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Computer Solutions of Plane Strain Axisymmetric
Thermomechanical Problems

Ahmet N. ERASLAN
Middle East Technical University, Department of Engineering Sciences

Ankara-TURKEY
e-mail: aeraslan@metu.edu.tr

Hakan ARGESO
Başkent University, Department of Mechanical Engineering

Ankara-TURKEY

Received 27.06.2005

Abstract

A simple computational model is developed to estimate elastic, elastic-plastic, fully plastic, and residual
stress states in generalized plane strain axisymmetric structures considering temperature dependent physical
properties as well as nonlinear isotropic strain hardening. Using the von Mises yield criterion, total defor-
mation theory and a Swift-type nonlinear hardening law, a single nonlinear differential equation governing
thermoelastoplastic behavior is obtained. A shooting technique using Newton iterations with numerically
approximated tangents is used for the computer solution of the governing equation. Various numerical ex-
amples including plane strain and generalized plane strain problems for cylinders and tubes are handled.
It is shown that the thermoelostoplastic response of the structures considered here is affected significantly
by the temperature dependency of the physical properties of the material; the effect of nonlinear strain
hardening, however, is observed to be not as great as the latter.

Key words: Stress analysis, Thermoelastoplasticity, Residual stresses, Nonlinear strain hardening, Von
Mises criterion

Introduction

Thermomechanical analysis of basic structures like
rods, tubes, disks, and spherical shells is of great im-
portance in engineering design and operation (Bo-
ley and Weiner, 1960; Timoshenko and Goodier,
1970; Johnson and Mellor, 1973; Chen and Han,
1988; Rees, 1990; Uğural and Fenster, 1995; Eraslan
and Akis, 2003). Since, in general, to better utilize
the material, plastic deformation may be allowed to
some extent, recent studies have focused on elastic-
plastic treatment of thermal behavior. The special
case, in which thermal deformations are caused by a
prescribed symmetrical temperature distribution or
internal energy generation in systems that can be
treated under plane-strain presupposition, has been
the topic of numerous investigations. Examples may

be found in recent articles by Orcan and Eraslan
(2001), Orcan and Gulgec (2001), Eraslan and Or-
can (2002), Eraslan (2003), Eraslan et al. (2003),
Eraslan and Orcan (2004), and in the references cited
there.

Recently, Eraslan (2004) suggested a computa-
tional procedure for an easy-to-handle unified treat-
ment of all types of rotating nonlinear strain hard-
ening elastic-plastic shafts under a plane strain as-
sumption. This computational procedure was later
successfully adopted by the authors (Eraslan and
Argeso, 2005a) for the computer solution of a class
of plane strain thermal stress problems using con-
stant physical properties. The verification of this
model is performed comprehensively in comparison
with (i) analytical solutions in the elastic range, and
(ii) incremental theory using Tresca’s yield criterion
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available in the literature. However, it is well known
that the mechanical and thermal properties of most
engineering materials vary considerably with tem-
perature. It is therefore the objective of this arti-
cle to describe the extension of the work of Eraslan
and Argeso (2005a) to include temperature depen-
dent physical properties. We construct a computa-
tional model to estimate the thermoelastoplastic re-
sponse of axisymmetric structures, considering non-
linear isotropic strain hardening. Empirical rela-
tions based on experimental observations describ-
ing the temperature dependency of modulus of elas-
ticity, yield limit, thermal conductivity and coeffi-
cient of thermal expansion of high strength low alloy
steel are incorporated (Orcan and Eraslan, 2001).
Using the von Mises yield criterion, Henky’s defor-
mation theory, and a Swift-type nonlinear harden-
ing law, a single nonlinear differential equation gov-
erning the thermoelastoplastic behavior of general-
ized plane strain problems is obtained. A nonlinear
shooting technique is used for the numerical solution
of the governing equation (Eraslan and Kartal, 2004;
Eraslan and Argeso, 2005b).

Computational Model

Formulations in the following sections use the nota-
tion and basic equations of thermoelasticity given in
Boley and Weiner (1960).

Physical properties

As stated earlier, the mechanical and thermal prop-
erties of most engineering materials are known
to vary considerably with temperature (Boley and
Weiner, 1960). Hence, to obtain more realistic pre-
dictions in thermomechanical calculations, the tem-
perature dependency of physical properties must be
taken into account. For this purpose, we consider a
high-strength low-alloy steel for which the modulus
of elasticity E and uniaxial yield limit σ0 vary with
temperature T according to the empirical relations
(Orcan and Eraslan, 2001)

E(T ) = 200× 109

[
1 +

T

2000 ln(T/1100)

]
[N/m2],

(1)

σ0(T ) = 410× 106

[
1 +

T

600 ln(T/1630)

]
[N/m2].

(2)

In addition, the thermal conductivity k and the co-
efficient of thermal expansion α for the steel alloy
considered can be fit in quadratic forms as

k = k0 + k1T + k2T
2

= 45− 0.018T − 1.0× 10−5T 2 [W/m2 ◦C],
(3)

α = α0 + α1T + α2T
2

= 11.7× 10−6 + 3.0× 10−9T + 2.5× 10−12T 2

[1/ ◦C].
(4)

Variation of the nondimensional forms of the physical
properties with temperature in the range 0 − 400◦C
is depicted in Figure 1. Although all properties vary
with temperature to some extent, the highest im-
pact is on the yield limit σ0(T ), which is expected
to affect the thermoplastic response of the structures
considerably.
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Figure 1. Variation of modulus of elasticity E, uniaxial
yield limit σ0, coefficient of thermal expansion
α, and thermal conductivity k with tempera-
ture for high strength low alloy steel.
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Temperature distribution

The elastoplastic model that will be developed next
will be valid for any prescribed temperature distri-
bution. However, to give some specific examples,
we pay attention to long cylinders and tubes under
uniform energy generation Q per unit volume-time.
The temperature T in such systems is governed by
the heat conduction equation

1
r

d

dr

(
kr
dT

dr

)
+ Q = 0. (5)

For a cylinder of outer radius b having a constant
surface temperature T (b) = 0, the general solution
is

k0T +
k1

2
T 2 +

k2

3
T 3 =

Q

4
(
b2 − r2

)
. (6)

On the other hand, for a tube of inner radius a pos-
sessing boundary conditions

−kdT
dr

∣∣∣∣
r=a

= 0 and T (b) = 0, (7)

the general solution becomes

k0T +
k1

2
T 2 +

k2

3
T 3 =

Q

4

[
2a2 ln

(r
b

)
+ b2 − r2

]
.

(8)

These analytical solutions are in cubic forms and as-
sume 3 roots at any radial location. However, only
one of these roots falls in the calculation domain.
The others either produce negative or complex tem-
peratures. It is noted that for constant values of
thermal conductivity k = k0 Eqs. (6) and (8) reduce
respectively to

k0T =
Q

4
(
b2 − r2

)
, (9)

k0T =
Q

4

[
2a2 ln

(r
b

)
+ b2 − r2

]
, (10)

which have been used in thermoelastoplastic calcula-
tions by Orcan (1994) and Orcan and Gulgec (2001).

It is now appropriate to introduce the follow-
ing dimensionless and normalized variables based on
the physical properties at a reference temperature
T0. Radial coordinate: r = r/b, normal stress:
σj = σj/σ0(T0) normal strain: εj = εjE(T0)/σ0(T0),
radial displacement: u = uE(T0)/σ0(T0)b, heat load:
Q = QE(T0)α(T0)b2/σ0(T0)k(T0), the coefficient of

thermal expansion: α = αE(T0)/σ0(T0), harden-
ing parameter: H = ησ0(T0)/E(T0), modulus of
elasticity: E = E/E(T0), and uniaxial yield limit:
σ0 = σ0/σ0(T0) with η being the hardening parame-
ter.

Taking T0 = 0 and assigning Q = 6.1 the distri-
butions of temperature as well as temperature gra-
dient in a long cylinder are calculated and plotted in
Figure 2(a). In this figure, solid lines show the re-
sults of temperature dependent thermal conductivity
calculations by the use of Eq. (6), while dashed lines
show constant property results obtained by the use of
Eq. (9). The temperature and temperature gradient
profiles in a long tube of inner radius a = a/b = 0.4
are presented in Figure 2(b). The parameters used
in drawing this figure are T0 = 0 and Q = 10. The
solid lines in Figure 2(b) are based on the results of
Eq. (8) and the dashed lines on Eq. (10). The effect
of temperature dependent thermal conductivity on
the thermal response of a uniform heat generating
cylinder and of a uniform heat generating tube can
clearly be evaluated in Figures 2(a) and (b), respec-
tively.

The governing equation

The equations given below are written in terms of the
nondimensional variables defined above. For conve-
nience, overbars are dropped. A state of generalized
plane strain and small deformations are presumed.
The strain displacement relations: εr = u′, εθ = u/r,
the equation of equilibrium in radial direction

σθ = (rσr)′, (11)

the compatibility relation

εr = (rεθ)′, (12)

and generalized Hooke’s law

εr = εpr +
1
E

[σr − ν(σθ + σz)] +
∫ T

T0

αdT, (13)

εθ = εpθ +
1
E

[σθ − ν(σr + σz)] +
∫ T

T0

αdT, (14)

εz = ε0 = εpz +
1
E

[σz − ν(σr + σθ)] +
∫ T

T0

αdT,

(15)
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Figure 2. The distributions of temperature and temper-
ature gradient in a long (a) uniform heat gen-
erating cylinder for T0 = 0 and Q = 6.1, (b)
uniform heat generating tube of inner radius
a = 0.4 for T0 = 0 and Q = 10.

are valid both in elastic and in plastic regions. In the
equations above, εpj represents a plastic strain com-
ponent, ν the Poisson ratio, which is almost inde-
pendent of temperature, and a prime implies differ-
entiation with respect to the nondimensional radial
coordinate r. In a state of generalized plane strain
εz = ε0 = constant and from Eq. (15) the axial stress
is determined as

σz = E (ε0 − εpz) + ν(σr + σθ) −E
∫ T

T0

αdT. (16)

At this point, we define the stress function Y (r) in
terms of radial stress as Y (r) = rσr so that from the
equation of equilibrium (11) σθ = Y ′(r). The axial
stress σz is eliminated from Eqs. (13) and (14), and
the resulting expressions for the strains in terms of
the stress function are substituted in the compatibil-
ity relation (12) to obtain the governing equation

d2Y

dr2
+
[

1
r
− E′

E

]
dY

dr
−
[

1
r
− νE′

E (1− ν)

]
Y

r
=

− E

(1− ν2) r

[
εpθ − εpr + r

dεpθ
dr

+ rν
dεpz
dr

+ r (1 + ν)
d

dr

∫ T

T0

αdT

]
, (17)

in which E′ implies dE/dr and by the use of the
chain rule

E′ =
[
dE

dT

] [
dT

dr

]
. (18)

It should be noted that in the elastic region the plas-
tic strains εpj and their derivatives vanish and Eq.
(17) reduces to the elastic equation

d2Y

dr2
+
[

1
r
− E′

E

]
dY

dr
−
[

1
r
− νE′

E (1− ν)

]
Y

r
=

− E

(1− ν)
d

dr

∫ T

T0

αdT. (19)

Furthermore, for temperature independent proper-
ties E′ = 0, E = 1 and α = α0 and hence Eq. (19)
simplifies to the form

r2d
2Y

dr2
+ r

dY

dr
− Y = − α0

1− ν r
2dT

dr
, (20)

which is the classical plane strain thermoelastic
equation of Cauchy-Euler nonhomogeneous type
given in advanced textbooks (Uğural and Fenster,
1995).
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Equation (17) is to be integrated for the analysis
of thermoelastoplastic response as it automatically
switches between field equations for elastic and plas-
tic regions. Since the form given by Eq. (17) is
not convenient to handle, an alternate form of this
equation containing explicit expressions for the plas-
tic strains will be derived next using the deformation
theory of plasticity.

For plane strain, the von Mises yield criterion
takes the form

σy =

√
1
2

[(σr − σθ)2 + (σr − σz)2 + (σθ − σz)2].

(21)

According to total deformation theory, the plastic
strains are given as

εpr =
εEQ
σy

[
σr −

1
2

(σθ + σz)
]
, (22)

εpθ =
εEQ
σy

[
σθ −

1
2

(σr + σz)
]
, (23)

εpz =
εEQ
σy

[
σz −

1
2

(σr + σθ)
]
, (24)

where εEQ represents the normalized equivalent plas-
tic strain and, based on a Swift-type nonlinear hard-
ening law, it is related to the yield stress σy as

σy = σ0(1 +HεEQ)1/m, (25)

where m is a material parameter. Linearly harden-
ing material behavior is obtained by using m = 1,
and the material behaves nonlinearly hardening oth-
erwise. Total strain components are obtained by the
superposition of plastic, elastic and thermal parts as
before. They become

εr =
1

H σy

[(
σy
σ0

)m
− 1
] [

σr −
1
2

(σθ + σz)
]

+
1
E

[σr − ν(σθ + σz)] +
∫ T

T0

αdT, (26)

εθ =
1

H σy

[(
σy
σ0

)m
− 1
] [

σθ −
1
2

(σr + σz)
]

+
1
E

[σθ − ν(σr + σz)] +
∫ T

T0

αdT, (27)

εz = ε0 =
1

H σy

[(
σy
σ0

)m
− 1
] [

σz −
1
2

(σr + σθ)
]

+
1
E

[σz − ν(σr + σθ)] +
∫ T

T0

αdT. (28)

Some algebraic manipulations are necessary in order
to collect the derivative of σθ as it contains the sec-
ond order derivative of Y . First, the derivative of
the yield stress σy is written in the form

dσy
dr

= N1
dσr
dr

+N2
dσz
dr

+ N3
dσθ
dr

, (29)

where

N1 =
2σr − σθ − σz

2σy
, (30)

N2 =
2σz − σr − σθ

2σy
, (31)

N3 =
2σθ − σr − σz

2σy
. (32)

Then Eq. (28) is differentiated with respect to the
radial coordinate r and Eq. (29) is taken into ac-
count to obtain

dσz
dr

=
1
N7

[
Hσy
E2

[σz − ν (σr + σθ)]
dE

dr

−H σy
d

dr

∫ T

T0

αdT + m

(
σy
σ0

)m+1

N2
dσ0

dr

+ N8
dσr
dr

+N9
dσθ
dr

]
, (33)

in which the following variables have just been de-
fined

N4 = (m− 1)
(
σy
σ0

)m
+ 1, (34)

N5 =
1
2

[(
σy
σ0

)m
+

2H ν

E
σy − 1

]
, (35)

N6 =
(
σy
σ0

)m
+
H

E
σy − 1, (36)

N7 = N2
2N4 + N6, (37)

N8 = N5 −N1N2N4, (38)

N9 = N5 −N2N3N4, (39)

Substituting the total strains in the compatibility re-
lation (12) and employing the relations (29) and (33)
results in
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r

[
1+

N9

N7

]
d

dr

∫ T

T0

αdT − r

E2
[σθ − ν (σr+σz) +

N9

N7
[σz − ν (σr+σθ)]

]
dE

dr
− mr

H σ0

[
N3+

N2N9

N7

](
σy
σ0

)m
dσ0

dr

+
{

1 + ν

E
+

3
2H σy

[(
σy
σ0

)m
− 1
]}

(σθ − σr)−
r

H σy

[
N11 +

N8N9

N7

]
dσr
dr

+
r

H σy

[
N10 −

N2
9

N7

]dσθ
dr

= 0,

(40)

where

N10 = N2
3N4 + N6, (41)

N11 = N5 −N1N3N4. (42)

If all stresses are expressed in terms of the stress
function using σr = Y/r, σθ = Y ′, then Eq. (40) can
be cast into the general form

d2Y

dr2
= z(r, Y,

dY

dr
). (43)

The substitution of the axial stress σz on the right-
hand side of this equation is achieved by the use of
Eq. (16). In the plastic region a nonlinear itera-
tion is to be carried out for this purpose. Equation
(43) constitutes a nonlinear 2-point boundary value
problem and can be solved numerically, subject to
the following boundary conditions

Y (a) = 0 and Y (1) = 0 for a ≥ 0. (44)

Note that while this relation holds for both a = 0
and a > 0; in the case a = 0: σr(0) = Y ′(0) whereas
for a > 0 then σr(a) = Y (a)/a. For accurate in-
tegration of Eq. (43), a nonlinear shooting method
using Newton iterations with numerically approxi-
mated tangents is used. To this end we define 2 new
variables as φ1(r) = Y and φ2(r) = dY/dr so that
one may obtain the system

dφ1

dr
= φ2, (45)

dφ2

dr
= z(r, φ1, φ2). (46)

Equations (45) and (46) form a system of initial
value problems (IVP) and should be solved start-
ing with the initial conditions φ1(a) = Y (a) = 0 and
φ2(a) = dY/dr|r=a. Since normally the gradient of
Y at r = a is not known, a Newton iteration scheme
is used to obtain the correct value of this gradient
by requiring φ1(b) = Y (b) = 0. The double precision

version of the state-of-the-art ODE solver LSODE
developed by Hindmarsh (1983) is used for the nu-
merical solution of IVP with the stiff option turned
on. An outer iteration loop is performed to deter-
mine the value of ε0 when a free end condition is
considered. At each iteration, the problem is solved
3 times using εk0 , εk0 + ∆ε and εk0 −∆ε, respectively,
and corresponding net axial forces

∫
σz dA are calcu-

lated. A better approximation εk+1
0 to the constant

axial strain is then obtained from

εk+1
0 = εk0 −

(2∆ε)
∫
σz(εk0) dA∫

σz(εk0 + ∆ε) dA−
∫
σz(εk0 −∆ε) dA

,

(47)

where ∆ε stands for a small increment of the order
εk0/100. Equation (47) approaches ε0 in the direc-
tion of vanishing net axial force. Starting with a
reasonable initial estimate ε00, this iteration scheme
converges to the result with a sufficient accuracy in
only a few iterations. Further details of the proce-
dure may be found in Eraslan and Kartal (2004).

Elastic limits

Assuming constant physical properties, approximate
values of the elastic limit heat loads may be eval-
uated using the elastic equation (20). The general
solution is

Y (r) =
C1

r
+C2r −

α0

2(1− ν)

[
rT − Ip(r)

r

]
, (48)

in which Ci represents an arbitrary integration con-
stant, with a being the inner radius

Ip(r) =
∫ r

a

T ′(ξ)ξ2dξ. (49)

Hence, the stress components are determined as

σr =
C1

r2
+ C2 −

α0

2(1− ν)

[
T − Ip(r)

r2

]
, (50)
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σr = −C1

r2
+C2 −

α0

2(1− ν)

[
T +

Ip(r)
r2

]
, (51)

σz = 2νC2 + ε0 −
α0T

1− ν . (52)

Furthermore, for a generalized plane strain problem
the axial strain ε0 is constant and its value is deter-
mined by requiring that the net axial force Fz must
vanish, that is

Fz =
∫
σz dA = 2π

∫ 1

a

σzrdr = 0, (53)

which gives

ε0 = −2νC2 +
2α0

(1− a2)(1− ν)

∫ 1

a

T (r)rdr. (54)

The analytical temperature distributions given by
Eqs. (9) and (10) accompany the above solution for
cylinders and tubes, respectively.

For a cylinder with fixed ends (ε0 = 0) having the
boundary conditions σj(0) → finite and σr(1) = 0,
the nondimensional elastic limit heat load Q = Q1 is
determined by the use of yield condition (21) as

Q1 =
16(1− ν)

3− 2ν
. (55)

If the ends are free, the elastic limit simplifies to

Q1 = 8(1− ν), (56)

For tubes with fixed and free ends the elastic limits
are evaluated respectively as

Q1 = 8(1− a2)(1− ν)/
√
D, (57)

where

D = (1 − a2)2{3− ν(3− ν)− 2a2[3− ν(7− 3ν)] +

a4[7− 3ν(5− 3ν)]}+ 4a2(1− a2) ln a{3− ν +

a4(1− ν)(5− 6ν)− 2a2[2− ν(4− ν)]}+

16a4(ln a)2[1− a2(1− ν) + a4(1− ν)2], (58)

and

Q1 =
2(1− a2)(1 − ν)

1/4− a2 + 3/4a4 − a4 ln a
. (59)

In deriving the above limits (57) and (59), traction
free boundary conditions: σr(a) = σr(1) = 0 have
been used. These limits may form practical test cases
for the present model.

Taking the Poisson’s ratio ν = 0.3, elastic limit
heat loads for cylinders and tubes of different inner
radius are determined by virtue of Eqs. (55), (56),
(57), and (59). These limits are referred to as con-
stant physical properties (CPP) and are compared to
those computed using temperature dependent prop-
erties (VPP) in Table 1. The symbols (c), (i), and
(o) in this table stand for center, inner surface, and
outer surface, respectively, and indicate the location
of yielding. As seen in Table 1, yielding commences
at the center in uniform heat generating long cylin-
ders irrespective of the end condition. Since the uni-
axial yield limit σ0 decreases rapidly with increasing
temperatures (see Figure 1), the solutions with tem-
perature dependent properties predict lower limits,
as expected. The inner surface of tubes with fixed
ends is critical and plastic deformation first begins
at this location. Again VPP solutions predict lower
elastic limits. Interesting deformation behavior oc-
curs in tubes with free ends. Analytical CPP so-
lutions indicate that the outer surface is critical and
plastic deformation first begins there when Q reaches

Table 1. Elastic limit heat loads.

Fixed End Free End
a CPP VPP CPP VPP
0 4.6667 (c) 3.99945 (c) 5.6000 (o) 5.32571 (o)

0.1 4.0352 (i) 3.528935 (i) 5.7677 (o) 4.788243 (i)
0.2 4.6258 (i) 4.042573 (i) 6.2870 (o) 5.62087 (i)
0.3 5.5963 (i) 4.887427 (i) 7.2458 (o) 6.90417 (o)
0.4 7.1519 (i) 6.242368 (i) 8.8650 (o) 8.45426 (o)
0.5 9.7595 (i) 8.51398 (i) 11.641 (o) 11.11075 (o)
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the critical values given in Table 1. However, for
tubes having nondimensional inner radii 0.1 and 0.2,
VPP computations predict that plastic deformation
commences at the inner surface.

The stresses in a tube of a = 0.2 with free ends
are plotted in Figures 3(a) and (b). Figure 3(a)
shows the results of analytical (dots) and numeri-
cal (solid lines) CPP calculations corresponding to
the limit Q = 6.2870. Analytical and numerical so-
lutions agree perfectly, allowing one to assess the ac-
curacy of the computational procedure. In fact, in
all calculated, both solutions agree to at least 8 sig-
nificant digits. The nondimensional yield variable φ
in this figure is calculated from

φ =
1
σ0

√
1
2

[(σr − σθ)2 + (σr − σz)2 + (σθ − σz)2],

(60)

which corresponds to the yield stress σy in the plastic
core. Note that φ = 1 at the plastic-elastic border
and φ < 1 in the elastic region. As seen in Figure
3(a), φ(b) = 1, indicating the location of plastic de-
formation. Figure 3(b), on the other hand, is based
on numerical VPP calculations at Q = 5.62087. Fol-
lowing the variation of φ, it is seen that the stress
state is critical at the inner surface, in contrast to
CPP data, and the tube begins to plasticize at this
location.

Sample Computations

In this section, the results of elastoplastic computa-
tions considering variable physical properties (VPP)
for different problems are presented and compared
to those of constant physical property (CPP) pre-
dictions. The Poisson’s ratio is ν = 0.3, and in all
the figures dashed lines show CPP results, while solid
lines show VPP corresponding to the same values of
material parameters (H and m) and the heat load
Q.

As seen in Table 1, the heat generating cylin-
der with fixed ends becomes partially plastic for
Q > Qe = 3.99945 irrespective of the hardening pa-
rameters H and m. Plastic deformation commences
at the center when Q = 3.99945 and the plastic core
formed here propagates toward the edge as the heat
load is increased. Under the load Q = QS the stress
state at the surface becomes critical so that another
plastic region forms there. The value of QS is depen-
dent mainly on parameters H and m, which describe
the nonlinear hardening path. For Q > QS , the
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Figure 3. The elastic stresses in a tube with free ends
having an inner radius of a = 0.2. (a)
Comparison of analytical (dots) and numer-
ical (dashed lines) solutions keeping physical
properties constant under elastic limit heat
load Qe = 6.2870, (b) solution using temper-
ature dependent physical properties at Qe =
5.62087.
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2 plastic regions propagate toward each other until
the cylinder becomes fully plastic. Taking H = 0.25
and m = 0.75 and assigning Q = 6.1 > QS the
stresses, the nondimensional yield variable φ (Eq.
60) and the radial displacement are calculated and
plotted in Figure 4(a). The dimensionless radius
rep in this figure and in the following ones indi-
cates an elastic-plastic border and subscripts ep1
and ep2 imply primary and secondary plastic for-
mations, respectively. As seen in Figure 4(a), the
cylinder is composed of 3 different regions: an in-
ner plastic region in 0 ≤ r ≤ rep1, an elastic region
in rep1 ≤ r ≤ rep2, and an outer plastic region in
rep2 ≤ r ≤ b. The elastic-plastic border radii rep1
and rep2 are estimated as 0.78075 and 0.93903, re-
spectively. The CPP calculations, however, predict
only one plastic region, and a broader elastic region,
as shown in Figure 4(a). The cylinder is composed
of a plastic core in 0 ≤ r ≤ rep1 and an elastic ring
in rep1 ≤ r ≤ b. The elastic-plastic border radius is
determined as rep1 = 0.56803. Figure 4(b) shows the
residual stresses and displacement upon removal of
the loadQ = 6.1. They are calculated by subtracting
the stresses and displacement corresponding to un-
restricted elastic behavior from elastic-plastic ones
at the same load parameter. Of course, this calcu-
lation procedure holds true only when the residual
stresses do not exceed the yield limit (Eraslan and
Argeso, 2005a). In this figure, the nondimensional
stress components are designated by σ0

j and displace-
ment by u0 to imply stand-still. The yield variable
φR is calculated from Eq. (60) with σj replaced by
σ0
j . Since φR < 1, unloading occurs elastically and

reversed plastic flow (secondary plastic flow) does
not take place.

The partially plastic stress state in the heat
generating cylinder with free ends under the load
Q = 7.6 is depicted in Figure 5(a). The material
parameters used are H = 0.25 and m = 1.25. The
VPP solution predicts 2 plastic regions and an elas-
tic region, whilst the CPP solution predicts an elas-
tic and a plastic region, as shown in Figure 5(a).
The elastic-plastic border radii from left to right are
calculated as rep2 = 0.19049, rep1 = 0.82784, and
rep1 = 0.89307. The cylinder expands in the ax-
ial direction as much as ε0 = 1.0453, according to
the VPP solution. It is ε0 = 0.97081 in the CPP
calculation. The residual stresses and displacement
at stand-still are also calculated and plotted in Fig-
ure 5(b). Secondary plastic flow does not take place
upon complete removal of the load Q = 7.6.
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Figure 4. (a) Comparison of VPP (solid lines) and CPP
(dashed lines) solutions for the thermal stresses
and displacement in a partially plastic, non-
linearly hardening cylinder with fixed ends at
Q = 6.1 for H = 0.25 and m = 0.75. (b) The
residual stresses based on VPP solution upon
complete removal of the heat load.
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Figure 5. (a) Comparison of VPP (solid lines) and CPP
(dashed lines) solutions for the thermal stresses
and displacement in a partially plastic, non-
linearly hardening cylinder with free ends at
Q = 7.6 for H = 0.25 and m = 1.25. (b) The
residual stresses based on VPP solution upon
complete removal of the heat load.

Fig 6(a) shows the stresses and displacement in
a heat generating partially plastic tube with fixed
ends. The bore radius is a = 0.4 and the pa-
rameters are H = 0.25, m = 1.25 and Q = 10.
Under this load the tube is composed of an inner
plastic core in 0.4 ≤ r ≤ 0.74577, an elastic ring
in 0.74577 ≤ r ≤ 0.97589, and outer plastic zone
in 0.97589 ≤ r ≤ 1.0. The border radius by the
CPP solution is rep1 = 0.64655, which divides the
tube into plastic and elastic regions. The plastic
strain components shown in Figure 6(b) help to ex-
plain how the VPP and CPP elastoplastic responses
of the tube differ. The residual stresses and resid-
ual displacement at stand-still are shown in Figure
6(c). Unloading occurs elastically on removal the of
Q = 10; however, φR(a) ≈ 0.72 is large and sec-
ondary plastic flow may take place as the heat load
is slightly increased.
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Figure 6. (a) Comparison of VPP (solid lines) and CPP
(dashed lines) solutions for the thermal stresses
and displacement in a partially plastic, nonlin-
early hardening tube of a = 0.4 with fixed ends
at Q = 10 for H = 0.25 and m = 1.25. (b) The
corresponding plastic strain components. (c)
The residual stresses based on VPP solution
upon complete removal of the heat load.
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Figure 6. Continued.
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Figure 7. (a) Comparison of VPP (solid lines) and CPP
(dashed lines) solutions for the thermal stresses
and displacement in a partially plastic, nonlin-
early hardening tube of a = 0.5 with free ends
at Q = 16 for H = 0.25 and m = 0.75. (b) The
residual stresses based on VPP solution upon
complete removal of the heat load.
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Finally, the elastoplastic deformation behavior
of a tube with free ends is studied by considering
a = 0.5, H = 0.25, m = 0.75 and loading with
Q = 16.0. The corresponding stresses are plotted
in Figure 7(a). The border radii in this figure, from
left to right, are rep2 = 0.58831, rep1 = 0.91983, and
rep1 = 0.93949. The VPP prediction for axial ex-
pansion is ε0 = 1.0349, while it is 0.97632 by CPP.
The residual stresses at stand-still for this tube are
shown in Figure 7(b).

Concluding Remarks

A computational model for the estimation of ther-
mally induced plane strain elastic, partially plastic,
fully plastic, and residual stress states and deforma-
tions is outlined. This work represents a necessary
extension of the authors’ previous study (Eraslan
and Argeso, 2005a) to include the temperature de-
pendency of the physical properties of the material.
The fact that the physical properties of engineering

materials vary considerably with temperature (Fig-
ure 1) was the main point motivating this work.
The critical differences between constant and vari-
able physical property calculations can clearly be
evaluated in the results of this work (Figures 3(a)-
(b), 4(a), 5(a), 6(a)-(b), 7(a)). Since, in general,
the modulus of elasticity decreases with tempera-
ture, the strength of the material to elastically resist
thermal loads decreases. As a result, the material
fails with respect to plastic deformation under much
lower thermal loads than those predicted by CPP
solutions (Table 1). The region deformed plastically
propagates more rapidly than CPP data because of
the fact that the uniaxial yield limit is very sensi-
tive to temperature. Fully plastic stress states are
reached at much lower thermal loads and different
modes of plasticization may take place. In the light
of these critical findings, it can be concluded that the
inclusion of temperature dependent physical proper-
ties is required in thermal stress calculations in order
to obtain more realistic predictions.
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