144, n�1-2, June 1995, pp. 3{58. { SpecialVolume on Mathematical Analysis of Algorithms.[3] Flajolet (Philippe) and Sedgewick (Robert). { Mellin transforms and asymptotics: �nite di�erences andRice's integrals. Theoretical Computer Science, vol. 144, n�1-2, June 1995, pp. 101{124.[4] Prellberg (Thomas). { Uniform q{series asymptotics for staircase polygons. Journal of Physics Series A:Math. Gen., vol. 28, 1995, pp. 1289{1304.[5] Whittaker (E. T.) and Watson (G. N.). { A Course of Modern Analysis. { Cambridge University Press,1927, fourth edition. Reprinted 1973.[6] Wong (Roderick). { Asymptotic Approximations of Integrals. { Academic Press, 1989.
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The statistical mechanics of vesiclesThomas PrellbergDepartment of Mathematics, University of OsloOctober 16, 1995[summary by Dominique Gouyou-Beauchamps]1. Polygons as vesicle modelsBiological membranes consist of lipid bilayers and, when closed, form vesicles as blood cells orbi-lipid layer membranes. These 3-dimensional vesicles form a variety of shapes depending on thesurface tension, osmotic pressure, etc (see Fig. 1).A convenient model for the boundary of the two-dimensional vesicle is a polygon either in thecontinuum or on a lattice. The polygon is taken to be self-avoiding and one asks, in the latticeversion, for the number of polygons with 2n edges enclosing area m. Here, we consider polygonson the square lattice (see Fig. 2).We denote cn;m the number of all polygons with 2n steps which enclose an area of size m, andde�ne the polygon-generating function G(x; q) to beG(x; q) =Xn;m cn;mxnqm:Each class of polygons (staircase polygons, bar-graph polygons, column-convex polygons) de�nesa model of vesicles. We want to give an explicit formula forG(x; q) and information on its singularitystructure for all the models.2. Statistical mechanics, some rigorous resultsMathematically, the model requires the calculation of the same object, the generalized partitionfunction G(x; q), whereG(x; q) = 1Xm=1 qmZm(x) with Zm(x) = 1Xn=2 cn;mxn:
Figure 1. A vesicle.75



Figure 2. A polygon with area m = 26 and perimeter 2n = 42.Physically it is of interest to understand the behavior of the partition function Zm(x) of vesicles of�xed area m as the perimeter fugacity x is varied [6, 7, 4]. The behavior of the partition functionfor large vesicles is determined by the mathematical behavior of the generating function near itsradius of convergence.For a �xed area m, the free energy H(') of a vesicle ' is related to the energy E and theperimeter 2n(') of ' through the relation H(') = �E:n('). The partition function Zm(x) isZm(x) = Xj'j=m e��H(') =Xn�2 cn;me�Enwith x = e�E .The total free energy is ��fm(x) = 1m logZm(x)and assuming the thermodynamic limit exists, we have for the thermodynamic free energy per stepf1(x) = limm!1 1m log(Zm(x)):We can also consider the internal energy1Eum(x) = x ddx � 1m logZm(x)�or the speci�c heat 1�E2cm(x) = �x ddx�2� 1m logZm(x)� :Let qc(x) be the radius of convergence of the generating function G(x; q) for �xed x:qc(x) = limm!1(Zm(x))� 1m :For vesicles this is related to the free energy per unit length of vesicles of �xed area in the limit oflarge areas through the relationqc(x) = e�f1(x); where � �f1(x) = limm!1 1m log(Zm(x)):76



3. Proof of the existence of the thermodynamic limitWe give here a sketch of the proof. For more details, see [9]. We use the following lemma:Lemma 1. Let fangn�0 be a sequence in R. If the sequence is sub-additive (an+m � an + am)then limn!1 1nan = infn!1 1nan exits (may be �1).By a standard concatenation construction in which two vesicles are joined by a `neck' consistingof a single square, we obtain a larger vesicle and thereby �nd:Zn+m(q) � qZn(q)Zm(q)where Zn(q) =Pm cn;mqm. Moreover, if we de�nean = � log(qZn(q))then fang veri�es an+m � an + am and limn!1 (Zn(q)) 1n exists.Now, we examine bounds on xc(q) = limn!1 (Zn(q)) 1nCase q � 1. The minimum area for perimeter 2n is mmin = n � 1 and hence Zn(q) � Zn(1)qn�1and xc(q) � ��2SAW q�1, where we write SAW for self-avoiding walk model.The number of polygons with perimeter 2n and area mmin(n) is the number of site trees on duallattice with n � 1 vertices, say dn, and hence Zn(q) � dnqn�1 and xc(q) � ~�q�1 (see Fig. 3).Since Zn(q) is monotone increasing in x, xc(q) is monotone non-decreasing. Therefore to provethat xc(q) is log-convex it su�ces to show that:xc(p) + xc(q)2 � xc(ppq):This follows immediately fromZn(q)Zm(q) =Xm1 cn;m1qm1 Xm2 cn;m2qm2�  Xm cn;m(pq)m2 !2 = (Zn(ppq))2 :
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kFigure 4. Interpretation of Z(as)n (q).Case q � 1. In that case, we have qmmax(n) � Zn(q) � qmmax(n)Zn(1) with mmax(n) � n24 andZn(1) � �2nSAW . Thus Zn(q) � q n24 and xc(q) � 0:In fact, the `blown-up' con�gurations completely dominate the asymptotics.Theorem 1 (Prellberg, Owczarek, 1995).Zn(q) � Z(as)n (q) = �1q ; 1q��41 +1Xk=�1 qk(n�k)in the sense that for all q > 1 there are C > 0 and 0 < � < 1 such that for all n���Zn(q)=Z(as)n (q)� 1��� < C�nWe can interpret Z(as)n (q) as the generating functions of k � (n � k) rectangles (Pn�1k=1 qk(n�k))where 4 corners (4 Ferrers diagrams: �1q ; 1q��41 ) are removed, which are in fact convex polygons (seeFig. 4). 4. Tricritical phase diagramWe show that, for q < 1, G(x; q) converges for x < xc(q). For q > 1, G(x; q) converges onlyfor x = 0. These results can be expressed in terms of a phase diagram in the space of the twofugacities x and q. The form of this phase diagram is shown in �gure 3. For x < xc(q) and q < 1the polygons are rami�ed objects, closely resembling branched polymers. As q approaches unityless rami�ed con�gurations predominate; at q = 1 one has standard self-avoiding polygons. Thisregion, fx < xc(q); y � 1g might be referred to as the `droplet' or `compact' phase. For q > 1 thepolygons become `expanded' or `in
ated' and approximate squares, their average areas scaling asthe square of their perimeters. For q < 1 and x > xc(q), we expect that this phase can be describedas a single convoluted polygon that `�lls' the whole lattice rather like a closed Hamiltonian path:one might describe it a a `seaweed phase' [9].Here we give main results about the singularity diagram (see Fig. 5):{ qc(x) is singular in x = xt thus we have a phase transition.{ G(x; q) diverges at qc(x) for x > xt.{ G(x; q) is singular at qc(x) = 1 for x < xt.{ G(x; 1) is �nite with singularity exponent 
u as x! xt.{ G(xt; q) has a singularity with exponent 
t as q ! 1.{ (xt; 1) is a tricritical point with crossover exponent � = 
t
u .78
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Figure 5. The singularity diagram.{ The scaling function f is:GSing(x; q) � (1� q)�
tf �f1� qg��fxt � xg)�with f(z) � z�
u as z !1 and f(z) � 1 as z ! 0.{ The shape exponent is  = 1� and qc(x) � 1� a(x� xt) 1 .5. Partially convex polygons: a solvable modelThe analysis of partially convex subsets of self-avoiding polygons con�rms results of the previoussection. These partially convex polygons form a universality class with the same crossover exponentas expected in the unrestricted problem. The particular models we consider are subsets of column-convex polygons: staircase polygons, directed column-convex polygons and column-convex polygons(see Fig. 6).These models have been studied by a variety of methods:{ mapping to a q-extension of an algebraic language [8],{ recurrence relations [12, 5],{ linear functional equations [3, 2],{ transfer matrix techniques [1].All these models possess the characteristic feature that their single-variable generating functionsare algebraic, while the two-variable generating functions are expressed in term of quotients ofq-series.
column-convex polygonsdirected column-convex polygonsstaircase polygonsFigure 6. Partially convex polygons.79



Staircase PolygonsS(x) = S(qx)y + S(qx)S(x) + qxy+ qxS(x)Directed Column-Convex PolygonsD(x;�) = D(qx;�)y�+ ?6D�(qx; 1)qxD(x;�)+ D(qx; 1)D(x;�) + ?6D�(qx; 1)qxy�+ qxy�+ qxD(x;�)Figure 7. The diagrammatic form of the functional equations for staircase polygonsand directed column-convex polygons.We de�ne the polygon generating function G(x; y; q) to beG(x; y; q) = Xnx;ny;m cnx;ny;mxnxynyqm:We derive the generating function for each models by using an in
ation process [10, 11, 3]: theheight of the polygon is increased by one lattice spacing and concatenated with rows of height one(see Fig. 7).Denoting the generating function for the staircase polygons by S(x; y; q), we therefore get im-mediately S(x; y; q) = (S(qx; y; q)+ qx) (y + S(x; y; q)) :In order to write down a functional equation for the column-convex polygons, we need to keeptrack of the height r of the rightmost column of these polygons. We de�ne the generating functionD(x; y; q;�) to be D(x; y; q;�) = Xnx;ny;m;r cnx;ny;m;rxnxynyqm�r :If we denote @@�D(qx; y; q;�)����=1 by D�(qx; y; q; 1), we get the following functional-di�erentialequation:D(x; y; q;�) = (1 +D�(qx; y; q; 1))qx (y�+D(x; y; q;�))+D(qx; y; q;�)y�+D(qx; y; q; 1)D(x; y; q;�):We can transform this equation to one functional equation in D(x) = D(x; y; q; 1) by partiallydi�erentiating with respect to � and setting � = 1. This leads to0 = D(q2x)D(qx)D(x) + yD(q2x)D(qx) + yD(q2x)D(x)� (1 + q)D(qx)D(x) + y2D(q2x)� y(1 + q)D(qx) + q(1 + qx(y � 1))D(x) + yq2x(y � 1):Setting q = 1 gives the perimeter generating function which satis�es a cubic equation and has asquare-root singularity at yc = 3p100� 43 for x = y80



implying that 
u = �12 .First we note that the functional equation for staircase polygons is of the formG(x)G(qx) + a(x)G(x) + b(x)G(qx) + c(x) = 0which can be linearized by the use of the transformationG(x) = �H(qx)H(x) � b(x)where � has to be chosen to match the initial condition. This leads to a linear functional equationin H(x), �2H(q2x) + �[a(x)� b(qx)]H(qx)+ [c(x)� a(x)b(x)]H(x) = 0:Lemma 2. The solution of0 = xH(qx) + NXk=0�kH(qkx) with NXk=0�k = 0regular at x = 0 is given byH(x) = 1Xn=0 (�x)nq(n2)Qnm=1 �(qm) with �(t) = NXk=0�ktk:We apply lemma 2 to staircase polygons, we choose � = y and we get the solutionS(x) = y�T (qx)T (x) � 1� with T (x) = 1Xn=0 (�qx)nq(n2)(q; qy; q)n :Surprisingly, this works also for directed column-convex polygons:D(x) = y �E(qx)E(x) � 1� with E(x) = 1Xn=0 ((y � 1)qx)nq(n2)(q; qy; y; q)n :M. Bousquet-M�elou [3] found by other means that for column-convex polygonsG(x; y; q) = y (1� y)A1 + B + yAwhere A = xq(1� y)(1� yq) + 1Xn=2 (�1)n+1xn(1� y)2n�4q(n+12 )(y2q; q)2n�2(q; q)n�1(yq; q)n�2(yq; q)2n�1(yq; q)n(y2q; q)n�1and B = 1Xn=1 (�1)nxn(1� y)2n�3q(n+12 )(y2q; q)2n�1(q; q)n(yq; q)3n�1(yq; q)n(y2q; q)n�1 :In [11] we consider simpler models of partially convex polygons as stacks and Ferrers diagrams(see Fig. 8).For stacks (s = 2) and Ferrers diagram (s = 1), we obtain a non-alternating q-series for thegenerating function Gs(x; y; q) = 1Xn=1 x(yq)n(xq; q)sn�1(1� xqn)81



Stacks Ferrers diagramsFigure 8. Typical con�gurations of stacks and Ferrers diagrams.and a rational function for the perimeter-generating functionGs(x; y; 1) = xy(1� x)s�1(1� x)s � y :These models are interesting, as they show \pathological behavior". We have seen that consideredas a function of x, the radius of convergence is a continuous function, while considered as a functionof q, it has a jump discontinuity at q = 1 in the generic case for the vesicle models. But in thegeneric case we have left continuity at xc(1) whereas for stacks (xc(q) = 1=q) there is an isolatedpoint xc(1) at q = 1 (xc(1�) = 1 > xc(1) > xc(1+) = 0). Thus stacks and Ferrers diagram are toosimpli�ed to give a reasonable physical model.Bibliography[1] Binder (P. M.), Owczarek (A. L.), Veal (A. R.), and Yeomans (J. M.). { Collapse transition in a simplepolymer model : exact results. Journal of Physics Series A, vol. 23, 1990, p. L975.[2] Bousquet-M�elou (Mireille). { Codage des polyominos convexes et �equations pour l'�enum�eration suivantl'aire. Discrete Applied Mathematics, vol. 48, 1994, pp. 21{43.[3] Bousquet-M�elou (Mireille). { A method for the enumeration of various classes of column-convex poly-gons. Discrete Mathematics, vol. 154, 1996, pp. 1{25.[4] Brak (R.), Enting (I. G.), and Guttmann (A. J.). { Exact solution of the row-convex polygon perimetergenerating function. Journal of Physics Series A, vol. 23, 1990, pp. 2319{2326.[5] Brak (R.) and Guttmann (A. J.). { Exact solution of staircase and row-convex polygon perimeter andarea generating function. Journal of Physics Series A, vol. 23, 1990, pp. 4581{4588.[6] Brak (R.), Owczarek (A. L.), and Prellberg (T.). { A scaling theory of the collapse transition in geometriccluster models of polymers and vesicles. Journal of Physics Series A, vol. 26, 1993, pp. 4565{4579.[7] Brak (R.), Owczarek (A. L.), and Prellberg (T.). { Exact scaling behavior of partially convex vesicles.Journal of Statistical Physics, vol. 76, 1994, pp. 1101{1128.[8] Delest (M. P.). { Generating functions for column-convex polyominoes. Journal of Physics Series A,vol. 48, 1988, pp. 12{31.[9] Fisher (Michael E.), Guttmann (Anthony J.), and Whittington (Stuart G.). { Two-dimensional latticevesicles and polygons. Journal of Physics Series A, vol. 24, 1991, pp. 3095{3106.[10] Prellberg (T.) and Brak (R.). { Critical exponents from nonlinear functional equations for partiallydirected cluster models. Journal of Statistical Physics, vol. 78, 1995, pp. 701{730.[11] Prellberg (Thomas) and Owczarek (Aleksander L.). { Staking models of vesicles and compact clusters.Journal of Statistical Physics, vol. 80, n�3/4, 1995, pp. 755{779.[12] Temperley (H. N. V.). { Combinatorial problems suggested by the statistical mechanics of domains andrubber-like molecules. Physical Review, vol. 103, n�1, 1956, pp. 1{16.82



Partitions of Integers: AsymptoticsPhilippe DumasProjet Algorithmes, Inria RocquencourtDecember 11, 1995[summary by Philippe Dumas and Bruno Salvy]AbstractThe study of the asymptotics of the number of partitions of integers under variousconstraints is a very rich area initiated by two papers of Hardy and Ramanujan. Some ofthis literature is surveyed here.If 0 < �1 � �2 � � � � � �� are positive integers, their sum n = �1+�2+ � � �+�� is called a partitionof n into � summands (or parts). The number of partitions of n is denoted p(n) or pn. When thereis no constraint on the �i, it is easy to see that the generating function of the pn's satis�es thefollowing identity due to Euler: P(q) = Xn�0 pnqn = Yk>0 11� qk :(1)Euler's pentagonal theorem also gives a formula for the reciprocal of this generating function:Yk>0(1� qk) = 1Xm=�1 (�1)mqm(3m�1)=2:This last relation yields a simple way to compute the number pn by recurrence. Numerous otherrelations on partitions and their congruence properties can be derived from identities on generatingfunctions. See in particular [1]. 1. OriginsThe asymptotic analysis of the generating function P(q) is very di�cult. There are singularitiesat all roots of unity, which implies that the circle of convergence is a natural boundary. It can beproved that a saddle-point method applies. The coe�cient pn is given by the contour integralpn = 12i� Z
 P(q)qn+1 dq;and the main contribution comes from the neighbourhood of 1, which yieldspn � 14np3 exp �r2n3 ! :(2)Then the next contribution comes from the neighbourhood of �1, then from the neighbourhoodof exp(�2i�=3), etc. Thus the contour of integration has to go through an in�nity of saddle-points,whose contribution to the integral have to be estimated. It turns out that these contributions83



are related by a modular transform. For, the generating function P(q) is related to Dedekind's �function: �(�) = ei��=12 1Ym=1(1� e2i�m� ) = ei��=12P(ei��) :The �nal result is the following theorem [9].Theorem 1. The number p(n) of partitions satis�esp(n) = �Xq=1Aq q +O(n�1=4);where  q = pq2�p2 ddn 0B@exp ��qq23qn� 124�qn� 124 1CA ; Aq = Xp^q=1;p�q !p;qe�2npi�=q;and !p;q is a certain 24qth root of unity.This result is very precise: since the O() term tends to 0 and the number p(n) is an integer, it issu�cient to consider �nitely many terms of this asymptotic expansion to compute the exact valueof p(n). In practice, the number of necessary terms is quite small. Theorem 1 has been re�nedby H. Rademacher [15] to obtain a full asymptotic expansion which is convergent. Other specialtypes of partitions have been treated the same way. All these works rely on the theory of modularfunctions.Wright followed the way opened by Hardy et Ramanujan in several works [20, 21, 22]. Forinstance, he studied the asymptotics of plane partitions, with generating functionXn�0pplane(n) qn = Ỳ�1 1(1� q`)` :The result has the following formpplane(n) � Kn25=36 exp �Cn2=3� ;which should be compared to (2) for ordinary partitions.All these results are obtained by a saddle-point method combined with a Mellin transform.2. Mahler's partition problemIn [12] Mahler studies the partitions whose summands are constrained to be powers of someinteger r � 2. In that case, the generating function becomesYk>0 11� qrk =X pr(n)qn = Pr(q):Mahler computes an expansion of log pr(n), whose error term is a O(1). This expansion shows thatpr(n) is essentially of order exp(log2 n=2 log r). The basic tool is a functional equationf(z + !)� f(z)! = f(qz); with q = 1=r:The result was improved by de Bruijn [5], using a Mellin transform approach to the logarithm,followed with a saddle-point method. Besides, in de Bruijn's work, r > 1 can be any real number84



and Mahler's error term is expressed as the sum of an oscillating series. This oscillating behaviouris studied in more detail by Erd�os and Richmond in [7, 16].3. Saddle-point methodIt it quite lucky that in the case of unrestricted ordinary partitions the whole computationprovides an asymptotic convergent series. If one adds constraints on the summands of the partitionsit is in general not possible anymore to derive a convergent asymptotic estimate of this form. Inthese cases, only the saddle-point close to 1 is considered and its contribution to the integral isoften itself an in�nite sum.Meinardus [1, 13] gives some general conditions which ensure that the saddle-point method works.He considers a generating function Yk�1 1(1� qk)ak ;where the numbers an are real nonnegative, and the conditions concern the Dirichlet series D(s) =Pk�1 ak=ks, which extends as a meromorphic function to the left of its abscissa of convergence.Roth and Szekeres [18] study a generating functionYk�1(1 + q�k):They assume the limit s = limk!1 log�k=log k exists, and use some arithmetical conditions on thesummands �k. Their result was extended by Richmond [17], who gives several sets of conditions.As an example, Roth and Szekeres give the following expansion for the number of partitions intodistinct prime summands,log qprime(n) = �r23r nlog n �1 +O� log lognlogn �� :The works of Meinardus and of Roth and Szekeres use the saddle-point method. The di�erencesbetween them is rather a matter of style. Meinardus studies the behaviour of the generating functionin the neighborhood of 1 using a Mellin transform; this gives an approximate saddle-point equationand an approximate saddle-point; next the Cauchy integral is studied. Roth and Szekeres directlyuse the saddle-point method and their result is expressed in an implicit manner; every applicationneeds an auxiliary computation, in some cases with the Euler-McLaurin formula or with the Mellintransform, to obtain an explicit expansion.4. Tauberian methodIn [10], Ingham asks for a set of conditions not highly extravagant which leads to a result aboutthe asymptotic behaviour of the number of partitions. He considers a sequence of real numbers 0 <�1 < �2 < � � � < �k < � � � and its count function �(u) = jf�k;�k � ugj. The use of this function isnatural because the generating functionP(e�s) = Yk�1 11� e�ks = X̀ p(`)e�`sand the count function are related bylogP(e�s) = Z +10 log 11� e�su d�(u):85



Under the hypothesis�(u) = Bu� + R(u); Z u0 R(v)v dv =u!1 b logu+ c+ o(1);he proves that Ph(u) � Ku(a�1=2)(1��)�1=2 exp(Cu�); with � = �=(� + 1);for some explicit constants K and C. Here the function Ph(u) generalises the function p(n) we usedpreviously; precisely, if P (u) is the number of solutions in nonnegative integers of the inequationn1�1+n2�2+ � � �+nr�r+ � � � < u then for positive h, Ph(u) = [P (u+ h)� P (h)]=h. Hence if h = 1and the summands �k are integers, Ph(n) is simply p(n). The function P (u) already appears in thework of Mahler, because it satis�es the equations p(rm) = P (m+0) and P (u)�P (u�1) = P (u=r)in that case.The proof relies on a special Tauberian theorem. Indeed, the generating function appears to bea Laplace transform, P(e�s) = Z 10 e�su dP (u):The Tauberian theorem of Ingham provides an estimate of P (u) in terms of �(s) = logP(e�s) andthe solution �u of the equation �0(�u) + u = 0 (which can be seen as a saddle-point equation).The proof of Ingham works for P (u) without any further condition, but for Ph(u) one of thehypotheses is the monotonicity of this function. Auluck and Haselgrove [2] have extended theresult of Ingham, and removed some of his hypotheses. Bateman and Erd�os [3] have shown thatfor integer summands �k the function p(n) = P1(n) is monotonic if and only the set of summandshas the following property: there are at least two �'s and if one removes any � the remaining �'shave greatest common divisor unity. 5. Weak resultsHardy and Ramanujan [8] study the number Q(x) of solutions of the inequation2a23a35a5 � � �pap � � � � xinto integers satisfying a2 � a3 � � � � � ap � � � � . The numbers 2, 3, : : : , p, : : : are the primenumbers. If �k is the sum of the logarithms of the k �rst prime numbers, Q(x) is essentiallyP (log x). They prove that logQ(x) =x!1 2�p3s log xlog log x + o(1):Such a result, which gives an equivalent of log P (u), is called a weak result.The tools used by Hardy and Ramanujan is a Tauberian theorem; under some simple conditionsthis theorem says that logAn =n!1B`�=(1+�)n = log�=(1+�) `nif the behaviour near 0 of the logarithm of the Laplace transformf(s) = Xn�1ane�`ns = Z 10 e�su dA(s)is known, namely log f(s) =s!0 As� log�(1=s) :86



In these formul� An is the summatory functionAn = a1 + a2 + � � �+ an; A(x) = An for n � x < n+ 1:The result is applied to the generating functionP(e�s) = Yk�1 11� e��ks ;which satis�es logP(e�s) =s!0 �26s log(1=s) ;with `n = logn.Brigham [4] extends the work of Hardy and Ramanujan, by considering the generating functionP(e�s) = Yk�1 1(1� e�ks)
k ;and the following hypothesis about the count function�(u) =Xk�u
k �u!1Ku� log� u; � > 0:Two students of Bateman, Kohlbecker [11] �rst, and Parameswaran [14] next, consider the func-tional relation between the count function �(u) and the summatory function P (u),log Z 10 e�su dP (u) = Z 10 log 11� e�su d�(u):Kohlbecker shows the following behaviours are equivalent�(u) � u�L(u); logP (u) � u�=(1+�)L�(u); (� > 0):The function L(u) and L�(u) are slowly varying, that is L(cu) � L(u) for every c > 0. Moreover(L; L�) is a dual pair; in every concrete case, L�(u) is explicitely computable from L(u). The wayfrom P (u) to �(u) is an Abelian theorem, and the way form �(u) to P (u) is a Tauberian theorem,like in the work of Hardy and Ramanujan.Schwarz [19] gives a result which is surprising by its simplicity. The count function �(u) tendsto in�nity (as we assumed in all preceding assertions) and satis�es �(2u) = O(�(u)) as u!1.Under this hypothesis the behaviour of log P (u) is given bylogP (u) =u!1�(�u) + u�u +O u�us (�u) log 1 (�u)! ;where �u is the solution of the equation �(�) + u = 0 for u large, and�(�) =Xk�1 log 11� e�k� ;  (�) = �00(�)j�0(�)j2 :Schwarz gives a host of examples: ordinary partitions, �k = k, �(u) � u; partitions into primenumbers, �k = pk, �(u) � u= logu; partitions into rth powers, �k = kr , �(u) � u1=r; Mahler parti-tions, �k = rk, �(u) � logr u; partitions whose summands are �k = kk or k!, �(u) � log u= log log u,for example. 87



ConclusionThere is a wealth of papers on this subject. Parameters of partitions such as the number ofsummands can also be treated by the same kind of subject, although the computations are generallymore technical. This is the problem that started Ph. Dumas in this domain, see [6] for details.Bibliography[1] Andrews (George E.). { The Theory of Partitions. { Addison-Wesley, 1976, Encyclopedia of Mathematicsand its Applications, vol. 2.[2] Auluck (F. C.) and Haselgrove (C. B.). { On Ingham's Tauberian theorem for partitions. Proceedingsof the Cambridge Philosophical Society, vol. 48, 1952, pp. 566{570.[3] Bateman (P. T.) and Erd�os (P.). { Monotonicity of partition functions. Mathematika, vol. 3, 1956,pp. 1{14.[4] Brigham (Nelson A.). { A general asymptotic formula for partition functions. Proceedings of the Amer-ican Mathematical Society, vol. 1, 1950, pp. 182{191.[5] De Bruijn (N. G.). { On Mahler's partition problem. Indagationes Math., vol. 10, 1948, pp. 210{220. {Reprinted from Koninklijke Nederlandsche Akademie van Wetenschappen, Ser. A.[6] Dumas (Ph.). { The number of summands in a binary partition. { To appear.[7] Erd�os (P.) and Richmond (B.). { Concerning periodicity in the asymptotic behaviour of partitionfunctions. Journal of the Australian Mathematical Society, vol. 21, 1976, pp. 447{456.[8] Hardy (G. H.) and Ramanujan (S.). { Asymptotic formul� for the distribution of integers of varioustypes. Proceedings of the London Mathematical Society, Series 2, vol. 16, 1918, pp. 112{132.[9] Hardy (G. H.) and Ramanujan (S.). { Asymptotic formul� in combinatory analysis. Proceedings of theLondon Mathematical Society, Series 2, vol. 17, 1918, pp. 75{115.[10] Ingham (A. E.). { A Tauberian theorem for partitions. Annals of Mathematics, vol. 42, n�5, 1941,pp. 1075{1090.[11] Kohlbecker (Eugene E.). { Weak asymptotic properties of partitions. Transactions of the AmericanMathematical Society, vol. 88, 1958, pp. 346{365.[12] Mahler (K.). { On a special functional equation. Journal of the London Mathematical Society, vol. 15,1940, pp. 115{123.[13] Meinardus (G�unter). { Asymptotische Aussagen �uber Partitionen. Mathematische Zeitschrift, vol. 59,1954, pp. 388{398.[14] Parameswaran (S.). { Partition functions whose logarithms are slowly oscillating. Transactions of theAmerican Mathematical Society, vol. 100, 1961, pp. 217{240.[15] Rademacher (Hans). { On the partition function p(n). Proceedings of the London Mathematical Society,Series 2, vol. 43, 1937, pp. 241{254.[16] Richmond (Bruce). { Mahler's partition problem. Ars Combinatoria, vol. 2, 1976, pp. 169{189.[17] Richmond (L. B.). { Asymptotic relations for partitions. Journal of Number Theory, vol. 7, 1975,pp. 389{405.[18] Roth (K. F.) and Szekeres (G.). { Some asymptotic formul� in the theory of partitions. QuarterlyJournal of Mathematics, Oxford Series, vol. 5, 1954, pp. 241{259.[19] Schwarz (Wolfgang). { Schwache asymptotische Eigenschaften von Partitionen. Journal f�ur die reineund angewandte Mathematik, vol. 232, 1968, pp. 1{16.[20] Wright (E. Maitland). { Asymptotic partition formul� I. Plane partitions. Quarterly Journal of Math-ematics, Oxford Series, vol. II, 1931, pp. 177{189.[21] Wright (E. Maitland). { Asymptotic partition formul�: (II) Weighted partitions. Proceedings of theLondon Mathematical Society, Series 2, vol. 36, 1934, pp. 117{141.[22] Wright (E. Maitland). { Asymptotic partition formul�: (III) Partitions into k-th powers. Acta Arith-metica, vol. 63, n�141{191, 1934. 88



Measures of distinctness for summands in partitions and compositionsHsien-Kuei HwangAcademia Sinica, TaiwanMay 6, 1996[summary by Philippe Dumas]AbstractStatistical properties of integer partitions and compositions are studied. The approachis based on generating functions and complex analysis, and uses Mellin transform.The problem under treatment is mainly based on a work by Richmond and Knopfmacher [4], whoconsidered compositions with distinct summands. It is also based on a work by Knopfmacher andMays [2], who studied the number and the sum of distinct summands in compositions by elementarymeans. The approach of Hwang and Yeh [1] is di�erent. It is based on generating functions andcomplex analysis, which allows them to consider a general scheme: the summands are taken forman in�nite positive integer sequence (�j), and various types of partitions or compositions, inspiredfrom combinatorial data structures, are studied.There are di�erent ways to estimate the degree of distinctness between the summands of apartition or of a composition. In this summary we content ourselves with the number of summandswhich occur h times or more in a partition or composition, though Hwang and Yeh consider manyother criteria. This number may be viewed as a random variable X [h]n indexed by the sum n of thepartition or composition. In the case of compositions, the formulaXn�1 cnE(X [h]n ) =Xj�1 zh�j(1� �(z))(1� �(z) + z�j)h ;where cn is the number of compositions of n and �(z) = Pj z�j , provides a way to determine theasymptotic behavior of the mean E(X [h]n ).Let us consider the simple case �j = j ; so that cn = 2n�1. We haveE(X [1]n ) = log2 n� 32 + 
log 2 � 12Xk 6=0�(�k)n��k +O� lognn � ;with �k = 2ik�=n. The proof is in four steps and relies on the formulaE(X [1]n ) = nXj=1�1� 12n�1 [zn] 1� z1� 2z + zj(1� z)� :First, Rouch�e's theorem implies that the polynomial 1� 2z+ zj(1� z) has only one root (1+ "j)=2inside the unit circle. Next the Lagrange inversion theorem gives an explicit expression of "j,namely "j = X̀�1 12(j+1)`` `�1Xi=0  `i+ 1!(�1)`�i�1 kì !:89



The singularities of the generating function being known, the next stage is an application ofCauchy's formula. One obtainsE(X [1]n ) = nXj=1 1� 11 + "nj !+O� lognn � :This new sum is a harmonic sum which can be expressed as an inverse Mellin transform, henceE(X [1]n ) = �12i� Z �1=2+i1�1=2�i1 �(s)n�sU(s) ds+O� lognn � ;with U(s) = (Pj�1 log(1 + "j)�s; <(s) < 0;4s=(1� 2s) + V (s); <(s) < 1:This provides the announced formula. The analysis di�ers from Knuth's one [3] and gives a bettererror term. The big oh term may be replaced by a sumXk�1 1nk kX̀=0$k;`(log2 n) log` n;where the $k;`s are periodic functions. More generally one obtainsE(X [h]n ) = E(X [1]n )� h�1Xj=1 1j! log 2 0@1 +Xk 6=0�(j + �k)n��k1A +O� lognn � :All this is relative to the case �j = j.In the general case �(z) = Pj z�j cannot be written as za�1(zd) with d � 2 and the countfunction A(x) = X�j�x 1tends to in�nity with x. Under these conditions, one obtainsE(X [h]n ) = A(logr(cn)) +O(1);where r and c are de�ned by �(�) = 1, r = 1=� end c = 1=�=�0(�). One may say there is alogarithmic transition from the behavior of A to the behavior of E(X [h]n ).Hwang and Yeh consider others compositions like cyclic compositions where compositions areconsidered up to circular permutation, or branching compositions where the summands label thenodes of a binary tree. Bibliography[1] Hwang (H.-K.) and Yeh (Y.-N.). { Measures of distinctness for partitions and compositions of integers. {in preparation.[2] Knopfmacher (A.) and Mayes (M. E.). { Compositions with m distinct parts. Ars Combinatorica, 1996. {To appear.[3] Knuth (D. E.). { The average time for carry propagation. Indagationes Mathematicae, vol. 40, 1978,pp. 238{242.[4] Richmond (L. B.) and Knopfmacher (A.). { Compositions with distinct parts. Aequationes Mathematicae,vol. 49, 1995, pp. 86{97. 90



Asymptotics and scalings for large product-form networks via the Central limittheoremJean-Marc LasgouttesINRIA RocquencourtMay 6, 1996[summary by Philippe Robert]1. IntroductionThis talk considers the following closed queueing networks: there are n queues and mn customerstraveling in the network, the service rate at queue k when there are qk customers is �k;n(qk). Acustomer �nishing his service at queue k goes to queue l with probability pk;l where Pn = (pk;l) isan irreducible stochastic matrix with invariant measure �n = (�1;n; : : : ; �n;n), de�ned by �nPn = �nand �1;n + � � � + �n;n = 1. The service discipline can be FIFO, LIFO, or Processor sharing. Tothis network is associated a Markov process given by the vector of the number of customers in thequeues (Qk;n). It is well known that this Markov process has a unique equilibrium measure Pn suchthat, if q1; : : : ; qn � 0 and q1 + � � �+ qn = mn,Pn(Q1;n = q1; : : : ; Qn;n = qn) = Z�1mn;n nYk=1 �qkk;n�k;n(1) � � ��k;n(qk) ;with the normalizing conditionZm;n = Xq1+���+qn=m nYk=1 �qkk;n�k;n(1) � � ��k;n(qk) :The explicit expression for the equilibrium measure is not really informative because of the nor-malizing constant which is not easy to handle. It is di�cult to get a qualitative insight on thenetwork (such as the mean queue lengths and their variances). A way to cope with this problem isto consider asymptotics. The paper considers the case where the number of queues and the numberof customers tend to in�nity with some normalization between them.2. The equivalent networkThe main idea is to introduce the open network de�ned by n independent parallel queues withservice rate �k;n(x) and arrival intensity �n�k;n at queue k.The distribution of the number Xk;n of clients in queue k is given byP (Xk;n = x) = 1fk;n (�n�k;n)x�k;n(1) � � ��k;n(x)where fk;n is a (simple) normalizing constant. 91



Theorem 1. For any choice of mn, there exists a unique �n such that if Sn = X1;n+ � � �+Xn;n,then E(Sn) = mn. In this case for any q1; : : : ; qn � 0 and 1 � ` � n,P (Q1;n = q1; : : : ; Qn;n = qn) = 1P (Sn = mn) nYk=1P (Xk;n = qk);P (Q1;n = q1; : : : ; Q`;n = q`) = Ỳk=1P (Xk;n = qk)P (Pnk=`+1Xk;nPnk=`+1mk;n)P (Sn = mn)� P (X1;n = q1; : : : ; X`;n = q`��Sn = mn):Starting from this representation, the asymptotic results concerning the network are proved viaasymptotic results on Sn. Basically, in the same way as Kolchin [2] in another context, the authorsuse local limit theorems of the following form.Theorem 2. Under \suitable" conditions, there exists a distribution with density h and a se-quence an such that, for any integer x, limn!1 anP (Sn �mn = x)� h(x=an) = 0.3. Asymptotic expansionsThe queues are partitioned into two sets, Fn and In. The set Fn contains those queues k forwhich lim inf q!1 qq�k;n(1) � � ��k;n(q) <1; the set In contains the other ones.Definition 1. Let�k;n = 8<:lim inf q!1 qq�k;n(1) � � ��k;n(q); if k 2 Fn,�k;n(1); if k 2 In, and �0n = mink2Fn �k;n�k;n :A sequence m0n is said to be weakly critical, if for any 0 < t < 1, g(t) = lim supn!1mn(t�0n)=m0nexists and limt!1� g(t) be either 1 or 1.The critical sequences m0n allow to distinguish between saturated and non-saturated regimesof the network, depending on the limit of g(t) at 1. One of the main results on the asymptoticexpansion of the equilibrium measure is the following theorem.Theorem 3. Assume limn!1max1�k�n (�k;n=�k;n)=[�1;n=�1;n + � � �+ �n;n=�n;n] = 0. Let m0n bea weakly critical sequence, with the associated function g(t). Assume that limt!1� g(t) = 1. Ifmoreover, lim supn!1mn=m0n < 1 then, for any �nite index j,P (Q1;n = q1; : : : ; Qj;n = qj) = jYk=1P (Xk;n = qk) "1 + O 1mn!# :In particular, for all k 2 f1; : : : ; ng, E(Qk;n) is uniformly bounded in n.Bibliography[1] Fayolle (Guy) and Lasgouttes (Jean-Marc). { Asymptotics and Scalings for Large Closed Product-formNetworks via the Central Limit Theorem. { Technical Report n�2754, Institut National de Recherche enInformatique et en Automatique, 1996.[2] Kolchin (V. F.). { Random Mappings. { Optimization Software, New York, 1986. Translated fromSlu�cajnye Otobra�zenija, Nauka, Moscow, 1984. 92
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Analysis of QuickselectHelmut ProdingerTechnical University of ViennaOctober 16, 1995[summary by Bruno Salvy]AbstractQuickselect is an algorithm due to Hoare which uses the same partitioning process asQuicksort. As in Quicksort, there is a median-of-three version which reduces the number ofcomparisons and passes. This is analyzed as well as a variant called multiple Quickselect.All these analyses result in explicit expressions for the number of passes and comparisons.Quicksort and Quickselect work as follows. The input is an array of n elements. First, oneof these elements|the pivot|is selected at random. Then partitioning takes place: the array isrearranged so that its elements smaller than the pivot end up to the left of it, while the elementslarger than the pivot end up to the right (see Fig. 1). It is an important hypothesis for the analysisthat this partitioning should be stable, i.e. the order of the smaller elements and the order of thelarger elements should not have been modi�ed during the partitioning. In the next step, Quicksortand Quickselect di�er. In Quicksort, whose aim is to sort the array, the same process is appliedrecursively to both sides of the array. In Quickselect, whose aim is to �nd the jth element of thearray, the process is applied recursively to the side containing it.In the case of Quicksort, the number of passes and the number of comparisons satisfy recurrencesfrom which follow explicit formul� in terms of the harmonic numbers Hn =Pnk=1 1=k [5].A classical optimization of Quicksort is obtained by selecting the pivot by a median-of-threeprocess: three elements of the array are selected at random, and the pivot is taken to be the medianone. The analysis of this optimization is well-known [3, 2]. In [4], the analysis of Quickselect withthis optimization is carried out. The same technique is applied to multiple Quickselect in [7]. Wenow summarize these works.v Rpivot element vsmaller larger6correct positionFigure 1. The partioning process95



1. Number of passes and comparisonsAfter the pivot has been selected by the median of three process, the probability that the parti-tioning yields two sub-arrays of sizes (k � 1) and (n� k) is�n;k = (k � 1)(n� k)�n3� :Let Fn;j(z) denote the probability generating function of the number of passes necessary to selectthe jth element out of n under the assumption that all n! permutations of the array are equallylikely. Then by a simple generating function argumentFn;j(z) = z 24j�1Xk=1�n;kFn�k;j�k(z) + �n;j + nXk=j+1�n;kFk�1;j(z)35(1)for n � 3 while F1;1(z) = F2;1(z) = F2;2(z) = z. The expected number of passes is obtainedas Pn;j = F 0n;j(1) and the generating function Pj(z) = Pn�j Pn;jzn satis�es the following mixedshift-di�erential equation derived from (1):16P 000j (z) = 1(1� z)4 � j�1Xk=3 k3!zk�3 + j�1Xk=2 (k � 1)zk�2P 0j�k(z) + P 0j(z)(1� z)2 :(2)Since this is really an equation in P 0j , it is convenient to set Dj = P 0j . Then, with the help ofMaple, it is possible to �nd closed-form formul� for D1(z), D2(z), etc. All these functions arelinear combinations of (1� z)�2 log(1� z), log(1� z), (1� z)�2 and polynomials in z with simplerational coe�cients. It is possible to spot patterns in these coe�cients and this suggests studyingthe bivariate generating function D(z; u) of the Dj(z). From (2), it follows that D(z; u) satis�es alinear di�erential equation:16 @2D@z2 � � 1(1� z)2 + u2(1� uz)2�D = u1� u � 1(1� z)4 � u3(1� uz)4� ;with initial conditions D(0; u) = u, D0z(0; u) = 2u(1 + u). This equation turns out to have a(several pages long) closed-form solution involving the logarithms of (1 � uz) and (1 � z) andrational functions in u and z. Extracting the coe�cients then yields the following theorem.Theorem 1. Given a random permutation of n elements and 5 � j � n�4, the average numberof passes needed to select the jth element using Quickselect with a median-of-three partition isPn;j = 2435Hn + 1835Hj + 1835Hn+1�j + 1235j + 1235(n+ 1� j) � 304175 � 67n + 18j35n � 12(j � 1)235n2� 4(2j � 3)(j � 1)235n3 � 6(j � 2)(j � 1)335n4 + 6(2j � 5)(j � 1)435n5 � 4(j � 3)(j � 1)535n6 ;where nk = n(n� 1) � � �(n� k + 1).For instance, to compute the median of 2n+1 elements requires a number of passes P2n+1;n+1 =2435H2n+1+ 3635Hn+1+O(1) = 127 logn+O(1) instead of 2 logn in the classical case. The savings arethus about 14%.The number of comparisons is obtained in a similar fashion. In (1), it is su�cient to replacethe factor z by zn�1 to obtain the generating function of the number of comparisons (at each pass,there are n�1 comparisons during the partitioning). Then again, the bivariate generating function96



of the number of comparisons to select the jth element out of a random permutation of n elementscan be found explicitly, and extracting the coe�cients yields the following theorem.Theorem 2. Given a random permutation of n elements and 5 � j � n�4, the average numberof comparisons needed to select the jth element using Quickselect with a median-of-three partitionisCn;j = 2n+ 7235Hn� 15635 Hj� 15635 Hn+1�j+ 3635j + 3635(n+ 1� j) + 88175+ 247n+3j� 3(j � 1)2n � 156j35n� 36(j � 1)235n2 � 12(2j � 3)(j � 1)235n3 � 18(j � 2)(j � 1)335n4 + 18(2j � 5)(j � 1)435n5 � 12(j � 3)(j � 1)535n6 ;where nk = n(n� 1) � � �(n� k + 1).Computation of the median therefore requires 11n=2+O(logn) comparisons whereas the classicalmethod requires 4(1 + log 2)n+ O(logn) comparisons. The savings are thus about 19%.The same technique also applies to several variants, such as counting only n� 3 comparisons perpartition or selecting the smaller of two random elements as the pivot.2. Multiple QuickselectIn multiple Quickselect, one searches simultaneously for the elements of indices fj1; : : : ; jpg (0 <j1 < � � � < jp � n). The analysis is very similar to the analyses above and results in explicit formul�for the number of passes and the number of comparisons. With obvious notation, one hasP [n; j1; : : : ; jp] = Hj1 +Hn+1�jp + 2 pXt=2Hjt+1�jt�1 � 2p+ 1;C[n; j1; : : : ; jp] = 2n+ jp � j1 + 2(n+ 1)Hn � 2(j1+ 2)Hj1 � 2(n+ 3� jp)Hn+1�jp� 2 pXt=2 (jt + 4� jt�1)Hjt+1�jt�1 + 8p� 2:Of course, as a special case, we recover the analysis of Quicksort when p = n.A recent work of Lent and Mahmoud [6] gives asymptotic estimates for so-called grand averages:Pn;p = 1�np� X1�j1<���<jp�nP [n; j1; : : : ; jp];Cn;p = 1�np� X1�j1<���<jp�nC[n; j1; : : : ; jp]:Using the formul� above and summing the harmonic numbers by direct manipulations or standardgenerating function techniques [1], it is actually possible to derive closed-form formul� for theseaverages in terms of harmonic numbers [7].Theorem 3.Pn;p = 2p(n+ 1)2(n+ 2� p)(n+ 1� p)(Hn+1 �Hp) + 1� 2p� 2(p� 1)2n+ 2� p;Cn;p = 1(n+ 2� p)(n+ 1� p) �(2Hp + 1)n3 � 8pHnn2 + 4((p+ 2)Hp + p)n2+2p(p� 9)Hnn+ (2(4p+ 5)Hp � 5p2 + p� 1)n+ 2p(p� 5)Hn + 4(p+ 1)Hp � p(p+ 7)� :97
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Basic hypergeometric series, digital search trees, and approximate countingHelmut ProdingerTechnische Universitat WienOctober 16, 1995[summary by Mich�ele Soria]The transformation formula of Heine from the theory of basic hypergeometric functions allowsvery simple and pleasant derivations of explicit forms of the level polynomials of digital searchtrees [8], as well as of explicit forms of the probabilities in the \approximate counting" problem [7].1. Basics about hypergeometric functionsThis section contains basic notations and results about q-hypergeometric series (see e.g. [1, 3]).q-Pochhammer symbol. Let us introduce the classical notations:(a)n = (1� a)(1� aq) � � �(1� aqn�1); (a)0 = 1; (a)1 = limn!1(a)nand observe that (a)n = (a)1(aqn)1(1)Cauchy's Formula. Xn�0 (a)ntn(q)n = (at)1(t)1Euler's identities. The special case a = 0 is generally attributed to Euler:Xn�0 tn(q)n = 1(t)1and the so called Euler formula is obtained by �rst substituting a=b by a and bt by b in Cauchy'sformula, then setting a = �1 and b = 0:(�t)1 =Xn�0 q(n2)tn(q)n :99



Heine's transformation. Cauchy's formula and equation (1) lead to Heine's formula:Xn�0 (a)n(b)n(q)n(c)n tn = (at)1(b)1(c)1(t)1 Xn�0 (c=b)n(t)n(q)n(at)n bnSetting a = q, b = y, c = 0 and t = z in Heine's transformation, one gets the simple formulaXn�0(y)nzn = (y)1Xn�0 yn(q)n(1� zqn)2. Level polynomials in digital search treesA digital search tree is constructed like a binary search tree, but the decision to go down to theleft or right is done accordingly to the binary representation of the key: if the �rst bit is 0, the itemgoes left and otherwise it goes right; then the second bit is used to go down further left or right,etc., until there is an empty node where the item can be stored. In order to study the averagesearch cost, we are interested in hn;k, the expected number of nodes on level k (by convention, theroot is at level 0), in a tree built from n random data (i.e. in every decision, a bit 0 or 1 is equallylikely).The level polynomial Hn(u) =Pk�0 hn;kuk satis�es (see e.g. [5]) H0(u) = 0, and for n � 1Hn(u) = nXk=1 nk!(�1)k�1(u)k�1;By probabilistic arguments, Louchard [6] gave an explicit formula for the coe�cients of Hn(u), thatwe shall derive here by means of hypergeometric functions. We introduce the bivariate generatingfunction H(u; x) =PnHn(u)xn and obtain easily:H(u; x) = x(1� x)2 Xk�0(u)k xk(x� 1)k :The use of Heine's formula givesH(u; x) = x(1� x)2 (u)1Xk�0 uk(q)k �1� xx�1qk� :Then decomposing into partial fractions and applying Euler's formula leads toH(u; x) = (u)11� x 1(u=q)1 � (u)1Xk�0 (u=q)k(q)k 11� x(1� qk) :From this expression we getHn(u) � [xn]H(u; x) = 11� u=q � (u)1Xk�0 (u=q)k(q)k (1� qk)n;The coe�cient of ul in Hn(u) then transforms by Euler's formula inhn;k � [ul]Hn(u) = q�l � lXk=0 q�k(q)k (1� qk)n(�1)l�k q(l�k2 )(q)l�k :(2)Other parameters of interest, such as partial sums ([ul]Hn(u)=(1� u)) or leaf levels ([ul]1 � (1 �u=q)Hn(u)) can be obtained immediately from (2).100



3. Approximate counting via Euler transformApproximate counting can be described by an automaton with states 1, 2,... Starting in state 1,we proceed step by step. In one step we may either advance from state i to state i + 1 withprobability qi, or stay in state i with probability 1 � qi. The interesting parameter is the statereached after n random steps. The original analysis of this problem was done by Flajolet [2] andconsists of an enumerative part and an asymptotic part. We will show here how hypergeometricfunctions allow some shortcuts in the enumerative part. Let pn;l be the probability to be in statel after n random steps, and let Hl(x) =Pn�0 pn;lxn. Using a decomposition path from 1 to l intostages, it is not hard to see thatHl(x) = xl�1q(l2)Qli=1 (1� x(1� qi)) = 1x � x1�x�l q(l2)� xqx�1�l :We shall go to the expected value after n steps by means of the bivariate generating functionH(x; y) =Pl�0Hl(x)yl. Setting z = xx�1 and applying Heine's formula, we getH(x; y) = 1x (q)1(yz)1(qz)1 Xn�0 (z)nqn(q)n(yz)n :One more Heine transform, with a = 0, b = z, c = yz and t = q leads toH(x; y) = 1x (q)1(yz)1(qz)1 (z)1(q)1(yz)1 Xn�0 (y)n(q)nzn(q)n = 1x(1� z)Xn�0(y)nzn:The expected value after n steps, Pl lpn;l, is the coe�cient of xn in the partial derivative Hy(x; y)taken at y = 1. Since for n � 1 @@y (y)n��y=1 = �(q)n�1;we have Xl�1 lHl(x) = � 1x(1� z)Xn�1(q)n�1zn:And to get the quantity of interest we have to extract the coe�cient of zn in the last expression.This is done by using Euler's transform: if f(x) =Pn�0 anxn then11� xf � xx� 1� =Xn�0 nXk=0 nk!(�1)kakxn:Thus Xl�1 lpn;l � [xn]Xl�1 lHl(x) = 1� nXk=1 nk!(�1)kqk(q)k�1:This formula is equivalent to the one given in [4], where its asymptotic value is then obtained byRice's Method. 101
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Biased Random Walks, Lyapunov Functions, and Stochastic Analysis of BestFit Bin PackingClaire KenyonCNRS - VilleurbanneOctober 23, 1995[summary by Philippe Robert]This talk considers the average case behavior of the best �t algorithm for on-line bin packing inthe case where the item sizes are uniformly distributed in f1=k; : : : ; j=kg. The best �t algorithmworks as follows: the items are packed on-line, each item goes to the bin for which the wasted spaceis minimized. The bins are of size 1. We focus here on the average wasted space of the algorithm.It is known that this quantity is bounded when j is small compared to k ( j < p2k + 2:25� 1:5) orwhen j is su�ciently close to 1 or k. In the cases where it is known to be unbounded it appears togrow linearly (see [1]). The motivation of this study is to analyze the sensitivity of the performancesof best �t algorithm with respect to the probability distribution of the sizes of the items. The mainresult is the following theorem.Theorem 1. For the uniform distribution on f1=k; 2=k; : : : ; (k�2)=kg, the average wasted spaceis bounded.We sketch the main ideas of the proof. The main variable of interest is the the multi-dimensionalMarkov chain S(t) = (s1(t); : : : ; sk�1(t)), where si(t) is the number of bins at time t with a residualspace of size i=k. The transitions of this Markov chain are described as follows:If the (t+ 1)th item is of size x=k,{ If sx(t) 6= 0 then a bin is completely full with this item and so sx(t+ 1) = sx(t)� 1;{ if not and fsi(t) 6= 0g is not empty and � = inffi > x=si(t) 6= 0g then s�(t+ 1) = s�(t)� 1and s��x(t+ 1) = s��x(t) + 1;{ Otherwise sk�x(t+ 1) = sk�x(t) + 1.IfW (t) =Pk�11 isi(t) is the wasted space at time t, the theorem is that lim supt!1E(W (t)) < +1.Because of the Markovian context, the �rst thing to check is whether the Markov chain (S(t)) isergodic or not (i.e. has an equilibrium measure). A classical idea in this domain is to try toconstruct a Lyapunov function which is decreasing at in�nity if the Markov chain is ergodic. Thefollowing result (see [2]) gives a useful criterion for our problem.Theorem 2. If X(t) is an irreducible homogeneous Markov chain on a countable state spaceS � N, and if there exists an integer b 2 N and a function f : S ! R+ such that(1) f(s) > C1s�, for some constants C1; �;(2) P (X(b) = b j X(0) = a) = 0 if jf(b)� f(a)j > C2;(3) there exists a �nite subset B of S such that Es(f(X(b))� f(s)) < �" if s 62 B.Then the Markov chain is ergodic with the invariant probability � satisfying�(s) � Ce��f(s);103



for some constants C and �.The function f is usually called a Lyapunov function. The main assumption is condition (3)which expresses that the trajectory of (f(X(t))) goes back ultimately (after b steps) towards theorigin in average when it is far away. In our case the Lyapunov function is the wasted spacef(s) = P[j=2]1 isi. Using stochastic comparisons with simple random walks on the integers, it isproved that the above assumptions are satis�ed for this function. The result on the tail of theinvariant distribution shows that the wasted space converges in distribution and also in average.Hence the wasted space is bounded. Bibliography[1] Co�man (E. G.), Johnson (D. S.), Shor (P. W.), and Weber (R. R.). { Markov chains, computer proofs,and average case analysis of best �t bin packing. In Proceedings of the 25th Annual ACM Symposium onTheory of Computing, pp. 412{421. { 1993.[2] Fayolle (G.), Malyshev (V. A.), and Menshikov (M. V.). { Topics in the constructive theory of countableMarkov chains. { Cambridge University Press, 1995.[3] Kenyon (C.), Rabani (Y.), and Sinclair (A.). { Biased random walks, Lyapunov functions, and stochasticanalysis of best �t bin packing. In 7th Annual ACM-SIAM Symposium on Discrete Algortihms. { ACM,1996.
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An urn model from learning theoryDani�ele GardyUniversit�e de Versailles Saint-QuentinNovember 13, 1995[summary by St�ephane Boucheron]AbstractThe analysis of a learning problem motivates the de�nition of an urn model. In thismodel, two kinds of balls representing bad and good data are allocated at random in a col-lection of urns. This is a variation on the classical occupancy model where one is concernedwith allocation of one kind of balls in a family of urns. In this model, the relevant quantitiesare the number of urns that contain more bad than good balls or as many good as bad balls.We describe the law of those two quantities in the static and dynamic framework. Theinvestigation rely both on complex analysis techniques (generating functions) and proba-bilistic tools (exchangeability, and �nite De Finetti theorems). Using proper normalization,the limiting phenomena are Gaussian random variables. Most interesting is the fact thatthe moments of the laws are described using modi�ed Bessel functions.1. The modi�ed urn problemThe modi�ed urn problem was initially motivated by the analysis of the learning curve of sym-metric functions under classi�cation noise in the �eld of computational learning theory [6]. As inthe classical random allocation problem, k balls are thrown at random into those n urns. Ballsare allocated independently, and the probability to fall into some urn is 1=n. But here, ballsare not only allocated, they are also labelled independently at random as good (with probability1�� > 1=2) or bad. The balance of one urn is the di�erence between the number of good balls andthe number of bad balls in that urn. All the issues tackled in this investigation have the following
avor: what is the law of linear combinations of the numbers of urns with positive, negative andnull balances? This question can be answered in a static context, where k=n remains equal to apositive constant � when n tends to in�nity, or in a dynamic context, where urns are allocated oneat a time, and where we try to monitor the evolution of the fraction of urns with positive, negativeand null balances at di�erent normalized times �1; : : : ; �i; : : : with �i = ki=n.The goal of this analysis is to extend results stated in [7] on the empty urn problem. Theempty urn problem can be treated by di�usion approximation techniques, or, using implicitly theMarkov property, by generating functions. The problem examined here does not share this property.Moreover, the plausible enhancements of the state space that would make the fraction of urns withpositive balance a function of a Markov chain, lead to consider processes which take values inin�nite-dimensional spaces. The analysis presented in [1] relies both on generating functions andsimple principles. 105



2. Generating functionsThe generating functions manipulated here are of exponential type.2.1. Generating function describing the behavior of one urn. Let y mark the numberof balls in that urn. Because balls are indistinguishable, the generating function describing thenumber of ways of allocating balls in one urn is ey. To re
ect the fact that balls are of two kinds,this is rewritten as e�y+(1��)=y . Using a second variable z and expanding ey(�z+(1��)=z), one notesthat the coe�cient of ykzp is proportional to the probability that the urn has balance p when kballs are thrown into it. We get: ey((1��)z+�=z) =Xp2Zap(y)zp:The exponent of z is the balance of the urn. This expression stresses the importance of Besselfunctions. Modi�ed Bessel functions of the �rst kind at order p 2Zcan be de�ned by:Ip(x) = Xr�max(0;�p) (x=2)2r+pr!(r+ p)! :Bessel functions obey the following identity: e y2 (u+ 1u ) =Pp2ZupIp(y): Then letting � = p�(1� �),ey((1��)z+�=z) = e 2�y2 (�z=�+ 1�z=� ) =Pp2Z��z� �pIp(2�y):Marking urns with positive balance by w, nullbalance by v and negative balance by u , and letting�(y) =Xp<0����p Ip(2�y) =Xp>0����p Ip(2�y);  (y) =Xp>0����p Ip(2�y) = ey � I0(2�y)� �(y);the generating function describing the sign of the balance in one urn is:f(u; v; w; y) = u�(y) + vI0(2�y) + w (y):2.2. Generating function for a sequence of urns. Because urns are exchangeable, thegenerating function describing the states of a sequence of n urns is:F (u; v; w; y) = f(u; v; w; y)n = (u�(y) + vI0(2�y) + w (y))n :3. ExchangeabilityThe balances of di�erent urns follow identical, non-independent but exchangeable laws: all per-mutations of a tuple of balances indexed by di�erent urns have the same probability. Recall thatthe variation distance between two laws D and D0 is de�ned by:kD �D0kvar = maxkTestk1�1 jED(Test)� ED0(Test)j:The following lemma shows that small sets of urns behave almost independently. Let Pi be thelaw of a tuple of i independent random variables that are distributed as the di�erence between twoindependent Poisson random variables with means �k=n and (1� �)k=n.Proposition 1. The vector of balances in urns 1 to i after throwing k balls in n urns is dis-tributed according to a law Qi that is within variation distance 2i=n from Pi.The proof relies on the fact that conditionally on the number of balls allocated in urns 1; : : : ; i,the balances of the i urns are independent and on theorem (5.1) in [2].106



4. Static analysisThe cost of an experiment (throwing k balls into n urns) is the sum of the costs of the urns. Thecost of an urn with null (resp. negative, positive) balance is C0 (resp. C1, C2). We let d0 = C0�C2and d1 = C1 � C0. For costs relevant to learning theory applications, we have d0 = d1.Using either the generating function approach or Proposition 1, one may derive the followingequivalents for the expectation and variance of the cost:E(cost) � n �C2 + d1e��I0(2��) + (d0 + d1)e���(�)� ;Var(cost) � nd21e���4�(�) + I0(2��)� e����2�(�) + I0(2��)�2 + ��(1� 2�)I0(2��)�2��:Using the generating function approach and a theorem in [4], one may also conclude that thenormalized and centered variable de�ned by: (cost�E(cost))=pn is asymptotically Gaussian withvariance Var(cost)=n. 5. Dynamic analysisIn the dynamic context, balls are allocated one at a time. If balls are allocated in n urns,the k = �nth ball is allocated at time �. The cost is a random function of time. The averagefunction when n!1 is given by the above-stated expression for the average cost. The aim of thisinvestigation is to characterize the limiting behavior of the normalized centered processes. To prove(weak) convergence of the processes to a limiting process, one needs to check that the sequenceof processes is relatively compact, and that the �nite dimensional distributions of the processesconverge to the �nite dimensional distributions of the limiting process.Finite dimensional distributions are analyzed using both multivariate generating functions andelementary arguments building on exchangeability of urns.Balls are assumed to be thrown in two groups. The �rst group is marked by y1 and thrown attime �1; we use variable z1 to distinguish good balls from bad balls, (a good ball is marked as(1��)y1z1 and a bad ball as �y1=z1). Similarly, the second group is thrown at time �2 and markedby y2 and z2. Variables ui, vi and wi indicate the state of the urn after throwing the �rst group(i = 1) and the second group (i = 2).Letting �I(y1; y2) = Xn>0 In(2�y1)I�n(2�y2) = [I0(2�(y1+ y2))� I0(2�y1)I0(2�y2)]=2;S(y1; y2) = Xn>0;n+p>0 In(2�y1)Ip(2�y2)����n+p ;T (y1; y2) =  (y1 + y2)� S(y1; y2)� I0(y1) (y2);the following is derived:Proposition 2. The multivariate generating function describing the behavior of a single urn atthe times �1 and �2 isw1w2S(y1; y2) + w1v2�I(y1; y2) + w1u2� (y1)ey2 � S(y1; y2)��I(y1; y2)�+ v1w2I0(2�y1) (y2) + v1v2I0(2�y1)I0(2�y2) + v1u2I0(2�y1)�(y2)+ u1w2T (y1; y2) + u1v2�I(y1; y2) + u1u2��(y1)ey2 � T (y1; y2)��I(y1; y2)�:107



The single-urn generating function is used to compute the generating function of a sequence ofurns at di�erent instants. Then the limiting value of the characteristic function of the cost at a�nite number of instants can be computed using saddle-point approximation methods as in [4, 5].This allows to conclude that the �nite dimensional distributions of the centered normalizedprocesses converge to the �nite dimensional distributions of a non-Markov Gaussian process withcovariance between times �1 and �2:d20e��2 �I0(2��2) + 2I0(2��1)�(�2 � �1) + 4 Xi>0;j>0����j Ii(2��1)Ij�i(2�(�2 � �1))�� e��1��I0(2��1) + 2�(�1)��I0(2��2) + 2�(�2)�+ �1(1� 2�)2I0(2��1)I0(2��2)�!:Proving the weak convergence of the processes to the above-stated Gaussian process requires theproof of the relative compactness of the sequence of processes. This has not been done althoughthe veri�cation of the Kolmogorov-Centsov criterion raises more cumbersome computations thantheoretical di�culties. 6. QuestionsA plausible contribution of [1] is the presentation of a new kind of admissible construction: themajority phenomenon that comes from building a combinatorial structure on two types of objects(good and bad in this paper), then deciding on the type of the structure according to the typeof the majority of the basic objects. For example, we can have two types of basic objects, buildcycles on theses objects and combine these cycles into a set, then ask for the number of cycles ofthe set that have a majority of elements of one type, or an equal number of elements of each type.It should be possible to extend the distribution results on the number of components presented byFlajolet and Soria [3] to study the number of components of a given type (good, bad or neutral)for various combinatorial constructs. Bibliography[1] Boucheron (S.) and Gardy (D.). { An urn model from learning theory.Random Structures and Algorithms,1996. { To appear.[2] Diaconis (P.) and Freedman (D.). { A dozen de Finetti-style results in search of a theory. Annales del'Institut Henri Poincar�e, vol. 23, n�2, 1987, pp. 397{423.[3] Flajolet (Philippe) and Soria (Mich�ele). { Gaussian limiting distributions for the number of componentsin combinatorial structures. Journal of Combinatorial Theory, Series A, vol. 53, 1990, pp. 165{182.[4] Gardy (D.). { M�ethode de col et lois limites en analyse combinatoire. Theoretical Computer Science,Series A, vol. 94, n�2, March 1992, pp. 261{280.[5] Gardy (D.). { Some results on the asymptotic behaviour of coe�cients of large powers of functions.Discrete Mathematics, vol. 139, 1995, pp. 189{217.[6] Kearns (M.) and Vazirani (U.). { Topics in Learning Theory. { MIT Press, 1994.[7] Kolchin (V.), Sevast'yanov (B.), and Chistyakov (V.). { Random Allocations. { Wiley & Sons, 1978.108



A suboptimal lossy data compression based on approximate pattern matchingWojciech SzpankowskiPurdue UniversityDecember 11, 1995[summary by Philippe Jacquet]1. IntroductionA practical algorithm for lossy data compression is presented. It is derived from the losslessLempel-Ziv data compression. The principle of the scheme consists in considering approximatepattern matching where no more than D% of mismatches are allowed.An algorithm is considered to be lossless when D = 0. For example Ho�man's algorithm and theLempel-Ziv algorithm are lossless. Such algorithms are extensively used for text or data transmis-sion or storage every time it is required to have error-free recovery. In this case the compression islimited by information theory. With image or voice/sound compression, there is no need of exactrecovery since the noise in the record and/or the limited sensitivity of our eyes or ears will hidethe details of the data base. In this case the compression can be limitless, depending only on thedegree of �delity one wants to keep in the recovery. Examples of lossy algorithms are JPEG, GIF,and MPEG (for motion pictures), they are based on adaptation of Fourier or wavelet transform, oron self-similarity search as in fractal compression.The new lossy algorithm can be adapted to numerous applications as image or voice compression.This universality of use simply comes from the fact that the new algorithm proceeds on the digitaltranscription of the data regardless of their origin. In particular it can be adapted to imagecompression provided some tuning. An adaptation for voice/sound is under study.The scheme on image shows performance close to JPEG algorithms and outperforms fractalcompression. More importantly, it bene�ts of a much simpler \on line" decompression algorithm.Another advantage is that the new algorithm is tractable to performance analysis when the database(the text or the image to compress) follows a stochastic model.2. Measure of �delityBefore describing the algorithm we will introduce the performance measurement called �delity.Let x be a text of length n (jxj = n). On the transmitter side the compression algorithm encodesx into c(x). The compression rate is the ratio jc(x)j=n. With lossless algorithms the averagecompression rate, Ejc(x)j=n cannot be better than the entropy h of the source from which thedatabase is built. In general the lossless algorithms asymptotically attain this theoretical boundwhen n!1. The better the algorithm is, the faster is the convergence:limn!1Ejc(x)j=n= h:On the receiver side, the code c is decompressed into �(c). With lossless compression �(c(x)) = x.With lossy compression �(c(x)) = x̂ which is of the same length as x (jx̂j = jxj = n) but in general109



di�ers from x. In the following, we use the Hamming distance: d(x; x̂) is number of mismatchesbetween x and x̂, divided by n. We can also accommodate our results to more sophisticateddistances where mismatches have di�erent weight per pair of symbols.3. Lossy Lempel-Ziv compression AlgorithmLet x be a text. We denote xn the nth su�x of x (starting at position n) and xn the nth pre�x ofx (ending at position n). We denote xji the subword starting at position i and ending at position j.The algorithm is a parsing algorithm. We suppose that at step k the text has been parsed up toposition n, i.e. xn has been compressed into c(xn). The step k+1 will consist in �nding the largestpre�x xn+jn of xn which is a copy within distance D of a substring in xn. Assume this copy is atposition i in xn. Therefore the new parsed position is n+ j, and the encoded text is c(xn) plus thepair (i; j): c(xn+j) = c(xn):\(i; j)". The substring xn+jn is called the new parsed phrase and j is itslength. 4. Results4.1. Rate-distortion measure. Let An be the set of all sequences of length n and let S be asubset of An. We call P (S) the probability weight of S in An.The optimal compression ratio depends on the rate-distortion function R(D), which is de�nedas follows. Let w be a text of length n, we de�ne BD(w) as the D-ball of center w, i.e. BD(w) =fx : d(x; w)� Dg. We de�ne N(D;S) as the minimum number of D-ball needed to cover S. Then:Rn(D; ") = minS�An;P (S)�1�" logN(D;S)n ;and the rate-distortion is de�ned as R(D) = lim"!0;n!1Rn(D; ").4.2. Generalized entropy. The generalized b-order R�enyi entropy hb(D) is de�ned as follows:hb = limn!1 � logE[P b(BD(x)) j jxj = n]bk = limn!1 � logPx2An P b(BD(x))P (fxg)bk :For b! 0 we understand h0(D) = limn!1E[� logP(BD(x)) j jxj = n]=k, provided the limit exists.When D = 0 (lossless case) we naturally recover the known b-order entropies h(b) de�ned byE[�P (fxg) logP (fxg) j jxj = n].4.3. Asymptotic results on lossy Lempel-Ziv. Under some probabilistic model (Bernoulli,Markov,Mixing conditions), about the already parsed part of the text xn we can obtain the followingresult.Theorem 1. The length of the new parsed phrase Ln satis�es:limn!1 Lnlogn = 1h0(D)The convergence is in probability and/or almost sure convergence.For the Bernoulli model we prove that r0(D) is the compression rate of the lossy Lempel-Zivscheme and that limD!0R(D) = limD!0 h0(D) = h. In the case of binary uniform database wehave h0(D) = R(D)Theorem 2. In the Bernoulli model, the lossy Lempel-Ziv algorithm is asymptotically optimalwhen D ! 0 and is asymptotically optimal for all D in the binary uniform Bernoulli model.110



A Faster Algorithm for Approximate String MatchingRicardo Baeza-YatesDepartment of Computer Science, University of ChileJuly 8, 1996[summary by Mireille R�egnier]Approximate string matching is one of the main problems in classical string algorithms. Given atext of length n, a pattern of length m, and a maximal number of errors allowed, k, we want to �ndall text positions where the pattern matches the text up to k errors. Errors can be substituting,deleting or inserting a character. The solutions to this problem di�er if the algorithm has to beon-line (that is, the text is not known in advance) or o�-line (the text can be preprocessed). Inthis paper the �rst case is studied, where the classical dynamic programming solution is O(mn).In the last years several algorithms have been presented that achieve O(kn) comparisons inthe worst-case [13, 6, 7] or in the average case [14, 6], by taking advantage of the properties ofthe dynamic programming matrix. In the same trend is [3], with average complexity O(kn=pc)(c is the alphabet size). The algorithms which are O(kn) in the worst case tend to involve toomuch overhead, and are not competitive in practice. Other approaches attempt to �lter the text,reducing the area in which dynamic programming needs to be used [12, 15, 11, 10, 4, 5]. Thesealgorithms achieve sublinear expected time in many cases (O(kn logcm=m) is a typical �gure) formoderate k=m ratios, but the �ltration is not e�ective for larger ratios. A simple and fast �lteringtechnique is shown in [2], which yields an O(n) algorithm for moderate k=m ratios. Yet otherapproaches use bit-parallelism [1] in a RAM machine of word length O(logn) to reduce the numberof operations. [9] achieves O(kmn= logn), which is competitive for patterns of length O(logn).In [16], the cells are packed di�erently to achieve O(mn log c= logn) complexity.A new algorithm is presented which combines the ideas of taking advantage of the propertiesof the matrix, �ltering the text and using bit-parallelism, being faster than previous work formoderate size patterns, as we are interested in text searching. One models the search with a non-deterministic �nite automaton (NFA) built from the pattern and using the text as input. Thisautomaton is simulated by an algorithm based on bit operations on a RAM machine of wordlength O(logn). The algorithm achieves running time O(n), independently of k, for small patterns(i.e. mk = O(logn)). This restricted algorithm is used to design two general algorithms.The �rst one partitions the problem into subproblems, and has average time cost O(mn= logn) forsmall � = k=m (i.e. � < 1= logn), otherwise it is O(pmk= lognn) (i.e. O(pkn) for m = O(logn),else O(kn)). It involves also a cost to verify potential matches, which is shown to be not signi�cantfor � < �1 � 1�m1=plogn=pc. This algorithm is a generalization of an earlier heuristic [8, 2], thatreduces the problem to exact matching and is shown to be O(n) for � < �0 = 1=(3 logcm), andbetter than problem partitioning for � < �00 � 1=(2 logcm).The second one partitions the automaton into subautomata, being O(k2n=(pc logn)) on average.For � > 1 � 1=pc its worst case, O((m � k)kn= logn), dominates. This algorithm is shown to bebetter than dynamic programming for k > log(n)=(1��). One studies the optimal way to combine111



Condition Complexity Method usedmk = O(logn) O(n) the simple algorithm� < �0 O(n) reducing to exact match�0 < � < �1 O(pmk= lognn) exact match if � < �00else problem partitioning� > �1 ^ k < logn=(1� �) O((m� k)kn= logn) automaton partitioning� > �1 ^ k > logn=(1� �) O(mn) plain dynamic programmingTable 1. Complexity of the hybrid algorithm.the algorithms. It is shown experimentally that the hybrid algorithm is faster than previous ones,for moderate m. Table 1 shows the complexity.As a corollary of the analysis, tight bounds are given for the probability of �nding an occurrenceof a pattern of length m with k errors starting at a �xed position in random text. We also showthat the heuristic of [14] works O(kn) on average, with a constant tighter than that of [3].Bibliography[1] Baeza-Yates (R.). { Text retrieval: Theory and practice. In 12-th IFIP World Computer Congress. vol.I:Algorithms, Software, Architecture. { Elsevier Science, 1992.[2] Baeza-Yates (R.) and Perleberg (C.). { Fast and practical approximate pattern matching. In CPM'92.Lecture Notes in Computer Science, vol. 644, pp. 185{192. { Springer-Verlag, 1992.[3] Chang (W.) and Lampe (J.). { Theoretical and empirical comparisons of approximate pattern matching.In CPM'92. Lecture Notes in Computer Science, vol. 644, pp. 172{181. { Springer-Verlag, 1992.[4] Chang (W.) and Lawler (E.). { Sublinear approximate string matching and biological applications.Algorithmica, vol. 12, 1994, pp. 327{344.[5] Chang (W.) and Marr (T.). { Approximate string matching and local similarities. In CPM'94. LectureNotes in Computer Science, vol. 807, pp. 259{274. { Springer-Verlag, 1994.[6] Galil (Z.) and Park (K.). { An improved algorithm for approximate string matching. SIAM Journal onComputing, vol. 19, n�6, 1990, pp. 989{999.[7] Landau (G.) and Vishkin (U.). { Fast string matching with k di�erences. Journal of Computer SystemsScience, vol. 37, 1988, pp. 63{78.[8] Manber (U.) and Wu (S.). { Agrep|a fast approximate pattern matching tool. In Usenix TechnicalConference, pp. 153{152. { 1992.[9] Manber (U.) and Wu (S.). { Fast text searching allowing errors. CACM, vol. 35, n�10, 1992, pp. 83{91.[10] Suntinen (E.) and Tarhio (J.). { On using q-gram locations in approximate string matching. In ESA'95.Lecture Notes in Computer Science, vol. 834, pp. 234{242. { Springer Verlag, 1995.[11] Takaoka (T.). { Approximate pattern matching with samples. In ISAAC'94. Lecture Notes in ComputerScience, vol. 834, pp. 348{359. { Springer Verlag, 1994.[12] Tarhio (J.) and Ukkonen (E.). { Boyer-Moore approach to approximate string matching. In SWAT'90.Lecture Notes in Computer Science, vol. 447, pp. 348{359. { Springer Verlag, 1990.[13] Ukkonen (E.). { Algorithms for approximate string matching. Information and Control, vol. 64, 1985,pp. 100{118.[14] Ukkonen (E.). { Finding approximate patterns in strings. Journal of Algorithms, vol. 6, 1985, pp. 132{137.[15] Ukkonen (E.). { Approximate string matching with q-grams and maximal matches. Theoretical Com-puter Science, vol. 1, 1992, pp. 191{211.[16] Wright (A.). { Approximate string matching using within-words parallelism. Software-Practice andExperience, vol. 24, 1994, pp. 337{362. 112



Rotations of Periodic Strings and Short SuperstringsDany BreslauerMax-Planck-Institute f�ur InformatikJune 24, 1996[summary by Mireille R�egnier]1. State of the ArtLet S = fs1; : : : ; smg be a set of strings over some alphabet �. A common superstring, or simplysuperstring, of S is a string s such that each si in S is a substring (i.e., a consecutive block)of s. The shortest superstring problem is to �nd a superstring of the smallest possible length forany given set of strings S. The problem has applications in a wide range of areas including datacompression [6] and DNA sequencing.Since the problem is NP-hard [6] a lot of e�ort has been taken to �nd good approximation algo-rithms with guaranteed performance. Blum et al. [4] showed that the problem is MAX SNP-hardand thus does not have a polynomial time approximation scheme unless P = NP. Tarhio and Ukko-nen [9] and Turner [11] gave several approximation algorithms that achieve 12 -approximation withrespect to the compression measure, or the total overlap between adjacent strings in a superstring.This approximation ratio has been improved to 3863 by Kosaraju et al. [7]. Notice that superstringshave the minimum length if and only if they induce the maximum total overlap. Such relation,however, does not hold for approximations, and a good approximation for the length of the shortestsuperstring is not necessarily a good approximation for the maximum overlap in the superstring,and vice versa.The �rst constant-approximation algorithm for the length of the shortest superstring was givenby Blum et al. [4], who discovered a 3-approximation algorithm and proved that the \Greedy"algorithm by Tarhio and Ukkonen [9] achieves 4-approximation. Their algorithms and analysis relyon the close relation between the shortest superstring problem, that was shown by Turner [11] tobe reducible to the travelling salesman problem, and the cycle cover problem. The same relationwas exploited in subsequent papers [10] (� 2:89), [5] (� 2:83), [7] (� 2:79) and [1, 2] (� 2:75).Armen and Stein [3] have also recently obtained a 223-approximation algorithm, independently ofour work.Here we continue this line of work, and further improve the approximation ratio to 223 � 2:67and to 22542 � 2:596. The improved algorithms are similar to the previous algorithms in the sensethat they construct a superstring by computing some optimal cycle covers on the distance graphof the given input strings, and then break and merge the cycles to �nally obtain a Hamiltonianpath representing some superstring. The key to the improvement are new bounds on the overlapbetween two strings. 2. PreliminariesWithout loss of generality, we assume that the set S is \substring-free" in that no string si 2 S isa substring of any other sj 2 S. For two strings s and t, let y be the longest string such that s = xy113



and t = yz for some non-empty strings x and z. We denote ov(s; t) = jyj the overlap between sand t, d(s; t) = jxj the distance from s to t and pref(s; t) = x. Given a list of strings si1 ; : : : ; sir ,we de�ne the superstring s = hsi1 ; : : : ; siri to be pref(si1 ; si2) pref(si2 ; si3) � � �pref(sir�1 ; sir)sir . Itis clear that each shortest superstring for S must be hsi1 ; : : : ; simi for some permutation i1; : : : ; imof f1; : : : ; mg. Its length, opt(S), and the total overlap between adjacent strings, maxov(S), satisfy:opt(S) =Psi2S jsij �maxov(S).2.1. Distance graph and cycle covers. The concept of a distance graph is central to allexisting approximation algorithms for shortest superstrings. Let GS = (V;E;w) be a directedgraph, where the set of vertices V = fs1; : : : ; smg, the set of edges E = f(si; sj) j 1 � i 6= j � mg,and the weight function w is the distance function d(; ). GS is called the distance graph of S. Ifwe denote the cost of a minimum weight Hamiltonian cycle on GS as Tsp(GS), then obviously, forany si 2 S, Tsp(GS) � opt(S) � Tsp(GS) + jsij:In other words, a minimum weight Hamiltonian cycle on GS would be a very good approximationof a shortest superstring of S. Since TSP is NP-hard and has no good approximation algorithms,we try to work with a relaxed version of TSP, the cycle cover problem de�ned below.Given a directed weighted graph G, a cycle cover is a set of (simple) cycles such that each vertexis contained in exactly one cycle. The weight of the cycle cover is the total weight of its cycles. Aminimum weight cycle cover can be computed in O(n3) time using the Hungarian algorithm [8].Let Cyc(GS) be the weight of a minimum weight cycle cover of GS . Then we have Cyc(GS) �Tsp(GS) � opt(S). To get an upper bound on opt(S) in terms of Cyc(GS) we have to look at theparticular structures and properties of strings.2.2. Periodicity of strings and semi-in�nite strings. A string x is a factor of a string sif s = xiy for some positive integer i and pre�x y of x (y may be empty). The factor of a non-emptystring s, denoted factor(s), is the shortest factor of s and the period of s is denoted period(s) =j factor(s)j. A semi-in�nite string s = a1a2 � � � is said to be periodic if s = xs for some non-emptystring x. The shortest such x is called the factor of s. Two (periodic semi-in�nite) strings s; tare equivalent if their factors are cyclic shifts of each other, i.e., if there are strings x; y suchthat factor(s) = xy and factor(t) = yx. Otherwise, they are inequivalent. For each string s,let s1 denote the semi-in�nite string ss � � � , and s1 = factor(s)1 denote the periodic semi-in�nitestring that is equivalent to s and begins with s. Note that in general s1 6= s1. For example,(010)1 = 010010 � � � 6= (010)1 = 0101 � � � .Connections between a cycle in GS and the periodicity of the strings obtained by breakingthe cycle are essentially given in [4]. Let c = si1 ; : : : ; sir ; si1 be a cycle in GS , and w(c) be itsweight. Without loss of generality, assume that c has the minimum weight among all cycles in GScontaining si1 ; : : : ; sir . We will use:Lemma 1. w(c) = d(si1; si2) + � � �+ d(sir�1; sir) + d(sir ; si1) = period(hsi1 ; : : : ; siri):2.3. The overlap-rotation lemma. The key to the improved approximation bounds is ouroverlap-rotation lemma below that follows from the classical Critical Factorization Theorem. Givena semi-in�nite string � = a1a2 � � � , we denote the rotation �[k] = akak+1 � � � .Lemma 2. Let � be a periodic semi-in�nite string. There exists an integer k, such that for any(�nite) string s that is inequivalent to �,ov(s; �[k]) < period(s) + 12 period(�):114



(1) Construct the distance graph GS for set S.(2) Find a minimum weight cycle cover C on the graph GS .(3) For each cycle c = si1 ; : : : ; sir ; si1 2 C, choose a string tc such that for some j, tc containshsij+1 ; : : : ; sir ; si1 ; : : : ; siji, and tc is contained in hsij ; : : : ; sir ; si1 ; : : : ; sij�1 ; siji.(4) Let T be the set of all strings chosen above and construct the distance graph GT for T .(5) Find a minimum weight cycle cover CC on GT .(6) Break each cycle of CC arbitrarily to obtain a superstring of the elements in the cycle.(7) Concatenate the strings found at Step (6) arbitrarily to produce a superstring ~s of S.Figure 1. The generic shortest superstring approximation algorithm.In addition, if period(s) � period(�), then ov(s; �[k]) < 23(period(s) + period(�)).Our proof is constructive; it requires two computations of critical factorizations done in time thatis linear in period(�). From now on, let �!� denote a rotation of � satisfying Lemma 2. The boundin the last lemma is roughly tight because for any rotation of the semi-in�nite string (0n10n+11)1,there exists a string with period at most n+2 which overlaps with (0n10n+11)1 by at least 2n+2.3. Approximation algorithmsOur algorithms are only slightly di�erent from the ones in [1, 2, 3, 4, 5, 7, 10]. The main stepsare shown in Figure 1. We show �rst that this generic algorithm has approximation ratio 3. Notingthat hsij ; : : : ; sir ; si1 ; : : : ; sij�1 ; siji = factor(hsij ; : : : ; sir ; si1; : : : ; sij�1i)sij ;it is straightforward [4, 10] that: opt(T ) � opt(S)+Cyc(GS) � 2 opt(S); hence, we have Cyc(GT) �opt(T ) � 2 opt(S). We make use of the following upper bound on the possible overlap between twoinequivalent strings s and t: ov(s; t) � period(s)+period(t), and show that it applies to the stringsin T . Then the total overlap represented by the edges broken in Step 6, OV , is at most the sum ofthe periods of the strings in T . By Corollary 1, OV �Pc2C w(c) = Cyc(GS).Putting everything together, we can bound the length of the superstring ~s asj~sj = Cyc(GT) + OV � Cyc(GT) + Cyc(GS) � 2 opt(S) + opt(S) � 3 opt(S):The 223-approximation algorithm. Many researchers have tried to improve the performance of thegeneric algorithm by polishing Steps 5 - 7. Nevertheless, Armen and Stein [1, 2] identi�ed stringsthat are not much longer than their factors as the bottleneck and tried to avoid them in Step3. A key di�erence between our algorithm and all the previous ones actually is Step 3. Theprevious algorithms all choose one of the strings contained in the cycle c, whereas here we look fora superstring of the strings in c that is not too long, to reduce OV . More precisely, we rely on:Lemma 3. For any cycle c = si1 ; : : : ; sir ; si1 2 C, there exists a string tc such that for some j,(1) tc contains the string hsij+1 ; : : : ; sir ; si1; : : : ; siji.(2) tc is contained in the string hsij ; : : : ; sir ; si1 ; : : : ; sij�1 ; siji.(3) (tc)1 = h�������!si1 ; : : : ; siri1.The string tc can be found in linear time. We polish the generic algorithm by choosing tc in Step3 and changing step 6 into: For each cycle of CC, break the cycle by deleting an edge that goesfrom a string to a string of equal or larger period, to obtain a superstring of the elements in thecycle. 115



Note that we do not treat the small cycles of CC specially like the other algorithms do. Instead,we cut the cycles with a bit of care. Clearly, in every cycle there must be an edge that goes froma string to a string of equal or larger period. Applying Lemmas 2 and 1, we getOV � 23Xc2C period(tc) = 23Xc2C w(c) = 23 Cyc(GS) � 23 opt(S):Hence, j~sj = Cyc(GT) + OV � 223 opt(S).The 22542-approximation algorithm. Steps 5, 6 and 7 now become: Construct a superstring of Tusing a good overlap approximation algorithm. It was proven in [4] that the length apx(T ) of thesuperstring of T produced by a � overlap approximation algorithm satis�es: apx(T ) � opt(T ) +(1� �)maxov(T ). Our special choice of the cycle representatives tc in Step 3 allows to improve onthe standard bound used in all previous papers, e.g. maxov(T ) � 2Cyc(GS). By Lemma 2, weprove that: maxov(T ) � 32 Cyc(GS): We use the 3863 overlap approximation algorithm in [7], andget: apx(T ) � opt(T ) + (1� 3863)maxov(T ) � 2 opt(S) + 2563 32Cyc(GS) � 22542 opt(S).Concluding remark. We are still a long way from reaching the conjectured ratio 2 for approximat-ing shortest superstrings. Bibliography[1] Armen (Chris) and Stein (Cli�ord). { Improved length bounds for the shortest superstring problem.In Akl (S. G.), Dehne (F.), Sack (J. R.), and Santoro (N.) (editors), Algorithms and Data Structures.Proceedings. Lecture Notes in Computer Science, pp. 494{505. { Berlin, Heidelberg, New York, 1995.4th International Workshop, WADS '95, Kingston, Canada, 16{18 Aug. 1995.[2] Armen (Chris) and Stein (Cli�ord). { Short superstrings and the structure of overlapping strings.Journal of Computational Biology, 1995. { To appear.[3] Armen (Chris) and Stein (Cli�ord). { A 223 -approximation algorithm for the shortest superstringproblem. In Combinatorial Pattern Matching. Proceedings. Lecture Notes in Computer Science. { Berlin,Heidelberg, New York, 1996. 7th International Workshop.[4] Blum (A.), Jiang (T.), Li (M.), Tromp (J.), and Yanakakis (M.). { Linear approximation of shortestsuperstrings. Journal of the ACM, vol. 41, n�4, 1994, pp. 630{647.[5] Czumaj (A.), G�asieniec (L.), Piotrow (M.), and Rytter (W.). { Parallel and sequential approximationof shortest superstrings. In Schmidt (E. M.) and Skyum (S.) (editors), Algorithm Theory - SWAT '94.Lecture Notes in Computer Science, pp. 95{106. { Berlin, Heidelberg, New York, 1994. 4th ScandinavianWorkshop on Algorithm Theory, Aarhus, Denmark, July 6{8, 1994.[6] Gallant (J.), Maier (D.), and Storer (J.). { On �nding minimal length superstrings. Journal fo ComputerSystem Sciences, vol. 20, 1980, pp. 50{58.[7] Kosaraju (S. R.), Park (J.), and Stein (C.). { Long tours and short superstrings. In Proceedings 35thIEEE Symposium on Foundations of Computer Science. { 1994.[8] Papadimitriou (Christos H.) and Steiglitz (Kenneth). { Combinatorial optimization : algorithms andcomplexity. { Prentice Hall, Englewood Cli�s, N. J., 1982.[9] Tarhio (J.) and Ukkonen (E.). { A greedy approximation algorithm for constructing shortest commonsuperstrings. Theoretical Computer Science, vol. 57, 1988, pp. 131{145.[10] Teng (S. H.) and Yao (F.). { Approximating shortest superstrings. In Proceedings 34th IEEE Symposiumon Foundations of Computer Science, pp. 158{165. { 1993.[11] Turner (J.). { Approximation algorithms for the shortest common superstring problem. Informationand Computation, vol. 83, 1989, pp. 1{20. 116



Searching patterns: combinatorics and probabilityMireille R�egnierINRIA-RocquencourtJuly 8, 1996[summary by Pierre Nicod�eme]AbstractWe formally de�ne a class of sequential pattern matching algorithms that includes allvariations of the Morris-Pratt algorithm. We prove for the worst case and the average casethe existence of a complexity bound which is a linear function of the text string lengthfor the Morris-Pratt algorithm, using the Subadditive Ergodic Theorem. We establish somestructural property of Morris-Pratt-like algorithms, proving the existence of \unavoidablepositions" where the algorithm must stop to compare. We compute also the complexity ofthe Boyer-Moore algorithm.1. Sequential pattern matching algorithms1.1. Basic De�nitions. Throughout we write p and t for the pattern and the text which areof lengths m and n, respectively. The ith character of the pattern p (text t) is denoted as p[i](t[i]), and by tji we denote the substring of t starting at position i and ending at position j, that istji = t[i]t[i+ 1] � � �t[j]. We also assume that the length m of a given pattern p does not vary withthe text length n.We want to investigate the complexity of string matching algorithms [2]. We de�ne it formallyas follows.Definition 1 (Complexity).(1) For any string matching algorithm that runs on a given text t and a given pattern p, letM(l; k) = 1 if the lth symbol t[l] of the text is compared by the algorithm to the kth symbolp[k] of the pattern. We assume in the following that this comparison is performed at mostonce.(2) For a given pattern matching algorithm, a partial complexity function cr;s is de�ned ascr;s(t;p) = Xl2[r;s];k2[1;m]M [l; k]where 1 � r < s � n. For r = 1 and s = n the function c1;n := cn is simply called thecomplexity of the algorithm. If either the pattern or the text is a realization of a randomsequence, then we denote the complexity by a capital letter, that is, we write Cn insteadof cn.An Alignment Position AP is a position of the text which is aligned with the �rst character of thepattern during the processing of the algorithm, and such that, with the corresponding alignment,at least one character of the pattern is compared with the text.117



Definition 2. A string searching algorithm is said:(1) semi-sequential if the text is scanned from left to right;(2) strongly semi-sequential if the order of text-pattern comparisons actually performed by thealgorithm de�nes a non-decreasing sequence of text positions (li) and if the sequence ofalignment positions is non-decreasing.(3) sequential (respectively strongly sequential) if they satisfy, additionally for any k > 1M [l; k] = 1) tl�1l�(k�1) = pk�11 :Note that condition (3) forbids unnecessary comparisons.Example (Naive or brute force algorithm). The simplest string searching algorithm isthe naive one. All text positions are alignment positions. For a given one, say AP , the text isscanned until the pattern is found or a mismatch occurs. Then, AP + 1 is chosen as the nextalignment position and the process is repeated.This algorithm is sequential but not strongly sequential. Condition (2) is violated after anymismatch on a alignment position l with parameter k � 3, as comparison (l + 1; 1) occurs after(l+ 1; 2) and (l+ 2; 3).Example (Morris-Pratt-like algorithms [3]). Morris-Pratt like algorithms are stronglysequential; when a mismatch is found, they shift the pattern by the largest periodicity of thepre�x of the pattern examined at the corresponding alignment position. The Knuth-Morris-Prattvariant remembers the last question concerning the mismatch position of the text and does not askit again; the Simon variant remembers all the questions at the mismatch position, and does notask them again. The e�ciency of these algorithms is slightly better as the number of rememberedquestions increases.It was already noted [3] that after a mismatch occurs when comparing t[l] with p[k], some align-ment positions in [l+1; : : : ; l+k� 1] can be disregarded without further text-pattern comparisons.Namely, the ones that satisfy tl+k�1l+i 6= pk�i1 , or, equivalently, pk1+i 6= pk�i1 , and the set of such ican be known by a preprocessing of p. Other i de�ne the \surviving candidates", and choosing thenext alignment position among the surviving candidates is enough to ensure that condition (2) inDe�nition 2 holds.Example (Illustration to Definition 2). Let p = abacabacabab and t = abacabacabaaa.The �rst mismatch occurs for M(12; 12). The comparisons performed from that point are:1. Morris-Pratt variant: (12; 12); (12; 8); (12; 4); (12; 2); (12; 1); (13; 2); (13; 1), where the textcharacter is compared in turn with pattern characters (b; c; c; b; a; b; a) with the alignmentpositions (1; 5; 9; 11; 12; 12; 13).2. Knuth-Morris-Pratt variant: (12; 12); (12; 8); (12; 2); (12; 1); (13; 2); (13; 1), where the textcharacter is compared in turn with pattern characters (b; c; b; a; b; a) with the alignmentpositions (1; 5; 11; 12; 12; 13).3. Simon variant: (12; 12); (12; 8); (12; 1); (13; 2); (13; 1), where the text character is comparedin turn with pattern characters (b; c; a; b; a) with the alignment positions (1; 5; 12; 12; 13).Positions 1, 5 and 12 are unavoidable for all these Morris-Pratt-like algorithms.Definition 3. For a given a pattern p, a position i in the text t is an unavoidable alignmentposition for an algorithm if for any r; l such that r � i and l � i+m, the position i is an alignmentposition when the algorithm is run on tlr. 118



Theorem 1. [7] Given a pattern p and a text t, all strongly sequential algorithms have the sameset of unavoidable alignment positions U = Snl=1fUlg, whereUl = minfmin1�k�lftlk � pg; l+ 1gand tlk � p means that the substring tlk is a pre�x of the pattern p.1.2. Analysis. In the \average case analysis" we indicate that under assumption of StationaryModel (both strings p and t are random realizations of a stationary and ergodic sequence), theaverage complexity Cn may be computed by a direct application of an extension of Kingman'sSubadditive Ergodic Theorem due to Derriennic [4] . See also [5].Lemma 1. [7] A strongly semi-sequential algorithm satis�es the following basic inequality for allr such that 1 � r � n: jc1;n� (c1;r + cr;n)j � 2m2;provided any comparison is done only once.We get also:Theorem 2. With p a pattern of size m, t a text of size n, and a strongly-sequential algorithm,the number of comparisons is given by:(a) worst case: limn!1maxt cn(t; p)=n = �1(p),(b) p given, t random: Cn(p)=n p:s:! �2(p) (on the average),(c) p; t random: limn!1Et;pCn=n = �3 � 1.In the Boyer-Moore algorithm [1], a window of size equal to the size of the pattern is movedfrom left to right, with shifts depending of the text and pattern contents; inside the window,scanning is performed from right to left; the Boyer-Moore algorithm gives a counterexampleto the preceding theorem, inside the class of pattern-matching algorithms: given the text t =f� � �y10az4(bazbzz)n � � � g, and a pattern p = fx4ax2bx2ag, it is impossible to �nd a set of unavoid-able positions for the Boyer-Moore algorithm.2. Boyer-Moore algorithmFor the Boyer-Moore algorithm, a head is the rightmost position of the text in the window aftera shift; let Hn be the number of heads in a text of length n. We show by a Laplace transformmethod the convergence of Hn to a variable with normal distribution.Both expectation and variance of Hn are functions of the shift polynomial, de�ned as fp(z) =Pa qazd(a), where d(a) is the shift of the �rst occurrence of letter a from the right extremity of thepattern and qa is the probability of occurrence of letter a. With this de�nition, the shift polynomialof the pattern 10001 is 12(z + z4), with uniform distribution for letters 0 and 1.When considering the complexity C [P ]n of the algorithm for a �xed pattern P and a text of lengthn, we de�ne Xi as the number of comparisons done for an alignment at position i, and Zj = 1 whenj is a head, 0 otherwise. We have C [P ]n = nXi=mXiZi:After an algebraic manipulation, we take the expectation:E "C [P ]nn # = 1n nXi=mE[XiZi]� 1n nXi=mE[Xj(1� Zj)]:119



From this decomposition, we show that E � 1nC [P ]n �! cP , and give an expression for cP . We showalso that the fourth moment is bounded.With these results for moments, we apply a central limit theorem for dependant variables [5],where the strong mixing condition is equivalent to independence of positions su�ciently distant.This proves the convergence of C [P ]n to a variable with normal distribution.Unavoidable positions. Almost surely, for a random text, there exists one unavoidable position;formally, we say that Zk is determined by tj+1 � � � tk�1 if this string is su�cient to tell whetherZk = 0 or 1. We denote the indicator of this event by�(j)k = 1fZk determined by tj+1 ���tk�1g;we have then:Lemma 2. E[1� �(j)k ] � �k�j�2, where � < 1, for k � j � 2m.Proof. [Sketch] If �(j)k = 0, then pm�1 does not occur m� 1 times consecutively in tj+1 � � � tk�1.Given a �xed set of m� 1 consecutive characters, the probability that not all of them are equal topm�1 is A, with A < 1. The probability of no string of m� 1 consecutive occurrences of pm�1 is atmost Ab(k�j�2)(m�1)c; take � = A1=(2m).3. Number of occurrences of a wordWe extended the classical result of Guibas and Odlyzko [6] to the Markovian case, giving allmoments. This is done by constructing language expressions that characterize both models, andby analysis on the corresponding generating functions.Bibliography[1] Boyer (R.) and Moore (J.). { A fast string searching algorithm. Communications of the ACM, vol. 20,1977, pp. 762{772.[2] Crochemore (M.) and Rytter (W.). { Text Algorithms. { Oxford University Press, 1994.[3] D. E. Knuth (J. Morris) and Pratt (V.). { Fast pattern matching in strings. SIAM Journal on Computing,vol. 6, 1977, pp. 189{195.[4] Derriennic (Y.). { Un th�eor�eme ergodique presque sous additif. The Annals of Probability, vol. 11, 1983,pp. 669{677.[5] Durrett (R.). { Probability: Theory and Examples. { Wadsworth & Brooks/Cole Books, Paci�c Grove,California, 1991.[6] Guibas (L. J.) and Odlyzko (A. M.). { Strings overlaps, pattern matching and non-transitive games.Journal of Combinatorial Theory, Series A, vol. 30, 1981, pp. 183{208.[7] Regnier (M.) and Szpankowski (W.). { Complexity of Sequential Pattern Matching Algorithms. { ResearchReport n�2549, Institut National de Recherche en Informatique et en Automatique, 1995.
120



Part 5Miscellany





The (max,+) semiring. An introductionSt�ephane GaubertINRIA, RocquencourtMarch 11, 1996[summary by Marianne Akian]AbstractEndowing real (or natural) numbers with max and + laws leads to an idempotent semi-ring which has been reinvented in many domains: graph optimization, language theory,statistical physics, quantum mechanics, discrete event systems, etc. The talk presents ap-plications together with basic results of the so-called (max,+) algebra.IntroductionWe say that (S;�;
) is an idempotent semiring or dioid [19, 2] if � and 
 are associativelaws on Swith neutral elements 0 and 1 respectively, � is commutative and idempotent, that isa � a = a, 
 is distributive with respect to the � law and 0 is absorbing with respect to the 
law. By the idempotency property, a� b = 0 implies a = 0. Then, the � law is not symmetrizable(and not simpli�able). However, idempotency leads to \simpli�cations" that partially compensatethe non simpli�ability. An idempotent semiring is said commutative when 
 is commutative andit is a semi�eld if the 
 law is invertible. Examples of commutative idempotent semi�elds areRmax = (R[ f�1g;max;+) with 0 = �1 and 1 = 0, Rmin = (R[ f+1g;min;+), (R+;max;�)which are isomorphic. They are called respectively (max;+), (min;+) and (max;�) algebra andare used in operations research [7], graph theory [19], discrete event systems [2, 14, 13], dynamicprogramming, Hamilton-Jacobi-Bellman equations [28, 1, 8], exponential asymptotics [29, 23, 5, 4].The subsemiring Nmin = (N[ f+1g;min;+) of Rmin, called tropical semiring, is used in languagetheory [21, 22, 33, 34, 25, 24]. Concerning theoretical results on (max;+) algebra, an historicalreference is [7]. More recent accounts can be found in [2, 28], collections of survey papers will bepresented in [20] and a general and complete bibliography can be found in [26].1. Some applications1.1. Shortest path problem. The traditional application of the (min;+) algebra concerns theshortest path problem in a graph [19]. Let G be a graph with nodes denoted f1; : : : ; ng representingtowns and arcs representing roads. Let Aij denote the time to go from i to j (or the length of arc(i; j)) with Aij = +1 when there is no arc. If A = (Aij) is considered as a (min;+) matrix,(Ak)ij = Mi1;:::;ik�1Aii1 
 � � � 
Aik�1j = mini1;:::;ik�1Aii1 + � � �+Aik�1jrepresents the minimal time from i to j (or the minimal distance between i and j) in k steps. IfA� = �1k=0Ak, then (A�)ij represents the minimal time from i to j.123



A similar problem arises in discrete deterministic optimal control. Let now Aij represent thecost of i to j transition, bi the �nal cost in state i at time N and let vni denote the minimal costof a trajectory starting in i at time n � N . The value function vn satis�es the backward dynamicprogramming (or Hamilton-Jacobi-Bellman) equationvni = minj Aij + vn+1j ; vNi = bithat is vn = A
 vn+1 with vN = b, which is the (min;+) analogue of the Kolmogorov or backwardFokker-Planck equation, (�nal or transition) costs replacing probabilities [1, 8]. More generally,dynamic programming equations with continuous time and state are solved using (min;+) algebrain [28, 23].1.2. Synchronization problems. Let us consider a manufacturing system where 2 types ofparts are assembled, taking a �xed duration � . Let ui(t) denote the number of parts of type i = 1; 2arrived at time t and y(t) the number of parts assembled. Theny(t) = min(u1(t� �); u2(t� �)) = u1(t� �)� u2(t� �)in the (min;+) algebra. If now ui(n) (resp. y(n)) denotes the date of the n-th arriving of part i(resp. of the n-th assemblage of parts), we obtainy(n) = � + max(u1(n) + u2(n)) = � 
 (u1(n)� u2(n))in (max;+) algebra. More generally, any problem that can be modelled by a timed event graph(a subclass of timed Petri nets modelled synchronization features) can also be represented by a(min;+)-linear dynamical system (for counter variables)(x(t) = A
 x(t� 1)�B 
 u(t);y(t) = C 
 x(t)or by a (max;+)-linear dynamical system (for dater variables y(n), x(n) and u(n)). A linearsystem theory in (min;+) and (max;+) algebras analogous to the classical linear control theory isdeveloped in [2].1.3. Exponential asymptotics. Let us consider a one-dimensional system of n atoms withenergy Hn(q1; : : : ; qn) = V (q1) + Pnk=2K(qk�1; qk), where qn is the position (state) of the n-thatom with q1 < � � � < qn and K(q; q0) = V (q0) + W (q0 � q) is the sum of the potential V inposition q and the potential energy W linking nearest neighbours. The Gibbs distribution ofthis system has density exp(��Hn(q1; : : : ; qn))=Zn, where � is the inverse of the temperature andZn =Pq1;:::;qn exp(��Hn(q1; : : : ; qn)) is the partition function. Let T be the transfer matrixTqq0 = exp (��K(q; q0)) ;Q be the row vector with entries Qq = exp(��V (q)) and e the vector with entries 1. ThenZn = QTn�1e and the probability for the �rst atom to be in position q is P (q) = Qq(Tn�1e)q=Zn.For good matrices T , Pn(q) tends to P (q) = QqRq when n goes to in�nity, where R is a righteigenvector of the transfer matrix such that Q �R = 1. Similarly, the probability of the n-th atomtends to Lq , where L is a left eigenvector of the transfer matrix such that L � e = 1. Moreover, forany transfer matrix, logZn=n tends to log �, where � is the Perron root of T . The free energy byatom is then � = log �=�. 124



If now the temperature is zero (� = +1), either the previous results have to be obtained passingto the limit in � using the property that the (min;+) algebra is the limit of the (R+;+;�) semi�eld:lim�!+1 �1� log(e��a + e��b) = min(a; b); �1� log(e��a � e��b) = a+ b;or a similar reasoning has to be done directly in the (min;+) algebra. In this last case, the transfermatrix method is replaced by the e�ective potential method [5, 4]. Let us consider the (min;+)-matrix K in place of T . The e�ective potential of the extremal atom of a semi-in�nite chain ofatoms extending to the right (resp. left) is equal to F (q) = V (q) + Rq (resp. F (q) = Lq), whereR and L are right and left (min;+)-eigenvectors of K such that minq V (q) + Rq = minq Lq = 0.The energy by atom for a minimum-energy con�guration is then the (min;+)-eigenvalue � of K:K 
 R = � 
 R = � + R, L 
K = � 
 L = �+ L. Exponential asymptotics also occur in largedeviations and asymptotics of Schr�odinger equations (WKB method) [29, 23].1.4. Language theory. A �nite automaton with cost or distance is an automaton with mul-tiplicity over the tropical semiring Nmin. For any rational language L over the �nite alphabet �, a�nite automaton with cost A can be constructed, recognizing L� = [1n=0Ln (where product meansconcatenation) and counting for each word w 2 L� the least n such that w 2 Ln. This has beenused by Simon and Hashiguchi [21, 22, 33] to solve positively a long standing problem of J. A. Br-zozowski, the decidability for a rational language of the �nite power property (FPP) (a languageL has the FPP i� there exists N such that L� = [Nn=0Ln). Indeed, the automaton A has only oneinitial state and one terminal state and since the language L has the FPP i� A is limited (thatis costs of recognized words are bounded), the FPP is equivalent to the �nite section propertyof a �nitely generated subsemigroup of matrices of Nn�nmin . Following this �rst application, otherdecidability properties for �nitely generated subsemigroups of matrices over the tropical semiringand/or automata with cost have been studied [21, 22, 33, 34, 25, 24].Similarly to cost automata, (max;+) automata can be also constructed. They allow to representheaps of pieces and parallel (multitask, multiresource) discrete event systems [17, 16, 27].2. (max;+) linear algebra2.1. Solutions of linear equations and subsemimodules. Since the � law is not sym-metrizable in a dioid, general linear equations are of the form A
 x � b = C 
 x� d. Importantparticular cases are A 
 x = b and x = A 
 x � b. The following result is classical [7] and showsthat the �rst particular equation is not easy to solve.Theorem 1. A 2 Rn�nmax is invertible i� A = DS, where D and S are diagonal and permutationmatrices.Theorem 2 ([30, 36]). Any �nitely generated subsemimodule of Rnmax has a base (minimal gen-erating family) which is unique up to invertible linear operations.Theorem 3 ([3, 14]). For any matrices A;B 2 Rm�nmax , the set of solutions of A 
 x = B 
 x isa �nitely generated semimodule.Let us solve x = A
x�b. To any dioid is associated a partial order: a � b, a�b = b. In Rmaxit is the classical order �, in Rmin it is the opposite order �. The dioid (S;�;
) is complete if anyset (even empty) has a least upper bound and if 
 is distributive with respect to in�nite sums. Rmaxis not complete but it may be completed in the complete dioid Rmax = (R[ f+1;�1g;max;+)with the convention +1 +�1 = �1 (0 is absorbing).125



Theorem 4. In a complete dioid S, the least solution of x = a 
 x � b is a� 
 b, where a� =�n2Nan = supn2Nan. Similarly, the least solution of x = A 
 x � b in Sn is x = A�b. It can becomputed by Gauss algorithm.In order to solve the general equation A 
 x � b = C 
 x � d, a symmetrization of Rmax seemsnecessary. Although no idempotent �eld or ring containing Rmax exists, a symmetrized idempotentsemiring Smax has been constructed. It contains positive numbers x 2 Rmax, negative numbers 	x,but also doted numbers _x = x	x which are not invertible. Symmetrizing linear equations in Rmax,we obtain balance equations in Smax, where x balances y i� x 	 y is doted. In Smax, determinantscan be calculated and linear balance equations can be solved using Cramer formula or Gauss-Seideland Jacobi algorithms [2, 14, 31].2.2. Subsolutions of linear equations: residuation.Definition 1. Let f : (E;�) ! (F;�) be a nondecreasing application between lattices. f isresiduable i� fx 2 E; f(x)� bg has a maximal element for any b 2 F .Theorem 5. If f : S! S0 is an application between complete dioids such that f(0) = 0 andf(supx2X x) = supx2X f(x) for any subset X of S, then f is residuable.As a corollary, any multiplication operation (by a scalar or a matrix) is residuable. Let usdenote by anb = maxfx; a
x � bg and b=a = maxfx; x
a � bg the residuations of multiplicationsby the scalar a in any complete dioid. The residuation of the multiplication by a matrix in Rmax,Anb = maxfx 2 Rnmax; A
x � bg gives the vector with entries (Anb)i = inf j Ajinbj = minj �Aji+bj,that is the Rmin product of the matrix �AT by b. Applications to system theory can be found in [2].While linear operators represent the earliest behaviour of a system, the latest behaviour can berepresented by a dynamical equation involving residuation.2.3. Spectral theory. The most useful result of (max;+) linear algebra is perhaps the followinganalogue of Perron-Frobenius theorem.Theorem 6 ([7, 35, 32, 18, 6, 10]). Any irreducible matrix A 2 Rn�nmax has a unique eigenvalue�(A) and �(A) = �nk=1 tr(Ak) 1k = maxk=1;:::;n maxi1;:::;ik Ai1i2 + � � �+ Aiki1kIf A is reducible, the previous formula gives the maximal eigenvalue.The (min;+) eigenvalue is then the minimal mean cost (ergodic cost) of a control problem or theasymptotic production rate of a manufacturing system, etc. As in the statistical physics applicationof section 1.3, it can be obtained as the limit of the Perron root of a matrix.Theorem 7 ([12, 11]). Let A be any n� n matrix with entries in R+. If �PF (A) is the Perron-Frobenius root of A and �(max;�)(A) = exp(�((logAij))) its (max;�)-eigenvalue, we have�(max;�)(A) � �PF (A) � n�(max;�)(A):Corollary 1. Let A�r = (Arij) and e��A = (exp(�Aij) denote the r-th power of A and theexponential of �A for the Hadamard product. For any matrix with positive entries�(max;�)(A) = limr!+1(�PF (A�r)) 1r126



and for any matrix with entries in Rmax�(A) = lim�!+1 1� log �PF (e��A):Theorem 8 ([6, 9]). For any irreducible matrix A 2 Rn�nmax , there exists c and N � 1 such thatAn+c = �(A)cAn for n � N .In the context of timed event graphs, this means that the system reaches after a �nite transientbehaviour (of length N) a periodic regime of period c in which the production rate is equal to theeigenvalue.These periodicity results can also be dealt with using rational generating series over the (max;+)semiring [2, 15]. Bibliography[1] Akian (M.), Quadrat (J. P.), and Viot (M.). { Duality between probability and optimization. In Gu-nawardena (J.) (editor), Idempotency. Publication of the Isaac Newton Institute. { Cambridge UniversityPress, 1996. To appear.[2] Baccelli (F.), Cohen (G.), Olsder (G. J.), and Quadrat (J. P.). { Synchronization and Linearity. { Wiley,1992.[3] Butkovic (P.) and Heged}us (G.). { The elimination method for �nding all solutions of the system oflinear equations over an extremal algebra. Ekonomicko-matematicky Obzor, vol. 20, 1984.[4] Chou (W.) and Gri�ths (R. B.). { E�ective potentials, a new approach and new results for one-dimensional systems with competing lenght scales. Physical Review Letters, vol. 56, 1986, pp. 1929{1931.[5] Chou (W.) and Gri�ths (R. B.). { Ground states of one dimensional systems using e�ective potentials.Physical Review B, vol. 34, 1986, pp. 6219{6234.[6] Cohen (G.), Dubois (D.), Quadrat (J. P.), and Viot (M.). { Analyse du comportement p�eriodique dessyst�emes de production par la th�eorie des dio��des. { Rapport de recherche n�191, Institut National deRecherche en Informatique et en Automatique, Le Chesnay, France, 1983.[7] Cuninghame-Green (R. A.). { Minimax Algebra. { Springer Verlag, 1979, Lecture notes in Economicsand Mathematical Systems.[8] Del Moral (P.). { R�esolution particulaire des probl�emes d'estimation et d'optimisation non-lin�eaires. {Th�ese, Universit�e Paul Sabatier, Toulouse, 1994.[9] Dudnikov (P.) and Samborski��(S.). { Endomorphisms of �nitely generated free semimodules. In Maslov(V.) and Samborski��(S.) (editors), Idempotent analysis. { Americal Mathematical Society, Rhode Island,1992.[10] Dudnikov (P. I.) and Samborski��(S. N.). { Spectra of endomorphisms of semimodules over semiringswith an idempotent operation. Soviet Mathematics Doklady, vol. 40, n�2, 1990, pp. 363{366.[11] Elsner (L.), Johnson (C. R.), and Dias da Silva (J.). { The Perron root of a weighted geometric meanof nonnegative matrices. Linear Multilinear Algebra, vol. 24, 1988, pp. 1{13.[12] Friedland (S.). { Limit eigenvalues of nonnegatives matrices. Linear Algebra and Applications, vol. 74,1986, pp. 173{178.[13] Gaubert (S.). { Introduction aux syst�emes dynamiques �a �ev�enements discrets. { Polycopi�e de coursdonn�e �a l'ENSTA, 1992.[14] Gaubert (S.). { Th�eorie des syst�emes lin�eaires dans les dio��des. { Th�ese, �Ecole des Mines de Paris, July1992.[15] Gaubert (S.). { Rational series over dioids and discrete event systems. In Proceedings of the 11thConference on Analysis and Optimization of Systems: Discrete Event Systems. Lecture notes in Controland Information Sciences. { Sophia Antipolis, June 1994.[16] Gaubert (S.). { Performance evaluation of (max,+) automata. IEEE Transactions on Automatic Control,vol. 40, n�12, December 1995. 127
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Computation with DNAAlain H�enaut et Didier ContamineUniversit�e Versailles-Saint-QuentinMarch 25, 1996[summary by Eithne Murray]AbstractIn 1994 Leonard Adleman published a paper giving an algorithm to solve the Hamiltonianpath problem using DNA manipulations and presented the results of an actual experimentapplying this algorithm to a particular graph. The basic operations and the algorithm aredescribed, and the potential of these methods as a means of computation is discussed brie
y.1. IntroductionUsing basic techniques of DNA manipulation and standard lab equipment, Adleman �nds aHamiltonian path in a directed graph consisting of 7 nodes and 14 edges (�gure 1). Finding sucha path, that starts and ends at speci�ed vertices while passing through every other vertex exactlyonce, is a problem which has no known polynomial time solution. In fact, this problem is NP-complete, and so it is considered unlikely that such a solution will exist. This is the �rst timebiological methods have been used to solve hard computer problems, and it is still unknown towhat extent the available DNA operations may be used to solve other problems.2. Basic OperationsDNA manipulations form the basic operations operations of a DNA computer. It should beemphasized that the biological techniques presented here are routine laboratory procedures, andrequire no special equipment or expertise. Strands of DNA are made up of sequences of bases rep-resented by the letters fA;C;G;Tg. Each sequence has a (Watson-Crick) complementary sequence,that is, the sequence that binds with the original to form a double strand. In the complementarysequence, each base in the original is replaced by its complement (A$ T , C $ G).
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0 6Figure 1. The directed graph used in the experiment.129



O0 O6O6O0Figure 2. PCR - Polymerase Chain Reaction to replicate a speci�ed segment of DNAThe following operations are available. Each one will be discussed brie
y, without entering intotoo many technical details.creation: A strand of DNA made up of a given sequence of bases can be created. These days,creating a speci�c short sequence is a matter of �lling out the mail-order coupon, writing the check,and sending them o� to the laboratory in the catalogue. Here \short" often means of length 20.joining: Complementary strands will spontaneously join together to form a double strand. Strandscan also be concatenated. If two strands are brought into juxtaposition because they have bothjoined to part of a third, complementary strand, then under the action of a ligase enzyme a bondforms between the �rst two strands so that they become a single longer strand. An example isfound in �gure 3. This bond persists even if the strand then separates from its complement.copying: Many copies of a given strand of DNA can be created by polymerase chain reaction(PCR). The strand to be ampli�ed is de�ned by two primers, which are segments of DNA. Theprimers are the start and the complement of the end of the sequence of interest. For example, sayO0 and O6 are segments of DNA, and the problem is to create copies of every sequence of DNAin the test tube that contains O0 followed by an unknown sequence of bases followed by O6. Thenthe primers for this PCR are O0 and O6, where the bar indicates the Watson-Crick complement.The ampli�cation works roughly in the following way. Many copies of O0 and O6 are added intothe test tube. The mixture is heated, which causes the strands of DNA to separate. As it cools,the primers attach themselves where they can, that is, one to the beginning of the edges beginningwith 0, the other to the end of the edges ending in 6. The primer then forms the start of a newchain that grows out from it, forwards from O0 and backwards from O6, as shown in �gure 2. Thisprocess is repeated, and the number of strands consisting of the segments of interest doubles eachtime. A few hours will su�ce to have ample quantities of these strands, though in practise, theduration used is often \one night".sorting: DNA strands can be sorted by length. This is achieved by gel electrophoresis, a processwhich involves separating the strands by their electrophoretic mobility, which is a function of thenumber of base pairs.extraction: Strands containing a speci�c segment of DNA can be extracted from the test tube.Extraction is performed by separating the strands, and then using magnetic beads with a com-plement of the segment to be extracted attached to each bead. Only the DNA containing thatsegment will attach itself to the bead and be retained.detection: The existence of DNA in a test tube is determined using PCR.130



GTATATCCGAGCTATTCGAGCTTAAAGCTAGGCTAGGTACCGATAAGCTCGAATTTCGATGGCTAGGTACCAGCATGCTTGCTATTCGAGCTTAAAGCTATATCGGATCGGTATATCCGA?O2!3O4 O3!4O3O2O3Figure 3. Encoding a graph in DNA. A path along the edges 2! 3 and 3! 4 isformed when each edge becomes attached to half of the complementary vertex O3and a ligation reaction occurs. 3. The AlgorithmAdleman uses a naive brute-force algorithm. Given a directed graph on n vertices, where thepath is to start at vertex vin and �nish at vertex vout, the following steps will result in a solutionif one exists.(1) Input the graph (creation).(2) Generate many many random paths through the graph (joining and copying).(3) Keep only the paths that start at vin and end at vout (copying).(4) Keep only those paths that enter exactly n vertices (sorting).(5) Keep only those paths that enter all of the vertices at least once (extraction).(6) If no paths remain, say \no", otherwise say \yes", and the remaining paths are solutions(detection, copying and sorting).An ordinary computer would not normally attempt such an algorithm, due to the enormousnumbers of cases to consider. Using DNA, these cases can be treated in parallel.The algorithm is performed on the graph in �gure 1, and the goal is to construct a path from 0to 6 while passing through all the vertices exactly once. For convenience, the labels were chosen sothat the solution is 0! 1! 2! 3! 4! 5! 6, but of course this does not a�ect the di�culty ofthe problem. Obviously, in the case of this graph, the answer can be found by inspection. However,this experiment demonstrates the feasibility of the technique.Each vertex of the graph is represented by a random 20 base sequence Oi. Using 20 bases meansthe chances of that sequence appearing elsewhere in the DNA is miniscule. The Watson-Crickcomplementary sequence is denoted Oi. Each edge i ! j in the graph is created by creating the20-letter molecule that starts with the last ten bases of Oi and ends with the �rst 10 bases of Oj.This sequence is denoted Oi!j.Mixing together all the the edges Oi!j with Oi for i = 1; : : : ; 5 allows concatenations to occurthat forms random paths through the graphs, as required by step 2. For instance, O2!3 and O3!4are edges in the graph. These edges can be concatenated together by using O3 as a splint. Thisnew molecule represents a path from 2! 3! 4. See �gure 3. Given the number of reactions andthe number of molecules formed, it is statistically extremely likely that the Hamiltonian path willbe created if it exists.Step 3 is to keep only those random paths that start at 0 and end at 6. By \keep", it is meantthat these strands are copied so many times that the presence of other strands becomes statisticallyinsigni�cant in comparison.Step 4 is achieved by sorting the strands by length, and keeping those that are 140-base pairslong, and thus enter exactly 7 vertices. 131



In order to keep only the strands that enter each vertex at least once (step 5), �rst the strandscontaining O1 are extracted. Next, those strands containing O2 are extracted, then O3 etc.Then, for step 6, the presence or absence of DNA in the test tube is detected. If absent, thereis no Hamiltonian path for this graph. If present, ampli�cation by PCR is performed, �rst usingprimers O0 and O1 to create copies of the path between 0 and 1, then using O0 and O2 to createcopies of the path between 0 and 2, etc. Then the lengths are determined. In this case, thelength of the molecule starting at O0 and ending at O1 is 40, indicating that the vertex 1 comesdirectly after vertex 0 in the solution. Multiple solutions would show up as multiple lengths foreach segment, and by determining the various second vertices from the lengths, these solutionscould be separated. A picture in the article [1] shows the result of this step. The solution found isindeed 0! 1! 2! 3! 4! 5! 6. 4. ExtensionsRichard Lipton has proposed an algorithm consisting of DNA experiments to solve the satisfac-tion problem (SAT) [2]. Given a boolean formula involving n variables the problem is to assignvalues to the variables such that the expression evaluates to true. A graph representation of theproblem is used, where each path through the graph gives an assignment to the variables. Thepaths are generated using the same techniques as before. Brie
y, the �rst step is to extract theDNA that makes the �rst clause true, then extract the DNA that makes the second clause true,etc. The paths through the graph can also be interpreted as n-bit binary numbers, where xi is truemeans the ith bit is a 1, false means 0. Thus any binary number can be stored as a DNA molecule.5. Advantages of DNA MethodsBoth these problems are NP-complete, and so there is no polynomial time algorithm to solvethem on traditional computers, and little hope of �nding one. The incredible parallelism of theDNA-techniques means that exhaustive searches through all the possibilities can be done relativelyrapidly, and may be able to provide a solution to problems that traditional computers cannot solve.For instance, it is estimated that DNA methods may be able to solve the Hamiltonian path problemon graphs of up to 70 edges.There are also less obvious advantages. DNA techniques are energy e�cient. Approximately2� 1019 ligation operations per 1 joule of energy can be performed, versus 109 operations per joulefor existing supercomputers. It is estimated that the energy cost of the other operations is similarlytiny in comparison. Finally, as a storage medium, nothing else comes close. Information can bestored in approximately 1 bit per cubic nanometer. In contrast, videotapes store information at 1bit per 1012 cubic nanometers.More investigation is needed to determine which kinds of problems can be handled by thesemethods. The probability and e�ect of errors during the operations needs to be studied, as well asthe possibility of creating new basic operations. It is possible but not yet known if a DNA moleculecould encode a Turing machine, where the actions of certain enzymes would perform the operationsof the machine. Bibliography[1] Adelman (Leonard M.). { Molecular computation of solutions to combinatorial problems. Science,vol. 266, 1994, pp. 1021{1024.[2] Lipton (Richard J.). { DNA solution of hard computational problems. Science, vol. 268, 1995, pp. 542{545. 132



Some applications of the Mellin Transform in Signal processingJacques L�evy-V�ehelProjet Fractales, Inria RocquencourtApril 15, 1996[summary by Julie Bestel]AbstractThe Mellin transform has been used in signal processing as a tool to investigate scaleinvariance. We review some of the recent studies by Wornell [3] and Cohen [2].1. Introduction and examplesAssume we need to classify ships from radar signals [4]. The echo can be more or less compressed,depending on the angle between the axis of the ship and that of the radar signal. Nevertheless,one would like to be able to compare several echoes with di�erent extension or compression rate,in order to decide whether or not they belong to the same kind of ship. A �rst approach wouldbe to interpolate the signals, so that they would live on supports of equal size. A second one isto use some kind of transform that would ignore scale variations. The Mellin transform ful�lssuch a requirement; more precisely, the moduli of the Mellin transform of a signal f(x) and of anydilation of f(x) are the same. If time invariance is furthermore required, one may perform theFourier-Mellin transform: Given an original real signal f(x), the analytical signal is de�ned byfa(x) = f(x) + ifh(x), where fh(x) is the Hilbert transform of f(x). Let F(fa)(!) = F (!) be theFourier transform of fa. The quantity��GjF j2(ix)��2 = ����Z +10 !ix�1jF (!)j2 d!����2is both shift and scale invariant on the x axis.Section 2 gives a more detailed description of scale invariant linear systems. Section 3 presentsa general framework for scale analysis.2. Linear systemsIf x(t) is the input signal, a linear system outputs y(t) as follows:y(t) = S(x(t)) = Z +1�1 x(�)K(t; �) d�where K(t; �) denotes the kernel of the system.133



2.1. Shift invariant systems. As is well known, shift invariant systems are such that:S(x(t� �)) = y(t� �)() K(t; �) = V (t� �)where V is the impulse response of the system, i.e., V (t) = S(�(t)). It follows that y is obtainedby convolving x and V : y(t) = Z +1�1 x(�)V (t� �) d� = (x ? V )(t):The eigenfunctions of these systems are the exponential functions: t 7! est, s 2 C . The Laplacetransform L(x)(s) = X(s) = Z +1�1 x(t)e�st dtenables to change convolution into multiplication: L[(x ? y)](s) = X(s)Y (s).2.2. Scale invariant systems. We are now interested in having S(x(t=�)) = y(t=�). One caneasily check that this is equivalent to K(t; �) = aK(at; a�). The system S is characterized by twolagged impulse responses: �+(t) = S(�(t� 1)); ��(t) = S(�(t+ 1))y(t) = Z +10 x(�)�+(t=�)d�� � Z +10 x(��)��(t=�)d�� :For causal signals and systems with causal response,y(t) = Z +10 x(�)�+(t=�)d�� = (x � �)(t) (scale convolution).The kernel K is such that: K(t; �) = �(t=�)=� . The eigenfunctions of the operator thus de�ned arethe functions t 7! ts. The associated eigenvalue is the Mellin transform:M(x)(s) =M(s) = Z +10 �(�)��s�1 d�:We can then write: M[(x � y)](s) = X(s)Y (s). The Mellin transform plays for scale convolutionthe role that the Laplace transform plays for ordinary convolution.Application to scale di�erential equations. One de�nes the derivative with respect to the scale by:rs(x)(t) = lim�!1 x(�t)� x(t)ln � :If x is di�erentiable with respect to t, rs(x)(t) = tx0(t). One can check that the derivative withrespect to scale corresponds to a multiplication by s in the Mellin domain.2.3. Generalized scale invariance. More generally, one considers systems such that S(x(t=�)) =��y(t=�). This holds if and only if K(t; �) = a�(��1)K(at; a�). For causal signals, the lagged impulseresponse �+ is such that: y(t) = Z +10 x(�)�+(t=�) d�� (1��) :134



2.4. Jointly time and scale invariant systems. We now wish to have bothS(x(t� �)) = y(t� �) and S(x(t=�) = ��y(t=�):One can show that the kernel should be a generalized homogeneous function of degree �� 1:v(t) = a�(��1)v(at)Hence, v(t) = (C1jtj��1u(t) + C2jtj��1u(�t); if �� =2 N,C1jtj��1u(t) + C2jtj��1u(�t) + C3�(n)(t); otherwise,where the Ci are constants and u(t) is the Heaviside function.3. The scale representationThe starting point of this approach [2] is the following simple remark:{ The content of the signal x at time t is nothing but x(t);{ the content of the signal x at frequency f is given by its Fourier transform X(f).Our purpose is then to de�ne the concept of scale and the content of the signal x at scale c. Theidea consists in associating a physical quantity a with an Hermitian operator A. Let us begin withcommon physical quantities: time and frequency. The operators T and F respectively associatedwith t and f are: T : x(t) 7! tx(t); F : x(t) 7! �idxdt :In the frequency domain, we obtain:T : X(f) 7! idXdf ; F : X(f) 7! fX(f):It should be noticed that T and F do not commute:[T; F ] = TF � FT = i:This is the reason why we get an incertitude principle on t and f . We now de�ne the scale operatoras follows: C = 12(TF + FT ):The following relations justify this de�nition:ei�Cx(t) = e�=2x(e�t); ei�CX(f) = e��=2x(e��f):Whereas ei�Fx(t) = x(t+ �); ei�TX(f) = X(f � �);[T; C] = TC � CT = iT; [T; F ] = FC � CF = �iF:Therefore, there exists an incertitude relation between scale and time, or between scale and fre-quency: �c�t � 12 jhtijwhere the average time is de�ned by hti = Z tjx(t)j2 dt:135



The equality is reached for the signal:x(t) = kt� exp ���t + i hci ln� thti�� :Dually, we get �f�c � 12 jhfij.Let 
(c; t) be the eigenfunctions of C: C
(c; t) = c
(c; t). We �nd, for t � 0:
(c; t) = 1p2�tic� 12 :We can now produce the direct and inverse transforms, for t � 0:D(c) = Z x(t)
�(c; t) dt = 1p2� Z +10 x(t)t�ic�12 dt;x(t) = Z D(c)
(c; t) dc= 1p2� Z +10 D(c)tic�12 dc:One can notice that we have recovered a Mellin transform, in the special case when <(s) = 12 . Thatis why the Mellin transform was commonly renamed Scale transform in signal processing.The average scale of a signal is given by: hci = R cjD(c)j2dc. One obtainshci = Z +10 t�0(t)jx(t)j2 dt = Z +1�1 f 0(f)jX(f)j2df:One can deduce from these relations a notion of instantaneous scale, at time t: ct = t�0(t), andat frequency f : cf = �f 0(f):A more uni�ed presentation can be found in [1, 2].Bibliography[1] Baraniuk (Richard G.) and Jones (Douglas L.). { Unitary equivalence: A new twist on signal processing.IEEE Transactions on Signal processing, 1996. { To appear.[2] Cohen (Leon). { Time-frequency analysis. { Englewood Cli�s, 1995.[3] Wornell (Gregory). { Signal processing with fractals: A wavelet-based approach. { Prentice Hall, UpperSaddle River, NJ, 1995.[4] Zwicke (Philip E.) and Kiss (Imre). { A new implementation of the Mellin transform and its applicationto radar classi�cation of ships. IEEE Transactions on pattern analysis and machine intelligence, vol. 5,n�2, March 1983.
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A general upper bound for the satis�ability threshold of random r-SAT formul�Olivier DuboisLAFORIA, CNRS et Universit�e Paris 6, FranceOctober 23, 1995[summary by Dani�ele Gardy]AbstractIt is well known that the general problem of checking the satis�ability of a set of clauses isNP-complete. Experimentations have shown that there is a threshold on the ratio \numberof clauses/number of variables" that separates the set of clauses for which a solution can be(easily) found from those for which it is impossible to �nd a solution. The subject of thistalk is the r-SAT problem, in which the clauses have a constant number r of literals. Thissummary is based on [2]. 1. The problemA literal is either a boolean variable xi or its negation �xi. A clause is a disjunction of literals overa set of boolean variables; for example x1 _ x2 _ �x3_ x4_ �x5 is a clause on the literals x1; : : : ; �x5. Aformula is a �nite set of clauses, or equivalently a conjunction of clauses. The satis�ability problemis to determine whether there exists a truth assignment (each literal is assigned a value true orfalse) satisfying a given formula. This famous problem is NP-complete as soon as the number n ofliterals is at least equal to 3; it was the �rst problem to be proved so [3, 4].If we cannot �nd an algorithm that is guaranteed to work in polynomial time (worst-case com-plexity), what about the average complexity? This natural question leads to the notion of randomclauses. The �rst point is to de�ne a model of random clauses, i.e. a probability law on the set ofall possible clauses on n literals. Two approaches have been attempted (in both, clauses are chosenindependently of each other):(1) Constant density: The literal xi is present in a clause with probability pi, its negation �xi ispresent with probability qi, and the probability that neither xi nor �xi are present is equalto 1� pi � qi.(2) Constant length: The problem is restricted to all clauses of given length r; there are C =2r�nr� such clauses, and the probability distribution on this set is uniform: Each clause ischosen with a probability 1=C.We choose m clauses amongst C, with replacement. The �rst model leads to clauses of variablelength; an easy analysis shows that, when the number m of clauses and the number n of variablesare polynomially related, almost every formula is satis�able.The model under active study is the second one, the so-called r-SAT problem. Simulations haveshown the importance of the ratio cr = Number of clauses/Number of variables: If cr is smallerthan some threshold value, the probability of �nding an assignment of the variables that satis�esthe formula is close to 1 for n;m ! +1; if cr is larger than this threshold, the probability of�nding an assignment that satis�es the set of clauses is close to 0 for n;m! +1. This threshold137



is an increasing function of r; experiments lead to believe that the value for r = 3 is � = 4:25:::Moreover, the backtracking algorithms used to solve r-SAT behave di�erently according to the ratiocr. Experimentally, the di�culty of either �nding an assignment satisfying a formula or provingthat a formula is unsatis�able is exponentially greater when cr is close to the threshold than whenit is either lower or greater.The theoretical proof of the existence of a threshold value for the ratio cr = n=m lags behind.For 3-SAT, the best lower bound presently is 3.003, and the best upper bound is 4.64... (a resultestablished precisely by Dubois and Boufkhad, and presented in this talk). There remains a gapbetween 3.003 and 4.64..., around the observed threshold 4.25.2. The resultThe main result is as follows:A random r-SAT formula (r � 3) is unsatis�able with probability asymptoticallyclose to 1, when n ! +1, as soon as cr := m=n is at least equal to some speci�edvalue cr;min.This lower bound cr;min is de�ned in terms of the solution x0 of a transcendental equation, andcan be computed numerically with the help of a Computer Algebra System. For r = 3, we getx0 = 1:924714266:::, which gives the bound cr � 4:642476157:::For r � 4, the bound obtained by Dubois and Boufkhad improves on the general upper boundcr � � log 2= log(1� 2�r). For example, with r = 4, some minutes of experiment with Maple givex0 = 2:69945696:::: and c4 � 10:2168796:::, which is a slight improvement on the known bound cr �� log 2= log(1� 2�r) = 10:74005367::: For r = 5, we obtained x0 = 3:429641::: and cr � 21:32022:::,which is still slightly better than the known bound cr � � log 2= log(1� 2�r) = 21:83230235::: Forr = 10, the known bound gives cr � 709:436:::, and Dubois's method gives x0 = 6:92993239::: andcr � 708:935:::These computations also show that the gain becomes marginal for large r. However,experiments seem to indicate that the di�erence between the bound � log 2= log(1� 2�r) and thethreshold is slowly varying, and that the accuracy of the bound of Dubois and Boufkhad actuallyincreases. 3. The proofThe proof relies on the existence of a special type of solutions, called negatively prime solutions(NPS), which are de�ned below, and to which is applied the method of the �rst moment. The ideabehind this method is simple. To show that some problem has no solution, de�ne X as the numberof solutions of a random instance and show that the expectation E[X ] can be made as close to 0as desired. This argument, applied to the r-SAT problem, leads to the following reasoning:{ Show that every satis�able formula has at least one NPS (easy). The average number ofNPS of a satis�able formula is then at least 1.{ Compute the expectation E[NPS] of the number of NPS on the set of random formul� withn variables and m clauses.{ If E[NPS] = 0 then a random formula has no negatively prime solution, hence no solution.{ Then we should compute E[NPS] and study its asymptotic behaviour as n;m! +1 withn=m = cr.3.1. Negatively prime solutions. A solution of a formula F is de�ned as a set of n literals,each variable appearing either as xi or as �xi, such that the assignment of true to these literalssatis�es F . A negatively prime solution is a solution such that, if we substitute xi for a negativeliteral �xi, the resulting set is no longer a solution of F .138



It is easy to see that each solution of F either is a NPS, or leads to a NPS (by inverting negativeliterals as long as possible). Thus the number of solutions of F is greater than or equal to thenumber of negatively prime solutions; the same holds for expectations, and the method of the �rstmoment, when applied to the number of NPS, will give a better bound than when applied to thenumber of solutions, as for example in [1, 5].It is possible to de�ne a positively prime solution (PPS) in a similar way (an assignment minimalfor the substitution of �xi to xi); as E[NPS] = E[PPS], the bound obtained is exactly the same.3.2. The expectation E[NPS]. Dubois and Boufkhad show thatE[NPS] = X0�i�j�n2i�rm ni! mj !i!Sj;i� rn�j (2r � 1� r)m�j :In this formula, Sj;i is a Stirling number of second kind: Sj;i is the number of ways to partition aset of j elements into i nonempty subsets.In passing, they also remark that for any set of literals fli; i = 1; : : : ; ng (li = xi or li = �xi),there exists at least one formula that has this set as a NPS.The next step is to get an upper bound on E[NPS], using a bound on Stirling numbers due toTemme [6]: E[NPS] � �2r � r � 12r �ncr + crp2�n5=2e1=12nAn(1 + o(1));with A de�ned as the maximum of some function. The �rst term of the r.h.s. is o(1) whenn ! +1; the behaviour of the second term (and of the upper bound) is given by An. Then aconcavity argument is used to prove that A < 1 for cr greater than a value cr;min that can beprecisely de�ned. This shows that, for m=n > cr;min, E[NPS] ! 0, i.e. a random formula cannotbe satis�ed.This approach does not give any information for m=n < cr;min; however a closer analysis (doneby the authors, but not presented in [2]) shows that E[NPS] � Q(n)An, with a polynomial factorQ(n), and the same exponential basis A; hence E[NPS] is of exponential order An.Bibliography[1] de la Vega (W. F.) and El Maftouhi (A.). { On random 3-sat. Combinatorics, Probability and Computing,1995, pp. 189{195.[2] Dubois (O.) and Boufkhad (Y.). { A general upper bound for the satis�ability threshold of random r-SATformul�. { Technical report, LAFORIA, CNRS and University of Paris 6, 1996.[3] Garey (M. R.) and Johnson (D. S.). { Computers and intractability : A guide to the theory of NP-Completeness. { Freeman, San Francisco, 1979.[4] Johnson (D. S.). { A catalog of complexity classes, Chapter 2, pp. 67{161. { Elsevier, 1990.[5] Kamath (A.), Motwani (R.), Palem (K.), and Spirakis (P.). { Tail bounds for occupancy and thesatis�ability threshold conjecture. In 35th Annual Symposium on Foundations of Computer Science,pp. 592{603. { 1994.[6] Temme (N. M.). { Asymptotic estimates of Stirling numbers. Studies in Applied Mathematics,vol. LXXXIX, n�3, 1993, pp. 233{244. 139



140



ContentsPart 1CombinatoricsThree-Dimensional Convex Polygons. Mireille Bousquet-M�elou 3Lecture Hall Partitions. Mireille Bousquet-M�elou 7Macdonald's symmetric functions, q-Catalan numbers. Dominique Gouyou-Beauchamps 11Euler sums. Philippe Flajolet 15A Zero-One Law for Maps. Kevin Compton 19A grammar-based uni�cation of several alignment and folding algorithms. Fabrice Lefebvre 23Part 2Symbolic ComputationFast computation of formal series. Bruno Salvy 31Creative Telescoping and Applications. Fr�ed�eric Chyzak 39@-�nite functions. Fr�ed�eric Chyzak 43Distance to an Algebraic Hypersurface and Exclusions Methods. Xavier Gourdon 47Matrix-based methods for solving polynomial systems. Ioannis Emiris 51Computation of large values of �(x). Marc Del�eglise 55On a problem of Rubel. John Shackell 59On integer Chebyshev Polynomials. Bruno Salvy 63Algebraic Computation of Matrix-like Pad�e Approximants. George Labahn 67Part 3Asymptotic AnalysisThe tricritical scaling function of partially directed vesicles. Thomas Prellberg 71The statistical mechanics of vesicles. Thomas Prellberg 75Partitions of Integers: Asymptotics. Philippe Dumas 83141



Measures of distinctness for summands in partitions and compositions. Hsien-Kuei Hwang 89Asymptotics for large product-form networks. Jean-Marc Lasgouttes 91Part 4Analysis of Algorithms and Data StructuresAnalysis of Quickselect. Helmut Prodinger 95Basic hypergeometric series. Helmut Prodinger 99Analysis of Best Fit Bin Packing. Claire Kenyon 103An urn model from learning theory. Dani�ele Gardy 105A suboptimal lossy data compression. Wojciech Szpankowski 109A Faster Algorithm for Approximate String Matching. Ricardo Baeza-Yates 111Rotations of Periodic Strings and Short Superstrings. Dany Breslauer 113Searching patterns: combinatorics and probability. Mireille R�egnier 117Part 5MiscellanyThe (max,+) semiring. An introduction. St�ephane Gaubert 123Computation with DNA. Alain H�enaut et Didier Contamine 129Some applications of the Mellin Transform in Signal processing. Jacques L�evy-V�ehel 133The satis�ability threshold of random r-SAT formul�. Olivier Dubois 137

142


