Automatic Abstraction in Model Checking

Yuan Lu
December 2000

Department of Electrical and Computer Engineering
Carnegie Institute of Technology
Carnegie Mellon University
Pittsburgh, PA 15213

This research is sponsored by the Semiconductor Reseangioi@ton (SRC) under
agreements through Contract No. 99-TJ-684, the Nationain8e Foundation (NSF) under
Grant Nos. CCR-9505472 and CCR-9803774, and the Defensantdd Research Projects
Agency (DARPA) under Contract No. DABT63-96-C-0071. Anyidpns, findings, con-
clusions or recommendations expressed in this materiatrerge of the author and do not
necessarily reflect the views of SRC, NSF, DARPA, or the Uh8&ates Government.

Keywords: formal verification, model checking, abstraction, counterex-
ample, refinement, binary decision diagram

Abstract

As technology advances and demand for higher performararedases hardware de-
signs are becoming more and more sophisticated. A typidpladsign may contain
over ten million switching devices. Since the systems bexmore and more complex,
detecting design errors for systems of such scale becontresrety difficult. Formal
verification methodologies can potentially catch subtlsigie errors. However, many
state-of-the-art formal verification tools suffer from tstate explosion problem

This thesis explores abstraction techniques to avoid e sixplosion problem. In
our methodologyatomic formulasextracted from an SMV-like concurrent program
are used to construetbstraction functions The initial abstract structure is built by
usingexistential abstractiotechniques. When the model checker disproves a univer-
sal property on the abstract structure, it generates a ecexagmple. However, this
abstract counterexample might be spurious because distrée not complete. We
provide a new symbolic algorithm to determine whether artrabscounterexample is
spurious. When a counterexample is identified to be spurtbesalgorithm will com-
pute the shortest prefix of the abstract counterexampledibed not correspond to an
actual trace in the concrete model. The last abstract stales prefix is splitinto less
abstract states so that the spurious counterexample isalied. Thus, a more refined
abstraction function is obtained. It is usually desirablelitain the coarsest refinement
which eliminates the counterexample because this comelso thesmallestbstract
model that avoids the spurious counterexample. We proweewer, that finding the
coarsest refinement is NP-hard. Because of this, we use agnlgl-time algorithm
which gives a suboptimal but sufficiently good refinementhef abstraction function.
The applicability of our heuristic algorithm is confirmed byr experiments. Using
the refined abstraction function obtained in this manneeva abstract model is built
and the entire process is repeated. Our methodology is etenfur ACTL, i.e., we
are guaranteed to either find a valid counterexample or piftaethe system satisfies
the desired property.

On the other hand, this thesis also discusses a new datauserucabstract BDDs.
Intuitively, an abstract BDD is obtained from a BDD by cobamy paths that have the
same abstract value with respect to some abstraction imclihere are many ways
to collapse the paths corresponding to different types sfrabt BDDs. We identify
four types of abstract BDDs : S-type, O-type, 1-type antype abstract BDDs for
different applications. In this thesis, we show three aggtions of abstract BDDs.
First, we will show how to check inequivalence between twmbiational circuits
using S-type and O-type abstract BDDs. Then, we describefaotielogy to generate
an initial variable ordering using O-type abstract BDDsdfy, we demonstrate how
to represent abstract Kripke structures usintype abstract BDDs. Our experiments
clearly show the efficiency of abstract BDDs. We believe Hizgtract BDDs can be
applied to many other applications as well.

Acknowledgements

When | came to CMU's open house of the ECE department fousyag, | had little
idea about formal methods or model checking. The only thikigdw was that | was
interested in logic and verification problems. Ed Clarke, futgire advisor, said to
me, "You can learn it!” Since then he has been painstakirggdghing me about model
checking and formal methods from scratch. Whenever | l@stkir Ed was there for
help. | am always amazed by his enthusiasm and insistencgvinghard problems.
In a word, without Ed’s direction and encouragement, | wdwge buried myself in
the maze of graduate study.

| owe a lot of gratitude to my thesis committee for their aédvémd patient reading
of my dissertation. Masahiro Fujita has been long-timertatod guide for my re-
search. His expertise and advice kept me away from pitfaNery time | talked with
Randy Bryant, | found interesting topics to work on. He hasrb&@ model for success-
ful research through my whole graduate career. Don Thon@sdged me with many
insightful pieces of advice on my thesis; meeting with himaiways an enjoyable
experience.

This work would not be possible without the environment of owdel checking
group. Ed creates an open and cooperative research endrarior students. It is
very easy for me to ask around and get help. | have benefited fnost members of
the group: Xudong, Sergio, Will, Vicky, Marius, Sergey, Rajj Chaki, Anubhav and
Alex. | also benefit a lot from visitors to our group, includi®rna, Marco, Yunshan,
Armin, Wolfgang, Poul and Deharbe. | not only appreciaterthelp, but also enjoy
being with them.

Among my CMU colleagues, | spent most time working with Soméka. He
never runs out of research ideas. It was him who motivatedamweork on abstract
BDDs. My most fruitful year was spent with Helmut Veith and i@pWang when
Helmut visited Ed’s group as a visiting professor. | will @ys remember our rou-
tinely eight o’clock night meeting at the CS student lounigelmut’s knowledge and
personality really inspire me to be a better researcher.

| spent two summers in Fujitsu Lab of America. The experiemas incredible.
As my supervisor, Jawahar Jain and Sree Rajan not only taughbow to do research
but also how to enjoy doing research. | had a great time wgrkimd talking with
Raj, Rajiv, Vamsi, and Bob. | would also like to thank Stever@an from IBM and
Richard Raimi from BIPS for discussions on many problems.

Though | am an ECE student, my office is in CS department. | gaten help
from staff in both departments including Catherine Copditaine Lawrence, Roxann
Martin, Lynn Philibin, etc. It is you who make CMU so special.

| am very grateful to my parents and my sister. Their lifel@ugport and encour-
agement are the source of strength | have. | thank John HeZMima, Qiu Jian, Yi
Wei, and Peter Fang for accompanying me through difficuleintinally, the biggest
thanks to Keyuan for her patience, understanding and thedfevorld cooking. You
are the best | have ever had.

Contents

1

Introduction 4
1.1 Background 4
1.2 Scopeofthethesis 7
1.3 Relatedresearch., 10
1.3.1 Abstraction for Model Checking 10
1.3.2 Counterexample-guided refinement 11
1.3.3 Other abstraction-refinement techniques 12
1.3.4 BDDsandabstraction 13
1.4 Outline of this dissertation 15
Existential abstraction for ACTL* 16
2.1 Kripke structuresan@TL* 17
2.2 OverviewofBDDs 22
2.3 ConcurrentPrograms 25
2.4 Existential abstraction.o 27
2.5 Approximation for existential abstraction 32
2.6 RemainingProblems 35
Counterexample-guided Abstraction Refinement 36
3.1 Generating the initial abstraction 37
3.2 Model checking the abstractmodel 42

3.2.1 Identification of spurious path counterexamples 42
3.2.2 ldentification of spurious loop counterexamples 46
3.3 Refiningthe abstraction 54
3.4 Performanceimprovements 59
3.4.1 Detecting more real counterexamples 60
3.4.2 Abstraction for approximation 61
3.4.3 Abstractions for distant variables 62
3.5 Experimentalresults 63
3.5.1 Experiments on benchmark circuits 63
3.5.2 Debugging a multimedia processor 65
3.6 Proofs for Refinement Theorem 70
Refinement for General ACTL Counterexamples 77
4.1 What are Counterexamples? 78
4.2 Tree-like Kripke structures 80
4.2.1 Indexed Kripke structures 84
4.3 Generating tree-like counterexamplesA«CTL 85
4.3.1 Fixpoint Characterization f&xCTL 87
4.3.2 Algorithms to generate tree-like counterexamples . . . 90
4.4 Refinementalgorithm faACTL 96
Abstract BDDs 100
5.1 Abstract Binary DecisionTrees 100
5.2 S-typeAbstractBDDs 102
5.3 O-type And 1-type AbstractBDDs 109
54 Vv-typeAbstractBDDs 113
55 Summary 116

6 Applications of abstract BDDs 117

6.1 Equivalence checking using abstractBDDs 117

6.2 Improving variable ordering using O-type abstract BDDs 121

6.3 Model Checking Using-type AbstractBDDs 129
6.3.1 Abstraction foACTL* 129
6.3.2 Casestudies. 131
6.3.3 Abstraction for Variable Ordering 138

7 Conclusion and Future Work 141
7.1 Using other data structures instead of BDDs 142
7.2 Implementing abstractioninsideBDDs 143

Chapter 1

Introduction

1.1 Background

Hardware designs are becoming more sophisticated as technology advances
and demand for higher performance increases. A typical chip design may con-
tain over ten million switching devices. As the systems become more and
more complex, detecting design errors for systems of such scale becomes ex-
tremely difficult. It is common that even experienced engineers overlook som
“corner” cases in the design phase. Ignoring such cases may result in serious
problems. Currently, most designers still heavily depends on random simula-
tion techniques to look for subtle bugs. However, it is known that simulation
techniques often fail to reveal such subtle errors during the debugging phase.
In contrast to simulation, formal verification techniques have the capabilit

to find subtle bugs. A number of researchers have proposed formal techniques
including theorem proving [15, 92, 95], and model checking [28, 90, 91], etc.
In theorem proving, the designer constructs a mathematical proof, with the aid
of some automated support, that a model or a structure meet their specification.
Itis possible for these techniques to model systems at almost any levelibf deta
In particular, one can model systems with infinite state space and prove proper

ties of entire classes of systems. The main drawback of theorem proving is tha

it requires great effort and creativity on the part of the user. On the other hand,
model checking methods restrict the model to be finite-state and use state space
searching algorithms to cheautomaticallythat the specification is satisfied.
Therefore, these approaches require less expertise to use.

In model checking, specifications are written in certé#mporal log-
ics[42]. Pnueli [90] was the first to use temporal logic for reasoning about con-
current programs. Later, Clarke and Emerson [28] introduced computational
tree logic CTL) and developed an efficient model checking algorithm. Their
model checking algorithm includes three components: a formal model which
describes the system to be verified, a specification of the correctness @®pert
of the system, and a decision procedure to check whether the model satisfies
the given specification. The model size is the major factor that affects the pe
formance of decision procedures. This problem is commonly calledttie
explosion problemModels with up to a million states can be verified using an
explicit state model checking algorithm [29]. About a decade ago, McMillan
proposed a symbolic model checking [78] algorithm using binary decision di-
agrams (BDDs) [17] (see Chapter 2.2 for a definition of BDDs). Burch, Clarke
and McMillan discussed a number of improvements of the symbolic model
checking algorithm [22]. By combining the new CTL model checking algo-
rithm with the symbolic representation of state transition graphs, systettms w
extremely large number of states can be verified. The model checking system
that McMillan developed as part of his Ph.D. thesis is called SMV [78]. It
is based on a language for describing hierarchical finite-state concurrent sys-
tems. Programs in the language can be annotated by specifications expressed in
temporal logic. The model checker extracts a transition system represented by
BDDs from the SMV program and uses a BDD-based symbolic model check-

ing algorithm to determine whether the system satisfies its specificatém (

Figure 1.1). If the transition system, formally modele&aipke structurg57],

does not satisfy some specification, the model checker will produce an execu-
tion trace that shows why the specification is false. This executioe isac
called acounterexampléor the specification. Symbolic model checking algo-
rithms can typically verify designs with a few hundred symbolic variables.

SMV program

transitio
[system} [spec]

BDD BDD

model
checker

Yes/No ?

Figure 1.1: Model checker for SMV programs

More recently, propositional satisfiability [6, 49, 83, 98] based symbolic
model checking algorithms [10] have been investigated for even larger designs.
However, state-of-the-art hardware designs include hundreds of thousands of
variables and the number of states in models grows exponentially in the number
of variables. Therefore, applying model checking to large industrial designs is
still a hard problem.

On the other hand, a number of state reduction approaches have been
proposed to reduce the number of states under verification. State reduction
techniques include symmetry reductions [43, 44, 58, 62], partial order reduc-
tions [51], and abstraction techniques [34, 31, 75]. Among these techniques,

abstraction is the most general technique for handling the state explosion prob-

6

lem. In fact, it is essential for verifying designs of industrial complex@yr-
rently, abstraction is typically a manual process, often requiring consildera
creativity and understanding of the problem domain. In order for model check-
ing to be used more widely in industry, automatic techniques are needed for
generating abstractions.

Intuitively, abstraction tries to simplify the models by hiding “irredet”
details. Verifying the simplified models is in general more efficient thav
fying properties of the original ones. Abstraction techniques can be classified
asover-approximatior{31, 68] or under-approximatiortechniques [70, 87].
Over-approximation techniques systematically release constraints,hasd t
add more behaviors to the system. They establish a relationship between the
abstract model and the original one such that correctness at the abstract level
implies correctness of the original system. In contrast, under-approximation
techniques systematically remove irrelevant behaviors from the system. A
under-approximation technique establishes a relationship between the abstract
model and the original one, so that falseness at the abstract level will imply

falseness of the original system.

1.2 Scope of the thesis

This thesis explores abstraction techniques to avoid the state explosion prob-
lem. The techniques follow the general framework established by Clarke,
Grumberg, and Long [31] which is known agistential abstractionExisten-

tial abstraction is an over-approximation technique. Given a concrepkri
structure, arabstractKripke structure is built according to a given abstraction
function. If a property holds on the abstract structure, then it also holds on
the concrete structure. However, it is usually computationally hard to st

abstract structures. Therefore, we often need to approximate an alsstuaet

ture instead of directly building it. Clarke, Grumberg and Long defined a fast
and simple approximation technique which approximates the abstract structure

efficiently. However, there exist several unsolved problems in theircampbr:
1. Itis not known how to generate abstraction functions automatically.

2. The abstraction is conservative but not complete. When a property is
false on the abstract structure, it may still be valid for the concretest

ture.

3. Approximation introduces many spurious transitions, i.e., abstract tran-
sitions which do not correspond to concrete transitions. It is unknown

how to reduce the number of spurious transitions.

4. In some cases, it is hard to build the BDDs for the abstraction functions.

In these cases, constructing abstract structures becomes extremely hard.

The goal of this thesis is to attack these problems. We have proposed a
counterexample-guided abstraction refinement methodology which addresses
the problems (1) and (2). We have also introduced a new data structlre —
stract BDDsto alleviate the problems (3) and (4). The principle contributions
of this thesis are detailed below:

A counterexample-guided automatic abstraction-refinement method:

In this methodologyatomic formulasextracted from an SMV program are
used to construabstraction functionsThe initial abstract model is built by
using the existential abstraction techniques. When the model checker disproves
an ACTL* property on the abstract structure, it generates a counterexample.
However, this abstract counterexample might not be valid because abstraction
is not complete. We say that such a counterexampdpusious We provide

a new symbolic algorithm to determine whether an abstract counterexample is

spurious. When a counterexample is identified to be spurious, the algorithm
will compute the shortest prefix of the abstract counterexample that does not
correspond to an actual trace in the concrete model. The last abstradnstat
this prefix is split into less abstract states so that the spurious counterexam
ple is eliminated. Thus, a more refined abstraction function is obtained. Note
that there may be many ways of splitting the abstract state; each de#srmi
a different refinement of the abstraction function. It is desirable to obtain the
coarsest refinement which eliminates the counterexample because this corre-
sponds to themallestabstract model that avoids the spurious counterexample.
We prove, however, that finding the coarsest refinement is NP-hard. Because
of this, we use a polynomial-time algorithm which gives a suboptimal but suf-
ficiently good refinement of the abstraction function. The applicability of our
heuristic algorithm is confirmed by our experiments. Using the refined ab-
straction function obtained in this manner, a new abstract model is built and
the entire process is repeated. Our methodology is complet&G4rL, i.e.,
we are guaranteed to either find a valid counterexample or prove that the system
satisfies the desired property. In principle, our methodology can be extended
to all of ACTL".

Abstract BDDs based verification technologiesintuitively, an abstract
BDD is obtained from a BDD by collapsing paths that have the same abstract
value with respect to some abstraction function. There are many ways-to col
lapse the paths corresponding to different types of abstract BDDs. We identify
four types of abstract BDDs : S-type, O-type, 1-type antype abstract BDDs
for different applications. In this thesis, we show three applications ofatistr
BDDs. First, we will show how to check inequivalence between two combi-
national circuits using S-type and O-type abstract BDDs. Then, we describe

a methodology to generate an initial variable ordering using O-type abstract

BDDs. Finally, we demonstrate how to represent abstract Kripke strigcture
using V-type abstract BDDs. Our experiments clearly show the efficiency of
abstract BDDs. We believe that abstract BDDs can be applied to many othe

applications as well.

1.3 Related research

1.3.1 Abstraction for Model Checking

Many abstraction techniques can be viewed as application of abstract @terpr
tation [34, 99]. Given an abstract domain, abstract interpretation proades
general framework for automatically “interpreting” systems on an alkisti@c
main. The classical abstract interpretation framework is used tcepsafety
properties, and does not consider temporal logic or model checking. For ex-
ample, Bjorner, Browne and Manna use abstract interpretation to automati-
cally generate invariants for general infinite-state systems [12].r Liat§31],
the authors have proposed an abstract interpretation methodologyfdid.*
properties. Abstraction techniques for various fragment€®fl.* have been
discussed in [36, 37]. These abstraction technigues have been extended to the
pu-calculus [35, 74].

Abstraction techniques for infinite state systems are crucial for suctessf
verification [2, 7, 71, 77]. Graf and Saidi [54] have propogestlicate abstrac-
tion techniques to abstract an infinite state system into a finite state system.
Later, a number of optimization techniques have been developed in [8, 38].
Saidi and Shankar have integrated predicate abstraction into the PVS system
which could easily determine when to abstract and when to model check [97].
Colon and Uribe [33] have presented a way to generate finite-state aiostsac
using a decision procedure. Similar to predicate abstraction, their atstrac

is generated using abstract boolean variables. One difference between our ap-

10

proach and the predicate abstraction oriented approaches is that the iedter tr
to build an abstract model on-the-fly while traversing the reachable stéte
Our approach tries to build the abstract transition relation directly.

Wolper and Lovinfosse [105] have verifiedta independergystems using
model checking. In a data independent system, the data values never affect
the control flow of the computation. Therefore, the datapath can be abstracted
away entirely. Van Aelten et al [3] have discussed a method for simpgfyi
the verification of synchronous processors by abstracting away the data path.
Abstracting the datapath using uninterpreted function symbols is very useful
for verifying pipeline systems [9, 21, 20, 21, 64, 103, 104]. A number of re-
searchers have modeled or verified industrial hardware systems usingcabstra
tion techniques [47, 53, 55, 56]. In many cases, their abstractions are generated
manually and combined with theorem proving techniques [95, 96]. Dingel and
Filkorn have used data abstraction and assume-guarantee reasoning combined
with theorem proving techniques to verify infinite state systems [39]. Rgent
McMillan has incorporated a new type of data abstraction, assume-guarantee

reasoning and theorem proving techniques in his Cadence SMV system [79].

1.3.2 Counterexample-guided refinement

Using counterexamples to refine abstract models has been investigated by a
number of other researchers beginning with linealization reductiorof Kur-

shan [67, 68]. He models a concurrent system as a compositibipafcesses

Ly, ..., L, (L-processes are described in detail in [68]). The localization re-
duction is an iterative technique that starts with a small subset ofamedév
processes that are topologically close to the specification ivahable de-
pendency graphAll other program variables are released by nondeterministic

assignments. If the counterexample is found to be spurious, additional vari-

11

ables are added to eliminate the counterexample. The heuristic for selecting
these variables also uses information from the variable dependency graph. Note
that the localization reduction either leaves a variable unchanged or rgjtlace

by a nondeterministic assignment. A similar approach has been described by
Balarin in [5].

In this thesis, we propose a new counterexample-guided refinement tech-
nique using existential abstraction. In our approach, the abstraction functions
exploit logical relationships among variables appearing in atomic formulas that
occur in the control structure of the program. Moreover, the way we use ab-
straction functions makes it possible to distinguish many degrees of albmstracti
for each variable. Therefore, in the refinement step only very smalleoal |
changes to the abstraction functions are necessary and the abstract model re-
mains comparatively small. Recently, Lakhnech and his colleagues have als

used counterexamples to refine abstraction for infinite systems [69].

1.3.3 Other abstraction-refinement techniques

Another refinement technique has recently been proposed by Lind-Nielson and
Andersen [72, 73]. Their model checker uses upper and lower approximations
in order to handle all of CTL. Their approximation techniques enable them to
avoid rechecking the entire model after each refinement step while guarantee
ing completeness. Asin [5, 68], the variable dependency graph is used to obtain
the initial abstraction as well as in the refinement process. Variabteagben
is also performed in a similar manner. Therefore, our abstraction-reinem
methodology relates to their technique in essentially the same way aatégel
to the classical localization reduction.

A number of other papers [70, 86, 87] have proposed abstraction-

refinement techniques for CTL model checking. These techniques use the

12

BDD size as abstraction criterion. When the BDD size exceed a cdirtatn

the abstraction is applied. Govindaraju and Dill [52] tries to identify thst fi
spurious state in an abstract counterexample. It randomly chooses a concrete
state corresponding to the first spurious state and tries to construct a real coun-
terexample starting with the image of this state under the transitionaelat

The paper only talks about safety properties and path counterexamples. It does
not describe how to check liveness properties with cyclic counterexamples.
Furthermore, our method does not use random choice to extend the counterex-
ample; instead it analyzes the cause of the spurious counterexample and uses

this information to guide the refinement process.

1.3.4 BDDs and abstraction

As a data structure for symbolic representation, BDDs [17] have been widely
used in synthesis, verification, validation, [16, 65, 101]. BDDs are didecte
acyclic graphs (DAGs) with two terminal nodes labeled by 0 and 1 respBctive
For fixed variable orders, BDDs are a canonical representation for Boolean
functions. BDDs are often substantially more compact than conjunctive or dis-
junctive normal forms. Different variable orders result in BDDs witHaliént

sizes [18]. Finding good variable ordering is the central problem for apply-
ing BDDs effectively [18, 13]. Numerous heuristics have been proposed to
address this problemTopology basear static variable ordering techniques
(for example, using depth-first or breadth-first search of the circuits) have bee
extensively investigated for more than a decade [45, 76, 4]. However, these
techniques often perform poorly because they rely on purely structural infor-
mation of the circuits. Sifting-baseddynamic ordering techniques are more
popular [46, 85, 94] because they can dynamically change the variable orders

during the course of the computation. However, they are extremely expensive

13

with respect to both time and space. Moreover, during the reordering of the
BDDs, these techniques can frequently get stuck in a local minimum and thus
fail to reduce the size of the resulting graph to an acceptable degree. Other
optimization techniques such as simulated annealing have also been applied to
dynamic reordering as well [14, 41]. However, these approaches are usually
even slower than sifting-based techniques.

Sampling based approaches have been proposed by Meinel and Slo-
bodov [81] and Jain, et al. [60] to overcome these problems. In Jain’s approach,
a portion of the Boolean space for the output function is analyzed using reorder-
ing techniques. This sampled subspace is obtained by restricting the Boolean
function using cubes. Cubes are monomials of a subset of the variables. This
order is then used for analyzing the complete Boolean space of the given func-
tion. By appropriately using the (limited) global information about the given
function, the local minimum problem of current sifting-based ordering tech-
niques is reduced. However, using omgndomly generated subspacks
samplings has several practical problems [80, 82]. First, this cube based sam-
pling technique tends to generate less efficient variable orders. Secondly, the
generated variable orders can vary dramatically between different iims
causes an extremely large variance in the quality of the results and madses c
based sampling difficult to automate effectively.

In order to verify specific types of hardware designs, for example, arith-
metic circuits, variation of BDDs have been proposed. Clarke et al. [32] pro-
posed MTBDDs which are similar to ordinary BDDs except that the terminal
nodes can be arbitrary integer values instead of 0 and 1. Bryant and Chen de-
veloped BMDs [19] which give a compact representation for certain functions
that have MTBDDs of exponential size. Using Kronecker products, Clarke,

Fujita and Zhao proposed Hybrid Decision Diagrams (HDDs) [30] which can

14

be more concise than both MTBDDs and BMDs. Other variations of BDDs are
extensively investigated for different applications as well [40, 50, 63, 61].

In [31], Clarke, Grumberg and Long used the Chinese Remainder The-
orem to prove properties of arithmetic circuits. They choose residue func-
tions (:(z) = = mod p) as abstraction functions. Later, Kimura extended the
idea and proposed Residue BDDs [66] for verifying combinational multipliers.
More recently, residue ADDs [93] have been proposed to verify combinational
multipliers as well. In this thesis, we generalize the idea of residue 8BD
allowing arbitrary abstraction functions, obtainiadpstract BDDs(aBDDs).

Therefore, residue BDDs are a special case of abstract BDDs.

1.4 Outline of this dissertation

This thesis is organized as follows: In Chapter 2, we introduce basic defini-
tions for concurrent programs, the theory of Kripke structures, temporal logic
CTL* and the theory of existential abstraction. In Chapter 3, we describe
a counterexample-guided abstraction refinement framework for a fragment of
ACTL~. In Chapter 4, we discuss how to extend this methodology to refine
the abstraction for otheACTL* properties. Abstract BDDs are defined in

Chapter 5. Applications of different abstract BDDs are discussed in Chapter 6.

15

Chapter 2

Existential abstraction for ACTL*

Because of the state explosion problem, successful verification usuallyegquir
state reduction techniques. Abstraction techniques are one of the most general
state reduction techniques. Intuitively, abstraction techniques remoed- “i
evant” information from the design. Since the properties which need to be
verified usually depend only on a part of the design, abstraction techniques
can be very useful to reduce the state space. For example, for a data in-
dependent circuit [105], the data paths can usually be ignored. There are
many different ways to obtain an abstract state space. They can be class
fied into under-approximation approaches [70, 87] and over-approximation ap-
proaches [31, 68]. Existential abstraction is an over-approximation approach
that can also be viewed as an application of abstract interpretation [B84].
existential abstraction, a functionmaps each state in the state space to an
abstract state in a typically smaller abstract state space. Bigssire equiv-
alent with respect to the abstraction functioif they are mapped to the same
abstract state. This equivalence relation partitions the state spaceqguiv-
alence sets. Thus, abstract states are essentially equivalersesaéstates.

For example, consider the simple traffic light controller in Figure 2.1(a). As-
sume that we have an abstraction functidited) = red, h(green) = go

andh(yellow) = go. Then the obtained abstract structure is shown in Fig-

16

Figure 2.1: Abstraction of a Traffic Light.

ure 2.1(b).

In Chapter 2.1, we will first describe Kripke structures, and computational
tree logic CTL*). Kripke structures are used to model finite automata while
CTL* are used to specify properties on the finite automA@TL* is a frag-
ment of CTL* which allows only universal path quantification. In Chapter 2.2,
we provide an overview of BDDs. In Chapter 2.3, we provide several notations
related to concurrent programs. In Chapter 2.4 and Chapter 2.5, we will discuss
basic existential abstraction theory. In Chapter 2.6, we will describiéatiion
of the state-of-the-art existential abstraction technique which eskgntiati-

vates this thesis.

2.1 Kripke structures and CTL*

Given a set of atomic formulad,, a Kripke structure)M is a 4-tuple, i.e.,
M = (S,I,R, L), whereS = D is the set of stated, C S is a set of initial
states,R C S x S is a transition relation and, : S — 24¢ is the labeling
function.

Given a Kripke structure with a single initial state, the correspondarg-
putational treeis obtained by unwinding the structure into an infinite tree with
the initial state at the root. Intuitively, computational tree logi€I{L*) is com-
posed of formulas which describe properties of the computational €&SEE*

formulas includegpath quantifierandtemporal operatorsThere are two kinds

17

of path quantifiers:A (“for all computation paths”) and (“for some com-
putation path”). These quantifiers are used in a particular state to spleatfy

all of the paths or some of the paths staring at that state have some property.
The temporal operators describe properties of a path through the tree. There

are five basic operators:

e X ¢ (“next time”) requires that property holds in the second state of

the path.

e F o (“eventually” or “in the future”) asserts that propertywill hold at

some state on the path.

e G ¢ (“always” or “globally”) specifies that property holds at every

state on the path.

e U (“until”) is used to combine two propertieg. U ¢ holds if there is a
state on the path where propettyholds, and at every preceding state on

the path, property holds [26].

Syntax There are two types of formulas @TL*: state formulagwhich are
true in a specific state) anqhth formulagwhich are true along a specific path).

The syntax of both state and path formulas is given by the following rules:

e If p € Ay, thenp is a state formula.

If f andg are state formulas, thenf, f Agandf V g are state formulas.

If fis a path formula, thek f andA f are state formulas.

If fis a state formula, thefiis also a path formula.

If f andg are state formulas, theX f, F f, G f, fU gandfR ¢

are path formulas.

18

SemanticsA pathr in M is an infinite sequence of states,= (so, s1, ...)
such that for every > 0, (s;, s;i11) € R. We user’ to denote the suffix of
starting ats;. If f is a state formula, the notatiavi, s = f means thaf holds
at states in the Kripke structuré/. Similarly, if f is a path formula), = |~ f
means thaff holds along pathr in M. The relation= is defined recursively
as follows (assuming thgt and f> denote state formulas awggd andg, denote

path formulas):

M.sEp & p € L(s);

M,S |: _|f1 = M,S l?éfl,

M,sEfinfo & M,skE fiand M,s = fo;

M,skE fivfe & M,skE fior M,s fo

M,s EE g & there exists m = (s, ...) such that M, 7 |= ¢1;
M,s=A ¢ & forevery m = (s,...) it holds that M, 7 |= g1;
M, 7 Efi & mw={(s,...)and M,s = fi;

M, 7 = —g & M, 7~ s

M,mEgNg < M,7mlEg and M, = go;

M,mEg Vg << Mg orMmEg;

MrEX g & M, E g

M, 7 =EF ¢ & Jk > 0,such that M, 7% = gy;

MrEG g & Vk > 0,it holds that M, 7% |= g;;

M,7 =g U ¢go < 3k > 0,suchthat M, 7" = g, and VO < j < k, it holds

that M, 7/ |= g1;
MrlEgR g & Vj>0,ifVi<j, M, 7" g, then M, 77 |= gs.

We assume that the specifications are written in a fragme@fltdt.* called
ACTL* (see [31]), which eliminates the ability to describe the existence of
a path, i.e., thd path quantifier. ACTL* is the fragment oCTL* where
negation is restricted to the atomic level, and path quantificationtisates! to

universal path quantification. Formally, it is defined as follows.

Definition 2.1.1 The logic ACTL* over a programP is the fragment of
CTL* which contains the set of formulas given by the following inductive

definition:
e For each variable; and element of D,,, x; = d is an atomic formula.

19

If © is an atomic formula, theny is a formula.

If © andy are formulas, thep A ¢ andy V 1 are formulas.

All the state formulas are also path formulas.

If ¢ is a path formula, theA ¢ is a state formula.

If © andi are path formulas, theX ¢, F ¢, U %, andp R v are

also path formulas.

For example, AG(req=1 = AF ack =1) is an ACTL* formula while
AGEF comp = 1 is not anACTL* formula. Note that inACTL*, nega-
tion (—) is only applied to atomic formulas. For a givéxCTL* specifica-
tion ¢, we defineAtoms(y) to be the set of atomic formulas appearing in
the specificationp. For exampleAtoms(AG(req =1 = AF ack=1)) =
{req=1,ack = 1}.

In order to alleviate the state explosion problem, it is desirable to develop
techniques that replace a large structure by a smaller structure thditesatis
the same properties. In the following, we will consider two kinds of relations
between Kripke structurebisimulationequivalence andimulationpreorders.

Given two Kripke structures)/ = (S,1,L,R)andM’' = (S".I', L', R')
over the same set of atomic formuldg a relationB C S x .S’ is abisimulation
relation between)M and M’ if and only if for all (s,s’) € B, the following

conditions hold:
o L(s)=L'(s).

e For each state, such tha{s, s;) € R, there exists] such thats’, s}) €

R and(sy, s}) € B.

20

e Foreach state| suchthats’, s}) € R', there exists; such thats, s;) €

Rand(sy,s)) € B.

The structureM and M’ are bisimulation equivalen{denotedM = M) if
there exists a bisimulation relatiad such that for every initial state, € [
there exists an initial statg, € I’ such that(sy, s;) € B. In addition, for
every initial states;, € I’ there exists an initial state < / in M such that

(s0, () € B.
Theorem 2.1.1 [26] If M = M’ then for everyCTL* formula,
M [g if and only if M’ = .

Therefore, instead of checking a propegtyn M, we can check the property
on the bisimilar structurd/’. Sometimes it is hard to find a smaller bisimi-
lar structure. In order to achieve greater reductions,siheulation preorder
relation is introduced. Simulation is closely related to bisimulation. &/hi
bisimulation guarantees that two structures have the same behaviors, simula-
tion relates a structure to abstractionof the structure. Since the abstraction
can hide some details of the orginal structure, it might generate smaller struc
tures. Intuitively, simulation guarantees that every behavior of a struture
also a behavior of its abstraction. However, the abstraction might have behav-
iors that are not possible in the original structure.

Given two Kripke structuresd/ and M’ with A; O A}, arelationH C S x
S’ is asimulation relationbetweenl/ and M’ if and only if for all (s, ') € H,

the following conditions hold.
o L(s)NA, =L'(s).

e For each state; such that(s, s;) € R, there exists a stat€ with the

property thats’, ;) € R and(s, s}) € H.

21

We say that\/’ simulatesV/ (denoted byl < M) if there exists a simulation
relation H such that for every initial stat, in M there exists an initial state

so in M’ for which (sg, sp) € H.

Theorem 2.1.2[26] If M =< M’, then for everyACTL* formula ¢ (with

atomic propositions itd}), M’ = ¢ = M = .
Theorem 2.1.3[26] < is a preorder on the set of structures.

Similar results forw-automata are discussed in Kurshan’s book [68].

2.2 Overview of BDDs

Given a boolean functiorf : B" — B (Let B = {0, 1} denote the Boolean
domain), ainary decision tree (BDT) can be used to represent its truth table.
A BDT consists of two types of nodes: internal nodes and terminal nodes.
Every internal node is labeled by a variable and has two outgoing edges toward
two lower level nodes (closer to the terminal nodes): the 0-edge corresponds to
the case where the variable is assigned 0, and 1-edge corresponds to the case
where the variable is assigned 1. Every terminal node is labeled “0” or “1”.
The subgraphof an internal node is the subtree corresponding to that node.

As an example, the truth table fgi{a,b,c) = (a A =b) V (—a A ¢) is
shown in Figure 2.2(a). Figure 2.2(b) contains the corresponding BDT (dashed
edges represent 0-edges and solid edges represent 1-edges). Notice that every
variable appears exactly once in each path from the root to a terminal. If we
fix the order of variables appearing along every path, the resulting graph is
called anordered binary decision tre@OBDT). It is easy to see that OBDTs
are canonical; in other words, given an order of the variables, the OBDTSs are

unique representations of the given boolean functions.

22

P P RPRPOOOO|D
P P OORRFROO|T
R OPFRPORFRPORFR OO
OO RPrRPrRPRORE Ol

(a) (b) ©

Figure 2.2: BDT and BDD foff = (a A —b) V (—a A ¢)

An ordered binary decision diagram (OBDD) is a directed acyclic graph
(DAG) representation obtained from OBDTs by applying the following three

operations:

1. Merge all terminal 0 nodes into one terminal O node, and analogously for

the terminal 1 nodes;

2. If two nodes are labeled by the same variable and their subgraphs are

isomorphic, merge them into one node;

3. If a node As two outgoing edges both point to the same node B, then
delete node A and redirect the edges that had previously pointed to node

A to node B.

As an example, the OBDD for the function in Figure 2.2(a) is shown in Fig-
ure 2.2(c). In this thesis, we follow the convention to write BDDs instefad
OBDDs.

Given two BDDsf andg, the resulting BDD- of a boolean operatiofio g

can be constructed using tBdannon expansion
r=/fog= [j A (fmzo Ogm:O)] \ [x A (fm=1 o gm:l)]

23

wherez is the variable which comes first in the order among all the variables
in fandg, and f,—o, fz=1, g»—0 andg,—, are the functions obtained when

is restricted to the particular values, i.e. 0 or 1. They are alsedadfactor
functionsof f andg respectively.

During the BDD construction, aexpansiorphase uses Shannon expansion
to recursively divide the problem into smaller problems following the given
variable order from the root to the terminals. After computing the cofactors, a
reductionphase is called to reduce expressions to ensure uniqueness.

Bryant [17] showed that BDDs are also canonical and can be exponentially
more compact than the corresponding truth tables or OBDTs. In addition, he
showed that the BDD size is extremely sensitive to the variable orderimg.
graph size of one ordering can be exponentially smaller than that of another
ordering.

As an example, consider the boolean functi@rb, +as - by +as - b3. When
the variables are ordered lay < b; < as < by < a3 < bz, we only need eight
nodes. However, when they are orderediby as < as < by < by < b3, we
need sixteen. Generalizing this function to a function over variahles. , a,
andby,, b,, it is easy to see that by using the first ordering we nged
internal nodes while by using the second ordering we 24 — 1) internal
nodes. This effect is dramatic for large valuesnof Therefore, addressing
this problem is important for BDD based applications though determining the
optimal variable ordering is an NP-complete problem [13]. Various ordering
heuristics have been proposed. In general, they can be classified into either
topology basedstatic) orfunctional analysis baseftlynamic) approaches.

Topology based variable ordering approaches (using for example depth-first
or breadth-first search techniques) have been extensively investigatadter

than a decade [45, 76]. Variables are usually grouped with respect to sauctur

24

proximity. However, these techniques are not satisfactory. The problentis tha
the functionality of the designs is not taken into account.

In the dynamic variable ordering approach, one starts with an initial order-
ing, which is permuted during the BDD construction, such that the size of the
resulting BDD is minimized [59, 94]. This approach is automatic and trans-
parent to the users. In tisgfting based dynamic ordering approach [94], peri-
odic reordering of variables is attempted to reduce the memory requirements.
Given a graph’, a variablev is successively moved to each position in the
ordering list and the resulting graph size is examined. The variable is finally
assigned the position that results in the smallest graph size. Improwetoent
sifting based reordering techniques were proposed by [84], where the number
of sift operations was reduced by sifting together the symmetric variabls. pair
Further improvements were suggested in [85] where the concept of extended

symmetry was introduced to group larger blocks of variables.

2.3 Concurrent Programs

In current technologies, hardware is usually described in hardware description
languages, such as Verilog, VHDL and SMV etcpygramP contains a finite

set of variabled” = {xy,--- ,z,}, where each variable; has an associated
finite domainD,,. The set of all possible states for progréhms D,, x--- D,

which we denote by). Expressionsre built from variables i, constants in

D,,, and function symbols in the usual way, eag.+ 3. Atomic formulasare
constructed from expressions and relation symbols,g.¢-3 < 5. Similarly,
predicatesare composed of atomic formulas using negatie)y conjunction

(N), and disjunction). Given a predicate, Atoms(p) is the set of atomic
formulas occurring in it. Lep be a predicate containing variables frdm

andd = (di,...,d,) be an element frond. Then we writed |= p when the

25

predicate obtained by replacing each occurrence of the varialitep by the
constant/; evaluates to true.

Let A, denote the set of atomic formulas A Then P naturally corre-
sponds to &Kripke structureM = (S,1, R, L), whereS = D is the set of
states,/ C S'is a set of initial stateskz C S x S is a transition relation and
L : S — 2% is the labeling function. Translating a program into a Kripke
structure is straightforward and will not be described in this thesis. iBetee
available in [26].

Each variabler; in the program has an associatezhsition blockB; [78],
which defines both the initial value and the transition relation for the vagiabl
x;. An example of a transition block for the variahlgis shown in Figure 2.3,

wherel; C D,. is the initial expression for the variable, each conditiorﬁf

init (z;) .= 1;; init (z) :=0;
next(z;) := case next(z) := case
cl: AL reset = TRUE : 0;
C?: A% r<y:x+1;
cee el x:yZO;
Ck: Ak, else: z;
esag esag

Figure 2.3: A generic transition block and a typical example

is a predicate, andl{ is an expression. The semantics of the transition block
is similar to the semantics of tremsestatement in the modeling language of
SMV, i.e., find the leasy such that in the current state conditi6H is true
and assign the value of the expressjmjwto the variabler; in the next state.
For eachB;, we defineAtoms(B;) to be the set of atomic formulas that appear
in the conditions, i.e.Atoms(B;) = |JAtoms(CY). Accordingly, we define
Atoms(P) to be the set of atomic formulas appearingin Common hard-

ware description languages like Verilog and VHDL can be compiled into this

26

language.
An abstraction, for a programpP is given by a surjectioh : D — D.
Notice that the surjectioh induces an equivalence relatien, on the domain

D in the following manner: let/, e be states irD, then
d =y e iff h(d) = h(e).

Since an abstraction can be represented either by a surjéatidoy an equiva-
lence relatior=;,, we sometimes switch between these representations to avoid
notational overhead.
Auto-abstraction functions The equivalence relatios;, partitionsD into a
set of equivalence classes. This set is denotedldy, and defined a$[d] |
d € D} where[d] = {e | h(e) = h(d)}. For eachh, we fix a function
repy, : [D]=, — D that selects anique representativifom each equivalence
class[d]. Thus, fora 0-1 vectod € D, rep,([d]) is the unique representative
of the equivalence clagd] of d.

The abstraction functioh induces a new abstraction functiéh: D — D

as follows:
H(d) = repn([d]).

Since’H operates oD, we call H the generateduto-abstraction function
From the definition ofH it is easy to see thati(rep,([d])) = repn([d]) and
H(H(d)) = H(d). Note that the image dP under the functioft is simply the
set of representatives. This set of representatives will be denotéddi¥?).

Sinceh was assumed to be a surjection, it follows thatg(H)| = | A|.

2.4 Existential abstraction

Given a program” and anACTL* propertyy, we obtain a Kripke structure

M = (S,I, R, L)whereS, I andR are the same as traditional Kripke structure

27

defined in Chapter 2.1L : S — 24toms(¥) s a labeling function given by
L(d) = {f € Atoms(p) | d = f}. Intuitively, the functionL labels each state
by atomic formulas extracted from because only these atomic formulas are
relevant for verifyingy.

Assume that we are given a programand an abstraction functiafn for
P. Theabstract Kripke structuréf;, = (S, I, Ry, L) corresponding to the

abstraction functior is defined as follows:

1. S, is the abstract domaib.
2. I,(d) if and only if 3d(h(d) = d A I(d)).

3. Ru(dy,ds) if and only if 3d; 3dy(h(dy) = di A h(dy) = da A R(dy, ds)).

~

4. Ly(d) = Uh(d):&L(d)-

An atomic formulaf respectghe abstraction function if for all d andd’
in the domainD, (d =, d') = (d = f < d = f). Moreover,Atoms(y)

respects: if for all f € Atoms(yp), f respects:.

Lemma 2.4.1 If Atoms() respects an abstraction functibythen the follow-

ing holds:
(i) d=) d = L(d) = L(d).
(i) h(d)=d= Ly(d) = L(d).

Proof (i) SinceAtoms(p) respects, (d =, d') = (d = f < d = f) for
all f € Atoms(y). According to the definitionf.(d) = {f € Atoms(p) | d =
[}, Therefore L(d) = L(d').

~

(i) The labeling of an abstract state is defined.agl) = U, ,—7 L(d). In (2),

~

we prove thatl =, ' — L(d) = L(d’). Therefore, we havé, (d) = L(d). O

28

Let d be an abstract state. Thﬁl(cf) denotes the set of states which are
mapped tod by A, i.e., h-1(d) = {d | h(d) = c/i\}. L (d) is consistent if
all concrete states correspondingdeatisfy all labels inL,(d), i.e., for all

~

d € h='(d) itholds thatd = A .., & /-

Theorem 2.4.1Leth be an abstraction function and be anACTL* specifi-

cation where the atomic subformulas respkct hen the following holds:

0] Lh(cf) is consistent for all abstract statesin M),;

Proof (i) By Lemma 2.4.1, for alh(d) = d, Lh(cf) = L(d). By definition,

~

d = Ajery f- Therefore,L,(d) is consistent.

(i) According to the definition of/,,, the set of atomic formulas fav/;, is A;
which is also the set of atomic formulas fof. According to Lemma 2.4.1,
Ln(s) = L(s) = L(s) N A, whereh(s) = 5. In the definition of existential
abstraction,

~ ~

Ru(5,8") =3s,5'[h(s) =SA W) = s N R(s,s)].

By definition, (s, s') € R implies that(s,s’) € R, ands € I implies that
S € Iy, becausel,(s) = 3Fs[h(s) = s A I(s)]. If we define the relation
H = {(s,5) | s = h(s)}, thenM =< M, according to the definition of the

simulation relation.O

In other words, correctness of the abstract model implies correctness of the

concrete model.

Theorem 2.4.2 Given an abstraction functioh and its corresponding auto-
abstraction functior{, then M, = M;, where M, is the abstract structure

corresponding to the auto-abstraction functit

29

Proof Assume thaf : D — I'mg(H) is a function defined b§(h(d)) =
rep([d]). First, we will show thatZ is well-defined and th&f is a bijection.
Second, usin@ we will build a bijection between the statesaf, and My, .

From the definition,i(d,) = h(dy) implies thatrep([di]) = rep([da])
which in turnimplies thaf (h(d;)) = Z(h(dz)). ThereforeZ is a well defined
function. Ifd, € Img(H), then there exists & € D, whered;, = rep([dz]).
Moreover,Z(h(d2)) = rep(ds) = dy, SOZ is a surjection. On the other
hand, ifZ(h(dy)) = Z(h(dz)), thenrep([di]) = rep([dz]) which implies that
h(dy) = h(dy). HenceZ is an injection. Sinc€ is injective and surjective,
is a bijection.

Y

M, —~—— My
W W
T

w)

Figure 2.4: Commuting diagram betweéf, and My,

As defined beforeS = D is the set of states of/; S, = D is the set
of states ofM;; and Sy, = Img(H) is the set of states a¥/;,. LetZ(I,) =
{Z(5) | s € I}. Next we will show thatZ(,) = I, i.e., the bijectiorZ
preserves the initial states. Consider an arbitrary skate ;. Sinces, € I,
there exists a statg € S such thath(sg) = Sp andsy € 1. SinceH(sy) =
rep([so]) = Z(h(s0)) = Z(5), and Iy is the existential abstraction df it
follows thatZ (sy) € Iy.

The proof for the transition relation is very similar. Following the same

convention, we have

I(Ry) = {(Z(3).2(5)) | (5.') € Ru}.

30

Figure 2.5: Abstraction of a Traffic Light.

Therefore,Z(1y) C Iy andZ(R,) C Ry. Sincel is a bijection, the
argument given above holds in the reverse direction. TAQg,) = [, and
Z(Ry) = Ry. The relation of the structures is shown in Figure 2.4. This

proves that\l, = M. O

However, if the abstract model invalidates AQCTL* specification, i.e.,

My, = ¢, the actual model may still satisfy the specification

Example 2.4.1 Assume that for a traffic light controller (see Figure 2.5), we
want to proveyy = AG AF(state = red) using the abstraction function
h(red) = red andh(green) = h(yellow) = go. Itis easy to see that/ = ¢
while M;, |~ 1. There exists an infinite trageed, go, go, . ..) that invalidates

the specification.

If an abstract counterexample does not correspond to any concrete counterex-
ample, we call ispurious For example(red, go, go, . . .) in the above example
IS a spurious counterexample.

When the set of possible states is given as the profct --- x D,, of
smaller domains, it is usually easy to generate abstraction functionsdbr ea
domain, i.e.; : D; — D;. Inthis scenario, an abstractiércan be described
as an n-tupléh;(d,), ..., hn(d,)) whereD is equal toD; x - D,,. We write
h = (h4,...,h,). The equivalence relations; corresponding to the individual

surjectionsh; induce an equivalence relatiasy, over the entire domai) =

31

D, x --- x D, inthe obvious manner:

(dly"' ’dn) Eh (61,"' ’en) |ff dl Elel/\"'/\dn Enen

2.5 Approximation for existential abstraction

It is usually computationally expensive to compute existential abstraction di-
rectly [75]. Instead of buildingV/,, directly, approximation is often used to

reduce the complexity. If a Kripke structudé = (Sy, I, R, L) satisfies
1. I, C T and
2. R, CR

then we say thafi/ approximatesl,. Intuitively, if M/ approximates\/y,
then M is moreabstract than\/,, i.e., has more behaviors thad,. (In the

terminology of Chapter 1}/ is an over-approximation.)

Theorem 2.5.1Let h be an abstraction function and be anACTL* speci-
fication where the atomic subformulas respkctThen simulates)M,,, i.e.,

M, < M.

Since= is a preorder) < M, < M according to Theorem 2.4.1 and Theo-
rem 2.5.1. In [31], Clarke, Grumberg and Long define a practical transforma-
tion 7 which applies the existential abstraction operation directly to varsable
at the innermost level of the formula. This transformation generates a new
structure)M7 as follows. Assume thak = R; A ... A R, where eactR; de-

fines the transition relation for a single variable. Then, we apply absiratii

eachR; separately, i.e.,

32

and analogously fof. Finally, My is given by(S,, 7(I),T(R),Ls). As a
simple example consider a systévh which is a synchronous composition of
two systems\/; and M,, or in other words\/ = M, ||M,. Both M, and M,
define the transition of one variable. In this cage is equal ta(M,)| (M),
Note that the existential abstraction operation is applied to each pratess i
dividually. SinceT7 is applied at the innermost level, abstraction can be per-
formed before building the BDDs for the transition relation. This abstraction
technique is usually fast and easy to implement. However, it has potemtial |
itations in checking certain properties. Sintg- is a coarse abstraction, there
exist many properties which cannot be checkedignbut can still be verified
using a finer approximation. The following small example will highlight some

of these problems.

Example 2.5.1 A Kripke structure for a sensor-based traffic light example is
shown in Figure 2.6. It includes two finite state machines (FSMs), one for a
traffic light and one for an automobile. The traffic light has four stateéred,
greenl, green2, yelloy and the automobild/, also has four stategstopl,
stop2, drive, sloy. M, starts in the stateed. When it senses that the auto-
mobile has waited for some time (in stat®p2), it triggers a transition to state
greenlwhich allows the automobiles to mové/, starts from statstopland
transitions according to the statesidf. The safety property we want to prove

is that when the traffic light is red, the automobile should either slow down or

stop. This can be written in ACTL as follows:
¢ = AG[~(State; = red A State, = drive)]

The composed machind; || M, is shown in Figure 2.6. It is easy to see that
the propertyy is true. Let us assume that we want to collapse stedesen1,

green2, yelloy into one stategyo. If we use the transformatigh, which ap-

33

plies abstraction before we compakg and M, propertyp does not hold as
indicated by the shaded statedbs (M) || abs(M,). On the other hand, if we
apply this abstractioafter composing); and M, stateggreen2, drive)and
(yellow, drive)are collapsed into one staiég(M, || M,)), and the property

still holds. Thus, by abstracting the individual components and then composing

we introduce too many spurious behaviors.

Property : AG —(traffic = red A auto = drive)

abstract

abs(My) || abs(Maq)

Figure 2.6: Traffic light example

It is desirable to obtain an approximation structdewhich is more pre-
cise than the structur®/; obtained by the technique proposed in [31]. All the
transitions in the abstract structuté, are included in bothl/ and 7. Note
that the state sets dff,, M and M are the same ant/ < M, < Mz. In
summary,M,, is intended to be built but is computationally expensi¥ér is

easy to build but extra behaviors are added into the structure. Our aim is to

34

build a model)/ which is computationally easier but a more refined approxi-
mation of M}, i.e.

M = M, < M < Mr.

2.6 Remaining Problems

Existential abstraction is a framework to apply abstraction in modelkihgc

However, there are several important problems which remain unsolved.

e Human interaction is required to provide abstraction functions. This pro-
cess usually requires great creativity and experience. In many chises, t
is impractical. Therefore, generating abstraction functions automigtical

is very important for verification.

e Existential abstraction is not a complete approach lifg.~ ¢ may not
imply that M [~ ¢ (see Example 2.4.1). Therefore, when the abstraction
cannot verify a property, refinement is required. Currently, no refinement

algorithms have been developed.

e Asdiscussed before, approximation introduces many spurious transitions
(see Example 2.5.1). How to improve the approximation accuracy is

unknown.

¢ In some cases, building BDDs for abstraction functions is a hard prob-

lem. Itis not known how to build the abstract structure in such cases.

In this thesis, we will address all these problems. We will describe a
counterexample-guided abstraction refinement methodology in Chapter 3. In
Chapter 4, we extend our refinement algorithms to AQCTL. In Chapter 5,

we show how to reduce abstraction overhead using abstract BDDs.

35

Chapter 3

Counterexample-guided
Abstraction Refinement

In this chapter, we describe an automatic abstraction technique for ACTL
specifications which is based on an analysis of the structure of formulas appear-
ing in the program. In general, our technique computes an upper approxima-
tion of the original program. Thus, when a specification is true in the abstract
model, it will also be true in the concrete design. However, if the speeifica
tion is false in the abstract model, the counterexample may be the result of
some behavior in the approximation which is not present in the original model.
When this happens, it is necessary to refine the abstraction so that the behavior
which caused the erroneous counterexample is eliminated. The main contri-
bution of this work is an efficient automatic refinement technique which uses
information obtained from erroneous counterexamples. The refinement algo-
rithm keeps the size of the abstract state space small due to the use of-abstrac
tion functions which distinguish many degrees of abstraction for each program
variable. Practical experiments including a large Fuijitsu IP core desigfirm
the competitiveness of our implementation [25].

The methodology is shown in Figure 3.1. Given a progfaand a property

©, the first step is to generate initial abstraction functions and build thialini

36

abstract Kripke structuré/ accordingly. The traditional model checker will
check if o holds onM. If not, it will generate a counterexample. The next
step checks if the counterexample is spurious or not. If it spurious, the final
refinement step will refine the abstraction and redo the whole process.

In the following, we will describe detailed algorithms for each steps.

l Mandcp

generate initial
abstraction

R

model check

lﬁl#cp

generate
counterexampleT’

lf

check whetherT'
IS spurious

stop

T is not spurious
l T is spurious

| refinement

Figure 3.1: Counterexample-guided abstraction refinement methodology

3.1 Generating the initial abstraction

Assume that we are given a progrdfwith n variables{v,,--- ,v,}. A;is a

set of atomic formulas obtained frofi As an exampled, can beAtoms(P).

37

Given an atomic formulg € A,, let var(f) be the set of variables appearing
in f, e.g.,var(z = y) is {z,y}. Given a set of atomic formulds, var(U)
equalsUer var(f). In general, for any syntactic entiy, var(X) will be the
set of variables appearing ii. We say that two atomic formulag and f,
interfereif and only if var(f1) Nvar(f;) # 0. Let=; be the relation onl, that
is the reflexive, transitive closure of the interference relation. Acogrth the

following lemma,=; is an equivalence relation.

Lemma 3.1.1 =, is symmetric, reflexive and transitive. Heneg,is an equiv-

alence relation.
Proof =, satisfies the following properties:
e symmetric: trivially, f; =; fo implies thatf; =; fi;
o reflexive: sincevar(f) Nwvar(f) # 0, therefore,f =; f;

e transitive: assume thgi =; f; andf, =; f5. Since=; is the transitive

closure of interfere relation. Thereforf, =; fs.

Overall,=; is an equivalence relatior

The equivalence class of an atomic formgila A, is called theformula clus-

ter of f and is denoted byf]. Let f; and f, be two atomic formulas. Then
var(f1) Nwvar(f2) # 0 implies that[f;] = [f2]. In other words, a variable;
cannot appear in formulas that belong to two different formula clusters accord-

ing to the following lemma.

Lemma 3.1.2 If [f1] # [f2], thenvar([f1]) Nvar([f2]) = 0.

Proof Assume thavar([fi]) N var([f2]) # 0. According to the definition

of =/, f1 =1 fo. Since=, is equivalence relationf;] = [f»]. This contradicts

38

the condition. Thereforejar([f1]) Nwvar([f2]) = 0. O

Moreover, the formula clusters induce an equivalence relatipron the set of

variablesV in the following way:

v; =y v if and only if v; andv; appear in atomic formulas that

belong to the same formula cluster.

The equivalence classes®f, are calledvariable clusters For instance, con-
sider a formula clusteF'C; = {v; > 3,v; = v2}. The corresponding variable
clusterisVC; = {v1,ve}. Let{FC,,. .., FC,} be the set of formula clusters
and{V(y,...,VC,} the set of corresponding variable clusters. In another
word,

A= JFCi, FCinFC; =0 (i # j)

i=1

and

var(Ay) = U VC;,, VC; =var(FC;), VC;NVC; =0 (i # j).

=1

We construct the initial abstraction = (hy,...,h,,) as follows. For each
hi;, we setDy ¢, = Hvevci D,, i.e., Dy, is the domain corresponding to the
variable clustel/ C;. Since the variable clusters form a partition of the set of
variablesV, it follows thatD = Dy, x - -- X Dy¢,,. For each variable cluster
VC; = {vi,...,v;}, the corresponding abstractiénis defined onDy ¢, as

follows.

hi(dy, -+ ,dx) = hi(er, - ,ex) if and only if for all atomic for-
mulasf € FC;, (dy,--- ,dy) E f< (e1, - ,ex) E f.
In other words two values are in the same equivalence class if they cannot be

“distinguished” by atomic formulas appearing in the formula clustéf. The

following example illustrates how we construct the initial abstraction

39

init (z) :=0;

next(z) := case
reset = TRUE : 0;
r<y:x+1;
rz=1y:0;
else: x;

esac

init(y) := 1,

next(y) := case
reset = TRUE : 0;
(z=y)A=(y=2)1y+1

(x=19):0;
else: y;
esac

Figure 3.2: Transition block for Example 3.1.1

Example 3.1.1 Consider the progran® with three variables;, y € {0, 1, 2},
andreset € {TRUE, FALSE} shown in Figure 3.2. The set of atomic for-
TRUE), (x = y),(z < y),(y = 2)}. There
{(zx = 2)} and
FCy = {(reset = TRUE)}. The corresponding variable clusters dne y}

mulas isA; = {(reset =

are two formula clustersfFC, = y),(x < y),ly =

and{reset}, respectively. Consider the formula clusfé’;. Values(0, 0) and

(1,1) are in the same equivalence class because for all the atomic forghulas

in the formula cluste#'C, it holds that(0,0) |= f if and only if (1,1) & f.

It can be shown that the domajf, 1,2} x {0, 1,2} is partitioned into a total

of five equivalence classes by this criterion. We denote these classes by the

natural number8, 1, 2, 3, 4, and list them below:

={(0,0), (1, 1)},
2={(0,1)},
3={(0,2),(1,2)},
4={(1,0),(2,0),(2,1)},
5=1{(22)}

The domain{TRUE, FALSE} has two equivalence classes — one contain-
ing FALSE and the otherTRUE. Therefore, we define two abstraction
functionsh; : {0,1,2}> — {0,1,2,3,4} andhy, : {TRUE,FALSE} —

40

{TRUE, FALSE}. The first function is given by

The second functioh, is just the identity function, i.eh,(reset) = reset.

On the other hand, let us assume that we chodse= {(reset =
TRUE), (z = y),(x < y),(y = 2),(zx = 0),(y = 0)}. Then we will
have FC, = {(z = y),(z < y),(y = 2),(z = 0),(y = 0)} and
FCy = {(reset = TRUE)}. As mentioned before, there are two abstraction

functions which are defined by

11(0,0) = 0

hi(0,1) =1

h1(0,2) = 2

hi(1,1) =3

hi(1,2) =4

hl(l,O) = hl(Q,O) = 5
h1(2,1) =6

h1(2,2) =7

ho(reset) = reset

Apparently, the abstraction functions are different from the first example.

From the above example, it is easy to see that choosing different set of
atomic formulas results in different abstraction functions. When the number of
atomic formulas are small, the obtained abstract model is usually smaénw
the sufficient number of atomic formulas are selected, the obtained abstract
model will be isomorphic to the original model, e.g. when the abstraction
function is the identity function.

In our experienceAtoms(P) or subsets oAtoms(P) are good choices for

Ay

41

3.2 Model checking the abstract model

Given anACTL” specificationp, an abstraction functioh (assume thap re-
spectsh), and a progran® with a finite set of variable¥ = {v,--- ,v,}, let

M be the abstract Kripke structure corresponding to the abstraction function
h. We use standard symbolic model checking procedures to determine whether
M satisfies the specification. If it does, then by Theorem 2.4.1 we can con-
clude that the original Kripke structure also satisfieOtherwise, assume that

the model checker produces a counterexarﬂA“pdmrresponding to the abstract
model M. In the remainder of this section, we will focus on counterexamples

which are eithe(finite) pathsor loops

3.2.1 Identification of spurious path counterexamples

First, we will tackle the case when the counterexarﬂAbisea path(sy, -, 5,).
The following example highlights the case where the abstract counterexample

T does correspond to some concrete counterexample.

i 5 3 i
E T B TR Tm

Figure 3.3: Abstract counterexample corresponds to a real trace

Example 3.2.1 Consider a program with only one variable with domain=
{1,---,12}. Assume that the abstraction functibrmapsz € D to |(z —

1)/3] + 1. There are four abstract states corresponding to the equivalence

42

classes{1,2,3}, {4,5,6}, {7,8,9}, and{10,11,12}. We call these abstract
statesl, 2, 3, and4. The transitions between states in the concrete model are
indicated by the arrows in Figure 3.3. Small dots denote non-reachable states.
Suppose that we obtain an abstract counterexaffipte(T, 2,3, 1). It is easy

to see thaf’ corresponds to some real trace. As an examiple,5 — 9 — 12.

Therefore, we say that is not spurious.

Given an abstract state the set of concrete statesuch thati(s) = s'is
denoted by: 1 (5), i.e.,h"1(5) = {s|h(s) = 5}. We extendh~! to sequences
in the following way:h*l(f) is the set of concrete paths given by the following

expression

n n—1

{(sb T ,Sn>| /\h(sl) = §Z A I(Sl) A /\ R(5i> 5i+1)}'

=1 i=1
We will occasionally writeh;;th to emphasize the fact that? is applied to
a sequence. Next, we givesymbolicalgorithm to computelfl(f). Let
Sy = h71(51) N I and R be the transition relation corresponding to the un-
abstracted Kripke structurk/. For1 < i < n, we defineS; in the following
manner:S; := I'mg(S;_1, R) N h~1(;). In the definition ofS;, Img(S;_1, R)
is the forward image of5;,_; with respect to the transition relatioR. The
sequence of setS; is computed symbolically using OBDDs and the standard
image computation algorithm. The following lemma establishes the correct-

ness of this procedure.

Lemma 3.2.1 The following are equivalent:
() The pathf corresponds to a concrete counterexample.
(i) The set of concrete path‘sl(f) IS non-empty.
(i) Forall 1 <i<n,S; #0.

43

Proof We first prove thati) and(ii) are equivalent, then prove th@t) and

(7i1) are equivalent.

(1) = (ii) Assume thafl’ corresponds to a concrete counterexaniple=
(s1,...,s,). From the definition off, h(s;) = §; ands; € h~1(5;). Since
T is a trace in the concrete model, it has to satisfy the transition celatnd
start from initial state, i.eR(s;, s;+1) ands; € I. From definition ofh*l(f),
T e h"\(T).

A~

(i) = (i) Assume that:~(7') is non-empty, we pick a tracés, ..., s,)
from h='(T)). According to the definition of~!(T'), h(s;) = 5. Thereforel'

corresponds to a concrete counterexample.

(1i) = (1i7) Assume thath*l(f) is not empty, then there exists a path
(s1,...,8,) Whereh(s;) = s; ands; € I. Therefore, we have, € S;.
Let us assume that; 0 ands; € S;. From the definition of. (7)), s;41 €
Img(s;, R) ands;; € h™1(5;11). Therefores; 1 € Img(s;, R) Uh™1(5:11).

It is easy to see that
$; €85; — Img(sZ,R) - Img(SZ,R)

is a tautology. Therefores,,; € I'mg(S;, R) U h~'(5;;1). According to the
algorithm,S;.; = I'mg(S;, R)Nh~'(5;;1). Therefores;,; € Siy1 andS; ; #

(). By induction,S; # 0, forall 0 < i < n.

(i1) = (ii) For the other direction assume th&t+£ () for 1 < i < n. We
choose a state, € S, and construct a trace backward inductively. Assume
thats; € S;, from definition ofS;, we have that; € I'mg(S;_1, R) N h=(5;)

and S;_; is not empty. Select; ; from S;,_;. From the definition of
Si—1, Siz1 € h7Y(s;7). Therefore,s;.; € h7'(s;_1). By induction,

s; € Sy = h7Y(5) N I. Therefore, the tracés,,...,s,) that we have

44

constructed satisfies the definition/of' (T'). Soh~!(T) is not empty. O

Suppose that condition (iii) of Lemma 3.2.1 is violated, andilbe the
largest index such that + (). Thens; is called thefailure stateof the spurious

counterexamplé’.

1 2 3 4
m. >~ m >~ m ~m

Figure 3.4: An abstract counterexample

Algorithm SplitPATH (7))

(S, n) = ReactRestrict()

if n = 0 then output "counterexample exists”
elseoutputn, S

Figure 3.5: SplitPATH checks a spurious abstract path.

Example 3.2.2 Consider the similar program to Example 3.2.1 with one vari-
able with domainD = {1,--- , 12}. Also assume that the abstraction function

h = |(x —1)/3] + 1. We call these abstract states2, 3, and4. The tran-
sitions between states in the concrete model are indicated by the arrows in
Figure 3.4; small dots denote non-reachable states. Note that the transition be-
tween9 and 12 in Example 3.2.1 is redirected betwe@rand 12. It is easy

to see thaf is spurious. Using the terminology of Lemma 3.2.1, we have

45

Sy ={1,2,3}, S2 = {4,5,6}, S5 = {9}, andS, = (. Notice thatS, and

therefore/mg(Ss, R) are both empty. Thus; is the failure state.

function ReachRestrict(f)

S=n(s)NI

j=1

while (S # 0 and j < n) {
j=i+1
SpreV:S

S =1Img(S,R)Nh7'(s;) }
if S # () then return (S,0)
else return (Sprev, J)

Figure 3.6: ReacliRestrict computes the reachable states within
It follows from Lemma 3.2.1 that ih*l(f) is empty (i.e., if the counterex-
amplef is spurious), then there exists a minimal2 < i < n) such that
S; = (). The symbolic AlgorithmSplitPATH in Figure 3.2.1 computes this
number and the set of statés ;; the states irb;_, are calleddead-endstates.
After the detection of the dead-end states, we proceed to the refinement step
(see Chapter 3.3). On the other hand, if the conditions stated in Lemma 3.2.1

are true, thersplitPATH will report a “real” counterexample and we can stop.

3.2.2 Identification of spurious loop counterexamples

Now we consider the case when the counterexarﬁple a loop, which we

write as(si, ..., 5,)". Note that the general loop counterexample may start
with a path and then end with a loop, i.€.~ (81, 5) (855515 -+, Sn)”. We

focus on discussing the first case. However, the derived lemmas and tlseorem
will apply for the general cases as well. It is easy to see Theain also be

written as a infinite path, i.e.,

[} = @
.‘/%
[}
[}
® < L4
[} \\.
N
[} > @
P 3 Si 53 S7 S3
e TTTTEEEEEEEmEEEEEEmEEEE" .
y -3 S
o > @ —] . 7.
o . s.\
[} . .
.] 7.
® .
N
(] > @ ([] > @ {] > @

Figure 3.7: A loop counterexample, and its unwinding.

Intuitively, T corresponds to a concrete infinite pdth = (sy...s;...)
where R(s;, sj41) if and only if for all j > 1, s; € h ' (Sina)) Where
ind(j) = (j — 1) mod n + 1. Since this case is more complicated than the

path counterexamples, we first present an example in which some of the typi-

cal situations occur.

Example 3.2.3 We consider a loofs; s3)“ as shown in Figure 3.7. In order

to find out if the abstract loop corresponds to concrete loops, we unwind the

counterexample as demonstrated in the figure. There are two situations where
cycles occur. In the figure, for each of these situations, an example cycle (the

first one occurring) is indicated by a fat dashed arrow. We make the following

important observations:

(i) A given abstract loop may correspond to several concrete loogiffer-

ent size

a7

(i) Each of these loops may start at different stages of the unwinding.

(iii) The unwinding eventually becomes periodic (in our cd$e- S3), but
only after several stages of the unwinding. The size of the period is the
least common multiple of the size of the individual loops, and thus, in

generakexponential

We conclude from the example that a naive algorithm may have expo-
nential time complexity due to an exponential number of loop unwindings.
The following theorem however shows that a polynomial number of unwind-
ings is sufficient. Letnin be the minimum size of all abstract states in the

A~

loop, i.e.,min = 1r<11j<r1 |h71(5;)]. Tunwina denotes the the finite abstract path
YA
(51,...,5)™™ je., the path obtained by unwinding the loop partZof

(min + 1) times.

Theorem 3.2.1 The following are equivalent:
M T corresponds to a concrete counterexample.

(i) h, (Tunwina) is NOt eMpty.

path

Proof Let us first start with some easy observations. Recall thas
the transition relation of the Kripke structure. By definition, the elements of

hol (Tunwina) have the following form

path

(Bl Bhe oo, P by ()

for which the following property hold:

bi e h7'(s;) forall b} in P.

48

Each such patl® has lengthl, := n x (min + 1), and we can equivalently

write P in the form

<d1,...,dL> (**)

with the properties
1. dy € h}(5)N1,and
2. for a”j <L, Iif dj € hil(gmd(j)) thendj+1 € hil(gmd(jJrl)).

Recall thatmin was defined to be the size of the smallest abstract state
in the loop, i.e.min{|A~*(51)|,...,|h"'(5,)|}, and letM be the index of an
abstract stat@y; s.t.|h~1(537)| = min. (Such a state must exist, because the

minimum must be obtained somewhere.)

(1) = (ii) Suppose there exists a concrete counterexample. Since the coun-
terexample contains a loop, there existsrdimite path/ = (cy, .. .) such that
c1 € h™(s1), and forallj, if ¢; € K1 (Sina0)), thencji € A7 (Sinagj+1))- Ac-
cording to(xx), the finite prefix(cy, . . ., ¢z) of I is contained im;;th(funwmd),
and thu%;;th(funwmd) is not empty.
(1) = (i) Suppose thdt;;th(funwmd) contains a finite pati®.
Claim: There exists a state which appears at least twic£in
Proof of Claim: SupposeP is in form (x). Consider the states
bi, b3, .. bt By (%), all bk, are contained irh ' (53;). By definition
of M, howeverh~'(55;) contains onlymin elements, and thus there must be
at least one repetition in the sequeriée b3,, ..., b7 . Therefore, there
exists a repetition in the finite pa#, and the claim is provedl (Claim)

Let us now writeP in form (xx), i.e., P = (dy, ...,dr), and let a repetition

be given by two indicea < (3, s.t. d, = dz. Because of the repetition, there

49

must be a transition fronds_; to d,,, and therefored,, is the successor state of

ds—1 in acycle. We conclude that
(di,...,do—1)(day. .. ,dg—1)"

is a concrete counterexamplel

We conclude that loop counterexamples can be reduced to path counterex-
amples. In Figure 3.8, we describe the algoritBplitLOOP which is an
extension ofSplitPATH . In the algorithm;funwmd is computed by the subpro-

gramunwind.

Algorithm SplitLOOP (7))

min = min{|h=1(51) N I],...,|h71(5)|}
Thonwind = unwind(f, min + 1)

Computej and Sy, as iNSPItPATH (Thuwind)
k:=ind(j)

p:=ind(j+ 1)

output Sprev, k, p

Figure 3.8: SplitLOOP checks if an abstract loop is spurious
If the abstract counterexample is spurious, then the algor@8pmLOOP
outputs a seb,.., and indiced:, p, such that the following conditions hold:
1. The states inS,.., correspond to the abstract stafg i.e., Spev C
h™(5)
2. All states inS,,., are reachable fromh='(57) N I.

3. k is the successor index pfwithin the loop, i.e., ifp = n thenk = 1,

and otherwisé = p + 1.

4. There is no transition from a state 8., to A7'(5), ie.,

Img(Sprev, R) N h71(5;) is empty.

50

5. Thereforeg, is the failure state of the loop counterexample.

Thus, the final situation encountered is indeed very similar as in the case of
path counterexamples. Note that the nontrivial feature of the algo&pin
LOORP is the fact thatnin unwindings of the loop are necessary. The correct-
ness of this approach is not trivial, and details are deferred to the appendix.

There may be cases wheren is a large number. Unwinding the loop may
be impossible. In the following, we describe a new practical technique which
use fixpoint computation to check whether a loop counterexample is spurious.

Given a Kripke structure\/ = (5,1, R, L), and an abstract tracE =
(51,...,5,), assume thaf) = U;;l (Q); be a set of states whe€g, is a subset

of states such that
Qi NQr="0,|Q:] = [n~"(51) NI, and |Q;| = |h™'(s;)| for 1 < j < n.

Assume thafpi, ..., p,} be a set of arbitrarpijection functions wherep; :
Q1 — (h'(s1)NI)andp; : Q; — h~'(s;) for 1 < j < n. Then we define

g : Q@ — S be afunction where fof € Q;,

It is easy to see thaj is a well-defined function. We define a new Kripke

structureN = (SN, IV RN LN), whereSY = Q, IV = Q,, and
= {(a.q) | R(9(q),9(d"),q € Qu,q" € Q1}
U {(g.4") | R(9(q),9(¢)).q € Qj; ¢ € Qjt1 for 1 <j <n}

Intuitively, N only captures the transitions occurring betwéert (s;) and
h = (Bina(j+1))- Assume that
™ = (g1) {git1 - qm)”

be a loop trace iV, i.e.,q; € SY for 1 < j < m. Then the following lemma

holds.

51

Lemma 3.2.2 The following claims are valid:
(i) If 1, q2 € Qr, then(q1, ¢2) & RY;
(i) (m —i) mod n =0, i.e., the period of ™" is the multiple ofn.

Proof (i) This can be directly derived from the definition Bf.

(¢7) Assume thatn — i = o *x n + [wheref # 0. Assume that;, € @, and

¢m € Q¢. Then there exists,
m—i=ksxn+(n—-n+1)+&=axn+p
or
(n—n+1)+x=pFmodn

Note that(g,,, ¢;11) € RY, andg;,1 € Q,,. Then we have
n

_fn=1 n#n
5—{1 n=n

For either casesy —n+ 1) + & = 0 mod n. This contradict the hypothesis

that3 # 0. Therefore,(ii) claim is correct.O

Furthermore, the following theorem holds.

Theorem 3.2.27T corresponds to a concrete loop counterexample if and only

if N, IV = EG true.

Proof Assume thatV, IV = EG true, then there exists an infinite path on
N. SinceN is finite, the infinite path must forms a loop. Assume that this loop
IS

T = (g1 @) {Gi1-- - qm)”

52

whereg; € SY for 1 < j < m. Apparently,

T =(9(q1)---9(q:))(9(qiv1) - - - g(qm))”

is an infinite trace on/ sinceg(q;) € Sforall 1 < j < n. In the following,
we will argue thatl" is the concrete loop counterexample correspondinﬁ,to

i.e., we need to prove that

corresponds to the infinite path

T={9(q1)---9(qir1) - 9(qm), 9(qix1) - - - 9(@m), - - -)-

Since the period of is the multiple of the period df. It is sufficient to show

that the finite path

T =(g(q1) - 9(qi+1) - - - 9(qm))

corresponds to a prefix & with the same length. According to the definition
of RN, RY(q;, ¢j+1) implies thaty; € Qina(j) @ndgj+1 € Qina(j+1)- Therefore,
for j < m, 9(¢;) = pinaj)(@;) € W (Sinagj))- Therefore T corresponds to a
concrete loop counterexamgle

On the other hand, assume tﬂA’ad:orresponds to a concrete loop counterex-
ample

T = <51, ceey 5i><5i+17 ceey Sm>w.

According to Lemma 3.2.2n —imod n = 0 ands; € Sj,q;). Sincep; is
a bijection, there must exist a set of states,...,q,...,qn} € Q where
pina;)(@;) = s;. Or, g(g;) = s;. Note thatg; € Qina;)- According to the
definition of RY, (¢;,¢;+1) € RY if and only if R(g(q;),9(gj+1)). There-

fore, R(s;,s;11) implies thatRY (¢, gj+1). Also, R(sm, s;+1) implies that

53

RN (g, qj+1)- Overal, TV = (q1,...,4;){gj+1,---.qm)* is an infinite trace
on N. Therefore NV, IV = EG true.

a

In the implementation, it may be expensive to buNddirectly. Instead, we

build the transition relatio®” on-the-fly during computin@G true.

3.3 Refining the abstraction

First, we will consider the case when the counterexarifpi:e (S1,-++ ,8n) IS
a path. Let us return to a previous example for a closer investigation of failure

states.

Example 3.3.1 Recall that in the spurious counterexample of Figure 3.4, the
abstract stat8 was thefailure state. There are three types of concrete states

in the failure staté:

(i) Thedead-end state) is reachable, but there are no outgoing transitions

to the next state in the counterexample.

(i) Thebad state7 is not reachable but outgoing transitions cause the spuri-
ous counterexample. The spurious counterexamples is caused by the bad

state.
(i) Theirrelevant state 8 is neither reachable nor bad.

The goal of the refinement methodology described in this section is to refine
h so that the dead-end states and bad states do not beltmggamebstract
state. Then the spurious counterexample will be eliminated.

If T does not correspond to a real counterexample, by Lemma 3.2.1 (iii)

there always exists a s6f of dead-end states, i.65; C h=1(5;) with1 <i <n

54

such thatfmg(S;, R) N h~'(5;11) = 0 andS; is reachable from initial state set
h~1(51) N I. Moreover, the seb; of dead-end states can be obtained as the
output S, Of SplitPATH or SplitLOOP. Since there is a transition fro@)

to 5;;1 in the abstract model, there is at least one transition frdmadstate

in h~1(s;) to a state im~!(5;;1) even though there is no transition frafpto
h~'(5:;1), and thus the set of bad states is not empty. We partitions;) into

three subsets; , S; 1, andsS, , as follows:

Name Partition Definition
dead-end states 5, S;
bad states Si1 {s e h™1(5)|3s' € h" (5:41).R(s,5)}

irrelevant states S; ., h71(5:) \ (Sip U Siq)

Intuitively, S; o denotes the set of dead-end states, i.e., states'{i3;) that
are reachable from initial statess; ; denotes the set of bad states,i.e., those
states im~!(5;) that are not reachable from initial states, but have at least one
transition to some state in~!(s;11). The setS;; cannot be empty since we
know that there is a transition frofm!(s;) to ' (5;11). S;. denotes the set
of irrelevant states, i.e., states that are not reachable from istass, and
do not have a transition to a state/in'(s; 7). SincesS;; is not empty, there
is a spurious transitiod; — 5,,;. This causes the spurious counterexample
T. Hence in order to refine the abstractibrso that the new model does not
allow 7', we need a refined abstraction function which separates the two sets
Sio andsS; 4, i.e., we need an abstraction function, in which no abstract state
simultaneously contains states fréfyy and froms; ;.

It is natural to describe the needed refinement in terms of equivalence re-
lations: Recall that:~(3) is an equivalence class ef which has the form
Ey x --- x E,,, where eachF; is an equivalence class ef;,. Thus, the re-
finement=" of = is obtained by partitioning the equivalence clasggsnto

subclasses, which amounts to refining the equivalence relatipriBhesize of

55

[3141 5 J[[3A15] —374m
711X X 7 1 X
8(0]|x 1 81| O 1 7{;93 2
9(x|0 0 9 O 0

Equivalence Class Refinement (a) Refinement (b)

Figure 3.9: Two possible refinements of an Equivalence Class.

the refinemens the number of new equivalence classes. Ideally, we would like
to find the coarsest refinement that separates the two sets, i.e., thatisgpa

refinement with the smallest size.

Example 3.3.2 Assume that we have two variables v,. The failure state
corresponds t@ne equivalence clads, x E,, whereE, = {3,4,5} and E, =
{7,8,9}. In Figure 3.9, dead-end state, are denoted by 0, bad statés,
by 1, and irrelevant states by

Let us consider two possible partitions Bf x Es :
o Case (a) {(3,4), (5)} x {(7).(8),(9)} (6 classes)
e Case (b) :{(3),(4,5)} x {(7,9),(8)} (4 classes)

Clearly, case (b) generates a coarser refinement than case (a). It can be easily

checked that no other refinement is coarser than (b).

In general, the problem of finding the coarsest refinement problem is com-

putationally intractable.
Theorem 3.3.1 The problem of finding the coarsest refinement is NP-hard.

The proof is provided in Chapter 3.6.
We therefore need to obtain a good heuristics for abstraction refine-

ment. WhensS, , is empty, there is a polynomial algorithm which can find

56

the coarsest refinement. The algorittalyRefine (see Figure 3.10) corre-
sponds to this case. Ldfj*,PJf be two projection functions, such that for
s = (di,...,dn), P'(s) = dj and Py (s) = (du,...,dj_1,djs1,...,dm).
Thenproj(S; o, j,a) denotes th@rojectionset{PJf(s)|Pj+(s) =a,s € Sio}.
Intuitively, the conditionproj(S;o,7,a) # proj(Sio,Jj,b) in the algorithm
means that there existgl,...,d;—1,dj+1,...,dn) € proj(Sio,J,a) and
(dv,...,dj—1,djs1,...,dp) & proj(Sio,j,b). According to the definition
of proj(Sio,j,a), s1 = (di,...,dj_1,a,djs1,...,dn) € Sip andsy =
(dv,...,dj—1,b,dj11,...,dy) & Sio, 1.€.,52 € S;1. The only way to sepa-
rate s; and sy into different equivalence classes is tlhaandb have to be in
different equivalence classes=®f, i.e.,a #; b.

Algorithm PolyRefine

for j:=1tom/{

=/ . =

===
for everya,b € E; {
if p’roj(si,(]v ja (I) 7£ p’roj(si,(]v ja b)
then =/ := = \{(a,)} 1

Figure 3.10: The algorithrRolyRefine

Lemma 3.3.1 WhenS;, = 0, the relation=; computed byPolyRefineis an
equivalence relation which refines; and separatess;, and S; ;. Further-

more, the equivalence relatics is the coarsest refinement af.

The proof of this lemma is provided in Chapter 3.6.

Note that in symbolic presentation, the projection operation (.S; o, j, a)
amounts to computing a generalized cofactor, which can be easily done by
standard BDD methods. Given a functign: D — {0,1}, a general-

ized cofactor of f with respect tog = (Z:p xr = di) is the function

57

Si,x
Sz’,l >
- Si,O
h=(571) h=1(5i) h=(5i11)

Figure 3.11: Three set$ o, S; 1, andS; .,

fo=flz1,...,2p_1,dp, ... dg, Tg11, ..., x,). IN Other words f, is the pro-
jection of f with respect tog. Symbolically, the seb; , is represented by a
function fs,, : D — {0,1}, and therefore, the projectignoj(S; o, j, a) of
Si,o to valuea of the jth component corresponds to a cofactorfgf;.

In our implementation, we use an heuristics which is based on the following

corollary to the proof of Lemma 3.3.1.

Corollary 3.3.1 EvenifS; . is not empty, the relatios’, computed byPolyRe-

fine is an equivalence relation which refines and separates); and S; ;.

Refinement HeuristicsWe merge the states i} ,, into .S; ;, and use the al-
gorithm PolyRefineto find the coarsest refinement that separates thesgts
andS;; U S; .. The equivalence relation computedPylyRefinein this man-

ner is in general not optimal, but it is a correct refinement which sepatétgs

andS; ;, and eliminates the spurious counterexample. This heuristic has given

good results in our practical experiments.

Since according to Theorem 3.2.1, the algorit@plitLOOP for loop
counterexamples works analogously§ditPATH , the refinement procedure
for spurious loop counterexamples works analogously, i.e., it8ped. OOP

to identify the failure state, anélolyRefineto obtain a heuristic refinement.

58

Our refinement procedure continues to refine the abstraction function by
partitioning equivalence classes until a real counterexample is found, or the
ACTL” property is verified. The partitioning procedure is guaranteed to termi-
nate since each equivalence class must contain at least one element. Thus, our

method is complete.

Theorem 3.3.2 Given a modelM and anACTL* specificationp whose coun-
terexample is either path or loop, our algorithm will find a modélsuch that

MEeeMEe.
Proof There are three cases to consider.
@ If M = ¢, thenM |= ¢ according to Theorem 2.4.1

(i) If M ¥~ ¢, and the generated abstract counterexample is not spurious,

then there exists a concrete counterexample, and hénge, .

(iir) If M ¥~ ¢, and the generated abstract counterexample is spurious, then
PolyRefinewill refine the abstraction. Since each refinement step par-
titions an existing equivalence classes istoctly smaller equivalence
classes, after a finite number of steps the equivalence relation will be-

come theequalityrelation, and thereforé/ = M. HenceM K .

3.4 Performance improvements

The symbolic methods described in Chapter 3.2 and Chapter 3.3 can be di-
rectly implemented using BDDs. Our implementation uses additional heuris-

tics which are outlined in the following.

59

3.4.1 Detecting more real counterexamples

Example 3.4.1 Consider a program similar to Example 3.2.1. The program
has only one variable € {1,---,12}. The abstraction functioh(z) =

|(z — 1)/3] + 1. There are four abstract states corresponding to the equiv-
alence classe$l, 2,3}, {4,5,6}, {7,8,9}, and{10,11,12}. We call these
abstract state$, 2, 3, and4. The transitions between states in the concrete
model are indicated by the arrows in Figure 3.4.1. Using $piitPATH al-
gorithm,f is spurious. However, there exists a trdtes, 9, 7, 12) which is a

real counterexample. Note that this trace does not correspond to the abstract

Figure 3.12: Detecting more real counterexamples

Although the tracd1, 4,9, 7, 12) does not correspond to the abstract coun-
terexample, finding this trace avoids rechecking the model which may be ex-
pensive. Therefore, a relatively small effort to detect such countergbes
is justified as a valuable heuristic. For loop counterexamples, the scesario i
similar. Consider the loop counterexamﬁe: (T, A>°" of Figure 3.13. Similar
to Example 3.4.17 is also spurious according to the algoritt8plitLOOP.
However, there exists an infinite path 1, . . .) which is a potential counterex-

ample.

60

Figure 3.13: A spurious loop counterexample2)”

Given a propertyy and a Kripke structur@/ = (S, I, R, L), assume that a
general counterexamp@ includesn abstract states. We modify our original

algorithms in order to detect more real counterexamples.

(i) We restrict the model to be a smaller mod€él = (SV, 1V, RN LV)
where the state spacg" = (U, h ' (5)), IV = h7'(5) N1,
RN(s,s') = R(s,s') fors,s’ € SN, andL¥(s) = L(s) for s € SV.
Then we checkV, IV |= —¢ is true or not. If a concrete counterexample
is found, then the algorithm terminates. We use bounded model check-
ing algorithm [11] to checkV, IV = —p. When the problem is hard to

decide, we abandon the algorithm and directly go to the second step.

(i) If no counterexample is found, we uSplitPATH or SplitLOOP to

compute a refinement as described above.

This two-phase algorithm is slower than the original one if we do not find a
concrete counterexample; in many cases however, it can speed up the searc

for a concrete counterexample.

3.4.2 Abstraction for approximation

Despite the use of partitioned transition relations it is often infeasitbt®in-
pute the total transition relation of the modgl [26]. Therefore, the abstract

model M cannot be computed from/ directly. In previous work [5, 31], a

61

method which we calkkarly approximatiorhas been introduced: first, abstrac-

tion is applied to the BDD representation of each transition block and then
the BDDs for the partitioned transition relation are built from the alrealoly
stracted BDDs for the transition blocks. The disadvantage of early approxima-
tion is that itover-approximatethe abstract model/ [27]. In our approach, a
heuristic individually determines for each variable clustér;, if early approx-
imation should be applied or if the abstraction function should be applied in an
exact manner. Our method has the advantage that it balances overapproxima-
tion and memory usage. Moreover, the overall method presented in our paper

remains complete with this approximation.

Lemma 3.4.1 Let R be the abstract transition relation obtained from existen-
tial abstraction. Let{R:*™} be a partitioned transition relation obtained
from early approximation. Le{RsomPinedl pe the final partitioned transi-
tion relation which we obtain in our approach. Théh— A, RemPined and

combined early
/\i R; - /\z R

Thus, the approximation in our approach indeed is intermediate between early
approximation and exact existential abstraction. Our method remains com-
plete, because during the symbolic simulation of the counterexample the al-
gorithmsSplitPATH andSplitLOOP treat both forms of overapproximations,

i.e., virtual transitions and spurious transitions, in the same way.

3.4.3 Abstractions for distant variables

In addition to the methods of Chapter 3.1, we completely abstract variables
whose distance from the specification in th&riable dependency grapis
greater than a user-defined constant. Note that the variable dependency graph
is also used for this purpose in the localization reduction [5, 68, 72] in a sim-

ilar way. However, the refinement process of the localization reductioh [68

62

can only turn a completely abstracted variable into a completely unatestrac
variable, while our method uses intermediate abstraction functions.

A user-defined integer constafiir determines which variables are close
to the specificatiorp. The setNEAR of near variables contains those variables
whose distance from the specification in the dependency graph is af mgst
andFAR = wvar(P) — NEAR is the set of far variables. For variable clusters
without far variables, the abstraction function remains unchanged. For variable
clusters with far variables their far variables are completelyrabttd away,
and their near variables remain unabstracted. Note that the initial efistra
for variable clusters with far variables looks similar as in the Iazlon re-
duction. However, the refinement process of the localization reduction [68]
can only turn a completely abstracted variable into a completely unatestrac

variable, while our method uses intermediate abstraction functions.

3.5 Experimental results

We have implemented our methodology in NuSMV [24] which uses the CUDD
package [101] for symbolic representation. We performed two sets of experi-
ments. One set includes four benchmark designs and three industrial designs
from Synopsys. The other was performed on an industrial design of a multi-
media processor from Fujitsu [1]. All the experiments were carried out on a

200MHz PentiumPro PC with 1GB RAM memory using Linux.

3.5.1 Experiments on benchmark circuits

The first benchmark set includes four publicly available designs and three in-
dustrial designs. The properties of the design are described in Table 3.1. In the
table, the second column (#Var) shows the number of symbolic variables in the

design while the third column (#Reg) shows the corresponding number of the

63

Boolean variables. For example, a symbolic variable with domain whose size
equals to eight corresponds to three Boolean variables. Therefore, the num-
ber of Boolean variables is always larger or equal to the number of symbolic

variables. Overall, thirty seven properties are considered in thidipesudk.

Design #Var | #Reg| #Prop
gigamax 10 16 1
guidance 40 55 8
waterpressg 6 21 8
PCI bus 50 89 15
ind1 72 72 1
ind2 101| 101 1
ind3 190| 190 1

Table 3.1: Properties of the given benchmark designs

The results for these designs are listed in Table 3.2. Note that average time
and space usages per design are reported in this table. In the table, the perfor-
mance for an enhanced version of NuSMV with cone of influence reduction
(NuSMV + COI) and our implementatiolNuSMV + ABS) are compared.
#Var and #Prop are properties of the designs: #Vafw means that is the
number of symbolic variables, agdhe number of Boolean variables in the de-
sign. #Prop is the number of verified properties. The columns #COI and #ABS
contain the number of symbolic variables which have been abstracted using
the cone of influence reduction (#COIl), and our initial abstraction (#ABS).
The column "Time” denotes the accumulated running time to verify all #Prop
properties of the designZ'R| denotes the maximum number of BDD nodes
used for building the transition relation}/C'| denotes the maximum number
of additionalBDD nodes used during the verification of the properties. Thus,
|TR| + |MC| is the maximum BDD size during the total model checking pro-
cess. For the larger examples, we use partitioned transition relationtig se

the BDD size limit to 10000.

64

Design NuSMV+COl NuSMV+ABS

#COI | Time |TR| |MC| | #ABS | Time ITR| | |MC|
gigamax 0| 03 8346 1822 9 0.2]| 13151 816
guidance 30 35| 140409| 30467| 34-39 30 | 147823 10670

waterpresg 0-1| 273| 34838| 129595 4| 170| 38715| 3335
PCI bus 4 | 2343| 121803| 926443| 12-13| 546 | 160129| 350226
ind1 0 99 | 241723| 860399 50 9 | 302442| 212922
ind2 0| 486| 416597| 2164025 84 33| 362738| 624600
ind3 0| 617| 584815| 2386682 173 15| 426162| 364802

Table 3.2: Running results for the benchmark designs

On the other hand, we also report the relative time and space difference be-
tween our approach and traditional cone of influence reduction in Figure 3.14
and Figure 3.15. In the figures, the x axis corresponds to the number of proper-
ties and y axis corresponds to the relative time and space differencetresiyec
(Time(COI)/Time(Abs) and Space(COIl)/Space(Abs)). Although our approach
uses less than 50% more memory than the traditional cone of influence re-
duction tobuild the abstract transition relation, it requires one magnitude of
memory less duringnodel checking This is an important achievement since
the model checking process is the most difficult task in verifying large designs.
More significant improvement is further demonstrated by the Fujitsu IP core

design.

3.5.2 Debugging a multimedia processor

As another example, we verified a multimedia assist (MMA-ASIC) pramess
developed by Fuijitsu [1]. The system configuration of this processor is shown
in Figure 3.16 [102]. A dashed line represents a chip boundary. MM-ASIC is
connected to a host CPU and external 1/0 units via "Bus-H”, and to SDRAMs
via"Bus-R”. MM-ASIC consists of a co-processor for multimedia instructions

(MMA), a graphic display controller (GDC), peripheral I/O units, and five bus

65

40+

35

30}

251

15

10

Figure 3.14: The relative time improvement

50

40|

20

10

|

Figure 3.15: The relative time improvement

66

bridges (BBs).

external Host CPU SDRAM
/O units A
Y A Bus-H A
- — i — >| 30MHZ I

“MM-ASIC y BUS-R :

: BB-H QOMHZi
Bus-I Bus-M Bus-S y
30MHz 90MHz 90MHz

- [Be ~-——(BB-R
i i .
vy '
BB-M |(<==--- == MMA GDC

- peripheral I/O units

Figure 3.16: Configuration of MMA-ASIC

It is one of the characteristics of a system-on-chip that the design contains
bus bridges, because the components of the system may have differentinterface
protocols or different frequencies of operation. Or bus bridges are used to
construct a bus hierarchy according to the locality of transactions. MM-ASIC

consists of the following five bus bridges.

e "BB-1"and "BB-H": These separate Bus-M from Bus-H and Bus-I, since

the bus frequency of Bus-M is different from that of Bus-H and Bus-I.

e "BB-S”: This separates the transactions between GDC and SDRAM
from those between MMA and host CPU, since they are major trans-

actions in MM-ASIC.

e "BB-R": This solves the difference of the bus protocols between Bus-R

and Bus-S.

e "Bus-M": This separates Bus-M from the local bus of MMA.

67

The RTL implementation of MM-ASIC is described in Verilog-HDL. The
total number of lines of code is about 61,500. The verification targets to verify
the bus transactions. Therefore, three operational units, peripheral I/08, MM
and GDC are omitted. After this elimination of the units, the number of regis-
ters is reduced to about 4000. Fujitsu engineers then abstracted away the data
path which is not useful for our verification task. The final description contains
about 500 latches.

Figure 3.17 shows some control signals and controllers within bus bridges.
BB-H, BB-I and BB-M contains a DMA controller 'DMAC” which controls a
DMA transfer between SDRAM and a component, such as an external/internal
IO and MMA. BB-H contains another controller "THSTC” which controls a data
transfer between a host and the other components but external 10s. BB-R as-
serts "FreeS” when it can accept a request from Bus-S. BB-S asfeesW”
("FreeR”) when it can accept a write (read) request from Bus-M. A barsstr

action on Bus-M consists of the following four phases.

e Arbitration phaseis the first cycle when a bus master asserts a request
signal. When more than one master requests, only the master which has
the highest priority goes into request phase in the next cycle. "ReqS”,
"ReqM”, and "Reql” are request signals on Bus-M for DMA transfer
from/to SDRAM. The signals are asserted by BB-H, BB-M, and BB-I
respectively. "RegH” is a request asserted by BB-H for normal (non-
DMA) data transfer. The priority of the requestfi&qM < Reql <
ReqS = ReqH.

e Request phags the next cycle after the arbitration phase. A bus master

passes the address and other control signals to a bus slave.

e Ready phasas the cycle when the data is ready to be transferred.

68

"DenQ” ("Denl”) is asserted when the write (read) data is ready todra
fer in the next cycle. "Pack” is asserted when the data is transferred
between BB-H and a bus bridge, such as BB-M and BB-I, in the next

cycle.

e Transfer phases the next cycle after the ready phase. A data is trans-

ferred between a master and a slave.

ReqgH & |ReqgS
BB~ | Reg ol N
: B
O | |- N E FreeS o
g N DenO,Denl, Pack, o -)
ol FreeW, FreeR | : U Bues
Yy RegqM .-
E DMAC Bus-M
)

Figure 3.17: Control signals on "Bus-M”"

In [102], the authors verified this design using a "navigated” model check-
ing algorithm in which state traversal is restricted by navigation cooti
provided by the user. Therefore, their methodology is not complete, i.e., it may
fail to prove the correctness even if the property is true. Moreover, thie na
igation conditions are usually not automatically generated. Since our model
checker can only accept SMV language, we translated this abstracteogveril
code into 9,500 lines of SMV code.

In order to compare our model checker to others, we tried to verify this
design using two state-of-the-art model checkers - Yang's SMV [106] and
NuSMV [24]. We implemented the cone of influence reduction for NuSMV,

but not for Yang’s SMV. Both NuSMV+COI and Yang's SMV failed to verify

69

the design. On the other hand, our system abstracted 144 symbolic variables
and with three refinement steps, successfully verified the design, and found a

bug which has not been discovered before.

3.6 Proofs for Refinement Theorem

Recall that in figure 3.9, we have visualized the special case of two vasiabl

and two equivalence relations in terms of matrices:

(3747 5][I35] 374
711X X 7 1 X
8(0]|x 1 8] O 1 7{;93 2
9(x|0 0 9 O 0

Equivalence Class Refinement (a) Refinement (b)

In order to formally capture this visualization, let us defineNtadrix Squeez-

ing problem.

Definition 3.6.1 Matrix Squeezing
Given an integer constarit and a finite(n, m) matrix with entries0, 1, z,
is it possible to obtain a matrix witkd I" entries by iterating the following

operations:
1. Merging two compatible rows.
2. Merging two compatible columns.

Two rows arecompatible if there is no position, where one row contains
and the other row containg All other combinations are allowed, i.e:,does
not affect compatibilityMergingtwo rows means replacing the rows by a new
one which containg at those positions where at least one of the two columns
containedl, and0 at those positions, where at least one of the two columns
contained.

For columns, the definitions are analogous.

70

SinceMatrix Squeezingis a special case of the refinement problem, it is
sufficient to show NP-hardness figlatrix Squeezing. Then it follows that the
refinement problem is NP-hard, too, and thus Theorem 3.3.1 is proved.

As mentionedVatrix Squeezingis easy to visualize: If we imagine the
symbolz to be transparent, then merging two columns can be thought of as
putting the two (transparent) columns on top of each ofielumn Squeezing
is a variant ofMatrix Squeezing, where only columns can be merged, and the
number of rows is left unchanged. We will first show NP-completeness of
Column Squeezing and then show NP-completenesshMéitrix Squeezing

by a reduction fronColumn Squeezing

Definition 3.6.2 Column Squeezing
Given an integer constak and a finite(n, m) matrix with entrie), 1, z, is it

possible to obtain a matrix witkk A columnsby iterated merging aolumns

?

The proof will be by reduction from problem GT15 in [48]:

Definition 3.6.3 Patrtition Into Cliques
Given an undirected graptV, £') and and anumbeK > 3, is there a partition

of Vinto k < K classes, such that each class induces a cliqueéoi’) ?

Theorem 3.6.1 (Karp 72) Partition Into Cliques is NP-complete.

Theorem 3.6.2 Column Squeezing NP-complete.

Proof: Membership is trivial. Let us consider hardness. We redRexeition
Into Cliques to Column Squeezing Given a graphiV, E') and a numbery,
we have to construct a matri¥ and a numbeA such that\/ can be squeezed

to size< A iff (V, E') can be partitioned irc K cliques.

71

We construct g|V|, |V|) matrix (a; ;) which is very similar to the adja-

cency matrix of(V, E):

1 ifi=j
aij =140 if(i,j) € E,i#j
x if (i,j) € E,i #j

Assume w.l.o.g. that’ = {1,...,n}. Thenitis not hard to see that for all
i,j7 € V, columns; and; are compatible iff(z, j) € F, since the) entries in
the matrix were chosen in such a way that the columns corresponding to two
non-adjacent edges cannot be merged.

By construction(V, E) contains a cliqué&' with verticescy, .. ., ¢ iff the
columnscy, ..., ¢ can all be merged into one. (Note however that compatibil-
ity is not a transitive relation.)

Thus, (V, £') can be partitioned inteC K cliques, iff the columns ofa; ;)

can be merged intgl K columns. Setting\ = K concludes the proof]

Theorem 3.6.3 Matrix Squeezings NP-complete.

Proof: Membership is trivial. We show hardness by reducidglumn

Squeezingto Matrix Squeezing. For an integem, let |bin(n)| denote the
size of the binary representationef Given an(n, m) matrix M and a number
A, itis easy to construct am + 1, m + |bin(m — 1)|) matrix B(M) by adding

additional columns tol in such a way that
(i) all rows of B(M) become incompatible, and
(i) no new column is compatible with any other (new or old) column.

An easy construction to obtain this is to concatenate the rows with the
binary encodings of the numbebs. .., m — 1 over alphabef0, 1}, such that

thesth row is concatenated with the binary encoding of the numbel. Since

72

any two different binary encodings are distinguished by at least one position,
no two rows are compatible. In addition, we addmah 1st row which contains
1 on positions in the original columns, afdn positions in the new columns.
Thus, in matrices of the form (A7), only columns which already appeared in
M (with an additionah symbol below) can be compatible.

It remains to determin€. We setl’ := (A + |bin(m — 1)]) x (n + 1).0
The summantbin(m — 1)| takes into account that we have addiea (m —1)|
columns, and the factdr. + 1) takes into account thak is counting columns,

while I is counting matrix entriesl

[1]2]3[4]|5][6|

2 6 1{{1|x|x|0]0|0O
2(x11|x|0|0]|X

3 x|{x|1|{x|0|O0

1 5 410|0|x|1|x]|0
5(10(0|0|x|1]|Xx
6(0(x|0|0|x|1

3 4

Column Squeezing
[1[2]3[4|5[6]7][8]9]
1|l1|x|x|0|]0|0}O0O|0O|O
2x|1|x]|]0|0x|0]0]1
3x|x|1{x|0|0|0|12]|0
4(10|0|x|1|x]|0]0]1]|1
510[0|0|x|1|x]|[12|0]O0
6l0(x|0|0|x|1}|212|0]1
7[lofoJoJofoOf1][1]1]

Matrix Squeezing

Figure 3.18: An instance d?artition into Cliques, and its reduction images.

Example 3.6.1 Figure 3.18 demonstrates how a graph instance is reduced to
a matrix instance. Note for example thdt 2, 3} is a clique in the graph, and
therefore, the columns 2, 3 of theColumn Squeezingproblem are compati-

ble. In theMatrix Squeezing Instance Columns7, 8,9 enforce that no rows

73

can be merged. RoWwguarantees that columnss, 9 can not be merged with

columnsl, ..., 6.

In the following, we prove that when; , is empty, there exists a poly-
nomial algorithm to find the coarsest refinement. ket h~'(s;) be a state
and P, P; be two projection functions, such that fer = (dy,...,d),
Pf(s) = dj and Py (s) = (du,...,dj1,dj41,...,dy). Note that this defi-
nition is consistent to the definition in Chapter 3.3. Sige is empty, S, o
andsS; ; form a partition ofn~(s;). A refinement ofv~!(5;) can be achieved
by refining each equivalence relations (and thus, simultaneously, the ab-
straction functions;).

We will replace each equivalence relatien) by the equivalence relation
=’ in the following way: We put two elemenis b of Dy, in the same
equivalence class (symbolically, = b) if and only if the projection sets
Pio = {P; (5)|P(s) = a.5 € Sy} and Py, = {P} ()|} (s) = b,s € Si1}
are equal. Intuitively, this means that any two states which only différe;jth
component are either both &) ; or both not inS; ;. As shown in Chapter 2.3,

the equivalence relations; (1 < j < m) define an equivalence relatieri on

D.

Lemma 3.3.1WhensS;, = 0, the relation=’ computed byPolyRefineis an
equivalence relation which refines; and separatess;, and S; ;. Further-

more, the equivalence relatics is the coarsest refinement af.
Proof First, we argue that’, is an equivalence relation:
e Reflexivity: for anya € Ej;, (a,a) is not removed frome;, therefore,
a E;- a,
e Symmetry:a =} b implies thatproj(Sio,j,a) = proj(Sio,j,b). Ac-
cording toPolyRefing (b, a) is not removed frore;. Thereforep = a;

74

e Transitivity: assume that =’ b andb =} ¢, Thenproj(Sio,j,a) =
pTOj(S@(],j, b) and proj(si,(]aj) b) = proj(si,(]aj) C)' Hence’

proj(Sio, j,a) = proj(Sio, j, ¢). This implies that E; c.

Secondly, we show that’ is a correct refinement, i.e., for any two states
s1 € S;pandsy € S;0, 51 # s2. Assume that there are two states €
Siq1 andsg € S;o wheres; =’ s,. Also assume that; = (di,...,d,,) and
sy = (e1,...,en) Whered; =’ e;. Without loss of generality, we assume that
dj #ejforl <j<kandd; =e;fork < j <mwherel <k < m. Consider
another state; = (e, ds,...,dy). Sincee; € Ey,d; € E;jforl < j < m,
s3 € h™'(5;). On the other hands; =’ s3 becausel, =} e, andd; =/ d; for
all 5. According to our definition o/, any two states which only differ in
the jth component are either both #); or both not inS; ;. Sinces; € S, 1,
it follows thats; € S;;. Furthermore, we consider = (ey, ea,ds, ..., dy,).
Following the same argument, =’ s, andsy € S, ;. Therefores; =’ s4. By
repeating this step times, we will obtain that; =’ s, ands, € S; ;. Hence,

Si1 N Sio # (. This contradicts our definition of;; and S;o. Therefore,
the equivalence relatios’ partitionsS; ; and S, into different equivalence
classes.

Finally, we prove that the equivalence relatieri defines the coarsest
refinement. Towards contradiction, we assume that there is another equiva-
lence relatiore” which defines a coarser refinement thanand it eliminates
the counterexample. Note that a coarser refinement implies that there are a
fewer number of equivalence classes generateetbyhan='". This implies
that there exists g such that=" generates fewer equivalence classes than
z;. Therefore, there must exist two elemeat$ € Dy, wherea # b but
a =7 b. According to the definition of), a #’ b if and only if there exist two

statess; andss, s.t. P} (s1) = a, P} (s2) = bandP; (s1) = P; (s), however,

75

eithers; € Si1 Asa & S;10rsy € S;1 A se € 5;1. We will first consider the
case ofs; € S;1 A sy & S;1. The second case will follow the same argument.
BecauseS, , is empty,s, ¢ S;; implies thats, € S;o. On the other hand,

a =7 bimplies thats, =" s, according to the definition o£”. Therefore ="
cannot partitionS, ; and.S;, into different equivalence classes, i.e., it cannot

eliminate the counterexample. Hene€,defines the coarsest refinement.

76

Chapter 4

Refinement for General ACTL
Counterexamples

In the previous chapters, we considered counterexamples of a very simple
structure, i.e., paths and loops. Paths and loops have two advantages: (i) they
are easy to understand for the human user and facilitate error detection, and
(if) they can be used efficiently in the context of the counterexample-guided
abstraction refinement methodology developed in the previous chapter. On the
other hand, it is easy to see that such simple counterexamples suffice only for
a limited subset oACTL.

In this chapter, we introductee-like counterexamples. Tree-like coun-
terexamples retain the abovementioned advantages of path and loop counterex-
amples, but are complete f&ACTL, i.e., whenever ad CTL specification is
violated, a tree-like counterexample can be constructed.

In the first two sections, we explain and motivate the framework for gener-
ating tree-like counterexamples. In the last two sections, we descrig@-a s
bolic algorithm that generates tree-like counterexamples fok@IT'L formu-

las and provide a refinement algorithm for such counterexamples.

77

Figure 4.1: An counterexample f&F —z

4.1 What are Counterexamples?

Definition 4.1.1 Let K be a Kripke structure, angd be a property in a modal
logic. A counterexampl€’is a Kripke structure from which it can be inferred

that K = .

While this definition is correct, it is too general to be of practical use, and
does not take into account the specifics of temporal logics. The following ex-

ample highlights what a counterexample looks like in the scenar®@T'L.

Example 4.1.1 Consider theACTL formula AF —z on the Kripke structure
K = (S,1,R, L) of Figure 4.1. The Kripke Structur€' in the same figure
corresponds to a trace dnwhich satisfie®G z. Thus,C'is a counterexample
for AF —x. By investigatingC, it is easy to conclude th&\F —z is false on

the original Kripke structurés.

Note that the counterexamples for a given Kripke structure can be treated
as a kind of “sub-structure”. In the above examgle= (S¢, {sc}, Rc, Le)
is a Kripke structure wherg8o C S, s¢ € I, Re € RandLq(s) = L(s) for
s € Sc.

Intuitively, C' includes partial behavior ak’. Recall from Chapter 2.1 that

this relationship is expressed by the simulation relafioir C, i.e., K simu-

78

latesC'. Note that existential properties of the simulated strucftii@so hold
for the simulating structur&. (As we know, for universal properties, the con-
verse implication holds, and thus the result follows from the fact that estiate
properties are negations of universal properties.)

SinceACTL counterexamples are witnesses for existential properties, we

obtain the following definition:

Definition 4.1.2 Let K be a Kripke structure, and be anACTL property. A

counterexample fap is a Kripke structuré€’ such that

1. The counterexampl€ disprovesp, i.e.,C = —p.
2. K = C, and thereforeK | —.

Thus, a counterexample is a (typically small) Kripke structure which dis-
provesy in a manner that can be simulatedin
Still, our definition of counterexamples is very general, and allows for com-

plicated counterexamples, as outlined by the following case:

Example 4.1.2 Let us return to Example 4.1.1 and Figure 4.1 Consider the
Kripke structureC’ shown in Figure 4.2. It is easy to see th#tis also a
counterexample sinck = ¢’ andC’ [~ AF —z. However,C’ contains more
information than necessary to locate bugs, and is harder to understand. In
particular,C' contains nested cycles as well as several states and transitions
which are not relevant for disprovin§F —x.

Therefore, it is desirable for the user to haVeinstead ofC” as a coun-

terexample.

The problem of understanding counterexamples becomes even more acute
for counterexamples of nested properties, where it is hard to find out which

part of a counterexample is related to which subformula of the property.

79

Figure 4.2: A counterexample fdf = AF —z in Example 4.1.1

Therefore, it is important for the model checkers to generate counterex-
amples likeC' whose structure is simple and easy to analyze. The remainder
of this chapter discusses a special type of Kripke structutese-like Kripke

structures which are easy to understand.

4.2 Tree-like Kripke structures

Recall that a Kripke structurf is a tuple(S, I, R, L), where(S, R) is a di-
rected graph called the graphA&f, I is the set of initial states, anfd: S — 24¢
is a labeling function.

Throughout this chapter, we will for simplicity assume ttiat {so} con-
tains a single initial state,, and that all states if are reachable frorg,. We
also assume that the Kripke structure is total. These assumptions sirhplify t
technical exposition. The results can be easily generalized.

In the following, we will first define tree-like Kripke structures. Late®

will show how to build a Kripke structure from finite paths and loops.

Definition 4.2.1 Given a Kripke structuréd(, theskeletorof K is obtained by

collapsing all strongly connected components of the grapk ahto single

80

nodes. K is tree-likeif (i) the skeleton ofK is a tree and (ii) the strongly

connected components éf are directed cycles.

53
S4

55 57

Kl K2

Figure 4.3: The left Kripke structure is tree-like, while the right one is not.

Thus, a tree-like Kripke structure is very similar to its skeleton,texeept

for the fact that certain vertices of the skeleton are expanded into cycles.

Example 4.2.1In Figure 4.3,K; is a tree-like Kripke structure whil&, is

not a tree-like Kripke structure.

Lemma 4.2.1If K is tree-like, then no two distinct directed cyclesiothave

a common node.

Proof If two distinct directed cycles have a common node then their
union is contained in one strongly connected component. This contradicts the

definition of tree-likeness™

Thus, tree-like Kripke structures are composed of cycles and connections
between them. We will exploit this fact later on in our algorithms. In partic
lar, the following definitions will facilitate the description of naturatuesive

algorithms.

81

Given a finite Kripke structurd(, a K-pathp = (s,...,s,) is the sub-
structure of K whose transition relation is the finite path, i.e;, € S and
(siysi11) € R. AK-loopl = (s1,...,s,)" is the substructure ol where
si €S, (si,8i41) € R, and(s,, s1) € R. Both K-paths and K-loops are called
bricks. The first state of a brick is calledanchor, denoted byunchor(q).
Given a brickg, S, stands for the set of states appearingi@nd R, for its

transition relation.

Definition 4.2.2 Given a finite Kripke structure’ = (S,1,R,L) and a
set of bricksQ) = {q,...,q.}, the constructedKripke structureK, =

(Sg, 1o, Ro, Lg) is defined as follows.

o Sg =7 S, therefore Sy C S,

o [o=1NSg;

e Ro=Uj Ry

e Lo:Sg— 2% andLg(s) = L(s).

Lemma 4.2.2 Given a Kripke structurdl’ = (5, {so}, R, L) where|S| > 1,
there exists a set of brick@ such that the constructed Kripke structufg is

the same a%.

Note thatK, is not the substructure induced By, since only transitions
from the bricks are allowed if,.

Lemma 4.2.2 shows that any Kripke structure can be decomposed as a set
of K-paths and K-loops. The following example shows one way to decompose

a Kripke structure.

Example 4.2.2 Consider the Kripke structure shown in Figure 4.4. The initial

state iss;. A possible set of brick§) can be

{(Sh 82>, <51> S5, 56>> <56>w7 <52> 83, 54>w}

82

S1

51,52>

51755756>
w

6)

w
52,53754>

V)

S6

Figure 4.4: Brick representation of a Kripke structure

It is easy to see that the constructed Kripke structirewill be exactly the

same agx.
Definition 4.2.3 A set of bricks Q) is tree-like if and only if
() Kq is tree-like, and
(i) each cycle ik is contained in a brick € Q.
Condition (ii) ensures that path bricks cannot be combined into loops.

Example 4.2.3 In Example 4.2.2¢Q) is tree-like. However, the following set of
bricks are not tree-like since the lodp,, s3, s4)“ does not belong to any brick:
{<$17 52, $3>7 <$37 S4, $2>7 <$17 S5, $6>7 <$6>w}

Lemma 4.2.3 Given a tree-like Kripke structurg’, there exists a tree-like set
of bricks@ s.t. Ko = K. We refer toQ) as aconstructionof &, or say that)

constructsx’.
For the Kripke structuré(; shown in Figure 4.3, a construction can be

{<$1> $2>> <$1> 56, $7>> <$2> 53, $4>w7 <$4> $5>> <$7>w7 <$5>w}

Intuitively, a construction is another representation of a tree-like Kripkes

ture.

83

4.2.1 Indexed Kripke structures

In order to simplify our algorithm, we introduadadexedKripke structures in
this subsection.

An indexed Kripke structur&’™ is obtained from a Kripke structur& by
creating several copies of each state; these copies are distinguishethgxgn
but cannot be distinguished by temporal formulas. This construction appears
to be a formal trick at first sight, but it has the advantage that we can descri
traces which lead through the same state of a system several times (&btypos
for different reasonswithout introducing a loop.

Formally, K™ is described as follows:

Definition 4.2.4 Given a Kripke structurdl = (5,1, R, L) and a set of inte-
gersN = {1,2,...,n}, anindexedKripke structurex™ = (5", I", R", L") is

defined as follows.

e S" = SxN,Ii.e., the states have the form 7). By convention, we write

s’ instead of(s,). 7 is called the index of the staté.
o /" =1 xN.

For any two states!, s}, € S”, (si,s}) € R"ifand only if (s, s2) € R;

For all states’ € S™ we haveL"(s') = L(s).

Intuitively, K™ containsn identical copies of each state. It is easy to prove the

following lemma.

Lemma 4.2.4 For alln and K, K and K™ are bisimilar, i.e. K = K".
In particular, for each state indexi, and temporal formula the following

holds:

84

K,skEp iff K'sEe

Since our notion of counterexamples is based on the simulation relation,
every counterexample ové(” is also a counterexample ov&r. Note that in
counterexamples ovel™, several copies of the same statelinmay appear
with different indices.

In the next section, we will discuss an algorithm which generates tree-like
counterexamples fall ACTL formulas based on indexed Kripke structures.

Note however that we will not explicitly construct the indexed Kripke struc-
ture. Instead, we will just an integer variable to keep track of the index. The
indexed Kripke structure model only will serve to make the procedure more

transparent.

4.3 Generating tree-like counterexamples for
ACTL

As defined in Chapter 4.1, a counterexample for a specified property is a Kripke
structureC which (i) is simulated by the original Kripke structure, and (ii)
disproves the property.

We have argued that it is desirable to generate “simple” counterexamples.
We claim that tree-like Kripke structures give rise to such a notion of gmpl
counterexamples. Formally, we say that a counterexafiptetree-like, if C
is a tree-like Kripke structure.

The following example shows what tree-like counterexamples look like.

Example 4.3.1 For anACTL formula AG -z vV AF —y, a tree-like coun-

terexample can look like the structure in Figure 4.5. Furthermore, consider

85

another formuldAF AG —z, whose tree-like counterexample is shown in Fig-

/@&

Figure 4.5: Counterexample f&¢G —x V AF —y

|

Figure 4.6: Counterexample f&(F AG —x

ure 4.6.

Tree-like counterexamples have the following advantages:

e Because their structure is similar to trees, they are easy to undetsya
human users. Moreover, we shall see that subtrees in the tree-like coun-
terexample correspond to counterexamples of subformulas in a natural

manner.

e Moreover, the tree structure facilitates simple and effectivansee al-
gorithms. We will demonstrate this in Section 4.4 where we show an

abstraction refinement procedure for tree-like counterexamples.

86

In this section, we discuss an algorithm to generate tree-like counterexam-
ples for all ACTL formulas. First, we define tree representation<_af L
formulas using their parse trees and sketch how SMV [78] ch€RE prop-

erties.

4.3.1 Fixpoint Characterization for ACTL

Definition 4.3.1 A parse treeT'r, of a CTL formula ¢ is a tree in which
internal nodes are labeled by the operations/, EX, EG, EF, EU, AX,

AG, AF, andAU. Terminal nodes are labeled by atomic formulas or negated
atomic formulas. Note that we assume that negation is only applied to atomic

formulas. Thereforey = ¢ is an abbreviation ofp V q.

As an example, the parse trees fAG[p = AF(q A)] and EF[p A
EG(—q Vv —r)] are shown in Figure 4.7. The terminal nodes are labelled
by atomic formulas-p, p, —q, ¢, -r andr. The internal nodes are labelled
by temporal operatorAG, AF, EG andEF or propositional connectives
andV. Given a node in a parse tree, we denote the operator &ty op(v)
and the formula sitting at by fmi(v). Furthermore, lekat(v) denote the
set of states which satisfy the formula sitting:ati.e., fmi(v). Formally,
sat(v) = {s | s = fml(v)}. When the context is clear, we will not distinguish
a subformula and its corresponding node in the parse tree.

Given anACTL formula p, the model checking algorithm in SMV tra-
verses the parse tree corresponding{oin depth-first manner. For example,
if o = AG[p= AF(q A r)], then SMV works with the parse tree shown in
Figure 4.7(b). It is easy to see that the parse tree correspondsE&di.
formula.

Note that the parse tree for the negation ofA@TL formula contains no

other temporal operators th&X, EG, EF andEU. In the case oEX, SMV

87

@9

(V) O
& @ @

(n) (v)
@ O OO

(@) (b)

Figure 4.7: The parse tree f&tG[p = AF(q A r)]

computes the set of states which satiEX as follows:

e EXp=35[TR(s,s) Ap(s)];

For the other temporal operators, SMV uses fixpoint computation techniques

to compute the set of states which satisfies the formula [26, 78]:
e EFp=uZlpVvVEXZ],;
e EGp=vZ[pNEXZ]
e E(pUyq) =pZlgvVEX(pAZ);

In these formulasy is the least fixpoint operator andis the greatest fixpoint
operator. The detailed proofs of the fixpoint characterizations can be found in
[78].

Given a node, SMV first computes the sets of states which satisfy the sub-
formulas of fmi(v). Then it computes the set of states which satjsfyl(v).

For example, consider nodg in Figure 4.7(b). Assume that SMV has already

88

computedsat(vg) andsat(v7). Then according to the definition of conjunction
A SMV computesat(vs) = sat(vg) Nsat(vy). For nodes which are labeled by
temporal operators, for example andv,, the model checking algorithm in-
volves the fixpoint computations mentioned above. For example, for the node
U1,

sat(vy) = pZ|[sat(vqe) U sat(EX 7)),
i.e., sat(vy) is the least fixpoint of the formulsut(vy) U sat(EX 7).

In general, given a nodewith child « whereop(v) = EF, sat(v) is com-
puted bysat(v) = pZ 7(Z) wherer(Z) = sat(u) U sat(EX 7).

It is well known that the least fixed pointZ.7(Z) can be computed by
iterating the operator, starting with the empty set of states, i.e., the set of
states satisfyingALSE. For a detailed exposition, refer to [26].

More formally, let 7(FALSE) = 7(7*"}(FALSE)) for + > 0 and
79(FALSE) = FALSE. Then7!(FALSE) = sat(u) and7?(FALSE) = sat(u) U
sat|EX sat(u)]. Intuitively, 7*(FALSE) is the set of states from which a state

satisfyingsat(u) is reached withiri steps. It is easy to see that
70(FALSE) C 7'(FALSE) C --- C 7/(FALSE) C - - - .

The relation among’ is shown in Figure 4.8.

7HFALS 7/(FALSE)

72(FALSE)
Figure 4.8: Relation among in the least fixpoint computation

Lemma 4.3.1[26] The sequencer’(FALSE) C 7!}FALSE) C -.- C
7/(FALSE) C --- converges to the least fixed point of In other words,

ut(Z) = 7% (FALSE) for somek < 0.

89

The fixed point computation computes all sSet&ALSE) until the sequence
converges. Each such set is calledtageof the fixpoint computation. By
Lemma 4.3.1, the final stagé (FALSE) equalssat(v). We denote the sequence
of stages

(7!(FALSE), 72(FALSE), . . ., 7"(FALSE))

by stg(fml(v)).

To computeEG, we also need to compute greatest fixpoints. For greatest
fixpoints, the fixpoint computation is exactly the same except for one important
difference: the iteration starts with the SERUE of all states, and converges to
the greatest fixed point from above.

Given anECTL formula g, stg(¢) = (S1,59,...,S,) denotes the se-
guence of sets of states during the fixpoint computation.

In the next subsection, we will describe our counterexample generation

algorithm.

4.3.2 Algorithms to generate tree-like counterexamples

The algorithmprint _witnessto generate counterexamples € TL is given

as follows.

90

print witnesgv, sg*) : {FAI L, SUCCESS}
if op(v) = EX then
returnprint _witnessEX(v, sg")
if op(v) = EF then
returnprint _witnessEF (v, sg"
if op(v) = EG then
returnprint _witnessEG(v, sg*)
if op(v) = EU then
returnprint _witnessEU (v, s{")
if op(v) = A then
if print _witnesgv.Left, si*) = FAI L then
returnFAI L
returnprint _witnesgv. Right, sij*)
if op(v) = V then
if print _witnesgv.Le ft, si*) = FAI L then
returnprint _witnesgv. Right, si")
return SUCCESS
return SUCCESS

The procedurerint witnesstakes a parse tree for the negatA@€TL
formula (i.e., anECTL formula) and an initial state from the indexed Kripke
structure and returns eith&JCCESS or FAI L. SUCCESS denotes that a tree-
like counterexample is successfully generated WA L implies that there is
no counterexample. The generated counterexample is output piece by piece in
form of a tree-like set of bricks in the subprocedurepht _withess

For a nodev, v.Left andv.Right means the left and right child of re-
spectively whilev.Child means the only child of node. The procedure is
recursive. It uses four other procedures to compute and print counterexamples
for EX, EF, EU andEG respectively.

The four other procedures use a global integer variable”' is a global
variable that is always larger or equalita The Kripke structure is viewed as
an indexed Kripke structure, wheféis used as an index. Incrementiagwill
prevent the procedures from generating the same states in different parts of the
counterexample.

The procedurerint_witness EX is quite simple, and will be omitted

91

here.
The procedureprint_witness EF and print_witnessEU are similar.
Therefore, we will only explain howrint_witness EF works. At last, we

explain the most complicated procedygrgint_witness EG.

print witnessEF (v, si")
(S1, ..., Sy) =stg(fml(v))
j=1
while (j < nands; & Si)
S =1Img(sj—1) N Sn—j
s; = pick a state fronp

j=j+1
CcC=C+1
print <$6n7 5107 sy 576;71>

returnprint _witnesgv.Child, s¢ ;)

print _witnessEU (v, sg*)
(Slv EERE Sn) = Stg(fml(v))
j=1
while (j < n ands; ¢ S1)
S = Img(ijl) N Snfj
s; = pick a state front
j=j+1
C=C+1
print <36n7 ng RS Srczifl>
if print _witnesgv.Left, si*) = FAI L returnFAI L
for (i=1 to n-2)
if print _witnesqv.Le ft, s¢') = FAI L returnFAI L
returnprint _witnesgv. Right, s¢)

Given a parse tree rooted at assume that is the direct child ofv, i.e.,
fml(v) = EF fml(u). (S1,...,S,) = stg(fmli(v)) is the sequence of the
set of states computed BF, i.e., S; = 7/(FALSE). Note thats, € S,. The
procedureprint witnessEF generates a pats[’, s¢, ..., s¢ |) wheres,,_; €
S;. Note that the generated path is labeled ewinteger. By labeling this
new number, we distinguish these states from the states generated previously.
As we have discussed beforg, = sat(u), therefores, 1 = sat(u). Itis easy

to see thats, . .., s,—1) IS a witness offml(v).

92

Figure 4.9: Counterexample forl&F formula
Example 4.3.2

Consider an example shown in Figure 4.9 whesg(fmli(v)) =
(S1,59,53) and sp € S, according to the procedurgrint witnesEF, it

prints (s7, s{', s$) as a counterexample for the indexed Kripke structure.

Using similar notations, let us consider a nodewith fmli(v) =
EG fml(u). Similarly, let 7(Z) = sat(u) N sat(EX Z), then sat(v) =
vZ1(Z),i.e.sat(v)is the greatest fixpoint of the formutd 7).

As explained above, the greatest fixpoint is obtained by iteratistgrting

from the set of all states, i.e.,

7°(TRUE) D 7*(TRUE) D --- D 7(TRUE) D - - -

and there exists & > 0, such that the greatest fixpoint of Z) equals
7*(TRUE).

Then(Sy,...,S,) = stg(fml(v)) records the sequence of sets of states
computed by fixpoint algorithniEG, i.e., S; = 7/(TRUE). Therefore,S; =
7(TRUE) = sat(u) andsS,, = sat(v). Since,S,, = 7(S,,), the following lemma

holds.

Lemma 4.3.2 Let M be the original Kripke structure anl’ the Kripke struc-

ture restricted taS,,, i.e., K = M | S,,. ThenK is total.

93

print _witnesEG (v, sg")

(S1,...,8n) = stg(fml(v))

T = {so}

j=1

label =1

while (T #£ S)
S =1Img(sj—1) NSy
sj = pick a state from§ — T') — pick a successor
Q=1Img(s;)NT
if (Q # () then break; - loop discovered
J=J+1
T=TU {Sj}
s; = pick a state fron©)

if T'= S thenreturnFAI L

C=C+1

print <sgg, Séo’ . sJC,CsZ-C>
H w

print (s, siq,. .-, 85)

if print.witness{.Child, si*) = FAI L returnFAI L
for (k =110 j)

if print.witness¢.Child, s{') = FAI L returnFAI L
return SUCCESS

According to Lemma 4.3.2, there exists a loop among the staté§.in
Our algorithm to find loops irb,, is greedy.T" stores all the states which are
traversed. Given a statg_,, it discovers a new statg € S — 71" and checks if
we can close the loop. If we can, it stops and returns the loop. If the algorithm
cannot close the loop, it continues uritil= S which implies that there is no
loop.

The procedures print _withessF, print withes£U and
print_withes£G output bricks, i.e., either K-paths or K-loops. Note
that each state in the bricks is marked by an integer. Whenever a brick is
generated, the states in the brick are marked by a unique integer which is
provided by the global variabl€'. Therefore, two states which appear twice
in different procedures are treated as different states because thdyavel
different labels.

In order to understand how the algoritlprint _witnessworks, let us con-

94

Figure 4.10: The parse tree fBi¥ + A EG EF z
sider anACTL property.

Example 4.3.3 Assume that alMACTL propertyy = AG -~z V AF AG —z.
Then the parse tree fetp is shown in Figure 4.10. A set of brickg generated

by print _witnessmay be

,51,53) —— counterexample for AG —x
s3. sa) —— counterexample for AF AG —x
—— counterexample for AF AG —x
—— counterexample for AG —z

—— counterexample for AG —z.

V)

V)

»
~
&

P e e e

Va) VA

WUOKROROOOO
»

w W
N 00N ~J Lo Ut
~—

~

The corresponding constructed counterexanfpleis shown in Figure 4.11.
It is easy to see thdl is a tree-like Kripke structure. Note thag, s, s; are
repeated several times in the counterexample. However, they atediras

different states since they have different marks.

It is easy to see that the programint witnessterminates if theACTL

formulais finite.
Lemma 4.3.3 The progranprint witnessterminates.

Therefore, the maximal value for the global variables finite. Let us assume

that this value ig. Then the following theorem holds.

95

1 7
$2 s sy
5 s

Figure 4.11: Counterexample f&G -z V AF AG —z

Theorem 4.3.1Given an ACTL formula ¢, a Kripke structureM =
(S,{so}, R, L) such thatM [¢, let Q be the set of bricks generated by

print_witness(—yp, so). ThenKg, is a tree-like counterexample fgron M¢.

This theorem guarantees that our algorithm will generate a tree-like coun-

terexample for the indexed Kripke structures.

4.4 Refinement algorithm for ACTL

In the previous section, we showed that there are tree-like counterexamples
for all ACTL formulas. In particular, we provided an algorithm to gener-
ate tree-like counterexamples for such formulas. The algorithm can be po-
tentially extended to handlACTL* as well. In this section, we extend our
counterexample-guided abstraction refinement methodology (see Chapter 3)
for all the formulas inACTL.

Recall that our counterexample-guided abstraction refinement methodol-
ogy works as follows. Given a Kripke structufd and anACTL property
v, we first generate initial abstraction functions and build the initial alstr
Kripke structuref\]accordingly. Then the traditional model checker will check

if ¢ holds onlM. If not, it will generate a counterexample. The next step is to

96

check if the counterexample is spurious or not.

As we discussed in the previous sectipnnt _witnesswill generate a tree-
like set of abstract brick@ from which an abstract counterexamplg can be
derived. The algorithm shown in Figure 4.12 is a recursive procedure based on
depth-first traversal of the abstract counterexample. It takes an absitedt
states,™ marked bymn and the set of brick@ as arguments. Initially, we call
CheckRefinds;’, Q). Note thats;’ is the initial state ofK ;. CheckRefine
returns the set of states i (5,™) which have concrete tree-like counterex-
amples. If this set is empty, that implies that the abstract counterexasple

spurious.

CheckRefinds;™, Q)
T =h""(50)
foreachg € Q
if g1 # 5™ continue
len = |q|
S =h71(%)
for (i =2 to len)
S; = CheckRefinef;, Q)
if ¢is a paththen
T =T N CheckPATH(S:, S, . . ., Sien)
if 7is a loopthen
T =T N CheckLOOP(S1, Sy, . . ., Sien)
returnT

Figure 4.12: Refinement algorithm for &ICTL formulas

In the procedur€heckRefing T" denotes the set of concrete states which
are the initial states of some concrete counterexamples. Note that foraaay st
s € T, h(s) = 5. Fora brickg = (s1,...,sn), ¢; denotes the i-th ele-
ment ofg, i.e., s;. Given a set of bricks), CheckRefinefirst checks all the
bricks which start fromsy™. For such a brick, the procedure recursively

checks the bricks that start from some stateg.iff anchor(q) € p, then the

97

;@
. @
w(

Figure 4.13: The parse tree f&F AG —x

procedure checks first and returns the set of states from which the concrete

counterexample correspondingioan be constructed. Using the obtained sets

of states,CheckRefinechecks whether the current abstract trace corresponds

to a concrete trace by using two subrouti@¥seckPATH andCheckLOOP. 10 oo: ex
The function CheckLOOP checks if a sequence of sets of states

(So, ..., 5;) includes concrete loops or not. If not, it will ug®lyRefineto

refine the abstraction. Otherwise, it returns a set of initial stétesS, which

will lead to a loop. The functio®heckPATH is similar. These two functions

are closely related to the algorith@plitLOOP andSplitPATH in Chapter 3.3.

The difference is that bot€heckLOOP andCheckPATH need to return the

set of concrete initial states.

Example 4.4.1 Consider anACTL propertyy = AF AG —z. The parse
tree for—yp is in Figure 4.13. Assume that does not hold on the abstract
Kripke structureM. Also assume that the corresponding counterexariple
for ¢ is shown in Figure 4.14. The algorith@heckRefineconsiders the trace
(50", 55°) first. It usesCheckPATH to determine whether there exists a con-
crete path from a state i ' (5;) to a state i ~'(53). If not, then(5,, 53°)

is spurious. TheiPolyRefineis used to refine the abstraction. If there exists a

concrete pathCheckPATH will return the set of states ih~*(s,) from which

98

T @ includes

~0
S0 ~0 ~
(500, 533>
~1
S1 ~0 ~
330 (50, &1
~2
52 (51, 8% 8%
=4
S4

Figure 4.14: Counterexample f&F AG —x

the concrete paths start, i.e.,
So={s|Im, 7’ =s,7' € A1 (5)}.

A similar process is applied t¢5,", 537, 5,*). If there exists a concrete path
associated with this abstract path, it will return the set of stéites 4~ (51")
from which the concrete paths start.

Next, CheckRefineconsiders the trac&s;’, 51')“. The functionCheck-
LOOP checks whether there exists a loopdpu S;. If not, (5%, 5") is a
spurious loop counterexample. We can still iB®EyRefineto refine the ab-

straction function.

The algorithm provided in this section can be adopted to refining abstrac-

tion for ACTL* formulas.

99

Chapter 5
Abstract BDDs

In this chapter, we describe a data structure - abstract BDDs (aBDDsh e
cilitates the abstraction operation. Abstract BDDs (aBDDs) are olutdimen
ordinary BDDs by merging BDD nodes whose abstract values coincide. We
discuss four types of abstract BDDs (called S-type, O-type, 1-type/ayge
aBDDs) which have found applications in many CAD-related areas such as
equivalence checking, variable ordering and model checking.

In the following three sections, we first discuss how a single abstraction
functionh : D — A whereD = B* is applied to a Boolean function
f: D — B. Then we show how to extend the definition to the case with mul-
tiple abstraction functions. In the last section, we summarize diffeypestof

aBDDs.

5.1 Abstract Binary Decision Trees

An abstract BDD (aBDD) is obtained by collapsing all paths corresponding to
the same equivalence class into a single path. While such a collapse leads to a
loss of information, the size of the aBDD may be significantly decreased, and
certain problems may become feasible.

The above mentioned collapsing operation can be defined in various ways,

and thus, different types of aBDDs are obtained. Since the concepts underlying

100

aBDDs are most easily explained using Binary Decidicees we will usually
outline this special case first, and show later how to deal with the geras@al c
As described in Chapter 2.3, the abstraction functionduces an auto-

abstraction functiori{ : D — D. Given a Boolean functiorf : D — B and

a BDT T}, letu, v be two leaves of ; (note thati, 7 € D) such thati =, v
andH(v) = u, i.e.,w andv are equivalent with respect ta,, and« is the
representative of their equivalence class. In this case we say that the ©de
the representative of.

O

’
7’

@)

A/% [E/'Cg\ G H
0O 00 11 o0 1 1
o 11 21 2 2 3 h(x)

1

Figure 5.1: The BDT foy

Example 5.1.1 Assume that forD = B3 a Boolean functioy : D — B is

given by
z1 = (011) V z; = (100) V z; = (110) V 2y = (111).

The BDT for g is depicted in Figure 5.1. We consider the abstraction func-
tion h(z1) = countl(x,) which counts the number df inz;. For example,
count1({101)) = 2. The abstract values for each node are listed in Figure 5.1.
It is easy to see thdt induces an equivalence relatief), on 0-1 vectors of
length3. For example =, C =, E since they have the same abstract value

1. Assume that the representative of an equivalence class is the lexicographi-

cally least vector in that equivalence class. Tlheis the representative for the

101

equivalence class with respect to the abstract value 1, i.e.,
H(B) = H(C) = H(E) = B.

The representative nodes for the abstract valueés2, 3 are A, B, D, and H
respectively. Consider the representative ngdehich represent#, C', and
E. In this case, we need to collapse the paths leading, 10, and E into a

single path leading t@.

Different operations can be defined for representative nodes and non-
representative nodes. This will result in different types of abstract BODs
the following sections, we will define four types of aBDDs for the case of a

single variabler,. Later, we will generalize the definitions to the full case.

5.2 S-type Abstract BDDs

Given a Boolean functiotf : D — B and a BDTIY}, the S-type aBDTH®(f)

of Ty rooted atv is defined by

To understand this definition just note th&tH (7)) is computed as follows:
first, the input vectof is transformed into its representati%&), and then f

is applied to the representative. In other words, the outptitfof the represen-
tative determines the output gffor all the other members of the equivalence

class.

Example 5.2.1 For the Boolean function in Example 5.1.1, the S-type aBDT
is shown in Figure 5.2(a).F is a non-representative node. The valueFat
is overwritten by the value aB which is a representative af. A similar

situation occurs at nodeS, F, G. The final reduced BDD is in Figure 5.2(b).

102

A/% c’ E/'Cg\ H
0O 0O 10 1

Gl
1 1
o 11 21 2 2 3

Figure 5.2: S-type aBDT foy

Figure 5.3: S-type aBDD foy

103

x1

Intuitively, the construction maintains some “usefutiintermsand ignores

other “uninteresting”minterms

S-type aBDTs distribute over any logic operations. The following lemma

holds.

Lemmab5.2.1Let f,p,q : D — B be three Boolean functions,be compo-
sition and® be any logical operation. Then if = p ® ¢, thenH*(f) =
H*(p) © H*(q). If f = pog thenH*(f) = poH(q).

Proof Let7 € D be an arbitrary vector. For the first case, we have the

following equations:
H(N) W) = f(H(D))
= p(H(V)) © q(H(?))

= H(p)(®) © H(g)(v)

Then, for the second case, we have

Assume that:, t are two nodes on levél+ 1 (i < k) inthe BDTT}. As
before,i, i denote the labels concatenated along the paths from the reot to
andt respectively. The concatenati@n e wheree € B*~* describes a path to
a leaf inT; becausei - ¢ € D. We define an equivalence relatien over B’

(i.e., over O-1vectors of lengih) by
i=;t iff Yee B*h(d-e)=h(t-e)

104

function AbsSamgv)
i =level(v) — 1,
W = H; (),
if W # v
return w;
else
if nonterminal(v)
left(v) = AbsSame(left(v));
right(v) = AbsSame(right(v));
endif;
return v;
endif

Figure 5.4: S-type Abstraction for BDTs

It is easy to see that; is reflexive, symmetric and transitive. Similar to
the definition of the auto-abstraction functigi, H,(u) is defined to se-
lect a unique representative from the equivalence dldss. Formally, let
rep; : [BY]=, — B’ be a function which selects a unique representative from

[BY]=,. ThenH;(@) : B® — B'is defined as

Hi(d) = repi([d]=,).

Note that=,. coincides with=,, i.e., we can view the equivalence relations
=, =,,... as approximations of;.

Next, we show how to compute an S-type aBDT from a given BDT. With-
out loss of generality, assume that each equivalence class is represented by
its lexicographically minimal element. Therefore,<f denotes lexicograph-
ical ordering, andH(w) = , then is the lexicographically first vector in
{v: 0=, W},

The algorithmAbsSameof Figure 5.4 constructs an S-type aBDT is given
in. Its argument is a nodein the given BDT. The initial call to the algorithm
is AbsSaméroot y) whereroot; denotes the root node df;. In AbsSame

the functionlevel(v) returns the level of the node If v is a representative

105

node, the program will recursively caflbsSameto build the subtree of the
function. Ifv is not a representative node, i.€.# v, the program will return

the representative node In other wordsy is replaced byw.

Theorem 5.2.1 Given an abstraction functioh, if the representative is deter-
mined by the lexicographically least vector, the algoritAbbsSamecorrectly

builds the S-type aBDT for a Boolean functigni.e., AbsSame(root;) =
H ().

Proof Given a patty, letn(p) denote the corresponding node wherends
in the original BDD andh(p) be the corresponding node wherg) maps to
in AbsSame(root ;). Note thatn(v) = v. In order to prove the theorem, it is
sufficient to show that(H(p)) = nx(p) for all the pathg.

We prove this theorem by induction on the length of patlfirst, the root
is considered whep = ¢, i.e.,n(p) = root, it is trivial to see thaty(p) =
n(H(p) = root. Let us assume thaty,(p) = n(H(p) is true for|p| = i. Then
consider a pathy - y wherey € B. It is easy to see that bothy,(p - y) and

n(H(p - y)) are at level + 1. There are two cases:
e p-y="H(p-y), fromprogram in Figure 5.4, we know that
nn(p-y) =n(Hp-y))

e p-y # h(p-y), frominduction hypothesis, we have

Furthermore according to program in Figure 5.4,

nu(p-y) =nH(H(p) - y))

106

Since’H is idempotentH(p) = H(H(p)) impliesH(p - y) = H(H(p) - y)

according to the definition of consistent function. Thus, we have

nu(p-y) =ncHp-y)).

By induction, this is true for the last level, which implidbsSame(root ;) =

HE(f). O

Note that LBDDs are obtained from BDTs by merging isomorphic sub-
trees. In order to build S-type LBDDs directly from LBDDs, we must modify
the algorithmAbsSame The new algorithmAbsSameMis described in Fig-
ure 5.5. In the algorithm$ub(v) denotes the subgraph rooted at the node
Sub(v) ~ Sub(v') means that the respective subgraphs rootedaatd v’ are

isomorphic. The initial call of the algorithm ikbsSameM (root, ()).

function AbsSameM(v, path)
i = level(v) — 1,
W = H;(path);
if W # path
return w;
else
if nonterminal(v)
left(v) = AbsSameM(left(v), path - 0);
right(v) = AbsSameM(right(v), path - 1);
if there exists, in cache such th&ub(v) ~ Sub(vy)
return vy;
endif;
endif;
return v;
endif

Figure 5.5: ModifiedAbsSameMfor LBDDs

Lemma 5.2.2 For a given LBDD{, the size of{*(f) is less than or equal to

2+ TI, 1B,

107

Proof Let @ andt be two paths of length such thati =; ¢. According to

our algorithmu = t. Thus, if two paths belong to the same equivalence class,
then they lead to the same node. Hence, the number of nodes in the LBDD of
H*(f) is bounded by the number of equivalence classes defined by each

level. There are: levels of internal nodes and two terminal nodes. Therefore,

the size of LBDDH*(f) is bounded by + [[_, | = |. O

Given an LBDDf, the BDDH*(f) obtained from algorithrAbsSameM
is called an abstract LBDD. If we apply the BDD reduction rules on an agistr
LBDD, we will obtain an abstract BDD or an aBDD.

In practice, whenA| < |D|, i.e., the range of the abstraction functiois
much smaller than the domain bf the abstraction overhead and the resulting
S-type aBDD size are usually very small. As a matter of fact, for matey-
esting abstraction functions (e.g. modulus, countl, logarithm, linear, partition

functions), the abstraction overhead is polynomigldi

Boolean functions of several vector variables. Given a Boolean function

f: D" — B, the S-type aBDDOH*(f) of f is defined by

He(f)(xr, .. yxn) = f(H(z1), ..., H(zn)).

The properties and algorithms given for a single abstraction can be easily gen-

eralized for the multiple abstractions case.

Lemmab5.2.3 Let f,p,q : D" — B be three Boolean functions,be compo-

sition and® be any logical operation. Then we have

f=p0q —H(f)=H(p) ©H(q)
f=poq —H(f)=poH(q)

The algorithm for generating aBDDs for multiple abstraction functions are

shown in Figure 5.6.

108

function AbsSameM(v, p)
i =level(v) — 1,
for (j=1to n)

pj = cut(p, z;);

q; = Hi(pj);

return w;
else
if nonterminal(v)
left(v) = AbsSameM(left(v),p-0);
right(v) = AbsSameM(right(v),p-1);
if there existsy in cache such th&ub(v) ~ Sub(vy)
return vy;
endif;
endif;
return v;
endif

Figure 5.6:AbsSameMultfor multiple abstraction functions

5.3 O-type And 1-type Abstract BDDs

In this section, we introduce two new types of aBDDs (0-type and 1-type aB-
DDs) which have different properties from S-type BDDs. In particular wd sha
see that there is a clear relation between 0(1)-type aBDDs and the origncal f
tions.

Recall that in the abstraction procedure for S-type aBDDs, non-
representative nodes are replaced by representative nodes. In 0(1)-typs,aBDD
however, non-representative nodes are replaced by 0(1)-nodes, i.e., the repre-
sentative nodes remain unchanged, and all others are uniformly set to output
either0 or 1. Formally, the 0(1)-type abstract BDRC(f)(or H!(f)) of Ty
rooted atv is defined as

(V) ifHW) =17
otherwise

R = (1) = DA f@) = {]

109

R = (1) < 0 — 50 = { {7 BT

Example 5.3.1 Consider again the Boolean function defined in Example 5.1.1.

The O-type and 1-type aBDD fgrare shown in Figure 5.7 and Figure 5.8.

0(1)-type aBDDs do not directly distribute over logic operations. However,

the following lemma holds.

Lemma5.3.1Letf,p,q : D — B be three Boolean functions,is composi-

tion and® be any logical operation. Then we have

Proof Letv € D be an arbitrary vector. In the following, we prove the case
for O-type. The case of 1-type follows the same proof. Wlieap © ¢, if v'is

a representative,

H(N)@) = FH(D))
= p(H(?)) © ¢(H(7))

= H(p)(¥) © H(q)(v)

If 7is nota representative{’(f)(7) = 0. Letg = H°(p)OoH (q). H°(g)(?) =
0 for O-type as well. Thereforé{°(f)(v") = H°(g)(7).

When f = po ¢, if ¥is a representative,

H'(p) o H(@)(0) = p(H()(H(V)))

110

If ¥is not a representativé{’(f)(v) = 0 = H°(p) o H°(¢)(¥). Overall, the

statements hold for all vectotse D. O

(H)O(g) - H’(g)
Q/ % ::Ul %
A/% c/ég\ E/I(g\ & H Aol
0 00 10 0 0 1 @
o 11 21 2 2 3 h(x)

(a) O-type aBDT and aBDD

Figure 5.7: O-type aBDD fog

Al B'\ c/’ D'\ = F'\ 6’ H @
0 01 11 1 1 1
o 11 21

2 2 3 h(z)
(b) 1-type aBDT and aBDD

Figure 5.8: 1-type aBDD fog

The algorithmAbsZero of Figure 5.9 is a modification of the algorithm
AbsSameM for O-type abstract LBDDs. A similar algorithibsOnecan be
used to build 1-type abstract LBDDs. The only difference betw®esZero

andAbsOneis thatAbsOnereturns 1 and\bsZero returns 0 whempath is not

a representative.
Theorem 5.2.1 and Lemma 5.2.2 analogously hold for 0(1) type abstract

LBDDs. Furthermore, the following lemma shows that the 0(1) type aBDDs

can be viewed as lower (respectively upper) approximations of the original

function.
111

function AbsZero(v, path)
i = level(v);
W = H;(path);
if W # path
return O;
else
if nonterminal(v)
left(v) = AbsZero(left(v), path - 0);
right(v) = AbsZero(right(v), path - 1);
if there existsy in cache such th&ub(v) ~ Sub(vy)
return vy;
endif;
endif;
return v;
endif

Figure 5.9: ModifiedAbsZero for LBDDs

Following the same argument as Theorem 5.2.1, the algoritAims
sZero and AbsOne correctly compute the 0(1)-type abstract LBDDs, i.e.,
AbsZero(root ;)=H°(f) and AbsOneroot;)=H'(f). At the same time,

Lemma 5.2.2 also holds for 0(1)-type abstract LBDDs.
Lemma 5.3.2 The following tautologies hold.
HO(f) — f and f— H(f).

The lemma can be easily proved. Therefore, the proof is omitted.
Similar as for S-type aBDDs, the approach can be extended to several vec-

tor variables and abstraction functions. For a functfanD™ — B, we define

cxn) H(z) =x1,..., H(z,) = 2y
otherwise

Ho(f)(xb...,xn) - { g(xl,...

cxn) H(z) =x1,..., H(x,) = 2y
otherwise

H () (@1, ...) :{ {(xl,...
The properties and algorithms can be easily extended to this general case.

112

5.4 V-type Abstract BDDs

S-type, O-type and 1-type aBDDs are similar in the sense that the representati
nodes remain unchanged while the non-representative nodes are replaced by
new functions.

In this section, we defing-type aBDDs. Forv-type aBDDs, both rep-
resentative nodes and non-representative nodes are modified. Recall that in a
BDT 1%, v is the path from the root to nodein a BDT 7. TheV-type aBDT
HY(f) corresponding to the Boolean functigh. D — B is defined by the

following equation:

0 otherwise

HY(F)(5) = { Vi, s f(@) 1 7 =H(7)

Hence, in the obtained aBD/"(f), the Boolean function of a represen-
tative node is thelisjunctionof all the Boolean functions corresponding to the
nodes in the same equivalence class, i.e., the representative node outptits 1 if a
least one of its equivalent nodes outputs 1. For non-representative nodes, the

Boolean function is defined to alseor 0, similar as in O-type aBDTs.

Example 5.4.1 To illustrate how to buildv-type aBDDs, let us return to Ex-

ample 5.1.1. According to our definition,
Hy(B) = g(B) v g(C) v g(E) = 1.
TheV-type aBDT forg is shown in Figure 5.10.

The next lemma describes how the auto-abstraction funétfiameracts with

conjunctions and disjunctions.

Lemma5.4.1Letf,p,q: D — B be Boolean functions. Then the following

tautologies hold:
(f=pVvaq) — (H'(f)=H(p)VH (q)
(f=pAq) — (H'(f)—=H (p) NH'(q))

113

HY (g)

.
.
, .
. i
ye

B\ C/ S\E/ lg\ G/ H
10 10
11 3 h(z1)

Figure 5.10:v-type aBDD forg

Proof Assume that is ak-bit 0-1 vector. Ifv'is a representative, according
to the definition" (/) () = Vv 51—y f(v)"); OtherwiseHY (f)(7) = 0. The
same formula holds whehis replaced by and byg. In the following, we will
prove the case wherg = p A ¢q. The case off = p V ¢ can be easily proved
following the same proof.

Whent'is a non-representative, it is easy to see #iafp) (0) AHY (¢) (V) =
0 ="H"(f)(v). When? is a representative, we have

V @)=\ G)Aq@))
H(v')=v H(v')=v

Likewise,

Itis easy to prove thay (a;Ab;) — (\/; a;) A(V/, b;) is atautology. Therefore,
\V @) Ag@) = \ p)A \/ a().
H(v)=v H(v)=v H(0)=v
Consequently, HY(f)(¥) — HY(p)(¥) N HY(q)(?). In general,
HY(f) = H'(p) NHY(q). O

The Vv-type aBDDs can be used to compute existential abstraction which is

defined in Chapter 2.4 according to the following lemma.

114

Lemma 5.4.2 Given a Boolean functiori(z) and an abstraction functioh :
D — A and its corresponding auto-abstraction functidh: D — D, the

following formula holds

HY(f)y) =3z[H(z) =y A f(2)]
Proof We prove this lemma by looking at two conditions.

1. y is arepresentative, i.e., existss D, H(x) = y. Then
H'(Ny) =\ [fl)=3[H() =y A f@)).

2. y is not a representative, i.e., there ismoc D, H(z) = y. In other
words, H(x) = y is always false. Thereforélz[H(z) = y A f(x)] is
always false. According to the definition gftype aBDDsH" (f)(y) =

0 in this case.

Overall, the lemma holdsh

Similarly to S-type, O-type or 1-type aBDDg;aBDDs can be easily extended
to deal with multiple abstraction functions. For a Boolean functionD” —

B, theVv-type aBDDH(f) is defined as

Vectorsz;,y; € D, andH(y;) = x; implies thatz; is the representative in the
equivalence class of. It is easy to prove that Lemma 5.4.1 holds for multiple

abstraction functions. Moreover, we have

Lemma 5.4.3 Given a Boolean functiorf(z,,--- ,z,) and an abstraction

functionH : D — D, the following formula holds
HY(f) =3y, - - cTn[H(w1) =1 A AH(2p) = Y A f(0)]
This lemma will be the foundation for the results of Chapter 6.3.

115

5.5 Summary

In the previous three sections, we discussed four types of aBDDs for Boolean
functions. We also show that each of these four types of aBDDs can be ex-
tended to the case of multiple abstraction functions as well. As a sumrhary, t

definition of these four types of aBDDs are described in the following table.

S-type:| H*(f)(x1,...,xn) = f(H(z1),..., H(zp))
O-type: | HO(f)(z1,...,2,) = { [, en) H(wn) =, ..

0 otherwise

ooy Tp) H(z1) =21, ...
1-type: | H (f)(z1, ..., zn) = {(xl) otﬁlelrzlvise1

v-type: | HY(f)(z1,--+ ,2) = {(\)/f(yl»"' »Yn) iihirﬁ(syé)

Here,z; andy; denote vectors i), andH(y;) = z; means that; is the
representative of the equivalence clasgyof The properties and algorithms
given for a single abstraction can be easily generalized for the multiple ab-
stractions case.

Given an abstraction functidn the auto-abstraction functidi determines
the representatives and non-representatives. Selecting differentoius ébir
representatives and non-representatives results in different typessaBDD

Table 5.5, we summarize the properties of each type of aBDDs.

aBDDs| Rep | NonRep| Distribute | Algorithm
Types | Nodes | Nodes | Over Ops
S-type| kept | changed yes forany| DFS based
O-type kept | changed yes forA,v | DFS based
1-type kept | changed yes forA,v | DFS based
V-type | changed changed no exceptv | BFS based

In the next chapter, we will discuss how to apply different types of aBDDs

in different situations.

116

Chapter 6

Applications of abstract BDDs

In this chapter, we will discuss three applications of abstract BDDs: equiva

lence checking, dynamic reordering and model checking.

6.1 Equivalence checking using abstract BDDs

For many abstraction functions, aBDDs are usually much smaller than the
BDDs of the original function. Moreover, aBDDs maintain partial information
of the original Boolean functions. They can be used as a sufficient condition to

checkin-equivalence of large combinational circuits.

Lemma 6.1.1 Given two Boolean functiong g : D" — B whereD = B*,

H(f) #Hg) = [#9
H(f) #Hg) — [# g
H'(f) #H(g) = f#g
HY(f)#H9) = f#9

Proof Let us assume that{*(f) # H*(g). Therefore, there must exist

1, ...,0, € D, where

According to the definition,

H(f) (01,0, 00) = fF(H(01), ..., H(Un))
H(g)(v1,...,0n) = g(H*(v1), ..., H*(vn)),

therefore,
f(H(01), ..., HP (V) # g(H*(01), - .. H*(vn))

Generally,f # g. Using the similar argument, we can easily prove that the

rest three formulas also holdJ

When the BDDs for a large multiple-output combinational circuit become ex-
tremely large, aBDDs can usually be built instead.

The equivalence checking procedure using aBDDs is sketched as follows.

1. Given a circuit, choose a set of appropriate abstraction functions.

2. Select an abstraction functidrout of a set of abstraction functions. This

set will be provided based on the nature of the circuit.

3. Build S-type (O-type or 1-type) aBDDs for the specification and the im-

plementation circuit using the abstraction function

4. For S-type aBDDs, directly compare the two aBDDs obtained for spec-
ification and implementation. For O-type or 1-type aBDDs, apply ab-
straction once again and then compare the two obtained aBDDs. If they
are different, an error is detected. Otherwise, choose a different ebstra
tion function from the set and repeat step 3 with a different abstraction

function.

In general, there is no procedure to select a set of abstraction functions that
will detect all the errors in a circuit. Nevertheless, we believe tha method-
ology can be extremely useful in practice, since an initial design is muck mor

likely to contain errors than to be correct.

118

We use a simple example to illustrate our algorithm. Assume that we have
an abstraction functioh for the circuit in Figure 6.1. Assume that we have
built the BDDs forp andq. By performing S-type abstraction on them, we
obtainedH*®(p) andH*(q). According to Lemma 5.2.1*(g) = —[H*(p) A
H*(q)]. Therefore, we can obtain an S-type aBDD §ousing ordinary logic
operations. On the other hand, the procedure is slightly different for 0(1)-type
aBDDs. According to Lemma 5.3.1°(g) = H°(=[H°(p) A H°(q)]) and
H(g) = H'(=[H'(p) A H'(q)]).- In order to obtain the 0(1)-type aBDDs,

abstraction has to be applied again after the logic operations.

x1
X2

p

T3—
La q

Figure 6.1: A simple combinational circuit

We have implemented S-type and O-type aBDDs into the CMU BDD pack-
age and performed two sets of experiments on the ISCAS85 benchmark circuits
using both S-type and O-type aBDDs. Design errors in the circuit were injected
one by one by selecting a stuck-at fault on one input of an arbitrary gate. In
the first experiments (Table 6.1,6.2), we use S-type aBDDs and disable the
dynamic reordering. We choose = B#"", i.e., all the Boolean variables
are mapped as one symbolic variables. The experiments using two different
abstraction functionsh, (z) = countl(x) andhy(x) = z mod p wherep is
a prime number. In Table 6.1,6.Det Errsis the number of faults detected
by these three methods, aMbx # Nodess the maximum number of BDD
nodes that need to be held in memory, which is usually much larger than the

final BDD size. Avg.Timeis the average time to detect a design error. The

119

OBDD results for c2670, c5315, ¢6288 and c7552 are not reported because

they exceeded the memory limit.

circuits | Errs Det Errs
OBDD | Symm| Resid
c432 50 50 50 33
c499 50 50 40 28
c880 50 50 28 7
cl1355 50 50 40 28
c1908 50 48 40 36
c2670 10 || unable 5 2
c3540 50 50 24 16
c5315 10 || unable 10 3
c6288 10 || unable 6 6
c7552 10 || unable 9 10

Table 6.1: Number of detected errors using OBDDs and aBDDs

circuits Max # Nodes Avg.Time

OBDD | Symm Resid| OBDD Symm| Resid
c432 4712 4604 3902 1.15 7.94 19.70
c499 95745 9481 27121 22.74 16.72 48.64
c880 637338 7705 4999| 138.25 58.17| 180.56
c1355 96357| 9497| 27476| 25.49 44.93| 129.48
c1908 70196| 6274 15838| 35.95 22.82| 61.86
c2670 — | 132593| 774009 —| 5449.37| 5073.17
c3540 | 1522988 9927 8267| 299.89| 109.61| 379.06
c5315 — | 208795| 234716 —| 4618.01| 10052.3
c6288 — 7317 38 — 86.52| 61.20
c7552 — | 366462| 2301523 —| 11963.65| 18405.8

Table 6.2: BDD overhead and Average time used

In the second experiments, we use O-type aBDDs with dynamic reording.
We chooseD = B! and the abstraction functia(z,) = count1(x;). The
abstraction function for the other variables is the identity abstractionifumct

i.e., h(z;) =x;fori > 1.

120

Circuit | Errs | Detected Errors BDD Size

OBDD | aBDD | OBDD | O-type
c432 10 10 10| 4403| 3307
c499 10 10 10| 16850| 12767
c880 10 10 10| 12905| 5077
cl1355 10 10 10| 28582| 16661

c1908 | 10 10 9| 13153| 7737
c2670 | 10 10 10| 28926| 16643
c3540 | 10 9 5| 67586| 12790
c5315 | 10 10 10| 17905| 13677
c6288 | 10 — 10 — | 8128

c7552 | 10 10 10| 13637| 16889

In this experiment, the aBDD based approach can detect o{/eothe errors.

6.2 Improving variable ordering using O-type ab-
stract BDDs

Let f : B™ — B be a Boolean function over the Boolean variables
Y1, Y2, - - -, Ym- A cubec; is a monomial over the variables, - - - |y, (K < m).

Cube based samplinfs0] partitions the domain off into smaller cubes

c1,- -, com-x @nd uses dynamic variable ordering to select a good ordering
for the restrictionf; = f A ¢;. The ordering forf is obtained by combining

the orderings of several randomly chosgn The quality of the resulting or-
dering may not be very good jf does not closely approximafe Thus, if the
subset of cubes is selected randomly, there may be significant variance in the
approximations. Consequently, the final ordering fanay not be good.

This problem can be alleviated by using a new sampling technique. Instead
of analyzingonerandom cube, we automatically consider multiple cubes at the
same time by using O-type aBDDs. We call this new technigimelow based
sampling

Intuitively, a window is a union of some number of cubes. Assume that

we choose! disjoint windowswy, ... ,w,. Hence, we can partitiorf into

121

fi,..., fe, wheref;, = f A w,;. In our window based approach we choose
the sampling windows using O-type aBDDs.

According to our definition, we know that, €¢ D = B* Setting
n = |m/k] + 1, we can rewrite the Boolean functiofi(yi,...,y.) as
f(xy, ... x,), Wherez; = (Yu—1ykt1s----Yisk) fOri = 1,...,n — 1 and
Tpn = (Yn-1k+1,--->Ym,0...0). Letd = (ay, ..., ax) be ak-bit vector where
a; € Bandd € D = B*. Itis easy to see thatinduces a cube; where

k
Cd:i/_\l{ ?i‘lyz Z:ié

Given an abstraction functidgn assume thdt; = h andh;(z;) = z; fori > 1.
In other words, abstraction is only applied to the top variahle The other
variables are kept unabstracted. If we define a windew= Uy, cg, then

the following lemma holds.

Lemma 6.2.1 Let f be a Boolean function arfil be an auto-abstraction func-

tion. ThenH®(f) = f A wy.

Proof Note thath; (7 > 1) is identity function. Therefore, the corresponding
auto-abstraction functioft?; is also identity function. Therefore, the O-type

aBDD for f can be defined as

flz1,...,x,) H(xy) =2
HO(f) (@1,) = { 0 1 othelrwise1

Or, it can also be written as
Ho(f)(xla"'yxn) = f(xlyyxn)A(\/ T =)
It is easy to see that; = d is the same ag;. Therefore H'(f) = f A wy. O

According to Lemma 6.2.1, using O-type aBDDs provides a natural way to

implement the window based sampling method. First, we select a senhtydl

122

variables These variables are heuristically determined by traversing theitirc
in a depth-first order where nodes are selected so that the distance from a node
to the primary inputs is minimized. Next, we choose an abstraction function
for a set of control variables and build an abstract BDD for the funcfiarnth
dynamic reordering. Since this abstract BDD partially captures the functional-
ity of f, a good ordering for the abstract BDD is likely to be a good ordering
for f as well. Different abstraction functions usually produce different orders.
From our experiments, we have found that twaint1function 3% ; and
thelogarithmicabstraction functionlog, Zle(Qiyi)J are good choices. Note
that these abstraction functions are parameterized by the number of variables
In each case, the number of cubes is relatively small. For example, a countl
abstraction function ok variables determinels+ 1 cubes.

Our method has 4 steps: the estimation phase, the candidate-order selection
phase, the testing phase (circuit filter phase), and the evolution phase. These
4 phases produce an initial ordering for building the final BDD and are de-

scribed below.

Step 1. In the estimation phasewe try 5 different abstraction functions and
determine the number of variables in each. Starting from the top variable, we
choose the set of abstracted varialilgs < ;) incrementally. For each cube in
the window given by the abstraction function, we partially simulate the ¢ircui
We choose; to be the size of the abstraction function if simulating one of the

cubes greatly decreases the number of gates left in the circuit.

Step 2.1n thecandidate-order selection phasee apply; different abstraction
functions to the togk;(i < j) variables selected in the previous phase. Then,
we build the aBDDs for the original Boolean function with dynamic reordering.

Each produces a new variable ordering. In our experiments, we chidodee

123

2 or 3 and use the subsequent phases to reject and refine these orderings.

Step 3. The purpose of theircuit filter phaseis to filter out the bad order-
ings. We estimate the quality of a given variable ordering by building the BDD
with this ordering up to a certain target gate inside the circuit (with dynami
reordering disabled). An obvious question is how we choose the target gate.
Using some threshold level, we pick the gate between the primary inputs and
this threshold level whose cone covers the maximum number of primary in-
puts. The intuition for this step is that we want to consider as many variables
as possible to compare the orderings for all of the variables obtained from Step

2.

Step 4. After filtering out the bad orderings, we use tbeolution filterto
decide which is the best ordering from the ones that remain. Using another
window defined by a new abstraction function, we build aBDDs for the re-
maining orderings obtained from Step 3. We choose the ordering which has
the minimum number of BDD nodes as our final order. This idea is also dis-
cussed in [60]. The difference is that we select windows using abstradsBD
instead of randomly selected cubes.

In a cube based sampling technique, since only one cube is considered at a
given time, a sample may map to a trivial function. A window based sampling
method considers a large number of cubes at one time; it is highly unlikely
that each of these cubes will reduce to a trivial function. Thus, even if random
cubes were generated, a window based sampling is far more stable.

A function sampled using windows effectively contains a restriction of the
original function on each of the cubes. Thus, when we reorder our sampled
function, we are implicitly trying to produce an order which is simultaneously

“good” for each of these restrictions. Intuitively, this is important because a

124

variable order produced from restriction by any single cube may not be good
for the whole function. Considering multiple cubes at the same time and “av-
eraging” their effect is more likely to produce better results. For marguis

we find that the variable order produced by using windows is far better than the
order produced by cubes.

The advantages of a window based method are particularly impressive
when a single order is needed for all outputs of a multiple-output circuit. In
fact, if we rely on cubes alone, then since the control variables may ddfer f
different outputs, the cubes effective for one output may not yield good results
for another. Techniques based on aBDDs are far superior in this case as well.

Our experiments are performed on a 360MHz Sun UltraSparc-60 with
512Mb RAM using the CUDD-2.2.0 package. In our tables, BDD size is
measured by the number of BDD nodes. Runtime entries refer to the time
taken for the sampling phases, as well as the time taken to construct the final
BDD from the order computed by sampling. The “DFS-MIN” entries refer to
the DFS based static variable ordering method described earlier.agyndll
CUDD entries refer to CUDD-2.2.0 usirgift, except for “CUDD SiftConv”
which was obtained by replacirgft with sift-convergencéhroughout the ex-
periment. The “Using aBDD” column refers to the sampling technique which
uses O-type abstract BDDs. We conducted two sets of experiments. The first
experiment shows how the technique behaves on single output functions, while
the second experiment deals with multiple output functions.

Note that our aBDD method gives deterministic results (unlike [60]). For
this purpose, in our experiments, we use two abstraction functionsoth@l
function and théogarithmicfunctions (see Chapter 5.2).

Experiment 1 (Table 6.3, and Figure 6.2): First, we use the order com-

puted by sampling to build the BDD statically. Except for slightly inferior

125

EX6

cube based method cannot

7 ['| finish EX3 and EX6 for ﬂ o

some of the runs Eﬁ?
G [
a b g
3 3540
2 [1355
(1355gat)
1 Fme w .

O o
T QO
Q >
© O

Figure 6.2: Static ordering with aBDD vs. cube based method

abdd
cube
abdd
cube
abdd
cube
abdd
cube

orderings on c499 and c1355 (both circuits are functionally equivalent) we find
that our methods always produce better variable orderings than those produced
by DFS search based static techniques (Table 6.3). For many industrial ex-
amples we find that DFS-MIN cannot even process the circuits. Interestingly
for c3540 and EX1, we find that our static order using abstract BDD based
windows is better than even the dynamic ordering obtained using the CUDD-
2.2.0 package, and for EX6, comparable. Thus, we believe that our window
based sampling method is superior to other static ordering methods in terms of
efficiency as well as stability.

Figure 2 gives some representative data for comparing the performance of
static ordering methods that use an initial ordering provided by cube based
sampling vs. window based sampling using aBDDs. It is easy to see that cube
based method suffers from very large variance. However, since windadbas

sampling is deterministic, there is no variance at all. InterestifighEX3 and

126

BDD Nodes TIME (sec)

DFS| Using DFS | Using
Ckts -MIN aBDDs | -MIN | aBDDs
c432 5624 3956 1.6 3.1
c499 3466 3429 0.1 51
c1355 3652 3109 0.1 5.0
c1908 2187 1428 0.2 2.6
c3540| 55730 6976 9.1 30
€c6288| 19417| 22360 5.1 132
c6288| 48483| 42781| 17.0 127
EX1 fail | 2779448|| fail 111
EX2 | 881339 596415 9.5 24
EX3 | 966210, 738906 8.8 91
EX6 fail 20994 fail 134
EX8 fail 34918 fail 89
EX10 fail 942 fail 88

Table 6.3: Static order using sampling with aBDDs

EX6, aBDD based methods can create a small BDD for the output function,
but cube based sampling fails for some of the runs!

Experiment 2 (Table 6.4 and Figure 6.3) demonstrates the utility of window
based sampling in a dynamic variable ordering scheme. That is, we show how
sifting based reordering techniques can be significantly improved if they are
supplied with an initial variable ordering generated using a window based sam
pling technique. In Table 6.4, we find that we can produce far smaller graphs
than the traditional dynamic reordering methosit(sift-convergenge Also,

for most of the large circuits we take less time. Sometimes, the differesnc
dramatic; in EX3 we take almost an order of magnitude less space and 6 times
less runtime. Compared with sampling approaches, our method is also superior
(Figure 6.3) since our method does not have the large deviation problem.
Experiment 3 (Table 6.2): We performed another set of experiments to verify

the efficiency of window based methods on multiple output functions. It is

127

SPACE (# of BDD Nodes) TIME (in seconds) |
CuDD CUDD | Using || CUDD CUDD | Using

Ckts Sift | SiftConv | aBDDs Sift | SiftConv | aBDDs
c432 379 377 367 1.3 2.8 2.9
c499 3457 3650 3117 35 7.2 5.3
c1355 2557 3337 3529 3.2 11.0 6.9
c1908 901 758 763 2.0 4.5 2.6
c3540 8045 5486 5510 46.0 54.0 31.0
c6288| 16774 16693 | 16746 40.0 110.0 56.0
c6288| 40024 39942 | 40024 88.0 251.0| 103.0
EX1 1467 644 748 41 89 33
EX2 13390 14771 9431 22 98 33
EX3 633780| 655556| 63404 1320 6780 230
EX4 163854 fail | 130589 3535 fail 2667
EX5 190674| 190674| 63916 2616 2586 480
EX6 20343 15905| 13457 146 334 120
EX7 118378 67384 | 40698 522 517 191
EX8 289619| 387116| 186754 786 4781 1365

Figure 6.3: Dynamic ordering with aBDD vs. cube based method

BDD size
|

5 [-| deviation

(normalized)

minimum

TS0 TO TO
BD B.Q BD
> > o)
O ®O0O ®O

128

0
23
® O

S0
23
® O

Table 6.4: Deterministic sampling using aBDD

known that sifting works very well for ISCAS85 circuits [85] and for many

circuits, there may not be scope for significant improvement. However, our
approach still outperforms CUDD for some of the circuits (c1908 and c7552).
For large industrial circuits, our approach is definitely much better than CUDD

(sift) with respect to both time and space.

CUDD Sift Using aBDDs
BDD CPU BDD CPU
Ckts Size Time Size Time

c432 1246 0:02 1224 0:03
c499 25897 0:29 || 26798 1:03
c880 4821 0:06 4463 0:06
c1355| 25897 0:31 || 26579 0:56
c1908| 9102 0:07 5946 0:08
c2670| 2412 0:15 3070 0:31
c3540| 23857 0:27 || 24122 1:02
c5315| 2108 0:06 2712 0:07
Cc7552| 18363 2:26 7206 0:59

M1 2595K | 1:54:45 | 1866K | 1:26:41
M2 4283K | 8:36:00 || 4120K | 2:50:15

M3 963K | 1:17:15| 487K 28:49
M4 fail fail || 2195K | 1:13:26
M5 5976 0:48 1568 2:23

M6 89639 4:24 || 13625 2:36

Table 6.5: Sampling using 0-type aBDD for ISCASBS85 circuits

6.3 Model Checking Usingv-type Abstract BDDs

In this section, we will discuss how to usetype aBDDs to construct an ab-

stract Kripke structure and applications.

6.3.1 Abstraction for ACTL*

Given a structurd/ = (S, Sy, R), whereS is the set of states, C S is the set

of initial states, and? C S x S is the transition relation, the abstract structure

129

My, = (Sh, Son, Rp) is defined as follows:

Son = 3$1"'$n[h($1):
Ry = Jay-- 32y [h(xy

~

/\---/\h(x’l 'y A+ A RJ

whereS = D" andz; is a symbolic variable oveD. On the other hand, we
define another abstract structuté, = (Su, Sox, Rx), which we construct

usingV-type aBDDs:
e Thestate setSy, is the image of5 under the auto-abstraction functih

¢ Theinitial set of statesS 5, is the image of5, under the functiori{. No-
tice that ifS is represented as a boolean function, tigp corresponds

to thev-type aBDDH(S,) (see Lemma 5.4.3).

e Thetransition relation R, is the image ofR under the functior{. No-
tice that if R is represented as a boolean function, tiigncorresponds

to thev-type aBDDH(R) (see Lemma 5.4.3).

In Chapter 2.4, Theoerem 2.4.2 states that and M,, are isomorphic
structures i.e., there is a bijection : S, — Sj such that.(S;) = Sy and
u(Rp) = Ry.

According to the definition of existential abstraction, the standala-
tional producttechnique can be used to build the abstract transition relation
Ry,. We call this straightforward approach the traditional approach or method.
UsingV-type aBDDs has advantages over the traditional approach. First, in the
traditional method the BDD for the abstraction functions has to be constructed
before applying the method. For many abstraction functions, these BDDs are
very hard to build. Second, in our experience a good variable ordering for an
abstraction function might be different from a good variable ordering for the
transition relation of the system, but standard model checkers would enforce

them to coincide. Our approach using abstract BDDs does not suffer from

130

these problems since we never explicitly build the BDDs for the abstraction
functions [27]. Abstraction functions are employed while building the abstract
BDD corresponding to the transition relation.

In order to test our ideas we modified the model-checker SMV. In our im-
plementation, the user gives an abstraction function for each variable of inte
est. Once the user provides a system model and the abstraction functions, our
method is completely automatic. We consider two examples in this paper: a

pipelined multiplier design and the PCI local bus protocol.

6.3.2 Case studies

Verification of a pipelined multiplier In [31], Clarke, Grumberg, and Long
propose an approach based on @tenese Remainder Theordor verifying
sequentiamultipliers. The statement of théhinese Remainder Theoraran

be found in most texts on elementary number theory and will not be repeated
here. Clarke, Grumberg, and Long use the modulus funétion= ¢ mod m

for abstraction. They exploit the distributive property of the modulus function

over addition, subtraction, and multiplication.

((¢ mod m) + (j mod m)) mod m = (i + j) mod m

((¢ mod m) — (j mod m)) mod m = (i — j) mod m

((¢ mod m) x (j mod m)) mod m = (i x j) mod m

Let e represent the operation corresponding to ithelementation The
goal is to prove thae is actually multiplicationx, or, in other words, for
all z andy (within some finite range) e y is equal tox x y. If the actual

implementation of the multiplier is composed gift-addcomponents, then

131

the modulus function will distribute over theoperation. Therefore, we have

the following equation:
(xey)mod m = [(x mod m)e (ymodm)] modm

Using this property and the Chinese Remainder Theorem, Clarke, Grumberg,

and Long verify a sequential multiplier.

stagen,

Figure 6.4: Carry-save-adder pipeline multiplier

Unfortunately, this approach may not work if the multiplier is not com-
posed of shift-add components. Suppose there is a mistake in the design of the
multiplier, then there is no guarantee that the modulus operator will distribute
over the operatiom (corresponding to the actual implementation). For exam-
ple, the mistake might scramble the inputs in some arbitrary way which breaks
the distributive property of the operation. In this case, the method proposed
by Clarke, Grumberg and Long is not complete and may miss some errors.
Therefore, before we apply the methodology in [31] it is necessary to check
the distributive property of the modulus function with respect tostb@erator.

In other words, we must show that the following equation holds:

(xey)mod m = [(x mod m)e (ymodm)] modm

132

We illustrate our ideas by verifying 8 x 16 pipelined multiplier which
uses carry-save adders (see Figure 6.4). Notice that the first stage cohsists
shiftoperations and the last stage corresponds tadlaeoperation. It easy to
show that the first and the last stages satisfy the distributive propertgct,
this can be determined using classical equivalence checking methods. We will
focus our attention on the intermediate stages.

Notice that the Chinese Remainder Theorem implies that it is enough to
verify the multiplier by choosingn = 5,7,9,11, 13,16, 17, 19, 23 because of

the following equation:
5% 7x9% 11 %13 % 16 % 17 % 19 % 23 = 5354228880 > 23?2 = 4294967296.

Our technique works as follows:

e First verify that each pipelined stage satisfies the distributive prop-
erty using numbers in the s€t5,7,9,11,13,16,17,19,23}). For-
mally, let o; correspond to the operation of theth stage in the
pipeline. We want to verify the following equation for ail in the set

{5,7,9,11,13,16,17,19,23} andl < i < 6:
(x o;y) mod m = (z modm e;y modm)mod m

If the equation given above is violated, we have found a error. Notice
that the equation given above can be checked by building the abstract

BDD for the transition relation corresponding to théh stage.

e Next, assume that all the pipelined stages satisfy the distributive prop-
erty. In this case, we can apply the method proposed by Clarke, Grum-

berg, and Long because the entire design will also satisfy the distributive

property.

133

In Figure 6.5 we give our experimental results for the first step. The row for
space usage corresponds to the largest amount of memory that is used during

verification.

modulus 5 7 9 11 13| 16 17 19 23
time(s) 99| 137| 199| 372| 636| 130 | 1497 | 2648 | 6977
space(MB)| 7.7 | 12.8] 21.5| 51.7] 92.5| 9.2| 210| 231| 430

Figure 6.5: Experimental Results for various modulus

We detected a number of actual errors in our design using this technique. All of
the errors that we found were caught using= 3. The average time and space
requirements to find the errors for the different stages are shown in Figure 6.6.
The 16 x 16 multiplier design could not be verified by SMV without using
abstraction. Therefore, we could not measure how much we saved by using

our technique.

stages stl|st2|st3|st4|st5|st6] total
bugs 4 1 1 0 0 1 7
avg.time(s) | 51| 44| 30| 25| 1.7| 1.2|89.1
avg. space(M) 5.6| 2.7| 3.7| 48| 3.6| 1.7 | 5.96

Figure 6.6: Space and Time requirements to find bugs

Verifying the PCI local bus The second example we tried is the PCI local bus
protocol. During verification, we found a potential error in the PCI bus protocol
specification. In particular, we discovered an inconsistency betwedextual
specification and one of the state machines given in the PCI standard [88]. The
precise nature of the error will be explained later.

During model-checking, we used following abstraction functions on vari-

ous state variables:

e h(z) = L, wherel means constant;

134

e h(z) =if z # 0 thenl else0;
e h(z) =if z > 1thenl else0;

Incidentally, the bug we discovered wast found when we applied the tech-
niques proposed in [31].

The PCI Local Bus [88, 89, 100] is a high performance, synchronous bus ar-
chitecture that can transfer 32-bit or 64-bit data. Its primary goal is thksta
an industry standard and optimize for direct silicon (component) interconnec-
tion with minimum glue logic required. It supports most processor designs and
connects various types of devices on a chip. Bridges are used to extend the PCI
bus based systems. There are three types of devices that can be connected to
the PCI local bus: masters, target, and bridges. Masters can stesacteons.
Targets respond to transactions and bridges connect buses. Masters and targets
are controlled by a finite-state machine.

A typical PCI bus transaction is demonstrated in Figure 6.7. The request
for a transaction starts when a subsystem asserts its request line RE@A |
waits until being granted the bus by the arbiter by asserting the correspond-
ing GNT# line. This phase is known as thebitration phase The transac-
tion begins when signal FRAME# is asserted. In the first clock after tasger
FRAME#, address is put on the data/address multiplexed lines iadtieess
phaseand the command lines carry the transaction-type. All target devices lis-
ten to this address and if the address maps to their address space, they asser
their DEVSEL# lines, indicating they are present on the bus. The master then
asserts the signal IRDY#, meaning that it is ready for data transfer. The bus
target asserts its TRDY# signal to indicate that the target is ready fati@as-
fer. Data transfer occurs when both IRDY# and TRDY# are asserted, which

known as onelata phase A transaction can have more than ateta phase

135

and wait cycles can be inserted between data phases by the master ftarget)
deasserting the IRDY# (TRDY#) signal. One clock cycle before the end of the
data transfer phase, the FRAME# signal is deasserted. In the next cycle both

IRDY# and TRDY# are deasserted, and the bus goes back to the idle state.

ff

,,,

ADDRESS/DATA ——: i ADDRESS i DATA 1 i >< DATA 2 >< DATA 3

fff

COMMAND/BE# 3 3 BUS ;MD>< i i BYTE ENAQLE#S

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

ffffffffffffffffffffffffffffff

g
2
g
g

,,,,,,,,,,,

,,,

' Arbitration ' Address Phase ' Data Phase Déata Phase Data Phase 'Data Phasé Idle Bus
Phase

Figure 6.7: A typical PCI bus transaction

In our verification efforts, we considered a simple model which consists
of one master, one target, and one bus arbiter. The model includes different
timers to meet the timing specification. The master and target both include
a lock machine to support exclusive read/write. The master also has a data
counter to remember the number of data phases.

In the verification, we applied different abstractions to some of the timers
the lock machine and the data counter in the master. We also clustered the
transition relations of the major state controllers in both master and thetta
We checked various properties dealing with handshaking, read/write transac-
tions, and timing in this simplified model. Next, we describe in detail the prop-

erty which demonstrates the inconsistency in the design. Description of all the

136

properties that we checked is not given here because of space restrictions.
One of the textual requirements is thtéte target responds to every

read/write transaction issued by the mast€&his important property turns out

to be false for the state machine given in the standard when the master reads

or writes a single data value. The negation of this property can be expressed in

ACTL" as follows:
AG(m.regA m.datacnt=1) — A[(m.regA —t.ackU(m.timeout)) (x)

where m.req corresponds to the master issuing a transactrorgatacnt=1
means that the master requests one data valek means that the target ac-
knowledges the master’s request; andimeoummeans that the time the master
has allowed for the transaction has expired. If tAKTL* formula is true in
the abstract model, it is also true in the concrete model. We verifiedhisat t
formulais true, so there must be an inconsistency in the standard.

The experimental results are shown in Figure 6.8. the first row in Figure 6.8
(Error) corresponds to the inconsistency we discovered. The remaining prop-
erties are not described here. The second and third columns show the running
time and maximum BDD nodes for the original version of SMV. The fourth
and fifth columns show the results obtained using our methodology. For some

cases our approach reduces the space needed for verification by a factor of 20.

Properties SMV SMV_ABS
Time(s) | # nodes| Time(s) | # nodes
Error 278 | 727K 65 33K
Property 1 20 164K 18 14K
Property 2 137| 353K 30 66K
Property 3 99 436K 138 54K
Property 4 185| 870K 40 36K
Property 5 67 352K 42 57K

Figure 6.8: Experimental Results for Verifying PCI using Abstraction

137

6.3.3 Abstraction for Variable Ordering

In model checking, the problem of generating a good initial variable ordering
is even more serious than the case with combinational circuits. Marnyg stat
ordering approaches have been proposed [4]. Because the best ordering may
change dynamically during the fixpoint computation, these approaches are not
powerful enough for many applications. In reality, people generate the initial
orders manually or statically and run model checker iteratively to produce a
goldenvariable order. This approach is not systematic and may be inefficient
for large designs.

Since the abstract Kripke structure describes the basic behavior of the orig-
inal structure, a good variable order for the abstract structure is likely t be
good ordering for the orginal one. Based on this observation, we propose a new

variable ordering scheme as follows:

1. Given a set of abstraction functions, the system automatically builds the

abstract Kripke structure usingtype aBDDs.

2. Next, we run the model checker on the CTL property with the abstract
structure with dynamic reordering on. Counterexample generation is dis-

abled in this phase.

3. Finally, we restart the model checker on the original structure using the

ordering obtained from the previous step as the initial variable ordering.

As an example, we verified the PCI bus protocol. The PCI local bus pro-
tocol includes three types of devices: masters, targets, and bridges. Mas-
ters can start transactions, targets respond to transactions, and brifges ¢
nect buses. Masters and targets are controlled by finite-state machifees.

considered a simple model which consists of one master, one target, and one

138

bus arbiter. The model includes different timers to meet the timing spacific
tion. The master and target both includéoek machine to support exclusive
read/write. The master also has a data counter to supoost transactions
(multiple data phases). We have observed that the BDD sizes constructed dur-
ing model checking can be reduced significantly by using the procedure de-
scribed above. In our verification phase, we have applied abstractions & som
of the timers, the lock machine and the data counter in the master. Address and
data in both the master and the target are also abstracted. Various popertie
dealing with handshaking, read/write transactions, and timing are checked in
this model. The experimental results are listed in Table 6.6. The initial or-
dering for both “SMV” and “Using aBDD” columns are provided manually.
Obviously, aBDD based approaches are superior to the traditional approach.

Note that our approach is totally automatic.

139

Table 6.6: Generating Initial Ordering for Model Checking usingype aB-

DDs

Prop- TIME (sec) # Nodes
erty SMV | SMV (aBDD SMV | SMV (aBDD
Based Order) Based Order)
Py 542 289 || 11984K 3327K
Py 242 204 || 1778K 718K
Py 5882 207 || 36077K 862K
Py 15 77 50K 44K
Py 424 269 || 4458K 3700K
Py 179 118 | 2472K 520K
P 8970 3956 || 28924K 13964K
B 84 117 645K 504K
Py 9946 793 || 37288K 5084K
Py 14 75 59K 39K
P 5580 2713 | 20680K 7850K
Py 293 376 || 4632K 3506K
P 2043 1209 || 19703K 6002K
Py 2932 1862 || 38210K 17386K
Pis 2831 118 || 12740K 520K
Pig fail 3955 fail 13964K
Py 63 117 649K 504K

140

Chapter 7

Conclusion and Future Work

The state explosion problem is the major problem in applying model checking
to real life hardware designs. In this dissertation, | have demonstrated tw
powerful abstraction techniques to reduce the model size and still prove the
property. First, | have showed a counterexample-guided abstraction refinement
methodology which is complete faxCTL. Secondly, | have defined a new
data structure - abstract BDDs which is a better data structure for building
abstract Kripke structure.

One advantage of our counterexample-guided abstraction refinement
methodology is that the initial abstraction and the refinement steps arer#fficie
and entirely automatic. All algorithms are symbolic. In comparison to methods
like the localization reduction [68], we distinguish more degrees of abstracti
for each variable. Thus, the changes in the refinement are potentially finer in
our approach. The refinement procedure is guaranteed to eliminate spurious
counterexamples while keeping the state space of the abstract model small.
These claims are demonstrated by experimental results.

There are many interesting avenues for future research. First, oul initia
abstraction generation is syntax driven. A semantic driven initial atisira
generation will be more powerful. Using better static analysis techniques on

this problem will be very interesting.

141

Next, it is important to find more efficient approximation algorithms for
the NP-complete separation problem encountered during the refinement steps.
This will allow us to generate even smaller refined abstract Kripkessires.

In the experiments, however, | did not find cases where the described polyno-
mial time computable heuristic works poorly. Identifying such examples may
be the starting point of further research.

More fundamentally, the previous research on counterexample-guided re-
finement including this thesis mostly focusses on searchingdhaesestre-
finement. This refinement approach is conservative but not optimal in most
cases, because the refinement steps may be smaller than necessary. Looking
for optimal refinement will significantly improve the performance of the model

checker.

7.1 Using other data structures instead of BDDs

The symbolic methods described in this thesis are not tied to representation
by BDDs. In particular, no fixpoint computation is involved. Therefore, it is
interesting to investigate other approaches including satisfiability bAS&W;

based and symbolic simulation approaches. The advantages of using other data

structures are as follows.

¢ In checking spurious counterexample, the original models are typically
used. Building transition relations for large models is usually difficult.
Sometimes, it is hopeless. However, other data structures do not explic-

itly build the transition relations.

e Since there is no fixpoint computation during the abstraction and refine-
ment phases, canonicity is not as demanded as for BDD based symbolic

model checking. It is possible that satisfiability based techniques can

142

handle significantly larger designs.

7.2 Implementing abstraction inside BDDs

In Chapter 5, we introduced a general framework for applying abstraction to
BDDs. Abstract BDDs are a first attempt to implement abstraction tipasa
inside BDD packages. By exploiting the nature of abstraction functions, ab-
stract BDDs can improve the performance of abstraction operations signifi-
cantly.

In this thesis, | described four types of abstract BDDs and their applica-
tions. Other types of abstract BDDs can be easily defined following a simi-
lar procedure. In my experience, the definition of abstract BDDs should be

application-driven.

143

Bibliography

[1] Fujitsu aims media processor at DVIMicroProcessor Reportpages

11-13, 1996.

[2] P. A. Abdulla et al. Verification of infinite-state systems by combining
abstraction and reachability analysis. @omputer-Aided Verificatign

July 1999.

[3] F. Van Aelten, S. Liao, J. Allen, and S. Devadas. Automatic generation
and verification of sufficient correctness properties for synchronous pro-

cessors. Innternational Conference of Computer-Aided Desitya92.

[4] A. Aziz, S. Tasiran, and R. K. Brayton. BDD variable ordering for inter-

acting finite state machines. Design Automation Conferenced94.

[5] F. Balarin and A. L. Sangiovanni-Vincentelli. An iterative approash
language containment. @omputer-Aided Verificatigrvolume 697 of

LNCS pages 29-40, 1993.

[6] Roberto Bayardo, , and Robert Schrag. Using csp look-back techniques
to solve exceptionally hard sat instances. Pimceedings of the Sec-
ond International Conference on Principles and Practice of Constraint

Programming volume 1118 ot NCS pages 46—60, 1996.

[7] S. Bensalem, A. Bouajjani, C. Loiseaux, and J. Sifakis. Property pre-

serving simulations. Ii@omputer-Aided Verificatiqrduly 1992.

144

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

S. Bensalem, Y. Lakhnech, and S. Owre. Computing abstractions of
infinite state systems compositionally and automaticallyCémputer-

Aided VerificationJune 1998.

S. Berezin et al. Combining symbolic model checking with uninter-
preted functions for out-of-order processor verification-bnmal Meth-

ods in Computer-Aided Desigpages 369-386, 1998.

A. Biere, A. Cimatti, E. Clarke, M. Fuijita, and Y. Zhu. Symbolic model
checking using SAT procedures instead of BDDsD#&sign Automation
Conferencepages 317-320, 1999.

A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model check-
ing without bdds. InTACAS’99 number 1579 in LNCS. Springer-
Verlag, 1999.

N. S. Bjorner, A. Browne, and Z. Manna. Automatic generation of
invariants and intermediate assertiongheoretical Computer Science

173(1):49-87, 1997.

B. Bollig. Improving the variable ordering of OBDDs is np-complete.

IEEE Transaction on Computers996.

B. Bollig, M. Lobbing, and I. Wegener. Simulated annealing to improve
variable orderings for oBDDs. Imternational Workshop on Logic Syn-

thesis pages 5b:5.1-5.10, 1995.

Richard John BoultorEfficiency in a Fully-Expansive Theorem Praver
PhD thesis, University of Cambridge Computer Laboratory, May 1994.
Technical Report 337.

145

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficientimplementation of

a BDD package. Ibesign Automation Conferengeages 40—-45, 1990.

R. E. Bryant. Graph-based algorithms for boolean function manipula-

tion. IEEE Transaction on Computensages 35(8):677-691, 1986.

R. E. Bryant. On the complexity of visi implementations and graph
representations of boolean functions with application to integer multi-

plication. IEEE Transaction on Computengages 40:205-213, 1991.

R. E. Bryantand Y. A. Chen. Verification of arithmetic functions with bi-
nary moment diagrams. IDesign Automation Conferencggages 535—

541, 1995.

R. E. Bryant, S. German, and M. N. Velve. Exploiting positive equality
in a logic of equality with uninterpreted functions. Gomputer-Aided

Verification LNCS, pages 470-482, 1999.

J. Burch and D. Dill. Automatic verification of pipelined microprocessor
control. InComputer-Aided Verificatignvolume 818 ofLNCS pages
68-80, 1994.

J. R. Burch, E. M. Clarke, and K. L. McMillan. Symbolic model check-
ing: 10?° states and beyonthformation and Computatiqr®8:142—170,
1992.

P. Chauhan, E. Clarke, Y. Lu, and D. Wang. Verifying IP-core based
System-On-Chip design. IEEE ASIC September 1999.

A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: a new

symbolic model checkeBoftware Tools for Technology Transfé®98.

146

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided abstraction refinement. Gomputer-Aided Verificatigrvolume

1855 ofLNCS pages 154-169, 2000.

E. Clarke, O. Grumberg, and D. Pelddodel Checking MIT Publish-
ers, 1999.

E. Clarke, S. Jha, Y. Lu, and D. Wang. Abstract BDDs: a technique for
using abstraction in model checking. Qorrect Hardware Design and

Verification Methodsvolume 1703 oL NCS pages 172-186, 1999.

E. M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons
for branching time temporal logic. Ihogic of Programs: Workshop

LNCS, 1981.

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verifimati
of finite-state concurrent system using temporal logicPtaceedings
of the Tenth Annual ACM Symposium on Principles of Programming

Languages (POPL.January 1983.

E. M. Clarke, M. Fujita, and X. Zhao. Hybrid decision diagrams - over-
coming the limitations of MTBDDs and BMDs. limternational Con-

ference of Computer-Aided Desigrages 159-163, 1995.

E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and ab-
straction. ACM Transactions on Programming Languages and System

(TOPLAS) 16(5):1512-1542, September 1994.

E. M. Clarke, K. McMillan, X. Zhao, M. Fujita, and J. Yang. Spectral
transforms for large boolean functions with applications to technology

mapping. InDesign Automation Conferengeages 54—60, 1993.

147

[33]

[34]

[35]

[36]

[37]

[38]

[39]

M. A. Colon and T. E. Uribe. Generating finite-state abstraction of reac-
tive systems using decision proceduresCbrmputer-Aided Verificatign

pages 293-304, 1998.

P. Cousot and R. Cousot. Abstract interpretation : A unified lattice
model for static analysis of programs by construction or approximation
of fixpoints. ACM Symposium of Programming Languagages 238—
252, 1977.

D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reacti
systems. ACM Transactions on Programming Languages and System

(TOPLAS) 19(2), 1997.

D. R. Dams, O. Grumberg, and R. Gerth. Generation of reduced models
for checking fragments of ctl. Ii€omputer-Aided Verificatigrnpages

479-490, 1993.

D. R. Dams, O. Grumberg, and R. Gerth. Abstract interpretation of
reactive systems : Abstractions preservirgl*, dctl*, ctl*. In IFIP
Working Conference on Programming Concepts, Methods and Calculi

(PROCOMET 94)pages 573-592, 1997.

S. Das, D. L. Dill, and S. Park. Experience with predicate abstmacti
In Computer-Aided Verificatigivolume 1633 o£NCS pages 160-171.

Springer Verlag, July 1999.

J. Dingel and T. Filkorn. Model checking for infinite state systems using
data abstraction, assumption-commitment style reasoning and theorem
proving. In P. Wolper, editoiRroceedings of the 7th International Con-

ference On Computer Aided Verificatiorolume 939 ofLecture Notes

148

in Computer Scien¢g@ages 54-69, Liege, Belgium, July 1995. Springer
Verlag.

[40] R. Drechsler et al. Efficient representation and manipulation of Bwitc
ing functions based on Ordered Kronecker Functional Decision Dia-

grams. InDesign Automation ConferencE994.

[41] R. Drechsler et al. A genetic algorithm for variable ordering of OBDDs.

In IEEE Proceedings of Computer Digital Techniqu&g96.

[42] E.A. Emerson. Temporal and modal logic. KHandbook of

Theor.Comp.Science. Vol.,pages 995-1072. Elsevier, 1990.

[43] E.A. Emerson and A.P. Sistla. Symmetry and model checkifogmal
Methods in System Desig#(1/2):105-130, 1996.

[44] E.A. Emerson and R.J. Trefler. From asymmetry to full symmetry: new
techniques for symmetry reduction in model checkingCbwrect Hard-
ware Design and Verification Methodgolume 1703 ofLNCS pages
142-156, 1999.

[45] M. Fujita et al. Evaluation and improvements of Boolean comparison
method based on binary decision diagramdnternational Conference

of Computer-Aided Desigri988.

[46] M. Fujita et al. On variable ordering of Binary Decision Diagrams for
the application of multi-level logic synthesis. European Design Au-

tomation Conferencel991.

[47] D.A. Fura, P.J. Windley, and A.K. Somani. Abstraction techniques for
modeling real-world interface chips. In J.J. Joyce and C.-J.H. Seger, ed-

itors, International Workshop on Higher Order Logic Theorem Proving

149

[48]

[49]

[50]

[51]

[52]

[53]

and its Applicationsvolume 780 otfecture Notes in Computer Science
pages 267-281, Vancouver, Canada, August 1993. University of British
Columbia, Springer Verlag, published 1994.

M. R. Garey and D. S. Johnso@omputers and interactability: a guide

to the theory of NP-Completene$d. H. Freeman And Company, 1979.

lan Gent and Toby Walsh. The sat phase transitionPrbteedings of
the 11th European Conference on Atrtificial Intelligengages 105-109,
1994.

J. Gergov et al. Efficient boolean manipulation with OBDD’s can be

extended to FBDD'’s. IhREEE Transaction of Computer$994.

P. Godefroid, D. Peled, and M. Staskauskas. Using partial order methods
in the formal verification of industrial concurrent programsI$$TA'96
International Symposium on Software Testing and Anglpsiges 261—

269, 1996.

Shankar G. Govindaraju and David L. Dill. Verification by approxi-
mate forward and backward reachability. Proceedings of Interna-

tional Conference on Computer-Aided Desijfovember 1998.

S. Graf. Verification of distributed cache memory by using abstractions
In David L. Dill, editor, Proceedings of the sixth International Confer-
ence on Computer-Aided Verification CAdlume 818 olecture Notes

in Computer Sciencgages 207-219, Standford, California, USA, June
1994. Springer Verlag.

150

[54] S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In
Computer-Aided Verificatigrvolume 1254 o NCS pages 72—-83, June
1997.

[55] P.-H. Ho, A. J. Isles, and T. Kam. Formal verification of pipeline oaintr
using controlled token nets and abstract interpretatiornternational

Conference of Computer-Aided Desigages 529-536, 1998.

[56] R.Hojatiand R. K. Brayton. Automatic datapath abstraction in hardware
systems. In P. Wolper, editd?yoceedings of the 7th International Con-
ference On Computer Aided Verificatiommlume 939 ot_ecture Notes in
Computer Scienggages 98-113, Liege, Belgium, July 1995. Springer
Verlag.

[57] G. E. Hughes and M. J. Creswell.Introduction to Modal Logic
Methuen, London, 1977.

[58] C.N. Ip and D.L. Dill. Better verification through symmetrformal

Methods in System Desigmages 41-76, 1996.

[59] N. Ishiura et al. Minimization of Binary Decision Diagrams based on

exchange of variables. IDesign Automation Conferenc&991.

[60] J. Jain, W. Adams, and M. Fujita. Sampling schemes for computing
OBDD variable orderings. Innternational Conference of Computer-

Aided Design1998.

[61] J. Jain et al. Indexed bdds: Algorithmic advances in techniques to rep-
resent and verify boolean functionlEEE Transactions on Computers

46(11):1230-1245, 1997.

151

[62] K. Jensen. Condensed state spaces for symmetrical colored petri nets.

Formal Methods in System Desid¥(1/2):7—40, 1996.

[63] S.-W. Jeong et al. Structural BDDs: Trading canonicity for structure in
verification algorithms. Innternational Conference of Computer-Aided

Design 1991.

[64] R. B. Jones, J. U. Skakkebak, and D. L. Dill. Reducing manual abstrac-
tion in formal verification of out-of-order execution. Formal Methods

in Computer-Aided Desigmpages 2—-17, 1998.

[65] U. Kebschull et al. Multilevel logic synthesis based on Functional De-

cision Diagrams. IfiEuropean Design Automation Conferent892.

[66] S. Kimura. Residue BDD and its application to the verification of arith-

metic circuits. InDesign Automation Conferenc&995.

[67] R. P. Kurshan. Analysis of discrete event coordination.Ptaceed-
ings of the REX workshop on stepwise refinement of distributed systems,

models, formalisms, correctnes®lume 430 olLNCS 1989.

[68] R. P. KurshanComputer-Aided Verification of Coordinating Processes

Princeton University Press, 1994.
[69] Y. Lakhnech. personal communication. 2000.

[70] W. Lee, A. Pardo, J. Jang, G. Hachtel, and F. Somenzi. Tearing based
abstraction for CTL model checking. limternational Conference of

Computer-Aided Desigmpages 76-81, 1996.

[71] D. Lesens and H. Sadi. Automatic verification of parameterized net-
works of processes by abstraction.litiernational Workshop on Verifi-

cation of Infinite State Systems (INFINITBplogna, July 1997.

152

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

J. Lind-Nielsen and H. R. Andersen. Stepwise CTL model checking of
state/event systems. Romputer-Aided Verificatignvolume 1633 of

LNCS pages 316-327. Springer Verlag, 1999.

J. Lind-Nielsen, H. R. Andersen, and H. Hulgaard. Verification of large
state/event systems using compositionality and dependency analysis. In

FORM 1998.

C. Loiseaux et al. Property preserving abstractions for the verification
of concurrent systemdzormal Methods in System Desigrages 1-36,

1995.

D. E. Long. Model Checking, Abstraction and Compositional Verifica-
tion. PhD thesis, School of Computer Science, Carnegie Mellon Uni-

versity, July 1993. CMU-CS-93-178.

S. Malik et al. Logic verification using binary decision diagrams in a
logic synthesis environment. International Conference of Computer-

Aided Design1988.

Z. Manna et al. Abstraction and modular verification of infinit-state
reactive systems. IRequirements Targeting Software and Systems En-

gineering (RTSE)1998.

K. L. McMillan. Symbolic Model Checkind<luwer Academic Publish-
ers, 1993.

K. L. McMillan. Verification of infinite state systems by compositional
model checking. Il€orrect Hardware Design and Verification Methods

September 1999.

153

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

C. Meinel, K. Schwettmann, and A. Slobodov. Application driven vari-
able reordering and an example implementation in reachability analysis.

In ASP-DAC 1999.

C. Meinel and A. Slobodov. Sample method for minimization of obdds.

In International Workshop of Logic Synthegsges 311-316, 1998.

C. Meinel and C. Stangier. Speeding up symbolic model checking by
accelerating dynamic variable reordering10th ACM Great Lake Sym-

posium on VLSI2000.

David G. Mitchell, Bart Selman, and Hector Levesque. Hard and easy
distributions of sat problems. IRroceedings of Tenth National Confer-

ence on Artificial Intelligencgpages 459—-465, 1992.

S. Panda and F. Somenzi. Symmetry detection and dynamic variable or-
dering of decision diagrams. International Conference of Computer-

Aided Design1994.

S. Panda and F. Somenzi. Who are the variables in your neighborhood.

In International Conference of Computer-Aided Desi§ja95.

A. Pardo. Automatic Abstraction Techniques for Formal Verification of
Digital Systems PhD thesis, University of Colorado at Boulder, Dept.

of Computer Science, August 1997.

A. Pardo and G.D. Hachtel. Incremental CTL model checking using
BDD subsetting. InDesign Automation Conferencpages 457-462,
1998.

PCI SIG GroupPCI Local Bus Specificatigdune 1995.

154

[89] PCI Special Interest Groug?Cl to PCI Bridge Architecture Specifica-
tion Rev 1.1 December 1998.

[90] A. Pnueli. The temporal semantics of concurrent programBraceed-
ings of the Eighteenth Annual Symposium on Foundations of Computer

Sciencel977.

[91] J.P. Quielle and J. Sifakis. Specification and verification of conatirre
systems in cesar. IRroceedings of the Fifth International Symposium

in Programming 1981.

[92] S. Rajan, N. Shankar, and M. K. Srivas. An integration of model check-
ing with automated proof checking. @omputer-Aided Verificatign

pages 84-97, 1995.

[93] K. Ravi, A. Pardo, G. D. Hachtel, and F. Somenzi. Modular verification
of multipliers. InFormal Methods in Computer-Aided Desjgoages
pp.49 — pp.63, November 1996.

[94] R. Rudell. Dynamic variable ordering for ordered binary decision dia-

grams. Ininternational Conference of Computer-Aided Desifya93.

[95] J. Rushby. Integrated formal verification: using model checking with
automated abstraction, invariant generation, and theorem proving. In
Theoretical and practical aspects of SPIN model checking: 5th and 6th

international SPIN workshopgages 1-11, 1999.

[96] V. Rusu and E. Singerman. On proving safety properties by integrating
static analysis, theorem proving and abstraction. Inlth Conference
on Tools and Algorithms for the Construction and Analysis of Systems

pages 178-192, 1999.

155

[97] H. Saidi and N. Shankar. Abstract and model checking while you prove.
In Computer-Aided Verificatigmumber 1633 in LNCS, pages 443-454,
July 1999.

[98] Bart Selman, Hector Levesque, and David G. Mitchell. A new method
for solving hard satisfiability problems. IRroceedings of Tenth Na-

tional Conference on Atrtificial Intelligencpages 440-446, 1992.

[99] J. Sifakis. Property preserving homomorphisms of transition systems.

In 4th Workshop on Logics of Programiine 1983.

[100] E. Solari and G. WillsePCI Hardware and Software - Architecture and

Design Annabooks, 1998.

[101] F. Somenzi. CUDD: CU decision diagram package. Technical report,

University of Colorado at Boulder, 1997.

[102] K. Takayama, T. Satoh, T. Nakata, and F. Hirose. An approach to verify
a large scale system-on-chip using symbolic model checkingntén-

national Conference of Computer Desjgrages 308—-313, 1998.

[103] M. N. Velve and R. E. Bryant. Exploiting positive equality and partial
non-consistency in the formal verification of pipelined microprocessors.

In Design Automation Conferengeages 397—401, 1999.

[104] M. N. Velve and R. E. Bryant. Formal verification of superscalar mi-
croprocessors with multicycle functional units, exceptions, and branch

prediction. InDesign Automation Conferengeages 112-117, 2000.

[105] P. Wolper and V. Lovinfosse. Verifying properties of large sets of pro-

cesses with network invariants. Rioceedings of the 1989 International

156

Workshop on Automatic Verification Methods for Finite State Systems

volume 407 oflLNCS 1989.

[106] B. Yang et al. A performance study of BDD-based model checking.
In Formal Methods in Computer-Aided Desjgiolume 1522 oLNCS

Springer Verlag, 1998.

157

