3D Human Motion Analysis in Monocular Video
Techniques and Challenges

Cristian Sminchisescu

TTI-C, University of Chicago Press,
1427 East 60th Street, Chicago, IL 60637
crismin@nagoya.uchicago.edu
http://nagoya.uchicago.edu/~crismin

Abstract. Extracting meaningful 3D human motion information from
video sequences is of interest for applications like intelligent human-
computer interfaces, biometrics, video browsing and indexing, virtual re-
ality or video surveillance. Analyzing videos of humans in unconstrained
environments is an open and currently active research problem, facing
outstanding scientific and computational challenges. The proportions of
the human body vary largely across individuals, due to gender, age,
weight or race. Aside from this variability, any single human body has
many degrees of freedom due to articulation and the individual limbs
are deformable due to moving muscle and clothing. Finally, real-world
events involve multiple interacting humans occluded by each other or
by other objects and the scene conditions may also vary due to camera
motion or lighting changes. All these factors make appropriate models of
human structure, motion and action difficult to construct and difficult to
estimate from images. In this chapter we give an overview of the problem
of reconstructing 3D human motion using sequences of images acquired
with a single video camera. We explain the difficulties involved, discuss
ways to address them using generative and discriminative models and
speculate on open problems and future research directions.

Key words: computer vision, statistical models, video analysis, human
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1 The problem

The problem we address is the reconstruction of full-body 3D human motion in
monocular video sequences. This can be formulated either as an incremental or
as a batch problem. In incremental methods, images are available one at a time
and one updates estimates of the human pose after each new image observation.
This is known as filtering. Batch approaches estimate the pose at each timestep,
using a sequence of images, prior and posterior to it. This is known as smoothing.

! Chapter in in Human Motion Understanding, Modeling, Capture and Animation, R.
Kleete, D. Metaxas and B. Rosenhahn Eds., Springer-Verlag, 2007.
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It is legitimate to ask why one should restrict attention to only one cam-
era, as opposed to several, in order to attack an already difficult 3D inference
problem? The answers are both practical and philosophical. On the practical
side, often only a single image sequence is available, when processing and re-
constructing movie footage, or when cheap devices are used as interface tools
devoted to gesture or activity recognition. A more stringent practical argument
is that, even when multiple cameras are available, general 3d reconstruction is
complicated by occlusion from other people or scene objects. A robust human
motion perception system has to necessarily deal with incomplete, ambiguous
and noisy measurements. Fundamentally, these difficulties persist irrespective of
how many cameras are used. From a philosophical viewpoint, reconstructing 3D
structure using only one eye or a photograph is something that we, as humans,
can do. We don’t yet know how much is direct computation on ‘objective’ image
information, and how much is prior knowledge in such skills, or how are these
combined. But it is probably their conjunction that makes biological vision sys-
tems flexible and robust, despite being based on one eye or many. By attacking
the ‘general’ problem instead of focusing on problem simplifications, we hope to
make progress towards identifying components of such robust and efficient visual
processing mechanisms.

Two general classes of strategies can be used for 3D inference: (i) Genera-
tive (top-down) methods optimize volumetric and appearance-based 3d human
models for good alignment with image features. The objective is encoded as an
observation likelihood or cost function with optima (ideally) centered at correct
pose hypotheses; (ii) Conditional (bottom-up) methods (also referred as discrim-
inative or recognition-based) predict human poses directly from images, typically
using training sets of (pose, image) pairs. Difficulties exist in each case. Some of
them, like data association are generic. Others are specific to the class of tech-
niques used: optimizing generative models is expensive and many solutions may
exist, some of which spurious, because human appearance is difficult to model
accurately and because the problem is non-linear; discriminative methods need
to model complex multivalued image-to-3d (inverse) relations.

Organization: The chapter is organized as follows. In §1 and §2 we review
the problem of 3d human motion reconstruction and its difficulties. In §3 we
introduce generative and conditional models. Learning and inference algorithms
are detailed in §4 and §5. In §6 we introduce techniques for combining top-
down and bottom-up processing and learning generative and recognition models
jointly. We review open problems and conclude in §8.

2 Difficulties

Extracting monocular 3D human motion poses several difficulties that we review.
Some are inherent to the use of a single camera, others are generic computer
vision difficulties that arise in any complex image understanding problem.

Depth 3D-2D Projection Ambiguities: Projecting the 3D world into images
suppresses depth information. This difficulty is fundamental in computer vision.
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Fig. 1. Reflective Ambiguities (a,b,c,d, e). Original image (a). Two very different con-
figurations of a 3D model (b and d) have image projections that align well with the
contour of the imaged human subject (¢ and e).

Inferring the world from only one camera, firmly places our research in the class
of science dealing with inverse and ill-posed problems [5]. The non-uniqueness
of solution when estimating human pose in monocular images is apparent in the
‘forward-backward ambiguities’ produced when positioning the human limbs,
symmetrically, forwards or backwards, with respect to the camera ‘rays of sight’
(see fig. 1). Reflecting the limb angles in the frontoparallel plane leaves the im-
age unchanged to first order. For generative models, ambiguities can lead to
observation likelihood functions with multiple peaks of somewhat comparable
magnitude. The distinction between a global and a local optimum becomes nar-
row — in this case, we are interested in all optima that are sufficiently good. For
discriminative models, the ambiguities lead to multivalued image-pose relations
that defeat function approximations based on neural networks or regression. The
ambiguity is temporally persistent both under general smooth dynamical models
[48] and under dynamics learned from typical human motions [47].

High-Dimensional Representation: Reconstructing 3D human motion raises
the question as of what information is to be recovered and how to represent it.
A-priori, a model where the 3D human is discretized as densely as possible, with
a set of 3D point coordinates, with independent structure and motion is as nat-
ural as any other, and could be the most realistic one. Nevertheless, in practice,
this would be difficult to constrain since it has excess degrees of freedom for
which the bare monocular images cannot account. Representing the human as
a blob with centroid coordinates is the opposite extreme, that can be efficient
and simpler to estimate at the price of not being particularly informative for 3D
reasoning?. Consequently, a middle-ground has to be found. At present, this se-
lection is based mostly on intuition and on facts from human structural anatomy.
For 3D human tracking the preferred choice remains a kinematic representation
with a skeletal structure covered with ‘flesh’ of more or less complex type (cones,
cylinders, globally deformable surfaces). For motion estimation, the model can
have, depending on the level of detail, in the order of 30-60 joint angle variables
— enough to reproduce a reasonable class of human motions with accuracy. How-

2 Apart from tractability constraints, the choice of a representation is also application
dependent. For many applications, a hierarchy of models with different levels of
complexity, depending on context, may be the most appropriate.
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Fig. 2. (Left) Physical constraint violations when joint angle limits or body part non-
penetration constraints are not enforced. (Right) Illustrative example of ambiguities
during dynamic inference, for a model with 1d state = and observation r. The S-
like distribution implies that multiple state hypotheses (shown in dashed) may exists
for certain observations. The ambiguity persists for observations sequences commonly
falling under each individual ‘S-branch’ (up, middle, bottom), see also fig. 6. The close
loops created by the splitting-merging of trajectories a, b and ¢ abstract real imaging
situations, as in fig. 1, see also [48]. Due to their loopy nature, these ambiguities cannot
be resolved even when considering long observation time-scales.

ever, estimation in high-dimensional spaces is computationally expensive, and
exhaustive or random search is practically infeasible. Existing algorithms rely on
approximations or problem-dependent heuristics: temporal coherency, dynami-
cal models, and symmetries (e.g. hypotheses generated using forward-backward
flips of limbs, from a given configuration). From a statistical perspective, more
rigorous is to follow a learned data-driven approach i.e. a minimal representa-
tion with intrinsic dimension based on its capacity to synthesize the variability
of human shapes and poses present in the tracking domain. Sections §4.3 and §2
discuss techniques for learning low-dimensional models and for estimating their
intrinsic dimensionality.

Appearance Modeling, Clothing: Not operating with a anatomically accu-
rate human body models is in most applications offset by outer clothing that
deforms. This exhibits strong variability in shape and appearance, both being
difficult to model.

Physical Constraints: Physically inspired models based on kinematic and vol-
umetric parameterizations can be used to reason about the physical constraints
of real human bodies. For consistency, the body parts have to not penetrate
eachother and the joint angles should only have limited intervals of variation
(see fig. 2). For estimation, the presence of constraints is both good and bad
news. The good news is that the admissible state space volume is smaller than
initially designed, because certain regions are not reachable, and many physi-
cally unrealistic solutions may be pruned. The bad news is that handling the
constraints automatically is non-trivial, especially for continuous optimization
methods used in generative models.

Self-Occlusion: Given the highly flexible structure of an articulated human
body, self-occlusion between different body parts occurs frequently in monocular
views and has to be accounted for. Self-occlusion is an observation ambiguity
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(see section below). Several aspects are important. First is occlusion detection or
prediction, so as to avoid the mis-attribution of image measurements to occluded
model regions that have not generated any contribution to image appearance.
The second aspect is the management of uncertainty in the position of the body
parts that are not visible. Improperly handled this can produce singularities.
It is appropriate to use prior-knowledge acquired during learning in order to
constrain the uncertainty of unobserved body parts, based on the state of visible
ones. Missing data is filled-in using learned correlations typically observed in
natural human motions.

For generative models, occlusion raises the additional problem of constructing
of an observation likelihood that realistically reflects the probability of different
configurations under partial occlusion and viewpoint change. Independence as-
sumptions are often used to fuse likelihoods from different measurements, but
this conflicts with occlusion, which is a relatively coherent phenomenon. For re-
alistic likelihoods, the probabilities of both occlusion and measurement have to
be incorporated, but this makes the computations intractable.

General Unconstrained Motions: Humans move in diverse, but also highly
structured ways. Certain motions have a repetitive structure like running or
walking, others represent ‘cognitive routines’ of various levels of complexity,
e.g. gestures during a discussion, or crossing the street by checking for cars
to the left and to the right, or entering one’s office in the morning, sitting down
and checking e-mail. It is reasonable to think that if such routines could be
identified in the image, they would provide strong constraints for tracking and
reconstruction with image measurements serving merely to adjust and fine tune
the estimate. However, human activities are not simply preprogrammed — they
are parameterized by many cognitive and external un-expected variables (goals,
locations of objects or obstacles) that are difficult to recover from images and
several activities or motions are often combined.

Kinematic Singularities: These arise when the kinematic Jacobian looses rank
and the associated numerical instability can lead to tracking failure. An example
is the non-linear rotation representation used for kinematic chains, for which no
singularity-free minimal representation exists®.

Observation Ambiguities: Ambiguities arise when a subset of the model state
cannot be directly inferred from image observations. They include but are by
no means limited to kinematic ambiguities. Observability depends on the design
of the observation model and image features used. (Prior knowledge becomes
important and the solutions discussed for self-occlusion are applicable.) For in-
stance when an imaged limb is straight and an edge-based observation likelihood
is used with a symmetric body part model, rotations around the limb’s own axis
cannot be observed — the occluding contour changes little when the limb rotates
around its own axis. Only when the elbow moves the uncertain axial parameter
values can be constrained. This may not be ambiguous under an intensity-based
model, where the texture flow can make the rotation observable.

3 Non-singular over-parameterizations exist, but they are not unique.
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Data Association Ambiguities: Identifying which image features belong to
the person and which to the background is a general vision difficulty known as
data association. For our problem this is amplified by distracting clutter elements
that resemble human body parts, e.g. various types of edges, ridges or pillars,
trees, bookshelves, encountered in man-made and natural environments.

Lighting and Motion Blur: Lighting changes form another source of vari-
ability whenever image features based on edge or intensity are used. Artificial
edges are created by cast shadows and inter-frame lighting variations could lead
to complicated, difficult to model changes in image texture. For systems with
a long shutter time, or during rapid motion, image objects appear blurred or
blended with the background at motion boundaries. This has impact on the
quality of both static feature extraction methods, and of frame to frame algo-
rithms, such as the ones that compute the optical flow.

3 Approaches: Generative and Conditional Models

Approaches to tracking and modeling can be broadly classified as generative
and discriminative. They are similar in that both require a state representa-
tion x, here a 3D human model with kinematics (joint angles) or shape (surfaces
or joint positions), and both use a set of image features as observations r for
state inference. Often, a training set, 7 = {(r;,x;) | ¢ = 1... N} sampled from
the joint distribution is available. (For unsupervised problems, samples from only
the state or only the observation distribution may be available to use.) The com-
putational goal for both approaches is common: the conditional distribution, or
a point estimate, for the model state, given observations.* Clearly, an important
design choice is the state representation and the observation descriptor. The state
should have representation and dimensionality well-calibrated to the variability
of the task, whereas the observation descriptor is subject to selectivity-invariance
trade-offs: it needs to capture not only discriminative, subtle image detail, but
also the strong, stable dependencies necessary for learning and generalization.
Currently, these are by and large, obtained by combining a-priori design and off-
line unsupervised learning. But once decided upon, the representation (model
state + observation descriptor) is no longer free, but known and fixed for subse-
quent learning and inference stages. This holds notwithstanding of the method
type, be it generative or discriminative.

Generative algorithms typically model the joint distribution using a con-
structive form of the observer — the observation likelihood, with maxima ide-
ally centered at correct pose hypotheses. Inference involves complex state space
search in order to locate the likelihood peaks, using either non-linear optimiza-
tion or sampling. Bayes’ rule is then used to compute the state conditional from

4 This classification and statement of purpose is quite general. Methods may deviate
from it in a way or another and shortcuts may be taken. But this shouldn’t undermine
the usefulness of a framework for formal reasoning where to state the assumptions
made and the models used, as well as the circumstances when these are expected to
perform optimally — see fig. 3.
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the observation model and the state prior. Learning can be both supervised and
unsupervised. This includes state priors [8,21,13,44], low-dimensional models
[47,64] or learning the parameters of the observation model, e.g. texture, ridge
or edge distributions, using problem-dependent, natural image statistics [42, 38].
Temporal inference is framed in a clear probabilistic and computational frame-
work based on mixture filters or particle filters [23,13,12,56, 57,59, 44].

It has been argued that generative models can flexibly reconstruct complex
unknown motions and can naturally handle problem constraints. It has been
counter-argued that both flexibility and modeling difficulties lead to expensive,
uncertain inference [13, 43,57, 48], and a constructive form of the observer is both
difficult to build and somewhat indirect with respect to the task, which requires
conditional state estimation and not conditional observation modeling. These
arguments motivate the complementary study of discriminative algorithms
[37,34,41,63,2,18] which model and predict the state conditional directly in
order to simplify inference. Prediction however involves missing (state) data,
unlike learning which is supervised. But learning is also difficult because mod-
eling perceptual data requires adequate representations of highly multimodal
distributions. The presence of multiple solutions in the image-to-pose mapping
implies that, strictly, this is multivalued and cannot be functionally or glob-
ally approximated. However, several authors made initial progress using single
hypothesis schemes [41,34,63,2,18]. E.g. nearest-neighbor [34,41,63] and re-
gression [2, 18] have been used with good results. Others used mixture models
[37,2] to cluster the joint distribution of (observation, state) pairs and fitted
function approximators (neural network or regressor) to each partition. In §5,
we will review our BM?3E, a formal probabilistic model based on mixture of
experts and conditional temporal chains [49,51, 52].

Notation: We discuss generative and conditional models based on the graphical
dependency in fig. 3. These have continuous temporal states x;, observations ry,
observation model p(r¢|x;), and dynamics p(x¢|x;—1), t = 1...T (for generative
models). For conditional models, we model the conditional state distribution
p(x¢|r:) and a previous state/current observation-based density p(x¢|x¢—1,1:).
X = (x1,X2,-..,%¢) is the model joint state estimated based on a time series
of observations Ry = (r1,...,1).

4 Generative Methods

Consider a non-linear generative model pg(x,r) with d = dim(x), and parame-
ters 6. Without loss of generality, assume a robust observation model:

po(r|x) = (1 —w) - N(r;G(x),Xg) + 09 - w (1)

This corresponds to a mixture of a Gaussian having mean G(x) and covariance
Yo, and a uniform background of outliers og with proportions given by w. The
outlier process is truncated at large values, so the mixture is normalizable.
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In our case, the state space x represents human joint angles, the parameters
6 may include the Gaussian observation noise covariance, the weighting of out-
liers, the human body proportions, etc. Gg(x) is a non-linear transformation that
predicts human contours, internal edges and possibly appearance (it includes
non-linear kinematics, occlusion analysis and perspective projection), accord-
ing to consistent kinematic constraints. Alternatively, we also use an equivalent
energy-based model — the maxima in probability or the minima in energy have
similar meaning and are used interchangeably:

po(x,1) = po(r[x)p(x) = exp(—Eo(x,r)) (2)

_
Z@ (Xv I‘)

Eo(x,r) = —log[(1 — w)N(r; G(x), Xg) + ogw] + Eg(x) — log Zg(x,r)  (3)
with prior Eg(x) and normalization constant Zg(x,r) = f(x r) exp(—FEp(x,1)).
Notice that Zg(x) = [ exp(—FEg(x,r)) can be easily computed by sampling
from the mixture of Gaussian and uniform outlier distribution, but computing

Zg(x,r) and Zg(r) = [ exp(—FEg(x,r) is intractable because the averages are
taken w.r.t. the unknown state distribution.’

4.1 Density Propagation using Generative Models

For filtering, we compute the optimal state distribution p(x;|R:), conditioned
by observations R; up to time ¢. The recursion can be derived as [20, 22,24, 25,
46] (fig. 3b):

p(x¢t|Re) = )P(I‘t|xt) Jp(xelxi—1) p(x—1|Re—1)dx; 1 (4)

1
p(re|Ri1
The joint distribution factorizes as:

T

T
p(XT,RT) = p(Xl) H Xf|xf 1 Hp I't|Xf (5)

t=2

4.2 Optimization and Temporal Inference Algorithms

Several general-purpose sampling and optimization algorithms have been pro-
posed in order to efficiently search the high-dimensional human pose space. In a
temporal framework the methods keep a running estimate of the posterior dis-
tribution over state variable (either sample-based or mixture-based) and update
it based on new observations. This works time-recursively, the starting point(s)
for the current search being obtained from the results at the previous time step,
perhaps according to some noisy dynamical model. To the (often limited) ex-
tent that the dynamics and the image matching cost are statistically realistic,

5 The choice of predicted and measured image features, hence the exact specification
of the observation model, albeit very important, will not be further discussed.
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Fig. 3. A conditional/discriminative temporal chain model (a, left) reverses the direc-
tion of the arrows that link the state and the observation, compared with a generative
one (b, right). The state conditionals p(x¢|r:) or p(x¢|xt—1,r:) can be learned using
training pairs and directly predicted during inference. Instead, a generative approach
(b) will model and estimate p(r:|x:) and do a more complex probabilistic inversion to

compute p(x¢|r¢) via Bayes’ rule. Shaded nodes reflect variables that are not modeled
but conditioned upon.

Bayes-law propagation of a probability density for the true state is possible.
For linearized unimodal dynamics and observation models under least squares /
Gaussian noise, this leads to Extended Kalman Filtering. For likelihood-weighted
random sampling under general multimodal dynamics and observation models,
bootstrap filters [20] or CONDENSATION [23] result. In either case various model
parameters must be tuned and it sometimes happens that physically implau-
sible settings are needed for acceptable performance. In particular, to control
mistracking caused by correspondence errors, selection of slightly incorrect in-
verse kinematics solutions, and similar model identification errors, visual trackers
often require exaggerated levels of dynamical noise. The problem is that even
quite minor errors can pull the state estimate a substantial distance from its true
value, especially if they persist over several time steps. Recovering from such an
error requires a state space jump greater than any that a realistic random dy-
namics is likely to provide, whereas using an exaggeratedly noisy dynamics pro-
vides an easily controllable degree of local randomization that often allows the
mistracked estimate to jump back onto the right track. Boosting the dynamical
noise does have the side effect of reducing the information propagated from past
observations, and hence increasing the local uncertainty associated with each
mode. But this is a small penalty to pay for reliable tracking lock, and in any
case the loss of accuracy is often minor in visual tracking, where weak dynamical
models (i.e. short integration times: most of the state information comes from
current observations and dynamical details are unimportant) are common. The
critical component in most nowday trackers remains the method that searches
the observation likelihood at a given timestep based on initializations from the
previous one.

General Search Algorithms: Importance sampling [43] and annealing [35,
13] have been used to construct layered particle filters which sample with in-
creased sensitivity to the underlying observation likelihood in order to better
focus samples in probable regions. Methods based on Hybrid Monte-Carlo [17,
12,55] use the gradient of the sampling distribution in order to generate propos-
als that are accepted more frequently during a Markov Chain Monte Carlo sim-
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ulation. Hyperdynamic Sampling [55] modifies the sampling distribution based
on its local gradient and curvature in order to avoid undesirable trapping in
local optima. This creates bumps in the regions of negative curvature in the
core of the maxima. Samples are specifically repelled towards saddle-points, so
to make inter-maxima transitions occur more frequently. Hyperdynamic Sam-
pling is complementary and can be used in conjunction with both Hybrid-Monte
Carlo and/or annealing. Non-parametric belief propagation [59, 44] progressively
computes partial sample-based state estimates at each level of a temporal (or
spatial, e.g. body like structured) graphical model. It uses belief propagation
and fits compact mixture approximations to the sample-estimated conditional
posteriors at each level along the way.

Eigenvector Tracking and Hypersurface Sweeping [54] are saddle-point search
algorithms. They can start at any given local minimum and climb uphill to locate
a first-order saddle point — a stable point with only one negative curvature,
hence a local maximum in one state space dimension and a local minimum in
all the other dimensions. From the saddle it is easy to slide downhill to a nearby
optimum using gradient descent and recursively resume the search. For high-
dimensional problems many saddle points with different patterns of curvature
exist, but the first-order ones are potentially the most useful. They are more
likely to lead to low-cost nearby local minima because, from any given one, only
one dimension is climbed uphill.

Problem Specific Algorithms: Covariance Scaled Sampling (CSS) [56] is a
probabilistic method which represents the posterior distribution of hypotheses in
state space as a mixture of long-tailed Gaussian-like distributions whose weights,
centers and scale matrices (‘covariances’) are obtained as follows. Random sam-
ples are generated, and each is optimized (by nonlinear local optimization, re-
specting any joint constraints, etc.) to maximize the local posterior likelihood
encoded by an image- and prior-knowledge based cost function. The optimized
likelihood value and position give the weight and center of a new component, and
the inverse Hessian of the log-likelihood gives a scale matrix that is well adapted
to the contours of the cost function, even for very ill-conditioned problems like
monocular human tracking. However, when sampling, particles are deliberately
scattered more widely than a Gaussian of this scale matrix (covariance) would
predict, in order to probe more deeply for alternative minima.

Kinematic Jump Sampling (KJS) [57] is a domain-specific sampler, where
each configuration of the skeletal kinematic tree has an associated interpreta-
tion tree — the tree of all fully- or partially-assigned 3D skeletal configurations
that can be obtained from the given one by forwards/backwards flips. The tree
contains only, and generically all, configurations that are image-consistent in
the sense that their joint centers have the same image projections as the given
one. (Some of these may still be inconsistent with other constraints: joint lim-
its, body self-intersection or occlusion). The interpretation tree is constructed
by traversing the kinematic tree from the root to the leaves. For each link, we
construct the 3D sphere centered on the currently hypothesized position of the
link’s root, with radius equal to link length. This sphere is pierced by the camera
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ray of sight through the observed image position of the link’s endpoint to give (in
general) two possible 3D positions of the endpoint that are consistent with the
image observation and the hypothesized parent position (see fig. 1). Joint angles
are then recovered for each position using simple closed-form inverse kinematics.
KJS can be used in conjunction with CSS in order to handle data association
ambiguities. Both CSS and KJS can be used in conjunction with non-linear mix-
ture smoothers [48] in order to optimally estimate multiple human joint angle
trajectory hypotheses based on video sequences.

4.3 Learning

We review unsupervised and supervised methods for learning generative human
models. These are applicable to obtain both model representations (state and
observation) and parameters.

Learning Representations Unsupervised methods have recently been used
to learn state representations that are lower-dimensional, hence better adapted
for encoding the class of human motions in a particular domain, e.g. walking,
running, conversations or jumps [47,64, 31]. We discuss methods trained on se-
quences of high-dimensional joint angles obtained from human motion capture,
but other representations, e.g. joint positions can be used. The goal is to reduce
standard computations like visual tracking in the human joint angle state space
— referred here as ambient space, to better constrained low-dimensional spaces
referred as perceptual (or latent). Learning couples otherwise independent vari-
ables, so changes in any of the perceptual coordinates change all the ambient
high-dimensional variables (fig.4). The advantage of perceptual representations
is that image measurements collected at any of the human body parts constrain
all the body parts. This is useful for inference during partial visibility or self-
occlusion. A disadvantage of perceptual representations is the loss of physical
interpretation — joint angle limit constraints are simple to express and easy to
enforce as per-variable, localized inequalities in ambient space, but hard to sep-
arate in a perceptual space, where they involve (potentially complex) relations
among all variables. The following aspects are important when designing latent
variable models:

(i) Global perceptual coordinate system: To make optimization efficient in a
global coordinate system is necessary. This can be obtained with any of several
dimensionality reduction methods including Laplacian Eigenmaps, ISOMAP,
LLE, etc [4,61, 39, 14]. The methods represent the training set as a graph with lo-
cal connections based on Euclidean distances between high-dimensional points.
Local embeddings aim to preserve the local geometry of the dataset whereas
ISOMAP conserves the global geometry (the geodesics on the manifold approx-
imated as shortest paths in the graph). Learning the perceptual representation
involves embedding the graph with minimal distortion. Alternatively the percep-
tual space can be represented with a mixture of low-dimensional local models
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with separate coordinate systems. In this case, one either has to manage the
transition between coordinate systems by stitching their boundaries, or to align,
post-hoc, the local models in a global coordinate system. The procedure is more
complex and the coordinates not used to estimate the alignment, or out of sam-
ple coordinates, may still not be unique. This makes global optimization based
on gradient methods non-trivial.

(ii) Preservation of intrinsic curvature: The ambient space may be intrinsi-
cally curved due to the physical constraints of the human body or occlusion [15].
To preserve the structure of the ambient space when embedding, one needs to use
methods that preserve the local geometry. e.g. Laplacian eigenmaps, LLE or Hes-
sian embeddings [4,39, 14]. ISOMAP would not be adequate, because geodesics
running around a curved, inadmissible ambient region, will be mapped, at cur-
vature loss, to straight lines in perceptual space.

(iii) Intrinsic Dimensionality: It is important to select the optimal number
of dimensions of a perceptual model. Too few will lead to biased, restricted mod-
els that cannot capture the variability of the problem. Too many dimensions will
lead to high variance estimates during inference. A useful sample-based method
to estimate the intrinsic dimensionality is based on the Hausdorff dimension, and
measures the rate of growth in the number of neighbors of a point as the size of
its neighborhood increases. At the well calibrated dimensionality, the increase
should be exponential in the intrinsic dimension. This is illustrated in fig. 4, which

shows analysis of walking data obtained using human motion capture. Fig.4(a)
log N(r)

log(1/7)”
where r is the radius of a sphere centered at each point, and N (r) are the number

of points in that neighborhood (the plot is averaged over many nearby points).
The slope of the curve in the linear domain 0.01 — 1 corresponds roughly to a
1d hypothesis. Fig.4(b) plots the embedding distortion, computed as the nor-
malized Euclidean SSE over each neighborhood in the training set. Here, 5-6
dimensions appear sufficient for a model with low-distortion.

shows Hausdorff estimates for the intrinsic dimensionality: d = lim,_,¢

(i) Continuous generative model: Continuous optimization in a low dimen-
sional, perceptual space based on image observations requires not only a global
coordinate system but also a global continuous mapping between the perceptual
and observation spaces. Assuming the high-dimensional ambient model is con-
tinuous, the one obtained by reducing its dimensionality should also be. For
example, a smooth mapping between the perceptual and the ambient space
can be estimated using function approximation (e.g. kernel regression, neural
networks) based on high-dimensional points in both spaces (training pairs are
available once the embedding is computed). A perceptual continuous generative
model enables the use of continuous methods for high-dimensional optimization
[12, 58,56, 57]. Working in perceptual spaces indeed targets dimensionality reduc-
tion but for many complex processes, even reduced representations would still
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Fig. 4. Analysis of walking data. (a) Estimates of intrinsic dimensionality based on the
Hausdorff dimension. (b) Geometric distortion vs. neighborhood size for a Laplacian
embedding method. (c¢) Embedding of a walking data set of 2500 samples in 2d. Also
shown, the Gaussian mixture prior (3 stdev), modeling the data density in perceptual
space.

have large dimensionality (e.g. 10d—15d) — efficient optimizers are still necessary.

(v) Consistent estimates impose not only a prior on probable regions in per-
ceptual space, as measured by the typical training data distribution, but also
the separation of holes produced by insufficient sampling from genuine intrin-
sic curvature, e.g. due to physical constraints. The inherent sparsity of high-
dimensional training sets makes the disambiguation difficult, but analytic ex-
pressions can be derived using a prior transfer approach. Ambient constrains
can be related to perceptual ones, under a change of variables. If physical con-
straints are given as priors in ambient space p,(X,) and there exist a continuous
perceptual-to-ambient mapping x, = F(x), Vx, with Jacobian Jg, an equivalent

prior in latent space is:
p(x) o pa(F(x))\/[JpJg| (6)

Low-dimensional generative models based on principles (i)-(v) (or a subset
of them) have been convincingly demonstrated for 3D human pose estimation
47,64, 31].

Learning Parameters Generative models are based on normalized probabili-
ties parameterized by 6, that may encode the proportions of the human body,
noise variances, feature weighting in the observation model, or the parameters
of the dynamical model. For inference, the normalization is not important. For
learning, the normalizer is essential in order to ensure that inferred model state
distributions peak in the correct regions when presented with typical image data.
Here, we only review learning methods for a static generative model pg(x,r),
learning in video will instead use the joint distribution at multiple timesteps
pe(Xr,Ry). It is convenient to work with probabilistic quantities given as Boltz-
mann distributions, with uniform state priors, c.f. (2). Assuming a supervised
training set of state-observation pairs, {xi,ri}izl,,, N, one can use Maximum
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Likelihood to optimize the model parameters using a free energy cost function:

N
1 § n .n
F = _N P Inge(X T ) = <E0 (X7 r)>data + IOg ZG(Xa I‘) (7)

To minimize the free energy we need to compute its gradients:

d_f o dEg (X, I‘) _ dEg (X, I‘) (8)
dé B dé data dé model

where the second term is equal to the negative derivative of the log-partition
function w.r.t. 8. Note that the only difference between the two terms in (8) is
the distribution used to average the energy derivative. In the first term we use
the empirical distribution, i.e. we simply average over the available data-set. In
the second term however we average over the model distribution as defined by
the current setting of the parameters. Computing the second average analyti-
cally is typically too complicated, and approximations are needed.® An unbiased
estimate can be obtained by replacing the integral by a sample average, where
the sample is to be drawn from the model pg(x,r). Any of the approximate opti-
mization or inference methods described in §4.2 can be used. The goal of learning
is to update the model parameters in order to make the training data likely. Nor-
malizing using the partition function Zgy ensures discrimination: making the true
solution likely automatically makes the incorrect competing solutions unlikely.
ML learning iteratively reshapes the model state probability distribution to (at
least!) infer the correct result on the training set. Results obtained using this
learning method to estimate the parameters of a generative model (noise vari-
ances, weighting of the image features and the variance of a Gaussian dynamical
model) are shown in fig. 5. This corresponds to the video sequence in [48], which
films a person walking towards the camera and doing a bow.

5 Conditional and Discriminative Models

In this section we describe BM3E, a Conditional Bayesian Mixture of Experts
Markov Model for probabilistic estimates in discriminative visual tracking. The
framework applies to temporal, uncertain inference for continuous state-space
models, and represents the bottom-up counterpart of pervasive top-down gen-
erative models estimated with Kalman filtering or particle filtering (§4).” But
instead of inverting a generative observation model at run-time, we learn to coop-
eratively predict complex state distributions directly from descriptors encoding
image observations. These are integrated in a conditional graphical model in

6 The problem is simpler if the prior energy Eg(x) is fixed and not learned and only
the ‘easier’ partition function Zg(x) needs to be computed. The problem remains
hard (Zg(r)) for a hybrid conditional model expressed using generative energies.

7 Unlike most generative models, systems based on BM3E can automatically initialize
and recover from failure — an important feature for reliable 3D human pose tracking.
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Fig. 5. We show the trajectory probability through each optimum of the observation
model at each timestep in a video sequence before (left) and after ML learning (right).
The video films a person walking towards a camera and doing a bow [48]. The time is
unfolded on the x axis and we switch sign in-between successive timesteps for visual-
ization (the values are all normally positive). Before learning, the temporal trajectory
distribution collapses to fewer components in regions where the uncertainty of the
model-image matching cost diminishes, but is multimodal and has high entropy. The
distribution has lower entropy after learning, showing the usefulness of this procedure.
The ambiguity diminishes significantly, but does not disappear. The entropy of the
state posterior after learning reflects some of the limits of modeling and gives intuition
about run-time speed and accuracy.

order to enforce temporal smoothness constraints and allow a principled man-
agement of uncertainty. The algorithms combine sparsity, mixture modeling, and
non-linear dimensionality reduction for efficient computation in high-dimensional
continuous state spaces. We introduce two key technical aspects: (1) The den-
sity propagation rules for discriminative inference in continuous, temporal chain
models; (2) Flexible algorithms for learning feedforward, multimodal state dis-
tributions based on compact, conditional Bayesian mixture of experts models.

5.1 The BM?3FE Model

Discriminative Density Propagation We work with a conditional model
having chain structure, as in fig. 3a. The filtered density can be derived using
the conditional independence assumptions in the graphical model in fig. 3a [33,
51,52

paRe) = [ o i1, m0)p(oi1 R )
The conditional joint distribution for T timesteps is:

T
p(XrlRe) = p(xifey) [ pCxelxi1,m0) (10)
t=2
In fact, (9) and (10) can be derived even more generally, based on a predictive
conditional that depends on a larger window of observations up to time ¢ [49], but
the advantage of these models has to be contrasted to: (i) Increased amount of
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data required for training due to higher dimensionality. (i) Increased difficulty
to generalize due to sensitivity to timescale and / or alignment with a long
sequence of past observations.

In practice, one can model p(x;|x;—1,1:) as a conditional Bayesian mixture
of M experts (c.f. §2). The prior p(x;—1|R¢—1) is also represented as a Gaus-
sian mixture with M components. To compute the filtered posterior, one needs
to integrate M? pairwise products of Gaussians analytically, and use mixture
of Gaussian simplification and pruning methods to prevent the posterior from
growing exponentially [46,48].

A discriminative corrective conditional p(x;|x;—1, ;) can be more sensitive to
incorrect previous state estimates than ‘memoryless’ distributions like p(x¢|ry).
However we assume, as in any probabilistic approach, that the training and test-
ing data are representative samples from the true underlying distributions in the
domain. In practice, for improved robustness it is straightforward to include an
importance sampler based on p(x¢|r;) to eq. (9) — as necessary for initialization
or for recovery from transient failure. Equivalently, a model based on a mixture
of memoryless and dynamic distributions can be used.

Conditional Bayesian Mixture of Experts Model This section describes
the methodology for learning multimodal conditional distributions for discrimi-
native tracking (p(x¢|r¢) and p(x¢|x¢—1,1¢) in §5.1). Many perception problems
like 3d reconstruction require the computation of inverse, intrinsically multival-
ued mappings. The configurations corresponding to different static or dynamic
estimation ambiguities are peaks in the (multimodal) conditional state distribu-
tion (fig.6). To represent them, we use several ‘experts’ that are simple function
approximators. The experts transform their inputs® to output predictions, com-
bined in a probabilistic mixture model based on Gaussians centered at their mean
value. The model is consistent across experts and inputs, 4.e. the mixing propor-
tions of the experts reflect the distribution of the outputs in the training set and
they sum to 1 for every input. Some inputs are predicted competitively by multi-
ple experts and have multimodal state conditionals. Other ‘unambiguous’ inputs
are predicted by a single expert, with the others effectively switched-off, hav-
ing negligible probability (see fig. 6). This is the rationale behind a conditional
Bayesian mixture of experts, and provides a powerful mechanism for contextually
modeling complex multimodal distributions. Formally this is described by:

M
Qu(x|r) = p(x|r, W, Q,X) = > g(r|X)p(xr, W;, ;) (11)
=1
where:
f(r|X:)
r|A\) = — 2 12
) = S o) -

8 The ‘inputs’ can be either observations r;, when modeling p(x;|r;) or observation-
state pairs (x¢—1,r¢) for p(x¢|x¢—1,r¢). The ‘output’ is the state throughout. Notice
that temporal information is used to learn p(x|x;—1,r).
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p(x[r, Wi, ) = N (x|W;d(r), ;") (13)

Here r are input or predictor variables, x are outputs or responses, g are
input dependent positive gates, computed in terms of functions f(r|A;), param-
eterized by A;. f needs to produce gates g within [0, 1], the exponential and the
softmax functions being natural choices: f;(r|A;) = exp (A, r). Notice how g are
normalized to sum to 1 for consistency, by construction, for any given input r.
We choose p as Gaussians (13) with covariances Q; ', centered at different ex-
pert predictions, here kernel (@) regressors with weights W;. Both the experts
and the gates are learned using sparse Bayesian methods, which provide an
automatic relevance determination mechanism [32,62] to avoid overfitting and
encourage compact models with fewer non-zero weights for efficient prediction.
The parameters of the model, including experts and gates are collectively stored
inv= {(Wi,ai,ﬂi,)\i,,@i) |Z: ].M}
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Fig. 6. An illustrative dataset [6] consists of about 250 values of = generated uniformly
in (0,1) and evaluated as r = £+0.3sin(27z) +¢€, with € drawn from a zero mean Gaus-
sian with standard deviation 0.05. Notice that p(x|r) is multimodal. (a) Left shows the
data colored by the posterior membership probability h (assignment of points to ex-
perts) of three expert kernel regressors. (b) Middle shows the gates g (12), as a function
of the input, but also the three uniform probabilities (of the joint distribution) that are
computed by a clusterwise regressor [37]. (¢) Right shows how a single kernel regressor
cannot represent a multivalued dependency (it may either average the different values
or commit to an arbitrary one, depending on the kernel parameters).

Learning the conditional mixture of experts involves two layers of opti-
mization. As in many prediction problems, one optimizes the parameters v to
maximize the log-likelihood of a data set, 7 = {(r;,x;)|i = 1... N}, i.e. the ac-
curacy of predicting x given r, averaged over the data distribution. For learning,
we use a double-loop EM algorithm. This proceeds as follows. In the E-step we
estimate the posterior over assignments of training points to experts (there is one
hidden variable h for each expert-training pair). This gives the probability that
the expert 7 has generated the data n, and requires knowledge of both inputs and
outputs. In the M-step, two optimization problems are solved: one for each expert
and one for its gate. The first learns the expert parameters (W, £;), based on
training data 7', weighted according to the current h estimates (the covariances
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Q; are estimated from expert prediction errors [66]). The second optimization
teaches the gates g how to predict h.° The solutions are based on ML-II, with
greedy (expert weight) subset selection. This strategy aggressively sparsifies the
experts by eliminating inputs with small weights after each iteration [62,68].
The approximation can can be interpreted as a limiting series of variational
approximations (Gaussians with decreasing variances), via dual forms in weight
space [68]. Inference (state prediction) is straightforward using (11). The result
is a conditional mixture distribution with components and mixing probabilities
that are input-dependent. In fig. 6 we explain the model using an illustrative toy
example, and show the relation with clusterwise and (single-valued) regression.

Learning Conditional Bayesian Mixtures over Kernel Induced State
Spaces For many human visual tracking tasks, low-dimensional models are ap-
propriate, because the components of the human state and of the image obser-
vation vector exhibit strong correlations, hence low intrinsic dimensionality. In
order to efficiently model conditional mappings between high-dimensional spaces
with strongly correlated dimensions, we rely on kernel non-linear dimensionality
reduction and conditional mixture prediction, as introduced in §2. One can use

2 e P(F) 2% y e P(F)

kPCAT kPCAT \

®,.(r) C Fr P, (x) C Fa x =~ Prelmage(y)
@T %T l

re RCR" xeX CR® p(x[r) ~ p(x|y)

Fig. 7. A learned conditional Bayesian mizture of low-dimensional kernel-induced ex-
perts predictor to compute p(x|r) = p(x¢|rt), V. (One can similarly learn p(x¢|x¢—1,r¢),
with input (x,r) instead of r — here we illustrate only p(x|r) for clarity.) The input r
and the output x are decorrelated using Kernel PCA to obtain z and y respectively.
The kernels used for the input and output are &, and ®,, with induced feature spaces
Fr and F;, respectively. Their principal subspaces obtained by kernel PCA are de-
noted by P(F,) and P(F.), respectively. A conditional Bayesian mixture of experts
p(y|z) is learned using the low-dimensional representation (z,y). Using learned local
conditionals of the form p(y:|z:) or p(y¢|y+—1, z¢+), temporal inference can be efficiently
performed in a low-dimensional kernel induced state space (see (9) where y « x and
z «— r). For visualization and error measurement, the filtered density p(y:|Z+) can be
mapped back to p(x¢|R¢) using a pre-image calculation.

nonlinear methods like kernel PCA [40,67] and account for the structure of the

¥ Prediction based on the input only is essential for output prediction (state inference),
where membership probabilities h cannot be computed because the output is missing.
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problem, where both the inputs and the outputs are likely to be low-dimensional
and their mapping multivalued (fig. 7). Since temporal inference is performed in
the low-dimensional kernel induced state space, backtracking to high-dimensions
is only necessary for visualization or error reporting.

6 Learning Joint Generative-Recognition Models

In the previous sections we have reviewed both generative (top-down) and con-
ditional (bottom-up, recognition) models. Despite being a natural way to model
the appearance of complex articulated structures, the success of generative mod-
els (§4)) has been partly shadowed because it is computational demanding to
infer the distribution on their hidden states (human joint angles) and because
their parameters are unknown and variable across many real scenes. In turn, con-
ditional models are simple to understand and fast, but often need a generative
model for training and could be blind-sighted by the lack of feedback for self-
assessing accuracy. In summary, what appears to be necessary is a mechanism to
consistently integrate top-down and bottom-up processing: the flexibility of 3d
generative modeling (represent a large set of possible poses of human body parts,
their correct occlusion and foreshortening relationships and their consistency
with the image evidence) with the speed and simplicity of feed-forward process-
ing. In this section we sketch one possible way to meet these requirements based
on a bidirectional model with both recognition and generative sub-components
— see [63] for details. Learning the parameters alternates self-training stages in
order to maximize the probability of the observed evidence (images of humans).
During one step, the recognition model is trained to invert the generative model
using samples drawn from it. In the next step, the generative model is trained
to have a state distribution close to the one predicted by the recognition model.
At local equilibrium, which is guaranteed, the two models have consistent, reg-
istered parameterizations. During on-line inference, the estimates can be driven
mostly by the fast recognition model, but may include generative (consistency)
feedback.

The goal of both learning and inference is to maximize the probability of the
evidence (observation) under the data generation model:

togpolr) = s | potr) =1og [ QV(XIF)% (14)
po(x.r) _ x|r X,T
> / Qu (o) log G P05 = KL(Qu(xlr) o ) (15)

which is based on Jensen’s inequality [25], and K L is the Kullback-Leibler diver-
gence between two distributions. For learning, (14) will sum over the observations
in the training set, omitted here for clarity. We have introduced a variational dis-
tribution @, and have selected it to be exactly the recognition model. This is the
same as maximizing a lower bound on the log-marginal (observation) probability
of the generative model, with equality when @, (x|r) = pe(x|r).

log pe(r) — K'L(Qu(x|r)||pe (x[r)) = K L(Qu(x|r)[|pe(x, 1)) (16)
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Algorithm for Bidirectional Model Learning

E-step: v = argmax, L(v, 8")
Train the recognition model using samples from the current generative model.

M-step: "' = arg maxy L(v",0)
Train the generative model to have state posterior close to the one predicted by
the current recognition model.

Fig. 8. Variational Expectation-Maximization (VEM) algorithm for jointly learning a
generative and a recognition model.

According to (14) and (16), optimizing a variational bound on the observed
data is equivalent to minimizing the KL divergence between the state distri-
bution inferred by the generative model p(x|r) and the one predicted by the
recognition model @, (x|r). This is equivalent to minimizing the K L divergence
between the recognition distribution and the joint distribution pg(x,r) — the
cost function we work with:

KL(Qu(x]r)||pe (x,1)) = — / Qu (xIr) log Qu (xr) (17)
4 / Qu(x]r) log po(x. 1) = L(1,6) (18)

The cost L(v,0) balances two conflicting goals: assign values to states that
have high probability under the generative model (the second term), but at
the same time be as uncommitted as possible (the first term measuring the
entropy of the recognition distribution). The gradient-based learning algorithm
is summarized in fig. 8 and is guaranteed to converge to a locally optimal solution
for the parameters. The procedure is, in principle, self-supervised (one has to
only provide the image of a human without the corresponding 3d human joint
angle values), but one can initialize by training the recognition and the generative
models separately using techniques described in §4 and §5.

Online inference (3d reconstruction and tracking) is straightforward using
the E-step in fig. 8. But for efficiency one can work only with the recognition
model c.f. (11) and only do generative inference (full E-step) when the recogni-
tion distribution has high entropy. The model then effectively switches between
a discriminative density propagation rule [51,52] and a generative propagation
rule [24, 13,42, 47]. This offers a natural ‘exploitation-exploration’ or prediction-
search tradeoff. An integrated 3d temporal predictor based on the model operates
similarly to existing 2d object detectors. It searches the image at different loca-
tions and uses the recognition model to hypothesize 3d configurations. Feedback
from the generative model helps to downgrade incorrect competing 3d hypothe-
ses and to decide on the detection status (human or not) at the analyzed image
sub-window. In fig.9 we show results of this model for the automatic recon-
struction of 3d human motion in environments with background clutter. The
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framework provides a uniform treatment of human detection, 3d initialization

and 3d recovery from transient failure.

Fig. 9. Automatic human detection and 3d reconstruction using a learned generative-
recognition model that combines bottom-up and top-down processing [53]. This shows
some of difficulties of automatically detecting people and reconstructing their 3d poses
in the real world. The background is cluttered, the limb constrast is often low, and
there is occlusion from other objects (e.g. the chair) or people.

7 Training Sets and Representation

It is difficult to obtain ground truth for 3D human motion and even harder
to train using many viewpoints or lighting conditions. In order to gather data
one can use packages like Maya (Alias Wavefront) with realistically rendered
computer graphics human surface models, animated using human motion cap-
ture [37,41,18,47,51,52,2,63]. 3D human data capture databases have emerged
more recently for both motion capture [1,38] and for human body laser-scans
[3]. Alternatively, datasets based on photo-realistic multicamera human recon-
struction algorithms can be used [10]. The human representation (x) is usually
based on an articulated skeleton with spherical joints, and may have 30-60 d.o.f.

8 Challenges and Open Problems

One of the main challenges for the human motion sensing community today is to
automatically understand people in-vivo. We need to find where the people are,
infer their poses, recognize what they do and perhaps what objects do they use
or interact with. However, many of the existing human tracking systems tend to
be complex to build and computationally expensive. The human structural and
appearance models used are often built off-line and learned only to a limited
extent. The algorithms cannot seamlessly deal with high structural variability,
multiple interacting people and severe occlusion or lighting changes, and the
resulting full body reconstructions are often qualitative yet not photorealistic.
An entirely convincing transition between the laboratory and the real world
remains to be realized.

In the long run, in order to build reliable human models and algorithms for
complex, large scale tasks, it is probable that learning will play a major role.
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Central themes are likely to be the choice of representation and its generalization
properties, the role of bottom-up and top-down processing, and the importance
of efficient search methods. Exploiting the problem structure and the scene con-
text can be critical in order to limit inferential ambiguities. Several directions
may be fruitful to investigate in order to advance existing algorithms:

— The role of representation. Methods to automatically extract complex, pos-
sibly hierarchical models (of structure, shape, appearance and dynamics)
with the optimal level of complexity for various tasks, from typical, super-
vised and unsupervised datasets. Models that can gracefully handle partial
views and multiple levels of detail.

— Cost functions adapted for learning human models with good generalization
properties. Algorithms that can learn reliably from small training sets.

— Relative advantages of bottom-up (discriminative, conditional) and top-down
(generative) models and ways to combine them for initialization and for re-
covery from tracking failure.

— Inference methods for multiple people and for scenes with complex data
association. Algorithms and models able to reliably handle occlusion, clutter
and lighting changes. The relative advantages of 2d and 3d models and ways
to jointly use them.

— The role of context in resolving ambiguities during state inference. Methods
for combining recognition and reconstruction.
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