
Automatic Abstraction in Model Checking

Yuan Lu

December 2000

Department of Electrical and Computer Engineering
Carnegie Institute of Technology

Carnegie Mellon University
Pittsburgh, PA 15213

This research is sponsored by the Semiconductor Research Corporation (SRC) under
agreements through Contract No. 99-TJ-684, the National Science Foundation (NSF) under
Grant Nos. CCR-9505472 and CCR-9803774, and the Defense Advanced Research Projects
Agency (DARPA) under Contract No. DABT63-96-C-0071. Any opinions, findings, con-
clusions or recommendations expressed in this material arethose of the author and do not
necessarily reflect the views of SRC, NSF, DARPA, or the United States Government.

Keywords: formal verification, model checking, abstraction, counterex-
ample, refinement, binary decision diagram

Abstract

As technology advances and demand for higher performance increases hardware de-
signs are becoming more and more sophisticated. A typical chip design may contain
over ten million switching devices. Since the systems become more and more complex,
detecting design errors for systems of such scale becomes extremely difficult. Formal
verification methodologies can potentially catch subtle design errors. However, many
state-of-the-art formal verification tools suffer from thestate explosion problem.
This thesis explores abstraction techniques to avoid the state explosion problem. In
our methodology,atomic formulasextracted from an SMV-like concurrent program
are used to constructabstraction functions. The initial abstract structure is built by
usingexistential abstractiontechniques. When the model checker disproves a univer-
sal property on the abstract structure, it generates a counterexample. However, this
abstract counterexample might be spurious because abstraction is not complete. We
provide a new symbolic algorithm to determine whether an abstract counterexample is
spurious. When a counterexample is identified to be spurious, the algorithm will com-
pute the shortest prefix of the abstract counterexample thatdoes not correspond to an
actual trace in the concrete model. The last abstract state in this prefix is split into less
abstract states so that the spurious counterexample is eliminated. Thus, a more refined
abstraction function is obtained. It is usually desirable to obtain the coarsest refinement
which eliminates the counterexample because this corresponds to thesmallestabstract
model that avoids the spurious counterexample. We prove, however, that finding the
coarsest refinement is NP-hard. Because of this, we use a polynomial-time algorithm
which gives a suboptimal but sufficiently good refinement of the abstraction function.
The applicability of our heuristic algorithm is confirmed byour experiments. Using
the refined abstraction function obtained in this manner, a new abstract model is built
and the entire process is repeated. Our methodology is complete forACTL, i.e., we
are guaranteed to either find a valid counterexample or provethat the system satisfies
the desired property.
On the other hand, this thesis also discusses a new data structure - abstract BDDs.
Intuitively, an abstract BDD is obtained from a BDD by collapsing paths that have the
same abstract value with respect to some abstraction function. There are many ways
to collapse the paths corresponding to different types of abstract BDDs. We identify
four types of abstract BDDs : S-type, 0-type, 1-type and∨-type abstract BDDs for
different applications. In this thesis, we show three applications of abstract BDDs.
First, we will show how to check inequivalence between two combinational circuits
using S-type and 0-type abstract BDDs. Then, we describe a methodology to generate
an initial variable ordering using 0-type abstract BDDs. Finally, we demonstrate how
to represent abstract Kripke structures using∨-type abstract BDDs. Our experiments
clearly show the efficiency of abstract BDDs. We believe thatabstract BDDs can be
applied to many other applications as well.

Acknowledgements

When I came to CMU’s open house of the ECE department four years ago, I had little
idea about formal methods or model checking. The only thing Iknew was that I was
interested in logic and verification problems. Ed Clarke, myfuture advisor, said to
me, ”You can learn it!” Since then he has been painstakingly teaching me about model
checking and formal methods from scratch. Whenever I lost track, Ed was there for
help. I am always amazed by his enthusiasm and insistence on solving hard problems.
In a word, without Ed’s direction and encouragement, I wouldhave buried myself in
the maze of graduate study.

I owe a lot of gratitude to my thesis committee for their advice and patient reading
of my dissertation. Masahiro Fujita has been long-time tutor and guide for my re-
search. His expertise and advice kept me away from pitfalls.Every time I talked with
Randy Bryant, I found interesting topics to work on. He has been a model for success-
ful research through my whole graduate career. Don Thomas provided me with many
insightful pieces of advice on my thesis; meeting with him isalways an enjoyable
experience.

This work would not be possible without the environment of our model checking
group. Ed creates an open and cooperative research environment for students. It is
very easy for me to ask around and get help. I have benefited from most members of
the group: Xudong, Sergio, Will, Vicky, Marius, Sergey, Pankaj, Chaki, Anubhav and
Alex. I also benefit a lot from visitors to our group, including Orna, Marco, Yunshan,
Armin, Wolfgang, Poul and Deharbe. I not only appreciate their help, but also enjoy
being with them.

Among my CMU colleagues, I spent most time working with Somesh Jha. He
never runs out of research ideas. It was him who motivated me to work on abstract
BDDs. My most fruitful year was spent with Helmut Veith and Dong Wang when
Helmut visited Ed’s group as a visiting professor. I will always remember our rou-
tinely eight o’clock night meeting at the CS student lounge.Helmut’s knowledge and
personality really inspire me to be a better researcher.

I spent two summers in Fujitsu Lab of America. The experiencewas incredible.
As my supervisor, Jawahar Jain and Sree Rajan not only taughtme how to do research
but also how to enjoy doing research. I had a great time working and talking with
Raj, Rajiv, Vamsi, and Bob. I would also like to thank Steve German from IBM and
Richard Raimi from BIPS for discussions on many problems.

Though I am an ECE student, my office is in CS department. I havegotten help
from staff in both departments including Catherine Copetas, Elaine Lawrence, Roxann
Martin, Lynn Philibin, etc. It is you who make CMU so special.

I am very grateful to my parents and my sister. Their lifelongsupport and encour-
agement are the source of strength I have. I thank John He, TimZhou, Qiu Jian, Yi
Wei, and Peter Fang for accompanying me through difficult times. Finally, the biggest
thanks to Keyuan for her patience, understanding and the-best-of-world cooking. You
are the best I have ever had.

Contents

1 Introduction 4

1.1 Background . 4

1.2 Scope of the thesis . 7

1.3 Related research . 10

1.3.1 Abstraction for Model Checking 10

1.3.2 Counterexample-guided refinement 11

1.3.3 Other abstraction-refinement techniques 12

1.3.4 BDDs and abstraction 13

1.4 Outline of this dissertation 15

2 Existential abstraction for ACTL⋆ 16

2.1 Kripke structures andCTL⋆ 17

2.2 Overview of BDDs . 22

2.3 Concurrent Programs . 25

2.4 Existential abstraction . 27

2.5 Approximation for existential abstraction 32

2.6 Remaining Problems . 35

3 Counterexample-guided Abstraction Refinement 36

3.1 Generating the initial abstraction 37

3.2 Model checking the abstract model 42

1

3.2.1 Identification of spurious path counterexamples 42

3.2.2 Identification of spurious loop counterexamples 46

3.3 Refining the abstraction . 54

3.4 Performance improvements 59

3.4.1 Detecting more real counterexamples 60

3.4.2 Abstraction for approximation 61

3.4.3 Abstractions for distant variables 62

3.5 Experimental results . 63

3.5.1 Experiments on benchmark circuits 63

3.5.2 Debugging a multimedia processor 65

3.6 Proofs for Refinement Theorem 70

4 Refinement for GeneralACTL Counterexamples 77

4.1 What are Counterexamples? 78

4.2 Tree-like Kripke structures 80

4.2.1 Indexed Kripke structures 84

4.3 Generating tree-like counterexamples forACTL 85

4.3.1 Fixpoint Characterization forACTL 87

4.3.2 Algorithms to generate tree-like counterexamples . . . 90

4.4 Refinement algorithm forACTL 96

5 Abstract BDDs 100

5.1 Abstract Binary Decision Trees 100

5.2 S-type Abstract BDDs . 102

5.3 0-type And 1-type Abstract BDDs 109

5.4 ∨-type Abstract BDDs . 113

5.5 Summary . 116

2

6 Applications of abstract BDDs 117

6.1 Equivalence checking using abstract BDDs 117

6.2 Improving variable ordering using 0-type abstract BDDs . . . 121

6.3 Model Checking Using∨-type Abstract BDDs 129

6.3.1 Abstraction forACTL⋆ 129

6.3.2 Case studies . 131

6.3.3 Abstraction for Variable Ordering 138

7 Conclusion and Future Work 141

7.1 Using other data structures instead of BDDs 142

7.2 Implementing abstraction inside BDDs 143

3

Chapter 1

Introduction

1.1 Background

Hardware designs are becoming more sophisticated as technology advances

and demand for higher performance increases. A typical chip design may con-

tain over ten million switching devices. As the systems become more and

more complex, detecting design errors for systems of such scale becomes ex-

tremely difficult. It is common that even experienced engineers overlook some

“corner” cases in the design phase. Ignoring such cases may result in serious

problems. Currently, most designers still heavily depends on random simula-

tion techniques to look for subtle bugs. However, it is known that simulation

techniques often fail to reveal such subtle errors during the debugging phase.

In contrast to simulation, formal verification techniques have the capability

to find subtle bugs. A number of researchers have proposed formal techniques

including theorem proving [15, 92, 95], and model checking [28, 90, 91], etc.

In theorem proving, the designer constructs a mathematical proof, with the aid

of some automated support, that a model or a structure meet their specification.

It is possible for these techniques to model systems at almost any level of detail.

In particular, one can model systems with infinite state space and prove proper-

ties of entire classes of systems. The main drawback of theorem proving is that

4

it requires great effort and creativity on the part of the user. On the other hand,

model checking methods restrict the model to be finite-state and use state space

searching algorithms to checkautomaticallythat the specification is satisfied.

Therefore, these approaches require less expertise to use.

In model checking, specifications are written in certaintemporal log-

ics [42]. Pnueli [90] was the first to use temporal logic for reasoning about con-

current programs. Later, Clarke and Emerson [28] introduced computational

tree logic (CTL) and developed an efficient model checking algorithm. Their

model checking algorithm includes three components: a formal model which

describes the system to be verified, a specification of the correctness properties

of the system, and a decision procedure to check whether the model satisfies

the given specification. The model size is the major factor that affects the per-

formance of decision procedures. This problem is commonly called thestate

explosion problem. Models with up to a million states can be verified using an

explicit state model checking algorithm [29]. About a decade ago, McMillan

proposed a symbolic model checking [78] algorithm using binary decision di-

agrams (BDDs) [17] (see Chapter 2.2 for a definition of BDDs). Burch, Clarke

and McMillan discussed a number of improvements of the symbolic model

checking algorithm [22]. By combining the new CTL model checking algo-

rithm with the symbolic representation of state transition graphs, systems with

extremely large number of states can be verified. The model checking system

that McMillan developed as part of his Ph.D. thesis is called SMV [78]. It

is based on a language for describing hierarchical finite-state concurrent sys-

tems. Programs in the language can be annotated by specifications expressed in

temporal logic. The model checker extracts a transition system represented by

BDDs from the SMV program and uses a BDD-based symbolic model check-

ing algorithm to determine whether the system satisfies its specification (see

5

Figure 1.1). If the transition system, formally modeled asKripke structure[57],

does not satisfy some specification, the model checker will produce an execu-

tion trace that shows why the specification is false. This execution trace is

called acounterexamplefor the specification. Symbolic model checking algo-

rithms can typically verify designs with a few hundred symbolic variables.

parser

model
checker

SMV program

system
transition spec

Yes/No ?

BDD BDD

Figure 1.1: Model checker for SMV programs

More recently, propositional satisfiability [6, 49, 83, 98] based symbolic

model checking algorithms [10] have been investigated for even larger designs.

However, state-of-the-art hardware designs include hundreds of thousands of

variables and the number of states in models grows exponentially in the number

of variables. Therefore, applying model checking to large industrial designs is

still a hard problem.

On the other hand, a number of state reduction approaches have been

proposed to reduce the number of states under verification. State reduction

techniques include symmetry reductions [43, 44, 58, 62], partial order reduc-

tions [51], and abstraction techniques [34, 31, 75]. Among these techniques,

abstraction is the most general technique for handling the state explosion prob-

6

lem. In fact, it is essential for verifying designs of industrial complexity. Cur-

rently, abstraction is typically a manual process, often requiring considerable

creativity and understanding of the problem domain. In order for model check-

ing to be used more widely in industry, automatic techniques are needed for

generating abstractions.

Intuitively, abstraction tries to simplify the models by hiding “irrelevant”

details. Verifying the simplified models is in general more efficient than veri-

fying properties of the original ones. Abstraction techniques can be classified

asover-approximation[31, 68] or under-approximationtechniques [70, 87].

Over-approximation techniques systematically release constraints, and thus

add more behaviors to the system. They establish a relationship between the

abstract model and the original one such that correctness at the abstract level

implies correctness of the original system. In contrast, under-approximation

techniques systematically remove irrelevant behaviors from the system. An

under-approximation technique establishes a relationship between the abstract

model and the original one, so that falseness at the abstract level will imply

falseness of the original system.

1.2 Scope of the thesis

This thesis explores abstraction techniques to avoid the state explosion prob-

lem. The techniques follow the general framework established by Clarke,

Grumberg, and Long [31] which is known asexistential abstraction. Existen-

tial abstraction is an over-approximation technique. Given a concrete Kripke

structure, anabstractKripke structure is built according to a given abstraction

function. If a property holds on the abstract structure, then it also holds on

the concrete structure. However, it is usually computationally hard to construct

abstract structures. Therefore, we often need to approximate an abstractstruc-

7

ture instead of directly building it. Clarke, Grumberg and Long defined a fast

and simple approximation technique which approximates the abstract structure

efficiently. However, there exist several unsolved problems in their approach:

1. It is not known how to generate abstraction functions automatically.

2. The abstraction is conservative but not complete. When a property is

false on the abstract structure, it may still be valid for the concrete struc-

ture.

3. Approximation introduces many spurious transitions, i.e., abstract tran-

sitions which do not correspond to concrete transitions. It is unknown

how to reduce the number of spurious transitions.

4. In some cases, it is hard to build the BDDs for the abstraction functions.

In these cases, constructing abstract structures becomes extremely hard.

The goal of this thesis is to attack these problems. We have proposed a

counterexample-guided abstraction refinement methodology which addresses

the problems (1) and (2). We have also introduced a new data structure –ab-

stract BDDsto alleviate the problems (3) and (4). The principle contributions

of this thesis are detailed below:

A counterexample-guided automatic abstraction-refinement method:

In this methodology,atomic formulasextracted from an SMV program are

used to constructabstraction functions. The initial abstract model is built by

using the existential abstraction techniques. When the model checker disproves

anACTL⋆ property on the abstract structure, it generates a counterexample.

However, this abstract counterexample might not be valid because abstraction

is not complete. We say that such a counterexample isspurious. We provide

a new symbolic algorithm to determine whether an abstract counterexample is

8

spurious. When a counterexample is identified to be spurious, the algorithm

will compute the shortest prefix of the abstract counterexample that does not

correspond to an actual trace in the concrete model. The last abstract state in

this prefix is split into less abstract states so that the spurious counterexam-

ple is eliminated. Thus, a more refined abstraction function is obtained. Note

that there may be many ways of splitting the abstract state; each determines

a different refinement of the abstraction function. It is desirable to obtain the

coarsest refinement which eliminates the counterexample because this corre-

sponds to thesmallestabstract model that avoids the spurious counterexample.

We prove, however, that finding the coarsest refinement is NP-hard. Because

of this, we use a polynomial-time algorithm which gives a suboptimal but suf-

ficiently good refinement of the abstraction function. The applicability of our

heuristic algorithm is confirmed by our experiments. Using the refined ab-

straction function obtained in this manner, a new abstract model is built and

the entire process is repeated. Our methodology is complete forACTL, i.e.,

we are guaranteed to either find a valid counterexample or prove that the system

satisfies the desired property. In principle, our methodology can be extended

to all of ACTL⋆.

Abstract BDDs based verification technologies:Intuitively, an abstract

BDD is obtained from a BDD by collapsing paths that have the same abstract

value with respect to some abstraction function. There are many ways to col-

lapse the paths corresponding to different types of abstract BDDs. We identify

four types of abstract BDDs : S-type, 0-type, 1-type and∨-type abstract BDDs

for different applications. In this thesis, we show three applications of abstract

BDDs. First, we will show how to check inequivalence between two combi-

national circuits using S-type and 0-type abstract BDDs. Then, we describe

a methodology to generate an initial variable ordering using 0-type abstract

9

BDDs. Finally, we demonstrate how to represent abstract Kripke structures

using∨-type abstract BDDs. Our experiments clearly show the efficiency of

abstract BDDs. We believe that abstract BDDs can be applied to many other

applications as well.

1.3 Related research

1.3.1 Abstraction for Model Checking

Many abstraction techniques can be viewed as application of abstract interpre-

tation [34, 99]. Given an abstract domain, abstract interpretation providesa

general framework for automatically “interpreting” systems on an abstract do-

main. The classical abstract interpretation framework is used to prove safety

properties, and does not consider temporal logic or model checking. For ex-

ample, Bjorner, Browne and Manna use abstract interpretation to automati-

cally generate invariants for general infinite-state systems [12]. Later, in [31],

the authors have proposed an abstract interpretation methodology forACTL⋆

properties. Abstraction techniques for various fragments ofCTL⋆ have been

discussed in [36, 37]. These abstraction techniques have been extended to the

µ-calculus [35, 74].

Abstraction techniques for infinite state systems are crucial for successful

verification [2, 7, 71, 77]. Graf and Saı̈di [54] have proposedpredicate abstrac-

tion techniques to abstract an infinite state system into a finite state system.

Later, a number of optimization techniques have been developed in [8, 38].

Saı̈di and Shankar have integrated predicate abstraction into the PVS system

which could easily determine when to abstract and when to model check [97].

Colón and Uribe [33] have presented a way to generate finite-state abstractions

using a decision procedure. Similar to predicate abstraction, their abstraction

is generated using abstract boolean variables. One difference between our ap-

10

proach and the predicate abstraction oriented approaches is that the latter tries

to build an abstract model on-the-fly while traversing the reachable statesets.

Our approach tries to build the abstract transition relation directly.

Wolper and Lovinfosse [105] have verifieddata independentsystems using

model checking. In a data independent system, the data values never affect

the control flow of the computation. Therefore, the datapath can be abstracted

away entirely. Van Aelten et al [3] have discussed a method for simplifying

the verification of synchronous processors by abstracting away the data path.

Abstracting the datapath using uninterpreted function symbols is very useful

for verifying pipeline systems [9, 21, 20, 21, 64, 103, 104]. A number of re-

searchers have modeled or verified industrial hardware systems using abstrac-

tion techniques [47, 53, 55, 56]. In many cases, their abstractions are generated

manually and combined with theorem proving techniques [95, 96]. Dingel and

Filkorn have used data abstraction and assume-guarantee reasoning combined

with theorem proving techniques to verify infinite state systems [39]. Recently,

McMillan has incorporated a new type of data abstraction, assume-guarantee

reasoning and theorem proving techniques in his Cadence SMV system [79].

1.3.2 Counterexample-guided refinement

Using counterexamples to refine abstract models has been investigated by a

number of other researchers beginning with thelocalization reductionof Kur-

shan [67, 68]. He models a concurrent system as a composition ofL-processes

L1, . . . , Ln (L-processes are described in detail in [68]). The localization re-

duction is an iterative technique that starts with a small subset of relevantL-

processes that are topologically close to the specification in thevariable de-

pendency graph. All other program variables are released by nondeterministic

assignments. If the counterexample is found to be spurious, additional vari-

11

ables are added to eliminate the counterexample. The heuristic for selecting

these variables also uses information from the variable dependency graph. Note

that the localization reduction either leaves a variable unchanged or replaces it

by a nondeterministic assignment. A similar approach has been described by

Balarin in [5].

In this thesis, we propose a new counterexample-guided refinement tech-

nique using existential abstraction. In our approach, the abstraction functions

exploit logical relationships among variables appearing in atomic formulas that

occur in the control structure of the program. Moreover, the way we use ab-

straction functions makes it possible to distinguish many degrees of abstraction

for each variable. Therefore, in the refinement step only very small and local

changes to the abstraction functions are necessary and the abstract model re-

mains comparatively small. Recently, Lakhnech and his colleagues have also

used counterexamples to refine abstraction for infinite systems [69].

1.3.3 Other abstraction-refinement techniques

Another refinement technique has recently been proposed by Lind-Nielson and

Andersen [72, 73]. Their model checker uses upper and lower approximations

in order to handle all of CTL. Their approximation techniques enable them to

avoid rechecking the entire model after each refinement step while guarantee-

ing completeness. As in [5, 68], the variable dependency graph is used to obtain

the initial abstraction as well as in the refinement process. Variable abstraction

is also performed in a similar manner. Therefore, our abstraction-refinement

methodology relates to their technique in essentially the same way as it relates

to the classical localization reduction.

A number of other papers [70, 86, 87] have proposed abstraction-

refinement techniques for CTL model checking. These techniques use the

12

BDD size as abstraction criterion. When the BDD size exceed a certainlimit,

the abstraction is applied. Govindaraju and Dill [52] tries to identify the first

spurious state in an abstract counterexample. It randomly chooses a concrete

state corresponding to the first spurious state and tries to construct a real coun-

terexample starting with the image of this state under the transition relation.

The paper only talks about safety properties and path counterexamples. It does

not describe how to check liveness properties with cyclic counterexamples.

Furthermore, our method does not use random choice to extend the counterex-

ample; instead it analyzes the cause of the spurious counterexample and uses

this information to guide the refinement process.

1.3.4 BDDs and abstraction

As a data structure for symbolic representation, BDDs [17] have been widely

used in synthesis, verification, validation, [16, 65, 101]. BDDs are directed

acyclic graphs (DAGs) with two terminal nodes labeled by 0 and 1 respectively.

For fixed variable orders, BDDs are a canonical representation for Boolean

functions. BDDs are often substantially more compact than conjunctive or dis-

junctive normal forms. Different variable orders result in BDDs with different

sizes [18]. Finding good variable ordering is the central problem for apply-

ing BDDs effectively [18, 13]. Numerous heuristics have been proposed to

address this problem.Topology basedor static variable ordering techniques

(for example, using depth-first or breadth-first search of the circuits) have been

extensively investigated for more than a decade [45, 76, 4]. However, these

techniques often perform poorly because they rely on purely structural infor-

mation of the circuits.Sifting-baseddynamic ordering techniques are more

popular [46, 85, 94] because they can dynamically change the variable orders

during the course of the computation. However, they are extremely expensive

13

with respect to both time and space. Moreover, during the reordering of the

BDDs, these techniques can frequently get stuck in a local minimum and thus

fail to reduce the size of the resulting graph to an acceptable degree. Other

optimization techniques such as simulated annealing have also been applied to

dynamic reordering as well [14, 41]. However, these approaches are usually

even slower than sifting-based techniques.

Sampling based approaches have been proposed by Meinel and Slo-

bodov [81] and Jain, et al. [60] to overcome these problems. In Jain’s approach,

a portion of the Boolean space for the output function is analyzed using reorder-

ing techniques. This sampled subspace is obtained by restricting the Boolean

function using cubes. Cubes are monomials of a subset of the variables. This

order is then used for analyzing the complete Boolean space of the given func-

tion. By appropriately using the (limited) global information about the given

function, the local minimum problem of current sifting-based ordering tech-

niques is reduced. However, using onlyrandomly generated subspacesfor

samplings has several practical problems [80, 82]. First, this cube based sam-

pling technique tends to generate less efficient variable orders. Secondly, the

generated variable orders can vary dramatically between different runs. This

causes an extremely large variance in the quality of the results and makes cube

based sampling difficult to automate effectively.

In order to verify specific types of hardware designs, for example, arith-

metic circuits, variation of BDDs have been proposed. Clarke et al. [32] pro-

posed MTBDDs which are similar to ordinary BDDs except that the terminal

nodes can be arbitrary integer values instead of 0 and 1. Bryant and Chen de-

veloped BMDs [19] which give a compact representation for certain functions

that have MTBDDs of exponential size. Using Kronecker products, Clarke,

Fujita and Zhao proposed Hybrid Decision Diagrams (HDDs) [30] which can

14

be more concise than both MTBDDs and BMDs. Other variations of BDDs are

extensively investigated for different applications as well [40, 50, 63, 61].

In [31], Clarke, Grumberg and Long used the Chinese Remainder The-

orem to prove properties of arithmetic circuits. They choose residue func-

tions (h(x) = x mod p) as abstraction functions. Later, Kimura extended the

idea and proposed Residue BDDs [66] for verifying combinational multipliers.

More recently, residue ADDs [93] have been proposed to verify combinational

multipliers as well. In this thesis, we generalize the idea of residue BDDs by

allowing arbitrary abstraction functions, obtainingabstract BDDs(aBDDs).

Therefore, residue BDDs are a special case of abstract BDDs.

1.4 Outline of this dissertation

This thesis is organized as follows: In Chapter 2, we introduce basic defini-

tions for concurrent programs, the theory of Kripke structures, temporal logic

CTL⋆ and the theory of existential abstraction. In Chapter 3, we describe

a counterexample-guided abstraction refinement framework for a fragment of

ACTL⋆. In Chapter 4, we discuss how to extend this methodology to refine

the abstraction for otherACTL⋆ properties. Abstract BDDs are defined in

Chapter 5. Applications of different abstract BDDs are discussed in Chapter 6.

15

Chapter 2

Existential abstraction for ACTL⋆

Because of the state explosion problem, successful verification usually requires

state reduction techniques. Abstraction techniques are one of the most general

state reduction techniques. Intuitively, abstraction techniques remove “irrel-

evant” information from the design. Since the properties which need to be

verified usually depend only on a part of the design, abstraction techniques

can be very useful to reduce the state space. For example, for a data in-

dependent circuit [105], the data paths can usually be ignored. There are

many different ways to obtain an abstract state space. They can be classi-

fied into under-approximation approaches [70, 87] and over-approximation ap-

proaches [31, 68]. Existential abstraction is an over-approximation approach

that can also be viewed as an application of abstract interpretation [34].In

existential abstraction, a functionh maps each state in the state space to an

abstract state in a typically smaller abstract state space. Two states are equiv-

alent with respect to the abstraction functionh if they are mapped to the same

abstract state. This equivalence relation partitions the state space into equiv-

alence sets. Thus, abstract states are essentially equivalence classes of states.

For example, consider the simple traffic light controller in Figure 2.1(a). As-

sume that we have an abstraction functionh(red) = red, h(green) = go

andh(yellow) = go. Then the obtained abstract structure is shown in Fig-

16

goredM
red green yellow

M̂

(a) (b)

Figure 2.1: Abstraction of a Traffic Light.

ure 2.1(b).

In Chapter 2.1, we will first describe Kripke structures, and computational

tree logic (CTL⋆). Kripke structures are used to model finite automata while

CTL⋆ are used to specify properties on the finite automata.ACTL⋆ is a frag-

ment ofCTL⋆ which allows only universal path quantification. In Chapter 2.2,

we provide an overview of BDDs. In Chapter 2.3, we provide several notations

related to concurrent programs. In Chapter 2.4 and Chapter 2.5, we will discuss

basic existential abstraction theory. In Chapter 2.6, we will describe limitation

of the state-of-the-art existential abstraction technique which essentially moti-

vates this thesis.

2.1 Kripke structures and CTL⋆

Given a set of atomic formulasAt, a Kripke structureM is a 4-tuple, i.e.,

M = (S, I, R, L), whereS = D is the set of states,I ⊆ S is a set of initial

states,R ⊆ S × S is a transition relation andL : S → 2At is the labeling

function.

Given a Kripke structure with a single initial state, the correspondingcom-

putational treeis obtained by unwinding the structure into an infinite tree with

the initial state at the root. Intuitively, computational tree logic (CTL⋆) is com-

posed of formulas which describe properties of the computational trees.CTL⋆

formulas includepath quantifiersandtemporal operators. There are two kinds

17

of path quantifiers:A (“for all computation paths”) andE (“for some com-

putation path”). These quantifiers are used in a particular state to specifythat

all of the paths or some of the paths staring at that state have some property.

The temporal operators describe properties of a path through the tree. There

are five basic operators:

• X ϕ (“next time”) requires that propertyϕ holds in the second state of

the path.

• F ϕ (“eventually” or “in the future”) asserts that propertyϕ will hold at

some state on the path.

• G ϕ (“always” or “globally”) specifies that propertyϕ holds at every

state on the path.

• U (“until”) is used to combine two properties.ϕU ψ holds if there is a

state on the path where propertyψ holds, and at every preceding state on

the path, propertyϕ holds [26].

Syntax There are two types of formulas inCTL⋆: state formulas(which are

true in a specific state) andpath formulas(which are true along a specific path).

The syntax of both state and path formulas is given by the following rules:

• If p ∈ At, thenp is a state formula.

• If f andg are state formulas, then¬f , f ∧g andf ∨g are state formulas.

• If f is a path formula, thenE f andA f are state formulas.

• If f is a state formula, thenf is also a path formula.

• If f andg are state formulas, thenX f , F f , G f , f U g andf R g

are path formulas.

18

SemanticsA pathπ in M is an infinite sequence of states,π = 〈s0, s1, . . . 〉

such that for everyi ≥ 0, (si, si+1) ∈ R. We useπi to denote the suffix ofπ

starting atsi. If f is a state formula, the notationM, s |= f means thatf holds

at states in the Kripke structureM . Similarly, if f is a path formula,M,π |= f

means thatf holds along pathπ in M . The relation|= is defined recursively

as follows (assuming thatf1 andf2 denote state formulas andg1 andg2 denote

path formulas):

M, s |= p ⇔ p ∈ L(s);
M, s |= ¬f1 ⇔ M, s 6|= f1;
M, s |= f1 ∧ f2 ⇔ M, s |= f1 and M, s |= f2;
M, s |= f1 ∨ f2 ⇔ M, s |= f1 or M, s |= f2;
M, s |= E g1 ⇔ there exists π = 〈s, . . . 〉 such that M,π |= g1;
M, s |= A g1 ⇔ for every π = 〈s, . . . 〉 it holds that M,π |= g1;
M,π |= f1 ⇔ π = 〈s, . . . 〉 and M, s |= f1;
M,π |= ¬g1 ⇔ M,π 6|= g1;
M,π |= g1 ∧ g2 ⇔ M,π |= g1 and M,π |= g2;
M,π |= g1 ∨ g2 ⇔ M,π |= g1 or M,π |= g2;
M,π |= X g1 ⇔ M,π1 |= g1;
M,π |= F g1 ⇔ ∃k ≥ 0, such that M,πk |= g1;
M,π |= G g1 ⇔ ∀k ≥ 0, it holds thatM,πk |= g1;
M,π |= g1 U g2 ⇔ ∃k ≥ 0, such that M,πk |= g2 and ∀0 ≤ j < k, it holds

that M,πj |= g1;
M,π |= g1 R g2 ⇔ ∀j ≥ 0, if ∀i < j,M, πi 6|= g1, then M,πj |= g2.

We assume that the specifications are written in a fragment ofCTL⋆ called

ACTL⋆ (see [31]), which eliminates the ability to describe the existence of

a path, i.e., theE path quantifier.ACTL⋆ is the fragment ofCTL⋆ where

negation is restricted to the atomic level, and path quantification is restricted to

universal path quantification. Formally, it is defined as follows.

Definition 2.1.1 The logic ACTL⋆ over a programP is the fragment of

CTL⋆ which contains the set of formulas given by the following inductive

definition:

• For each variablexi and elementd of Dxi
, xi = d is an atomic formula.

19

• If ϕ is an atomic formula, then¬ϕ is a formula.

• If ϕ andψ are formulas, thenϕ ∧ ψ andϕ ∨ ψ are formulas.

• All the state formulas are also path formulas.

• If ϕ is a path formula, thenA ϕ is a state formula.

• If ϕ andψ are path formulas, thenX ϕ, F ϕ, ϕU ψ, andϕR ψ are

also path formulas.

For example,AG(req = 1 ⇒ AF ack = 1) is an ACTL⋆ formula while

AGEFcomp = 1 is not anACTL⋆ formula. Note that inACTL⋆, nega-

tion (¬) is only applied to atomic formulas. For a givenACTL⋆ specifica-

tion ϕ, we defineAtoms(ϕ) to be the set of atomic formulas appearing in

the specificationϕ. For example,Atoms(AG(req = 1 ⇒ AF ack = 1)) =

{req = 1, ack = 1}.

In order to alleviate the state explosion problem, it is desirable to develop

techniques that replace a large structure by a smaller structure that satisfies

the same properties. In the following, we will consider two kinds of relations

between Kripke structures:bisimulationequivalence andsimulationpreorders.

Given two Kripke structures,M = (S, I, L,R) andM ′ = (S ′, I ′, L′, R′)

over the same set of atomic formulasAt, a relationB ⊆ S×S ′ is abisimulation

relation betweenM andM ′ if and only if for all (s, s′) ∈ B, the following

conditions hold:

• L(s) = L′(s′).

• For each states1 such that(s, s1) ∈ R, there existss′1 such that(s′, s′1) ∈

R′ and(s1, s′1) ∈ B.

20

• For each states′1 such that(s′, s′1) ∈ R′, there existss1 such that(s, s1) ∈

R and(s1, s′1) ∈ B.

The structureM andM ′ are bisimulation equivalent(denotedM ≡ M ′) if

there exists a bisimulation relationB such that for every initial states0 ∈ I

there exists an initial states′0 ∈ I ′ such that(s0, s′0) ∈ B. In addition, for

every initial states′0 ∈ I ′ there exists an initial states0 ∈ I in M such that

(s0, s′0) ∈ B.

Theorem 2.1.1 [26] If M ≡M ′ then for everyCTL⋆ formulaϕ,

M |= ϕ if and only if M ′ |= ϕ.

Therefore, instead of checking a propertyϕ onM , we can check the property

on the bisimilar structureM ′. Sometimes it is hard to find a smaller bisimi-

lar structure. In order to achieve greater reductions, thesimulation preorder

relation is introduced. Simulation is closely related to bisimulation. While

bisimulation guarantees that two structures have the same behaviors, simula-

tion relates a structure to anabstractionof the structure. Since the abstraction

can hide some details of the orginal structure, it might generate smaller struc-

tures. Intuitively, simulation guarantees that every behavior of a structureis

also a behavior of its abstraction. However, the abstraction might have behav-

iors that are not possible in the original structure.

Given two Kripke structuresM andM ′ with At ⊇ A′
t, a relationH ⊆ S ×

S ′ is asimulation relationbetweenM andM ′ if and only if for all (s, s′) ∈ H,

the following conditions hold.

• L(s) ∩A′
t = L′(s′).

• For each states1 such that(s, s1) ∈ R, there exists a states′1 with the

property that(s′, s′1) ∈ R′ and(s, s′1) ∈ H.

21

We say thatM ′ simulatesM (denoted byM �M ′) if there exists a simulation

relationH such that for every initial states0 in M there exists an initial state

s′0 in M ′ for which (s0, s′0) ∈ H.

Theorem 2.1.2 [26] If M � M ′, then for everyACTL⋆ formula ϕ (with

atomic propositions inA′
t),M

′ |= ϕ⇒M |= ϕ.

Theorem 2.1.3 [26] � is a preorder on the set of structures.

Similar results forω-automata are discussed in Kurshan’s book [68].

2.2 Overview of BDDs

Given a boolean functionf : Bn → B (Let B = {0, 1} denote the Boolean

domain), abinary decision tree (BDT)can be used to represent its truth table.

A BDT consists of two types of nodes: internal nodes and terminal nodes.

Every internal node is labeled by a variable and has two outgoing edges toward

two lower level nodes (closer to the terminal nodes): the 0-edge corresponds to

the case where the variable is assigned 0, and 1-edge corresponds to the case

where the variable is assigned 1. Every terminal node is labeled “0” or “1”.

Thesubgraphof an internal node is the subtree corresponding to that node.

As an example, the truth table forf(a, b, c) = (a ∧ ¬b) ∨ (¬a ∧ c) is

shown in Figure 2.2(a). Figure 2.2(b) contains the corresponding BDT (dashed

edges represent 0-edges and solid edges represent 1-edges). Notice that every

variable appears exactly once in each path from the root to a terminal. If we

fix the order of variables appearing along every path, the resulting graph is

called anordered binary decision tree(OBDT). It is easy to see that OBDTs

are canonical; in other words, given an order of the variables, the OBDTs are

unique representations of the given boolean functions.

22

a b c f

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1

1 1 0 0

1 1 1 0 0 1

c

b

a

0 1

c

b

a

0 1 1 0 01

c c c

b

(a) (b) (c)

Figure 2.2: BDT and BDD forf = (a ∧ ¬b) ∨ (¬a ∧ c)

An ordered binary decision diagram (OBDD) is a directed acyclic graph

(DAG) representation obtained from OBDTs by applying the following three

operations:

1. Merge all terminal 0 nodes into one terminal 0 node, and analogously for

the terminal 1 nodes;

2. If two nodes are labeled by the same variable and their subgraphs are

isomorphic, merge them into one node;

3. If a node A’s two outgoing edges both point to the same node B, then

delete node A and redirect the edges that had previously pointed to node

A to node B.

As an example, the OBDD for the function in Figure 2.2(a) is shown in Fig-

ure 2.2(c). In this thesis, we follow the convention to write BDDs insteadof

OBDDs.

Given two BDDsf andg, the resulting BDDr of a boolean operationf ◦ g

can be constructed using theShannon expansion:

r = f ◦ g = [x̄ ∧ (fx=0 ◦ gx=0)] ∨ [x ∧ (fx=1 ◦ gx=1)]

23

wherex is the variable which comes first in the order among all the variables

in f andg, andfx=0, fx=1, gx=0 andgx=1 are the functions obtained whenx

is restricted to the particular values, i.e. 0 or 1. They are also calledcofactor

functionsof f andg respectively.

During the BDD construction, anexpansionphase uses Shannon expansion

to recursively divide the problem into smaller problems following the given

variable order from the root to the terminals. After computing the cofactors, a

reductionphase is called to reduce expressions to ensure uniqueness.

Bryant [17] showed that BDDs are also canonical and can be exponentially

more compact than the corresponding truth tables or OBDTs. In addition, he

showed that the BDD size is extremely sensitive to the variable ordering.The

graph size of one ordering can be exponentially smaller than that of another

ordering.

As an example, consider the boolean functiona1 ·b1+a2 ·b2 +a3 ·b3. When

the variables are ordered bya1 < b1 < a2 < b2 < a3 < b3, we only need eight

nodes. However, when they are ordered bya1 < a2 < a3 < b1 < b2 < b3, we

need sixteen. Generalizing this function to a function over variablesa1, . . . , an

and b1, . . . , bn, it is easy to see that by using the first ordering we need2n

internal nodes while by using the second ordering we need2(2n − 1) internal

nodes. This effect is dramatic for large values ofn. Therefore, addressing

this problem is important for BDD based applications though determining the

optimal variable ordering is an NP-complete problem [13]. Various ordering

heuristics have been proposed. In general, they can be classified into either

topology based(static) orfunctional analysis based(dynamic) approaches.

Topology based variable ordering approaches (using for example depth-first

or breadth-first search techniques) have been extensively investigated formore

than a decade [45, 76]. Variables are usually grouped with respect to structural

24

proximity. However, these techniques are not satisfactory. The problem is that

the functionality of the designs is not taken into account.

In the dynamic variable ordering approach, one starts with an initial order-

ing, which is permuted during the BDD construction, such that the size of the

resulting BDD is minimized [59, 94]. This approach is automatic and trans-

parent to the users. In thesifting based dynamic ordering approach [94], peri-

odic reordering of variables is attempted to reduce the memory requirements.

Given a graphG, a variablev is successively moved to each position in the

ordering list and the resulting graph size is examined. The variable is finally

assigned the position that results in the smallest graph size. Improvements to

sifting based reordering techniques were proposed by [84], where the number

of sift operations was reduced by sifting together the symmetric variable pairs.

Further improvements were suggested in [85] where the concept of extended

symmetry was introduced to group larger blocks of variables.

2.3 Concurrent Programs

In current technologies, hardware is usually described in hardware description

languages, such as Verilog, VHDL and SMV etc. AprogramP contains a finite

set of variablesV = {x1, · · · , xn}, where each variablexi has an associated

finite domainDxi
. The set of all possible states for programP isDx1

×· · ·Dxn

which we denote byD. Expressionsare built from variables inV , constants in

Dxi
, and function symbols in the usual way, e.g.x1 + 3. Atomic formulasare

constructed from expressions and relation symbols, e.g.x1 + 3 < 5. Similarly,

predicatesare composed of atomic formulas using negation (¬), conjunction

(∧), and disjunction (∨). Given a predicatep, Atoms(p) is the set of atomic

formulas occurring in it. Letp be a predicate containing variables fromV ,

andd = (d1, . . . , dn) be an element fromD. Then we writed |= p when the

25

predicate obtained by replacing each occurrence of the variablexi in p by the

constantdi evaluates to true.

Let At denote the set of atomic formulas inP . ThenP naturally corre-

sponds to aKripke structureM = (S, I, R, L), whereS = D is the set of

states,I ⊆ S is a set of initial states,R ⊆ S × S is a transition relation and

L : S → 2At is the labeling function. Translating a program into a Kripke

structure is straightforward and will not be described in this thesis. Details are

available in [26].

Each variablexi in the program has an associatedtransition blockBi [78],

which defines both the initial value and the transition relation for the variable

xi. An example of a transition block for the variablexi is shown in Figure 2.3,

whereIi ⊆ Dxi
is the initial expression for the variablexi, each conditionCj

i

init (xi) := Ii;
next(xi) := case

C1
i : A1

i ;
C2

i : A2
i ;

· · · : · · · ;
Ck

i : Ak
i ;

esac;

init (x) := 0;
next(x) := case

reset = TRUE : 0;
x < y : x+ 1;
x = y : 0;
else: x;

esac;

Figure 2.3: A generic transition block and a typical example

is a predicate, andAj
i is an expression. The semantics of the transition block

is similar to the semantics of thecasestatement in the modeling language of

SMV, i.e., find the leastj such that in the current state conditionCj
i is true

and assign the value of the expressionAj
i to the variablexi in the next state.

For eachBi, we defineAtoms(Bi) to be the set of atomic formulas that appear

in the conditions, i.e.,Atoms(Bi) =
⋃

Atoms(Cj
i). Accordingly, we define

Atoms(P) to be the set of atomic formulas appearing inP . Common hard-

ware description languages like Verilog and VHDL can be compiled into this

26

language.

An abstractionh for a programP is given by a surjectionh : D → D̂.

Notice that the surjectionh induces an equivalence relation≡h on the domain

D in the following manner: letd, e be states inD, then

d ≡h e iff h(d) = h(e).

Since an abstraction can be represented either by a surjectionh or by an equiva-

lence relation≡h, we sometimes switch between these representations to avoid

notational overhead.

Auto-abstraction functions The equivalence relation≡h partitionsD into a

set of equivalence classes. This set is denoted by[D]≡h
and defined as{[d] |

d ∈ D} where [d] = {e | h(e) = h(d)}. For eachh, we fix a function

reph : [D]≡h
→ D that selects aunique representativefrom each equivalence

class[d]. Thus, for a 0-1 vectord ∈ D, reph([d]) is the unique representative

of the equivalence class[d] of d.

The abstraction functionh induces a new abstraction functionH : D → D

as follows:

H(d) = reph([d]).

SinceH operates onD, we callH the generatedauto-abstraction function.

From the definition ofH it is easy to see thatH(reph([d])) = reph([d]) and

H(H(d)) = H(d). Note that the image ofD under the functionH is simply the

set of representatives. This set of representatives will be denoted byImg(H).

Sinceh was assumed to be a surjection, it follows that|Img(H)| = |A|.

2.4 Existential abstraction

Given a programP and anACTL⋆ propertyϕ, we obtain a Kripke structure

M = (S, I, R, L) whereS, I andR are the same as traditional Kripke structure

27

defined in Chapter 2.1.L : S → 2Atoms(ϕ) is a labeling function given by

L(d) = {f ∈ Atoms(ϕ) | d |= f}. Intuitively, the functionL labels each state

by atomic formulas extracted fromϕ because only these atomic formulas are

relevant for verifyingϕ.

Assume that we are given a programP and an abstraction functionh for

P . Theabstract Kripke structureMh = (Sh, Ih, Rh, Lh) corresponding to the

abstraction functionh is defined as follows:

1. Sh is the abstract domain̂D.

2. Ih(d̂) if and only if ∃d(h(d) = d̂ ∧ I(d)).

3. Rh(d̂1, d̂2) if and only if ∃d1∃d2(h(d1) = d̂1 ∧ h(d2) = d̂2 ∧ R(d1, d2)).

4. Lh(d̂) =
⋃

h(d)=bd L(d).

An atomic formulaf respectsthe abstraction functionh if for all d andd′

in the domainD, (d ≡h d′) ⇒ (d |= f ⇔ d′ |= f). Moreover,Atoms(ϕ)

respectsh if for all f ∈ Atoms(ϕ), f respectsh.

Lemma 2.4.1 If Atoms(ϕ) respects an abstraction functionh, then the follow-

ing holds:

(i) d ≡h d
′ ⇒ L(d) = L(d′).

(ii) h(d) = d̂⇒ Lh(d̂) = L(d).

Proof (i) SinceAtoms(ϕ) respectsh, (d ≡h d′) ⇒ (d |= f ⇔ d′ |= f) for

all f ∈ Atoms(ϕ). According to the definition,L(d) = {f ∈ Atoms(ϕ) | d |=

f}, Therefore,L(d) = L(d′).

(ii) The labeling of an abstract state is defined asLh(d̂) =
⋃

h(d)=bd L(d). In (i),

we prove thatd ≡h d′ → L(d) = L(d′). Therefore, we haveLh(d̂) = L(d). 2
28

Let d̂ be an abstract state. Theh−1(d̂) denotes the set of states which are

mapped tod̂ by h, i.e., h−1(d̂) = {d | h(d) = d̂}. Lh(d̂) is consistent, if

all concrete states corresponding tod̂ satisfy all labels inLh(d̂), i.e., for all

d ∈ h−1(d̂) it holds thatd |=
∧

f∈Lh(bd) f .

Theorem 2.4.1 Leth be an abstraction function andϕ be anACTL⋆ specifi-

cation where the atomic subformulas respecth. Then the following holds:

(i) Lh(d̂) is consistent for all abstract stateŝd in Mh;

(ii) M �Mh, i.e.,Mh |= ϕ ⇒ M |= ϕ.

Proof (i) By Lemma 2.4.1, for allh(d) = d̂, Lh(d̂) = L(d). By definition,

d |=
∧

f∈L(d) f . Therefore,Lh(d̂) is consistent.

(ii) According to the definition ofMh, the set of atomic formulas forMh isAt

which is also the set of atomic formulas forM . According to Lemma 2.4.1,

Lh(ŝ) = L(s) = L(s) ∩ At whereh(s) = ŝ. In the definition of existential

abstraction,

Rh(ŝ, ŝ′) = ∃s, s′[h(s) = ŝ ∧ h(s′) = ŝ′ ∧R(s, s′)].

By definition, (s, s′) ∈ R implies that(ŝ, ŝ′) ∈ Rh ands ∈ I implies that

ŝ ∈ Ih becauseIh(ŝ) = ∃s[h(s) = ŝ ∧ I(s)]. If we define the relation

H = {(s, ŝ) | ŝ = h(s)}, thenM � Mh according to the definition of the

simulation relation.2
In other words, correctness of the abstract model implies correctness of the

concrete model.

Theorem 2.4.2 Given an abstraction functionh and its corresponding auto-

abstraction functionH, thenMh
∼= MH whereMH is the abstract structure

corresponding to the auto-abstraction functionH.

29

Proof Assume thatI : D̂ → Img(H) is a function defined byI(h(d)) =

rep([d]). First, we will show thatI is well-defined and thatI is a bijection.

Second, usingI we will build a bijection between the states ofMh andMH.

From the definition,h(d1) = h(d2) implies thatrep([d1]) = rep([d2])

which in turn implies thatI(h(d1)) = I(h(d2)). Therefore,I is a well defined

function. If d1 ∈ Img(H), then there exists ad2 ∈ D, whered1 = rep([d2]).

Moreover,I(h(d2)) = rep(d2) = d1, so I is a surjection. On the other

hand, ifI(h(d1)) = I(h(d2)), thenrep([d1]) = rep([d2]) which implies that

h(d1) = h(d2). HenceI is an injection. SinceI is injective and surjective,I

is a bijection.

MH

∼=
Mh

ŝ I(ŝ)
I

Figure 2.4: Commuting diagram betweenMh andMH

As defined before,S = D is the set of states ofM ; Sh = D̂ is the set

of states ofMh; andSH = Img(H) is the set of states ofMH. Let I(Ih) =

{I(ŝ) | ŝ ∈ Ih}. Next we will show thatI(Ih) = IH, i.e., the bijectionI

preserves the initial states. Consider an arbitrary stateŝ0 ∈ Ih. Sinceŝ0 ∈ Ih,

there exists a states0 ∈ S such thath(s0) = ŝ0 ands0 ∈ I . SinceH(s0) =

rep([s0]) = I(h(s0)) = I(ŝ0), andIH is the existential abstraction ofI , it

follows thatI(ŝ0) ∈ IH.

The proof for the transition relation is very similar. Following the same

convention, we have

I(Rh) = {(I(ŝ), I(ŝ′)) | (ŝ, ŝ′) ∈ Rh}.

30

goredM
red green yellow

M̂

Figure 2.5: Abstraction of a Traffic Light.

Therefore,I(IH) ⊆ IH and I(Rh) ⊆ RH. Since I is a bijection, the

argument given above holds in the reverse direction. Thus,I(Ih) = IH and

I(Rh) = RH. The relation of the structures is shown in Figure 2.4. This

proves thatMh
∼= MH. 2

However, if the abstract model invalidates anACTL⋆ specification, i.e.,

Mh 6|= ϕ, the actual model may still satisfy the specification.

Example 2.4.1 Assume that for a traffic light controller (see Figure 2.5), we

want to proveψ = AGAF(state = red) using the abstraction function

h(red) = red andh(green) = h(yellow) = go. It is easy to see thatM |= ψ

whileMh 6|= ψ. There exists an infinite trace〈red, go, go, . . . 〉 that invalidates

the specification.

If an abstract counterexample does not correspond to any concrete counterex-

ample, we call itspurious. For example,〈red, go, go, . . . 〉 in the above example

is a spurious counterexample.

When the set of possible states is given as the productD1 × · · · × Dn of

smaller domains, it is usually easy to generate abstraction functions for each

domain, i.e.,hi : Di → D̂i. In this scenario, an abstractionh can be described

as an n-tuple(h1(d1), . . . , hn(dn)) whereD̂ is equal toD̂1 × · · · D̂n. We write

h = (h1, . . . , hn). The equivalence relations≡i corresponding to the individual

surjectionshi induce an equivalence relation≡h over the entire domainD =

31

D1 × · · · ×Dn in the obvious manner:

(d1, · · · , dn) ≡h (e1, · · · , en) iff d1 ≡1 e1 ∧ · · · ∧ dn ≡n en

2.5 Approximation for existential abstraction

It is usually computationally expensive to compute existential abstraction di-

rectly [75]. Instead of buildingMh directly, approximation is often used to

reduce the complexity. If a Kripke structurẽM = (Sh, Ĩ, R̃, Lh) satisfies

1. Ih ⊆ Ĩ and

2. Rh ⊆ R̃

then we say thatM̃ approximatesMh. Intuitively, if M̃ approximatesMh,

thenM̃ is moreabstract thanMh, i.e., has more behaviors thanMh. (In the

terminology of Chapter 1,̃M is an over-approximation.)

Theorem 2.5.1 Let h be an abstraction function andϕ be anACTL⋆ speci-

fication where the atomic subformulas respecth. ThenM̃ simulatesMh, i.e.,

Mh � M̃ .

Since� is a preorder,M � Mh � M̃ according to Theorem 2.4.1 and Theo-

rem 2.5.1. In [31], Clarke, Grumberg and Long define a practical transforma-

tion T which applies the existential abstraction operation directly to variables

at the innermost level of the formula. This transformation generates a new

structureM̃T as follows. Assume thatR = R1 ∧ . . . ∧ Rn where eachRi de-

fines the transition relation for a single variable. Then, we apply abstraction to

eachRi separately, i.e.,

T (R) = (R1)h ∧ . . . ∧ (Rn)h.

32

and analogously forI . Finally, M̃T is given by(Sh, T (I), T (R), Lh). As a

simple example consider a systemM which is a synchronous composition of

two systemsM1 andM2, or in other wordsM = M1‖M2. BothM1 andM2

define the transition of one variable. In this caseM̃T is equal to(M1)h‖(M2)h.

Note that the existential abstraction operation is applied to each process in-

dividually. SinceT is applied at the innermost level, abstraction can be per-

formed before building the BDDs for the transition relation. This abstraction

technique is usually fast and easy to implement. However, it has potential lim-

itations in checking certain properties. SincẽMT is a coarse abstraction, there

exist many properties which cannot be checked onM̃T but can still be verified

using a finer approximation. The following small example will highlight some

of these problems.

Example 2.5.1 A Kripke structure for a sensor-based traffic light example is

shown in Figure 2.6. It includes two finite state machines (FSMs), one for a

traffic light and one for an automobile. The traffic lightMt has four states{red,

green1, green2, yellow}, and the automobileMa also has four states{stop1,

stop2, drive, slow}. Mt starts in the statered. When it senses that the auto-

mobile has waited for some time (in statestop2), it triggers a transition to state

green1which allows the automobiles to move.Ma starts from statestop1and

transitions according to the states ofMt. The safety property we want to prove

is that when the traffic light is red, the automobile should either slow down or

stop. This can be written in ACTL as follows:

ϕ ≡ AG[¬(Statet = red ∧ Statea = drive)]

The composed machineMt ‖ Ma is shown in Figure 2.6. It is easy to see that

the propertyϕ is true. Let us assume that we want to collapse states{green1,

green2, yellow} into one statego. If we use the transformationT , which ap-

33

plies abstraction before we composeMt andMa, propertyϕ does not hold as

indicated by the shaded state inabs(Mt) ‖ abs(Ma). On the other hand, if we

apply this abstractionafter composingMt andMa, states(green2, drive)and

(yellow, drive)are collapsed into one state(abs(Mt ‖Ma)), and the propertyϕ

still holds. Thus, by abstracting the individual components and then composing

we introduce too many spurious behaviors.

stop2

red

yellow

green2

green1

green2, drive

yellow, drive

red, slow red, slow

���������
���������
���������
���������

���������
���������
���������
���������

stop2

red

go

compose

slow

drive

stop1

red

yellow

green1 | green2

stop2

slow

drive

stop1

red

yellow

green1 | green2

stop2

red, stop2

green1, stop2

red, stop1

red, stop2

red, stop1

go, stop2

compose

abstract

abstract

red, slow go, slow

red, stop1

red, stop2

go, stop2

red, drive go, drive

abstract

go, drive

Property : AG ¬(traffic = red ∧ auto = drive)

traffic light (Mt) automobile (Ma)

Mt ‖ Ma abs(Mt ‖ Ma)

abs(Mt) ‖ abs(Ma)

abs(Ma)abs(Mt)

Figure 2.6: Traffic light example

It is desirable to obtain an approximation structureM̃ which is more pre-

cise than the structurẽMT obtained by the technique proposed in [31]. All the

transitions in the abstract structureMh are included in bothM̃ andM̃T . Note

that the state sets ofMh, M̃ andM̃T are the same andM � Mh � M̃T . In

summary,Mh is intended to be built but is computationally expensive.M̃T is

easy to build but extra behaviors are added into the structure. Our aim is to

34

build a modelM̃ which is computationally easier but a more refined approxi-

mation ofMh, i.e.

M �Mh � M̃ � M̃T .

2.6 Remaining Problems

Existential abstraction is a framework to apply abstraction in model checking.

However, there are several important problems which remain unsolved.

• Human interaction is required to provide abstraction functions. This pro-

cess usually requires great creativity and experience. In many cases, this

is impractical. Therefore, generating abstraction functions automatically

is very important for verification.

• Existential abstraction is not a complete approach, i.e.Mh 6|= ϕ may not

imply thatM 6|= ϕ (see Example 2.4.1). Therefore, when the abstraction

cannot verify a property, refinement is required. Currently, no refinement

algorithms have been developed.

• As discussed before, approximation introduces many spurious transitions

(see Example 2.5.1). How to improve the approximation accuracy is

unknown.

• In some cases, building BDDs for abstraction functions is a hard prob-

lem. It is not known how to build the abstract structure in such cases.

In this thesis, we will address all these problems. We will describe a

counterexample-guided abstraction refinement methodology in Chapter 3. In

Chapter 4, we extend our refinement algorithms to fullACTL. In Chapter 5,

we show how to reduce abstraction overhead using abstract BDDs.

35

Chapter 3

Counterexample-guided
Abstraction Refinement

In this chapter, we describe an automatic abstraction technique for ACTL⋆

specifications which is based on an analysis of the structure of formulas appear-

ing in the program. In general, our technique computes an upper approxima-

tion of the original program. Thus, when a specification is true in the abstract

model, it will also be true in the concrete design. However, if the specifica-

tion is false in the abstract model, the counterexample may be the result of

some behavior in the approximation which is not present in the original model.

When this happens, it is necessary to refine the abstraction so that the behavior

which caused the erroneous counterexample is eliminated. The main contri-

bution of this work is an efficient automatic refinement technique which uses

information obtained from erroneous counterexamples. The refinement algo-

rithm keeps the size of the abstract state space small due to the use of abstrac-

tion functions which distinguish many degrees of abstraction for each program

variable. Practical experiments including a large Fujitsu IP core design confirm

the competitiveness of our implementation [25].

The methodology is shown in Figure 3.1. Given a programP and a property

ϕ, the first step is to generate initial abstraction functions and build the initial

36

abstract Kripke structurêM accordingly. The traditional model checker will

check ifϕ holds onM̂ . If not, it will generate a counterexample. The next

step checks if the counterexample is spurious or not. If it spurious, the final

refinement step will refine the abstraction and redo the whole process.

In the following, we will describe detailed algorithms for each steps.

M̂ 6|= ϕ

T̂

M̂

refinement

stop

generate initial
abstraction

model check

counterexampleT̂

T̂ is spurious

M̂ |= ϕ

is spurious
check whetherT̂

T̂ is not spurious

generate

M andϕ

Figure 3.1: Counterexample-guided abstraction refinement methodology

3.1 Generating the initial abstraction

Assume that we are given a programP with n variables{v1, · · · , vn}. At is a

set of atomic formulas obtained fromP . As an example,At can beAtoms(P).

37

Given an atomic formulaf ∈ At, let var(f) be the set of variables appearing

in f , e.g.,var (x = y) is {x, y}. Given a set of atomic formulasU , var (U)

equals
⋃

f∈U var(f). In general, for any syntactic entityX, var(X) will be the

set of variables appearing inX. We say that two atomic formulasf1 andf2

interfereif and only if var(f1)∩var (f2) 6= ∅. Let≡I be the relation onAt that

is the reflexive, transitive closure of the interference relation. According to the

following lemma,≡I is an equivalence relation.

Lemma 3.1.1 ≡I is symmetric, reflexive and transitive. Hence,≡I is an equiv-

alence relation.

Proof ≡I satisfies the following properties:

• symmetric: trivially,f1 ≡I f2 implies thatf2 ≡I f1;

• reflexive: sincevar(f)∩ var(f) 6= ∅, therefore,f ≡I f ;

• transitive: assume thatf1 ≡I f2 andf2 ≡I f3. Since≡I is the transitive

closure of interfere relation. Therefore,f1 ≡I f3.

Overall,≡I is an equivalence relation.2
The equivalence class of an atomic formulaf ∈ At is called theformula clus-

ter of f and is denoted by[f]. Let f1 andf2 be two atomic formulas. Then

var(f1) ∩ var(f2) 6= ∅ implies that[f1] = [f2]. In other words, a variablevi

cannot appear in formulas that belong to two different formula clusters accord-

ing to the following lemma.

Lemma 3.1.2 If [f1] 6= [f2], thenvar([f1])∩ var([f2]) = ∅.

Proof Assume thatvar([f1]) ∩ var([f2]) 6= ∅. According to the definition

of ≡I , f1 ≡I f2. Since≡I is equivalence relation,[f1] = [f2]. This contradicts

38

the condition. Therefore,var([f1]) ∩ var([f2]) = ∅. 2
Moreover, the formula clusters induce an equivalence relation≡V on the set of

variablesV in the following way:

vi ≡V vj if and only if vi andvj appear in atomic formulas that

belong to the same formula cluster.

The equivalence classes of≡V are calledvariable clusters. For instance, con-

sider a formula clusterFCi = {v1 > 3, v1 = v2}. The corresponding variable

cluster isV Ci = {v1, v2}. Let {FC1, . . . , FCm} be the set of formula clusters

and{V C1, . . . , V Cm} the set of corresponding variable clusters. In another

word,

At =
m⋃

i=1

FCi, FCi ∩ FCj = ∅ (i 6= j)

and

var(At) =
m⋃

i=1

V Ci, V Ci = var(FCi), V Ci ∩ V Cj = ∅ (i 6= j).

We construct the initial abstractionh = (h1, . . . , hm) as follows. For each

hi, we setDV Ci
=

∏
v∈V Ci

Dv, i.e.,DV Ci
is the domain corresponding to the

variable clusterV Ci. Since the variable clusters form a partition of the set of

variablesV , it follows thatD = DV C1
×· · ·×DV Cm . For each variable cluster

V Ci = {vi1, . . . , vik}, the corresponding abstractionhi is defined onDV Ci
as

follows.

hi(d1, · · · , dk) = hi(e1, · · · , ek) if and only if for all atomic for-

mulasf ∈ FCi, (d1, · · · , dk) |= f ⇔ (e1, · · · , ek) |= f.

In other words two values are in the same equivalence class if they cannot be

“distinguished” by atomic formulas appearing in the formula clusterFCi. The

following example illustrates how we construct the initial abstractionh.

39

init (x) := 0;
next(x) := case

reset = TRUE : 0;
x < y : x+ 1;
x = y : 0;
else: x;

esac;

init (y) := 1;
next(y) := case

reset = TRUE : 0;
(x = y) ∧ ¬(y = 2) : y + 1;
(x = y) : 0;
else: y;

esac;

Figure 3.2: Transition block for Example 3.1.1

Example 3.1.1 Consider the programP with three variablesx, y ∈ {0, 1, 2},

andreset ∈ {TRUE,FALSE} shown in Figure 3.2. The set of atomic for-

mulas isAt = {(reset = TRUE), (x = y), (x < y), (y = 2)}. There

are two formula clusters,FC1 = {(x = y), (x < y), (y = 2)} and

FC2 = {(reset = TRUE)}. The corresponding variable clusters are{x, y}

and{reset}, respectively. Consider the formula clusterFC1. Values(0, 0) and

(1, 1) are in the same equivalence class because for all the atomic formulasf

in the formula clusterFC1 it holds that(0, 0) |= f if and only if (1, 1) |= f .

It can be shown that the domain{0, 1, 2} × {0, 1, 2} is partitioned into a total

of five equivalence classes by this criterion. We denote these classes by the

natural numbers0, 1, 2, 3, 4, and list them below:

1 = {(0, 0), (1, 1)},
2 = {(0, 1)},
3 = {(0, 2), (1, 2)},
4 = {(1, 0), (2, 0), (2, 1)},
5 = {(2, 2)}

The domain{TRUE,FALSE} has two equivalence classes – one contain-

ing FALSE and the otherTRUE. Therefore, we define two abstraction

functionsh1 : {0, 1, 2}2 → {0, 1, 2, 3, 4} and h2 : {TRUE,FALSE} →

40

{TRUE,FALSE}. The first functionh1 is given by

h1(0, 0) = h1(1, 1) = 0
h1(0, 1) = 1
h1(0, 2) = h1(1, 2) = 2
h1(1, 0) = h1(2, 0) = h1(2, 1) = 3
h1(2, 2) = 4

The second functionh2 is just the identity function, i.e.,h2(reset) = reset.

On the other hand, let us assume that we chooseAt = {(reset =

TRUE), (x = y), (x < y), (y = 2), (x = 0), (y = 0)}. Then we will

have FC1 = {(x = y), (x < y), (y = 2), (x = 0), (y = 0)} and

FC2 = {(reset = TRUE)}. As mentioned before, there are two abstraction

functions which are defined by

h1(0, 0) = 0
h1(0, 1) = 1
h1(0, 2) = 2
h1(1, 1) = 3
h1(1, 2) = 4
h1(1, 0) = h1(2, 0) = 5
h1(2, 1) = 6
h1(2, 2) = 7
h2(reset) = reset

Apparently, the abstraction functions are different from the first example.

From the above example, it is easy to see that choosing different set of

atomic formulas results in different abstraction functions. When the number of

atomic formulas are small, the obtained abstract model is usually small. When

the sufficient number of atomic formulas are selected, the obtained abstract

model will be isomorphic to the original model, e.g. when the abstraction

function is the identity function.

In our experience,Atoms(P) or subsets ofAtoms(P) are good choices for

At.

41

3.2 Model checking the abstract model

Given anACTL⋆ specificationϕ, an abstraction functionh (assume thatϕ re-

spectsh), and a programP with a finite set of variablesV = {v1, · · · , vn}, let

M̂ be the abstract Kripke structure corresponding to the abstraction function

h. We use standard symbolic model checking procedures to determine whether

M̂ satisfies the specificationϕ. If it does, then by Theorem 2.4.1 we can con-

clude that the original Kripke structure also satisfiesϕ. Otherwise, assume that

the model checker produces a counterexampleT̂ corresponding to the abstract

modelM̂ . In the remainder of this section, we will focus on counterexamples

which are either(finite) pathsor loops.

3.2.1 Identification of spurious path counterexamples

First, we will tackle the case when the counterexampleT̂ is a path〈ŝ1, · · · , ŝn〉.

The following example highlights the case where the abstract counterexample

T̂ does correspond to some concrete counterexample.

��

��

����

����

��

��

��

��

��������

����
����
����

����
����
����

����������������

����
����
����

����
����
����

��

��

����
����
����
����
����

����
����
����
����
����1

2

3

4 7

11

12

8

6

5

9

10

3̂2̂1̂ 4̂

Figure 3.3: Abstract counterexample corresponds to a real trace

Example 3.2.1 Consider a program with only one variable with domainD =

{1, · · · , 12}. Assume that the abstraction functionh mapsx ∈ D to ⌊(x −

1)/3⌋ + 1. There are four abstract states corresponding to the equivalence

42

classes{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, and{10, 11, 12}. We call these abstract

stateŝ1, 2̂, 3̂, and4̂. The transitions between states in the concrete model are

indicated by the arrows in Figure 3.3. Small dots denote non-reachable states.

Suppose that we obtain an abstract counterexampleT̂ = 〈1̂, 2̂, 3̂, 4̂〉. It is easy

to see that̂T corresponds to some real trace. As an example,1 → 5 → 9 → 12.

Therefore, we say that̂T is not spurious.

Given an abstract statês, the set of concrete statess such thath(s) = ŝ is

denoted byh−1(ŝ), i.e.,h−1(ŝ) = {s|h(s) = ŝ}. We extendh−1 to sequences

in the following way:h−1(T̂) is the set of concrete paths given by the following

expression

{〈s1, · · · , sn〉|
n∧

i=1

h(si) = ŝi ∧ I(s1) ∧
n−1∧

i=1

R(si, si+1)}.

We will occasionally writeh−1
path to emphasize the fact thath−1 is applied to

a sequence. Next, we give asymbolicalgorithm to computeh−1(T̂). Let

S1 = h−1(ŝ1) ∩ I andR be the transition relation corresponding to the un-

abstracted Kripke structureM . For 1 < i ≤ n, we defineSi in the following

manner:Si := Img(Si−1, R) ∩ h−1(ŝi). In the definition ofSi, Img(Si−1, R)

is the forward image ofSi−1 with respect to the transition relationR. The

sequence of setsSi is computed symbolically using OBDDs and the standard

image computation algorithm. The following lemma establishes the correct-

ness of this procedure.

Lemma 3.2.1 The following are equivalent:

(i) The pathT̂ corresponds to a concrete counterexample.

(ii) The set of concrete pathsh−1(T̂) is non-empty.

(iii) For all 1 ≤ i ≤ n, Si 6= ∅.

43

Proof We first prove that(i) and(ii) are equivalent, then prove that(ii) and

(iii) are equivalent.

(i) ⇒ (ii) Assume thatT̂ corresponds to a concrete counterexampleT =

〈s1, . . . , sn〉. From the definition ofT̂ , h(si) = ŝi andsi ∈ h−1(ŝi). Since

T is a trace in the concrete model, it has to satisfy the transition relation and

start from initial state, i.e.R(si, si+1) ands1 ∈ I . From definition ofh−1(T̂),

T ∈ h−1(T̂).

(ii) ⇒ (i) Assume thath−1(T̂) is non-empty, we pick a trace〈s1, . . . , sn〉

from h−1(T̂). According to the definition ofh−1(T̂), h(si) = ŝi. Therefore,T̂

corresponds to a concrete counterexample.

(ii) ⇒ (iii) Assume thath−1(T̂) is not empty, then there exists a path

〈s1, . . . , sn〉 whereh(si) = ŝi and s1 ∈ I . Therefore, we haves1 ∈ S1.

Let us assume thatSi 6= ∅ andsi ∈ Si. From the definition ofh−1(T̂), si+1 ∈

Img(si, R) andsi+1 ∈ h−1(ŝi+1). Therefore,si+1 ∈ Img(si, R) ∪ h−1(ŝi+1).

It is easy to see that

si ∈ Si → Img(si, R) ⊆ Img(Si, R)

is a tautology. Therefore,si+1 ∈ Img(Si, R) ∪ h−1(ŝi+1). According to the

algorithm,Si+1 = Img(Si, R)∩h−1(ŝi+1). Therefore,si+1 ∈ Si+1 andSi+1 6=

∅. By induction,Si 6= ∅, for all 0 < i ≤ n.

(iii) ⇒ (ii) For the other direction assume thatSi 6= ∅ for 1 ≤ i ≤ n. We

choose a statesn ∈ Sn and construct a trace backward inductively. Assume

thatsi ∈ Si, from definition ofSi, we have thatsi ∈ Img(Si−1, R) ∩ h−1(ŝi)

and Si−1 is not empty. Selectsi−1 from Si−1. From the definition of

Si−1, Si−1 ⊆ h−1(ŝi−1). Therefore,si−1 ∈ h−1(ŝi−1). By induction,

s1 ∈ S1 = h−1(ŝ1) ∩ I . Therefore, the trace〈s1, . . . , sn〉 that we have

44

constructed satisfies the definition ofh−1(T̂). Soh−1(T̂) is not empty.2
Suppose that condition (iii) of Lemma 3.2.1 is violated, and leti be the

largest index such thatSi 6= ∅. Thenŝi is called thefailure stateof the spurious

counterexamplêT .

��

��

����

����

��

�� ��

��

��������

����
����
����

����
����
����

����
����
����
����
����

����
����
����
����
����

��������

����
����
����

����
����
����

��

��

����
����
����
����
����

����
����
����
����
����1

2

3

4 7

11

12

8

6

5

9

10

4̂3̂2̂1̂

Figure 3.4: An abstract counterexample

Algorithm SplitPATH (T̂)
(S, n) = ReachRestrict(̂T)
if n = 0 then output ”counterexample exists”
elseoutput n, S

Figure 3.5: SplitPATH checks a spurious abstract path.

Example 3.2.2 Consider the similar program to Example 3.2.1 with one vari-

able with domainD = {1, · · · , 12}. Also assume that the abstraction function

h = ⌊(x − 1)/3⌋ + 1. We call these abstract states1̂, 2̂, 3̂, and4̂. The tran-

sitions between states in the concrete model are indicated by the arrows in

Figure 3.4; small dots denote non-reachable states. Note that the transition be-

tween9 and12 in Example 3.2.1 is redirected between7 and12. It is easy

to see thatT̂ is spurious. Using the terminology of Lemma 3.2.1, we have

45

S1 = {1, 2, 3}, S2 = {4, 5, 6}, S3 = {9}, andS4 = ∅. Notice thatS4 and

thereforeImg(S3, R) are both empty. Thus,̂s3 is the failure state.

function Reach Restrict(T̂)

S = h−1(ŝ1) ∩ I
j = 1
while (S 6= ∅ and j < n) {

j = j + 1
Sprev = S
S = Img(S,R) ∩ h−1(ŝj) }

if S 6= ∅ then return (S, 0)
else return (Sprev, j)

Figure 3.6: ReachRestrict computes the reachable states withinT̂ .

It follows from Lemma 3.2.1 that ifh−1(T̂) is empty (i.e., if the counterex-

ampleT̂ is spurious), then there exists a minimali (2 ≤ i ≤ n) such that

Si = ∅. The symbolic AlgorithmSplitPATH in Figure 3.2.1 computes this

number and the set of statesSi−1; the states inSi−1 are calleddead-endstates.

After the detection of the dead-end states, we proceed to the refinement step

(see Chapter 3.3). On the other hand, if the conditions stated in Lemma 3.2.1

are true, thenSplitPATH will report a “real” counterexample and we can stop.

3.2.2 Identification of spurious loop counterexamples

Now we consider the case when the counterexampleT̂ is a loop, which we

write as〈ŝ1, . . . , ŝn〉
ω. Note that the general loop counterexample may start

with a path and then end with a loop, i.e.,T̂ = 〈ŝ1, . . . , ŝj〉〈ŝj+1, . . . , ŝn〉
ω. We

focus on discussing the first case. However, the derived lemmas and theorems

will apply for the general cases as well. It is easy to see thatT̂ can also be

written as a infinite path, i.e.,

T̂ = 〈ŝ1 . . . ŝn, ŝ1 . . . ŝn . . . 〉.

46

��

��

����

��

��

��

��

��
��
��
��

��

��

��

��

��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��

��

��
��
��
��

��
��
��
��

����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�� ��
��
��
��

��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�� �� ��

��
��
��
��

��

��
��
��
��

��

��
��
��
��

bs1 bs2

S0

1
S0

2
S1

1
S1

2
S2

1
S2

2

Figure 3.7: A loop counterexample, and its unwinding.

Intuitively, T̂ corresponds to a concrete infinite pathT = 〈s1 . . . sj . . . 〉

whereR(sj , sj+1) if and only if for all j ≥ 1, sj ∈ h−1(ŝind(j)) where

ind(j) = (j − 1) mod n + 1. Since this case is more complicated than the

path counterexamples, we first present an example in which some of the typi-

cal situations occur.

Example 3.2.3 We consider a loop〈ŝ1ŝ2〉
ω as shown in Figure 3.7. In order

to find out if the abstract loop corresponds to concrete loops, we unwind the

counterexample as demonstrated in the figure. There are two situations where

cycles occur. In the figure, for each of these situations, an example cycle (the

first one occurring) is indicated by a fat dashed arrow. We make the following

important observations:

(i) A given abstract loop may correspond to several concrete loops ofdiffer-

ent size.

47

(ii) Each of these loops may start at different stages of the unwinding.

(iii) The unwinding eventually becomes periodic (in our caseS0
2 = S2

2), but

only after several stages of the unwinding. The size of the period is the

least common multiple of the size of the individual loops, and thus, in

generalexponential.

We conclude from the example that a naive algorithm may have expo-

nential time complexity due to an exponential number of loop unwindings.

The following theorem however shows that a polynomial number of unwind-

ings is sufficient. Letmin be the minimum size of all abstract states in the

loop, i.e.,min = min
1≤j≤n

|h−1(ŝj)|. T̂unwind denotes the the finite abstract path

〈ŝ1, . . . , ŝn〉
min+1, i.e., the path obtained by unwinding the loop part ofT̂

(min+ 1) times.

Theorem 3.2.1 The following are equivalent:

(i) T̂ corresponds to a concrete counterexample.

(ii) h−1
path(T̂unwind) is not empty.

Proof Let us first start with some easy observations. Recall thatR is

the transition relation of the Kripke structure. By definition, the elements of

h−1
path(T̂unwind) have the following form

〈b11, . . . , b
1
n, . . . , bmin+1

1 , . . . , bmin+1
n 〉 (∗)

for which the following property hold:

bkj ∈ h−1(ŝj) for all bkj in P .

48

Each such pathP has lengthL := n × (min + 1), and we can equivalently

write P in the form

〈d1, . . . , dL〉 (∗∗)

with the properties

1. d1 ∈ h−1(ŝ1) ∩ I , and

2. for all j ≤ L, if dj ∈ h−1(ŝind(j)) thendj+1 ∈ h−1(ŝind(j+1)).

Recall thatmin was defined to be the size of the smallest abstract state

in the loop, i.e.,min{|h−1(ŝ1)|, . . . , |h−1(ŝn)|}, and letM be the index of an

abstract statêsM s.t. |h−1(ŝM)| = min. (Such a state must exist, because the

minimum must be obtained somewhere.)

(i) ⇒ (ii) Suppose there exists a concrete counterexample. Since the coun-

terexample contains a loop, there exists aninfinite pathI = 〈c1, . . . 〉 such that

c1 ∈ h−1(ŝ1), and for allj, if cj ∈ h−1(ŝind(j)), thencj+1 ∈ h−1(ŝind(j+1)). Ac-

cording to(∗∗), the finite prefix〈c1, . . . , cL〉 of I is contained inh−1
path(T̂unwind),

and thush−1
path(T̂unwind) is not empty.

(ii) ⇒ (i) Suppose thath−1
path(T̂unwind) contains a finite pathP .

Claim: There exists a state which appears at least twice inP .

Proof of Claim: SupposeP is in form (∗). Consider the states

b1M , b
2
M , . . . , b

min+1
M . By (∗), all bkM are contained inh−1(ŝM). By definition

of M , however,h−1(ŝM) contains onlymin elements, and thus there must be

at least one repetition in the sequenceb1M , b
2
M , . . . , b

min+1
M . Therefore, there

exists a repetition in the finite pathP , and the claim is proved.2 (Claim)

Let us now writeP in form (∗∗), i.e.,P = 〈d1, . . . , dL〉, and let a repetition

be given by two indicesα < β, s.t. dα = dβ. Because of the repetition, there

49

must be a transition fromdβ−1 to dα, and therefore,dα is the successor state of

dβ−1 in a cycle. We conclude that

〈d1, . . . , dα−1〉〈dα, . . . , dβ−1〉
ω

is a concrete counterexample.2
We conclude that loop counterexamples can be reduced to path counterex-

amples. In Figure 3.8, we describe the algorithmSplitLOOP which is an

extension ofSplitPATH . In the algorithm,̂Tunwind is computed by the subpro-

gramunwind.

Algorithm SplitLOOP (T̂)
min = min{|h−1(ŝ1) ∩ I |, . . . , |h−1(ŝn)|}

T̂unwind = unwind(T̂ ,min+ 1)

Computej andSprev as inSplitPATH (T̂unwind)
k := ind(j)
p := ind(j + 1)
output Sprev, k, p

Figure 3.8: SplitLOOP checks if an abstract loop is spurious

If the abstract counterexample is spurious, then the algorithmSplitLOOP

outputs a setSprev and indicesk, p, such that the following conditions hold:

1. The states inSprev correspond to the abstract statêsp, i.e., Sprev ⊆

h−1(ŝp)

2. All states inSprev are reachable fromh−1(ŝ1) ∩ I .

3. k is the successor index ofp within the loop, i.e., ifp = n thenk = 1,

and otherwisek = p + 1.

4. There is no transition from a state inSprev to h−1(ŝk), i.e.,

Img(Sprev, R) ∩ h−1(ŝk) is empty.

50

5. Therefore,̂sp is the failure state of the loop counterexample.

Thus, the final situation encountered is indeed very similar as in the case of

path counterexamples. Note that the nontrivial feature of the algorithmSplit-

LOOP is the fact thatmin unwindings of the loop are necessary. The correct-

ness of this approach is not trivial, and details are deferred to the appendix.

There may be cases wheremin is a large number. Unwinding the loop may

be impossible. In the following, we describe a new practical technique which

use fixpoint computation to check whether a loop counterexample is spurious.

Given a Kripke structureM = (S, I, R, L), and an abstract tracêT =

〈ŝ1, . . . , ŝn〉
ω, assume thatQ =

⋃n

j=1Qj be a set of states whereQj is a subset

of states such that

Qj ∩ Qk = ∅, |Q1| = |h−1(ŝ1) ∩ I |, and |Qj| = |h−1(sj)| for 1 < j ≤ n.

Assume that{ρ1, . . . , ρn} be a set of arbitrarybijection functions whereρ1 :

Q1 → (h−1(s1) ∩ I) andρj : Qj → h−1(sj) for 1 < j ≤ n. Then we define

g : Q→ S be a function where forq ∈ Qj,

g(q) = ρj(q).

It is easy to see thatg is a well-defined function. We define a new Kripke

structureN = (SN , IN , RN , LN), whereSN = Q, IN = Q1, and

RN = {(q, q′) | R(g(q), g(q′)), q ∈ Qn, q′ ∈ Q1}
∪ {(q, q′) | R(g(q), g(q′)), q ∈ Qj, q′ ∈ Qj+1 for 1 ≤ j < n}

Intuitively, N only captures the transitions occurring betweenh−1(ŝj) and

h−1(ŝind(j+1)). Assume that

TN = 〈q1 . . . qi〉〈qi+1 . . . qm〉
ω

be a loop trace inN , i.e.,qj ∈ SN for 1 ≤ j ≤ m. Then the following lemma

holds.

51

Lemma 3.2.2 The following claims are valid:

(i) If q1, q2 ∈ Qk, then(q1, q2) 6∈ RN ;

(ii) (m− i) mod n = 0, i.e., the period ofTN is the multiple ofn.

Proof (i) This can be directly derived from the definition ofRN .

(ii) Assume thatm− i = α ∗ n+ β whereβ 6= 0. Assume thatqi+1 ∈ Qη and

qm ∈ Qξ. Then there existsk,

m− i = k ∗ n+ (n− η + 1) + ξ = α ∗ n+ β

or

(n− η + 1) + x = β mod n

Note that(qm, qi+1) ∈ RN , andqi+1 ∈ Qη. Then we have

ξ =

{
η − 1 η 6= n
1 η = n

For either cases,(n − η + 1) + ξ = 0 mod n. This contradict the hypothesis

thatβ 6= 0. Therefore,(ii) claim is correct.2
Furthermore, the following theorem holds.

Theorem 3.2.2 T̂ corresponds to a concrete loop counterexample if and only

if N, IN |= EG true.

Proof Assume thatN, IN |= EG true, then there exists an infinite path on

N . SinceN is finite, the infinite path must forms a loop. Assume that this loop

is

TN = 〈q1 . . . qi〉〈qi+1 . . . qm〉
ω

52

whereqj ∈ SN for 1 ≤ j ≤ m. Apparently,

T = 〈g(q1) . . . g(qi)〉〈g(qi+1) . . . g(qm)〉ω

is an infinite trace onM sinceg(qj) ∈ S for all 1 ≤ j ≤ n. In the following,

we will argue thatT is the concrete loop counterexample corresponding toT̂ ,

i.e., we need to prove that

T̂ = 〈ŝ1 . . . ŝn〉
ω

corresponds to the infinite path

T = 〈g(q1) . . . g(qi+1) . . . g(qm), g(qi+1) . . . g(qm), . . . 〉.

Since the period ofT is the multiple of the period of̂T . It is sufficient to show

that the finite path

T ′ = 〈g(q1) . . . g(qi+1) . . . g(qm)〉

corresponds to a prefix of̂T with the same length. According to the definition

of RN ,RN (qj, qj+1) implies thatqj ∈ Qind(j) andqj+1 ∈ Qind(j+1). Therefore,

for j ≤ m, g(qj) = ρind(j)(qj) ∈ h−1(ŝind(j)). Therefore,T̂ corresponds to a

concrete loop counterexampleT .

On the other hand, assume thatT̂ corresponds to a concrete loop counterex-

ample

T = 〈s1, . . . , si〉〈si+1, . . . , sm〉
ω.

According to Lemma 3.2.2,m − i mod n = 0 andsj ∈ ŝind(j). Sinceρj is

a bijection, there must exist a set of states{q1, . . . , qi, . . . , qm} ∈ Q where

ρind(j)(qj) = sj. Or, g(qj) = sj . Note thatqj ∈ Qind(j). According to the

definition ofRN , (qj, qj+1) ∈ RN if and only if R(g(qj), g(qj+1)). There-

fore, R(sj , sj+1) implies thatRN (qj, qj+1). Also, R(sm, sj+1) implies that

53

RN (qm, qj+1). Overall,TN = 〈q1, . . . , qj〉〈qj+1, . . . , qm〉
ω is an infinite trace

onN . Therefore,N, IN |= EG true.2
In the implementation, it may be expensive to buildN directly. Instead, we

build the transition relationRN on-the-fly during computingEG true.

3.3 Refining the abstraction

First, we will consider the case when the counterexampleT̂ = 〈ŝ1, · · · , ŝn〉 is

a path. Let us return to a previous example for a closer investigation of failure

states.

Example 3.3.1 Recall that in the spurious counterexample of Figure 3.4, the

abstract statê3 was thefailure state. There are three types of concrete states

in the failure statê3:

(i) Thedead-end state9 is reachable, but there are no outgoing transitions

to the next state in the counterexample.

(ii) Thebad state7 is not reachable but outgoing transitions cause the spuri-

ous counterexample. The spurious counterexamples is caused by the bad

state.

(iii) The irrelevant state 8 is neither reachable nor bad.

The goal of the refinement methodology described in this section is to refine

h so that the dead-end states and bad states do not belong tothe sameabstract

state. Then the spurious counterexample will be eliminated.

If T̂ does not correspond to a real counterexample, by Lemma 3.2.1 (iii)

there always exists a setSi of dead-end states, i.e.,Si ⊆ h−1(ŝi) with 1 ≤ i < n

54

such thatImg(Si, R)∩ h−1(ŝi+1) = ∅ andSi is reachable from initial state set

h−1(ŝ1) ∩ I . Moreover, the setSi of dead-end states can be obtained as the

outputSprev of SplitPATH or SplitLOOP . Since there is a transition from̂si

to ŝi+1 in the abstract model, there is at least one transition from abad state

in h−1(ŝi) to a state inh−1(ŝi+1) even though there is no transition fromSi to

h−1(ŝi+1), and thus the set of bad states is not empty. We partitionh−1(ŝi) into

three subsetsSi,0, Si,1, andSi,x as follows:

Name Partition Definition
dead-end states Si,0 Si

bad states Si,1 {s ∈ h−1(ŝi)|∃s′ ∈ h−1(ŝi+1).R(s, s′)}

irrelevant states Si,x h−1(ŝi) \ (Si,0 ∪ Si,1)

Intuitively,Si,0 denotes the set of dead-end states, i.e., states inh−1(ŝi) that

are reachable from initial states.Si,1 denotes the set of bad states,i.e., those

states inh−1(ŝi) that are not reachable from initial states, but have at least one

transition to some state inh−1(ŝi+1). The setSi,1 cannot be empty since we

know that there is a transition fromh−1(ŝi) to h−1(ŝi+1). Si,x denotes the set

of irrelevant states, i.e., states that are not reachable from initialstates, and

do not have a transition to a state inh−1(ŝi+1). SinceSi,1 is not empty, there

is a spurious transition̂si → ŝi+1. This causes the spurious counterexample

T̂ . Hence in order to refine the abstractionh so that the new model does not

allow T̂ , we need a refined abstraction function which separates the two sets

Si,0 andSi,1, i.e., we need an abstraction function, in which no abstract state

simultaneously contains states fromSi,0 and fromSi,1.

It is natural to describe the needed refinement in terms of equivalence re-

lations: Recall thath−1(ŝ) is an equivalence class of≡ which has the form

E1 × · · · × Em, where eachEi is an equivalence class of≡i. Thus, the re-

finement≡′ of ≡ is obtained by partitioning the equivalence classesEj into

subclasses, which amounts to refining the equivalence relations≡j. Thesize of

55

3 4 5

7 1 x x
8 0 x 1
9 x 0 0
Equivalence Class

3/4 5

7 1 x
8 0 1
9 0 0
Refinement (a)

3 4/5
7/9 1 0
8 0 1

Refinement (b)

Figure 3.9: Two possible refinements of an Equivalence Class.

the refinementis the number of new equivalence classes. Ideally, we would like

to find the coarsest refinement that separates the two sets, i.e., the separating

refinement with the smallest size.

Example 3.3.2 Assume that we have two variablesv1, v2. The failure state

corresponds toone equivalence classE1 ×E2, whereE1 = {3, 4, 5} andE2 =

{7, 8, 9}. In Figure 3.9, dead-end statesSi,0 are denoted by 0, bad statesSi,1

by 1, and irrelevant states byx.

Let us consider two possible partitions ofE1 ×E2 :

• Case (a) :{(3, 4), (5)} × {(7), (8), (9)} (6 classes)

• Case (b) :{(3), (4, 5)} × {(7, 9), (8)} (4 classes)

Clearly, case (b) generates a coarser refinement than case (a). It can be easily

checked that no other refinement is coarser than (b).

In general, the problem of finding the coarsest refinement problem is com-

putationally intractable.

Theorem 3.3.1 The problem of finding the coarsest refinement is NP-hard.

The proof is provided in Chapter 3.6.

We therefore need to obtain a good heuristics for abstraction refine-

ment. WhenSi,x is empty, there is a polynomial algorithm which can find

56

the coarsest refinement. The algorithmPolyRefine (see Figure 3.10) corre-

sponds to this case. LetP+
j , P

−
j be two projection functions, such that for

s = (d1, . . . , dm), P+
j (s) = dj andP−

j (s) = (d1, . . . , dj−1, dj+1, . . . , dm).

Thenproj(Si,0, j, a) denotes theprojectionset{P−
j (s)|P+

j (s) = a, s ∈ Si,0}.

Intuitively, the conditionproj(Si,0, j, a) 6= proj(Si,0, j, b) in the algorithm

means that there exists(d1, . . . , dj−1, dj+1, . . . , dm) ∈ proj(Si,0, j, a) and

(d1, . . . , dj−1, dj+1, . . . , dm) 6∈ proj(Si,0, j, b). According to the definition

of proj(Si,0, j, a), s1 = (d1, . . . , dj−1, a, dj+1, . . . , dm) ∈ Si,0 and s2 =

(d1, . . . , dj−1, b, dj+1, . . . , dm) 6∈ Si,0, i.e., s2 ∈ Si,1. The only way to sepa-

rates1 ands2 into different equivalence classes is thata andb have to be in

different equivalence classes of≡′
j, i.e.,a 6≡′

j b.

Algorithm PolyRefine

for j := 1 to m {
≡′

j := ≡j

for everya, b ∈ Ej {
if proj(Si,0, j, a) 6= proj(Si,0, j, b)

then ≡′
j := ≡′

j \{(a, b)} }}

Figure 3.10: The algorithmPolyRefine

Lemma 3.3.1 WhenSi,x = ∅, the relation≡′
j computed byPolyRefineis an

equivalence relation which refines≡j and separatesSi,0 andSi,1. Further-

more, the equivalence relation≡′
j is the coarsest refinement of≡j.

The proof of this lemma is provided in Chapter 3.6.

Note that in symbolic presentation, the projection operationproj(Si,0, j, a)

amounts to computing a generalized cofactor, which can be easily done by

standard BDD methods. Given a functionf : D → {0, 1}, a general-

ized cofactor off with respect tog = (
∧q

k=p xk = dk) is the function

57

h−1(ŝi) h−1(ŝi+1)h−1(ŝi−1)

Si,x

Si,1

Si,0

Figure 3.11: Three setsSi,0, Si,1, andSi,x

fg = f(x1, . . . , xp−1, dp, . . . , dq, xq+1, . . . , xn). In other words,fg is the pro-

jection of f with respect tog. Symbolically, the setSi,0 is represented by a

function fSi,0
: D → {0, 1}, and therefore, the projectionproj(Si,0, j, a) of

Si,0 to valuea of thejth component corresponds to a cofactor offSi,0
.

In our implementation, we use an heuristics which is based on the following

corollary to the proof of Lemma 3.3.1.

Corollary 3.3.1 Even ifSi,x is not empty, the relation≡′
j computed byPolyRe-

fine is an equivalence relation which refines≡j and separatesSi,0 andSi,1.

Refinement HeuristicsWe merge the states inSi,x into Si,1, and use the al-

gorithmPolyRefineto find the coarsest refinement that separates the setsSi,0

andSi,1 ∪ Si,x. The equivalence relation computed byPolyRefinein this man-

ner is in general not optimal, but it is a correct refinement which separatesSi,0

andSi,1, and eliminates the spurious counterexample. This heuristic has given

good results in our practical experiments.

Since according to Theorem 3.2.1, the algorithmSplitLOOP for loop

counterexamples works analogously asSplitPATH , the refinement procedure

for spurious loop counterexamples works analogously, i.e., it usesSplitLOOP

to identify the failure state, andPolyRefineto obtain a heuristic refinement.

58

Our refinement procedure continues to refine the abstraction function by

partitioning equivalence classes until a real counterexample is found, or the

ACTL⋆ property is verified. The partitioning procedure is guaranteed to termi-

nate since each equivalence class must contain at least one element. Thus, our

method is complete.

Theorem 3.3.2 Given a modelM and anACTL⋆ specificationϕ whose coun-

terexample is either path or loop, our algorithm will find a modelM̂ such that

M̂ |= ϕ⇔M |= ϕ.

Proof There are three cases to consider.

(i) If M̂ |= ϕ, thenM |= ϕ according to Theorem 2.4.1

(ii) If M̂ 6|= ϕ, and the generated abstract counterexample is not spurious,

then there exists a concrete counterexample, and hence,M 6|= ϕ.

(iii) If M̂ 6|= ϕ, and the generated abstract counterexample is spurious, then

PolyRefinewill refine the abstraction. Since each refinement step par-

titions an existing equivalence classes intostrictly smaller equivalence

classes, after a finite number of steps the equivalence relation will be-

come theequalityrelation, and thereforêM = M . HenceM 6|= ϕ.2
3.4 Performance improvements

The symbolic methods described in Chapter 3.2 and Chapter 3.3 can be di-

rectly implemented using BDDs. Our implementation uses additional heuris-

tics which are outlined in the following.

59

3.4.1 Detecting more real counterexamples

Example 3.4.1 Consider a program similar to Example 3.2.1. The program

has only one variablex ∈ {1, · · · , 12}. The abstraction functionh(x) =

⌊(x − 1)/3⌋ + 1. There are four abstract states corresponding to the equiv-

alence classes{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, and{10, 11, 12}. We call these

abstract stateŝ1, 2̂, 3̂, and 4̂. The transitions between states in the concrete

model are indicated by the arrows in Figure 3.4.1. Using ourSplitPATH al-

gorithm,T̂ is spurious. However, there exists a trace〈1, 4, 9, 7, 12〉 which is a

real counterexample. Note that this trace does not correspond to the abstract

traceT̂ . Instead, it corresponds to an abstract trace〈1̂, 2̂, 3̂, 3̂, 4̂〉.

1
2
3

4 7

11
12

8
6
5

9

10

4̂3̂2̂1̂

Figure 3.12: Detecting more real counterexamples

Although the trace〈1, 4, 9, 7, 12〉 does not correspond to the abstract coun-

terexample, finding this trace avoids rechecking the model which may be ex-

pensive. Therefore, a relatively small effort to detect such counterexamples

is justified as a valuable heuristic. For loop counterexamples, the scenario is

similar. Consider the loop counterexampleT̂ = 〈1̂, 2̂〉ω of Figure 3.13. Similar

to Example 3.4.1,̂T is also spurious according to the algorithmSplitLOOP .

However, there exists an infinite path〈1, 1, . . . 〉 which is a potential counterex-

ample.

60

1

2

3

1̂ 2̂

Figure 3.13: A spurious loop counterexample〈1̂, 2̂〉ω

Given a propertyϕ and a Kripke structureM = (S, I, R, L), assume that a

general counterexamplêT includesn abstract states. We modify our original

algorithms in order to detect more real counterexamples.

(i) We restrict the model to be a smaller modelN = (SN , IN , RN , LN)

where the state spaceSN = (
⋃

1≤i≤n h
−1(ŝi)), IN = h−1(ŝ1) ∩ I ,

RN (s, s′) = R(s, s′) for s, s′ ∈ SN , andLN (s) = L(s) for s ∈ SN .

Then we checkN, IN |= ¬ϕ is true or not. If a concrete counterexample

is found, then the algorithm terminates. We use bounded model check-

ing algorithm [11] to checkN, IN |= ¬ϕ. When the problem is hard to

decide, we abandon the algorithm and directly go to the second step.

(ii) If no counterexample is found, we useSplitPATH or SplitLOOP to

compute a refinement as described above.

This two-phase algorithm is slower than the original one if we do not find a

concrete counterexample; in many cases however, it can speed up the search

for a concrete counterexample.

3.4.2 Abstraction for approximation

Despite the use of partitioned transition relations it is often infeasible to com-

pute the total transition relation of the modelM [26]. Therefore, the abstract

modelM̂ cannot be computed fromM directly. In previous work [5, 31], a

61

method which we callearly approximationhas been introduced: first, abstrac-

tion is applied to the BDD representation of each transition block and then

the BDDs for the partitioned transition relation are built from the alreadyab-

stracted BDDs for the transition blocks. The disadvantage of early approxima-

tion is that itover-approximatesthe abstract model̂M [27]. In our approach, a

heuristic individually determines for each variable clusterV Ci, if early approx-

imation should be applied or if the abstraction function should be applied in an

exact manner. Our method has the advantage that it balances overapproxima-

tion and memory usage. Moreover, the overall method presented in our paper

remains complete with this approximation.

Lemma 3.4.1 Let R̂ be the abstract transition relation obtained from existen-

tial abstraction. Let{Rearly
i } be a partitioned transition relation obtained

from early approximation. Let{Rcombined
i } be the final partitioned transi-

tion relation which we obtain in our approach. Then̂R →
∧

iR
combined
i and

∧
iR

combined
i →

∧
iR

early
i .

Thus, the approximation in our approach indeed is intermediate between early

approximation and exact existential abstraction. Our method remains com-

plete, because during the symbolic simulation of the counterexample the al-

gorithmsSplitPATH andSplitLOOP treat both forms of overapproximations,

i.e., virtual transitions and spurious transitions, in the same way.

3.4.3 Abstractions for distant variables

In addition to the methods of Chapter 3.1, we completely abstract variables

whose distance from the specification in thevariable dependency graphis

greater than a user-defined constant. Note that the variable dependency graph

is also used for this purpose in the localization reduction [5, 68, 72] in a sim-

ilar way. However, the refinement process of the localization reduction [68]

62

can only turn a completely abstracted variable into a completely unabstracted

variable, while our method uses intermediate abstraction functions.

A user-defined integer constantfar determines which variables are close

to the specificationϕ. The setNEAR of near variables contains those variables

whose distance from the specification in the dependency graph is at mostfar,

andFAR = var(P) − NEAR is the set of far variables. For variable clusters

without far variables, the abstraction function remains unchanged. For variable

clusters with far variables their far variables are completely abstracted away,

and their near variables remain unabstracted. Note that the initial abstraction

for variable clusters with far variables looks similar as in the localization re-

duction. However, the refinement process of the localization reduction [68]

can only turn a completely abstracted variable into a completely unabstracted

variable, while our method uses intermediate abstraction functions.

3.5 Experimental results

We have implemented our methodology in NuSMV [24] which uses the CUDD

package [101] for symbolic representation. We performed two sets of experi-

ments. One set includes four benchmark designs and three industrial designs

from Synopsys. The other was performed on an industrial design of a multi-

media processor from Fujitsu [1]. All the experiments were carried out on a

200MHz PentiumPro PC with 1GB RAM memory using Linux.

3.5.1 Experiments on benchmark circuits

The first benchmark set includes four publicly available designs and three in-

dustrial designs. The properties of the design are described in Table 3.1. In the

table, the second column (#Var) shows the number of symbolic variables in the

design while the third column (#Reg) shows the corresponding number of the

63

Boolean variables. For example, a symbolic variable with domain whose size

equals to eight corresponds to three Boolean variables. Therefore, the num-

ber of Boolean variables is always larger or equal to the number of symbolic

variables. Overall, thirty seven properties are considered in this benchmark.

Design #Var #Reg #Prop
gigamax 10 16 1
guidance 40 55 8
waterpress 6 21 8
PCI bus 50 89 15
ind1 72 72 1
ind2 101 101 1
ind3 190 190 1

Table 3.1: Properties of the given benchmark designs

The results for these designs are listed in Table 3.2. Note that average time

and space usages per design are reported in this table. In the table, the perfor-

mance for an enhanced version of NuSMV with cone of influence reduction

(NuSMV + COI) and our implementation (NuSMV + ABS) are compared.

#Var and #Prop are properties of the designs: #Var =x(y) means thatx is the

number of symbolic variables, andy the number of Boolean variables in the de-

sign. #Prop is the number of verified properties. The columns #COI and #ABS

contain the number of symbolic variables which have been abstracted using

the cone of influence reduction (#COI), and our initial abstraction (#ABS).

The column ”Time” denotes the accumulated running time to verify all #Prop

properties of the design.|TR| denotes the maximum number of BDD nodes

used for building the transition relation.|MC| denotes the maximum number

of additionalBDD nodes used during the verification of the properties. Thus,

|TR|+ |MC| is the maximum BDD size during the total model checking pro-

cess. For the larger examples, we use partitioned transition relations by setting

the BDD size limit to 10000.

64

Design NuSMV+COI NuSMV+ABS
#COI Time |TR| |MC| #ABS Time |TR| |MC|

gigamax 0 0.3 8346 1822 9 0.2 13151 816
guidance 30 35 140409 30467 34-39 30 147823 10670
waterpress 0-1 273 34838 129595 4 170 38715 3335
PCI bus 4 2343 121803 926443 12-13 546 160129 350226
ind1 0 99 241723 860399 50 9 302442 212922
ind2 0 486 416597 2164025 84 33 362738 624600
ind3 0 617 584815 2386682 173 15 426162 364802

Table 3.2: Running results for the benchmark designs

On the other hand, we also report the relative time and space difference be-

tween our approach and traditional cone of influence reduction in Figure 3.14

and Figure 3.15. In the figures, the x axis corresponds to the number of proper-

ties and y axis corresponds to the relative time and space difference respectively

(Time(COI)/Time(Abs) and Space(COI)/Space(Abs)). Although our approach

uses less than 50% more memory than the traditional cone of influence re-

duction tobuild the abstract transition relation, it requires one magnitude of

memory less duringmodel checking. This is an important achievement since

the model checking process is the most difficult task in verifying large designs.

More significant improvement is further demonstrated by the Fujitsu IP core

design.

3.5.2 Debugging a multimedia processor

As another example, we verified a multimedia assist (MMA-ASIC) processor

developed by Fujitsu [1]. The system configuration of this processor is shown

in Figure 3.16 [102]. A dashed line represents a chip boundary. MM-ASIC is

connected to a host CPU and external I/O units via ”Bus-H”, and to SDRAMs

via ”Bus-R”. MM-ASIC consists of a co-processor for multimedia instructions

(MMA), a graphic display controller (GDC), peripheral I/O units, and five bus

65

20

10

30

40

15

25

35

5

5 10 15 20 25 30 35 40

Figure 3.14: The relative time improvement

20

5 10 15 20 25 30 35 40

1

10

30

40

50

8

0.1

Figure 3.15: The relative time improvement

66

bridges (BBs).

BB-S

MMA

Host CPU SDRAM

BB-R

GDC

BB-I

BB-H

BB-M

90MHz

MM-ASIC

30MHz
Bus-I

peripheral I/O units

....

I/O units
external

Bus-H
30MHz

90MHz
Bus-R

90MHz
Bus-SBus-M

Figure 3.16: Configuration of MMA-ASIC

It is one of the characteristics of a system-on-chip that the design contains

bus bridges, because the components of the system may have different interface

protocols or different frequencies of operation. Or bus bridges are used to

construct a bus hierarchy according to the locality of transactions. MM-ASIC

consists of the following five bus bridges.

• ”BB-I” and ”BB-H”: These separate Bus-M from Bus-H and Bus-I, since

the bus frequency of Bus-M is different from that of Bus-H and Bus-I.

• ”BB-S”: This separates the transactions between GDC and SDRAM

from those between MMA and host CPU, since they are major trans-

actions in MM-ASIC.

• ”BB-R”: This solves the difference of the bus protocols between Bus-R

and Bus-S.

• ”Bus-M”: This separates Bus-M from the local bus of MMA.

67

The RTL implementation of MM-ASIC is described in Verilog-HDL. The

total number of lines of code is about 61,500. The verification targets to verify

the bus transactions. Therefore, three operational units, peripheral I/Os, MMA,

and GDC are omitted. After this elimination of the units, the number of regis-

ters is reduced to about 4000. Fujitsu engineers then abstracted away the data

path which is not useful for our verification task. The final description contains

about 500 latches.

Figure 3.17 shows some control signals and controllers within bus bridges.

BB-H, BB-I and BB-M contains a DMA controller ”DMAC” which controls a

DMA transfer between SDRAM and a component, such as an external/internal

IO and MMA. BB-H contains another controller ”HSTC” which controls a data

transfer between a host and the other components but external IOs. BB-R as-

serts ”FreeS” when it can accept a request from Bus-S. BB-S asserts ”FreeW”

(”FreeR”) when it can accept a write (read) request from Bus-M. A bus trans-

action on Bus-M consists of the following four phases.

• Arbitration phaseis the first cycle when a bus master asserts a request

signal. When more than one master requests, only the master which has

the highest priority goes into request phase in the next cycle. ”ReqS”,

”ReqM”, and ”ReqI” are request signals on Bus-M for DMA transfer

from/to SDRAM. The signals are asserted by BB-H, BB-M, and BB-I

respectively. ”ReqH” is a request asserted by BB-H for normal (non-

DMA) data transfer. The priority of the request isReqM ≺ ReqI ≺

ReqS = ReqH.

• Request phaseis the next cycle after the arbitration phase. A bus master

passes the address and other control signals to a bus slave.

• Ready phaseis the cycle when the data is ready to be transferred.

68

”DenO” (”DenI”) is asserted when the write (read) data is ready to trans-

fer in the next cycle. ”Pack” is asserted when the data is transferred

between BB-H and a bus bridge, such as BB-M and BB-I, in the next

cycle.

• Transfer phaseis the next cycle after the ready phase. A data is trans-

ferred between a master and a slave.

DMAC

DMAC

B
B

-R

B
B

-H HSTC

B
B

-M

BB-I

B
B

-S

D
M

A
C

ReqSReqH

ReqI

Bus-M

FreeS

Bus-S
ReqM

DenO,DenI, Pack,
FreeW, FreeR

Figure 3.17: Control signals on ”Bus-M”

In [102], the authors verified this design using a ”navigated” model check-

ing algorithm in which state traversal is restricted by navigation conditions

provided by the user. Therefore, their methodology is not complete, i.e., it may

fail to prove the correctness even if the property is true. Moreover, the nav-

igation conditions are usually not automatically generated. Since our model

checker can only accept SMV language, we translated this abstracted Verilog

code into 9,500 lines of SMV code.

In order to compare our model checker to others, we tried to verify this

design using two state-of-the-art model checkers - Yang’s SMV [106] and

NuSMV [24]. We implemented the cone of influence reduction for NuSMV,

but not for Yang’s SMV. Both NuSMV+COI and Yang’s SMV failed to verify

69

the design. On the other hand, our system abstracted 144 symbolic variables

and with three refinement steps, successfully verified the design, and found a

bug which has not been discovered before.

3.6 Proofs for Refinement Theorem

Recall that in figure 3.9, we have visualized the special case of two variables

and two equivalence relations in terms of matrices:

3 4 5

7 1 x x
8 0 x 1
9 x 0 0
Equivalence Class

3/4 5

7 1 x
8 0 1
9 0 0
Refinement (a)

3 4/5
7/9 1 0
8 0 1

Refinement (b)

In order to formally capture this visualization, let us define theMatrix Squeez-

ing problem.

Definition 3.6.1 Matrix Squeezing

Given an integer constantΓ and a finite(n,m) matrix with entries0, 1, x,

is it possible to obtain a matrix with≤ Γ entries by iterating the following

operations:

1. Merging two compatible rows.

2. Merging two compatible columns.

Two rows arecompatible, if there is no position, where one row contains1

and the other row contains0. All other combinations are allowed, i.e.,x does

not affect compatibility.Mergingtwo rows means replacing the rows by a new

one which contains1 at those positions where at least one of the two columns

contained1, and0 at those positions, where at least one of the two columns

contained0.

For columns, the definitions are analogous.

70

SinceMatrix Squeezing is a special case of the refinement problem, it is

sufficient to show NP-hardness forMatrix Squeezing. Then it follows that the

refinement problem is NP-hard, too, and thus Theorem 3.3.1 is proved.

As mentionedMatrix Squeezing is easy to visualize: If we imagine the

symbolx to be transparent, then merging two columns can be thought of as

putting the two (transparent) columns on top of each other.Column Squeezing

is a variant ofMatrix Squeezing, where only columns can be merged, and the

number of rows is left unchanged. We will first show NP-completeness of

Column Squeezing, and then show NP-completeness ofMatrix Squeezing

by a reduction fromColumn Squeezing.

Definition 3.6.2 Column Squeezing

Given an integer constant∆ and a finite(n,m) matrix with entries0, 1, x, is it

possible to obtain a matrix with≤ ∆ columnsby iterated merging ofcolumns

?

The proof will be by reduction from problem GT15 in [48]:

Definition 3.6.3 Partition Into Cliques

Given an undirected graph(V,E) and and a numberK ≥ 3, is there a partition

of V into k ≤ K classes, such that each class induces a clique on(V,E) ?

Theorem 3.6.1 (Karp 72) Partition Into Cliques is NP-complete.

Theorem 3.6.2 Column Squeezingis NP-complete.

Proof: Membership is trivial. Let us consider hardness. We reducePartition

Into Cliques to Column Squeezing. Given a graph(V,E) and a numberK,

we have to construct a matrixM and a number∆ such thatM can be squeezed

to size≤ ∆ iff (V,E) can be partitioned in≤ K cliques.

71

We construct a(|V |, |V |) matrix (ai,j) which is very similar to the adja-

cency matrix of(V,E):

ai,j =





1 if i = j

0 if (i, j) 6∈ E, i 6= j

x if (i, j) ∈ E, i 6= j

Assume w.l.o.g. thatV = {1, . . . , n}. Then it is not hard to see that for all

i, j ∈ V , columnsi andj are compatible iff(i, j) ∈ E, since the0 entries in

the matrix were chosen in such a way that the columns corresponding to two

non-adjacent edges cannot be merged.

By construction,(V,E) contains a cliqueC with verticesc1, . . . , cl iff the

columnsc1, . . . , cl can all be merged into one. (Note however that compatibil-

ity is not a transitive relation.)

Thus,(V,E) can be partitioned into≤ K cliques, iff the columns of(ai,j)

can be merged into≤ K columns. Setting∆ = K concludes the proof.2
Theorem 3.6.3 Matrix Squeezingis NP-complete.

Proof: Membership is trivial. We show hardness by reducingColumn

Squeezingto Matrix Squeezing. For an integern, let |bin(n)| denote the

size of the binary representation ofn. Given an(n,m) matrixM and a number

∆, it is easy to construct an(n+1,m+ |bin(m− 1)|) matrixB(M) by adding

additional columns toA in such a way that

(i) all rows ofB(M) become incompatible, and

(ii) no new column is compatible with any other (new or old) column.

An easy construction to obtain this is to concatenate the rows ofM with the

binary encodings of the numbers0, . . . ,m − 1 over alphabet{0, 1}, such that

theith row is concatenated with the binary encoding of the numberi−1. Since

72

any two different binary encodings are distinguished by at least one position,

no two rows are compatible. In addition, we add ann+1st row which contains

1 on positions in the original columns, and0 on positions in the new columns.

Thus, in matrices of the formB(M), only columns which already appeared in

M (with an additional0 symbol below) can be compatible.

It remains to determineΓ. We setΓ := (∆ + |bin(m − 1)|) × (n + 1).2
The summand|bin(m−1)| takes into account that we have added|bin(m−1)|

columns, and the factor(n+ 1) takes into account that∆ is counting columns,

while Γ is counting matrix entries.2
1

2

3 4

5

6
1 2 3 4 5 6

1 1 x x 0 0 0
2 x 1 x 0 0 x
3 x x 1 x 0 0
4 0 0 x 1 x 0
5 0 0 0 x 1 x
6 0 x 0 0 x 1

Column Squeezing

1 2 3 4 5 6 7 8 9

1 1 x x 0 0 0 0 0 0
2 x 1 x 0 0 x 0 0 1
3 x x 1 x 0 0 0 1 0
4 0 0 x 1 x 0 0 1 1
5 0 0 0 x 1 x 1 0 0
6 0 x 0 0 x 1 1 0 1

7 0 0 0 0 0 0 1 1 1

Matrix Squeezing

Figure 3.18: An instance ofPartition into Cliques , and its reduction images.

Example 3.6.1 Figure 3.18 demonstrates how a graph instance is reduced to

a matrix instance. Note for example that{1, 2, 3} is a clique in the graph, and

therefore, the columns1, 2, 3 of theColumn Squeezingproblem are compati-

ble. In theMatrix Squeezing Instance, Columns7, 8, 9 enforce that no rows

73

can be merged. Row7 guarantees that columns7, 8, 9 can not be merged with

columns1, . . . , 6.

In the following, we prove that whenSi,x is empty, there exists a poly-

nomial algorithm to find the coarsest refinement. Lets ∈ h−1(ŝi) be a state

and P+
j , P

−
j be two projection functions, such that fors = (d1, . . . , dm),

P+
j (s) = dj andP−

j (s) = (d1, . . . , dj−1, dj+1, . . . , dm). Note that this defi-

nition is consistent to the definition in Chapter 3.3. SinceSi,x is empty,Si,0

andSi,1 form a partition ofh−1(ŝi). A refinement ofh−1(ŝi) can be achieved

by refining each equivalence relations≡j (and thus, simultaneously, the ab-

straction functionshj).

We will replace each equivalence relation≡j by the equivalence relation

≡′
j in the following way: We put two elementsa, b of DV Cj

in the same

equivalence class (symbolically,a ≡′
j b) if and only if the projection sets

Pj,a = {P−
j (s)|P+

j (s) = a, s ∈ Si,1} andPj,b = {P−
j (s)|P+

j (s) = b, s ∈ Si,1}

are equal. Intuitively, this means that any two states which only differ in thejth

component are either both inSi,1 or both not inSi,1. As shown in Chapter 2.3,

the equivalence relations≡′
j (1 ≤ j ≤ m) define an equivalence relation≡′ on

D.

Lemma 3.3.1WhenSi,x = ∅, the relation≡′
j computed byPolyRefineis an

equivalence relation which refines≡j and separatesSi,0 andSi,1. Further-

more, the equivalence relation≡′
j is the coarsest refinement of≡j.

Proof First, we argue that≡′
j is an equivalence relation:

• Reflexivity: for anya ∈ Ej , (a, a) is not removed from≡j, therefore,

a ≡′
j a;

• Symmetry:a ≡′
j b implies thatproj(Si,0, j, a) = proj(Si,0, j, b). Ac-

cording toPolyRefine, (b, a) is not removed from≡j. Therefore,b ≡′
j a;

74

• Transitivity: assume thata ≡′
j b and b ≡′

j c, Thenproj(Si,0, j, a) =

proj(Si,0, j, b) and proj(Si,0, j, b) = proj(Si,0, j, c). Hence,

proj(Si,0, j, a) = proj(Si,0, j, c). This implies thata ≡′
j c.

Secondly, we show that≡′ is a correct refinement, i.e., for any two states

s1 ∈ Si,1 ands2 ∈ Si,0, s1 6≡′ s2. Assume that there are two statess1 ∈

Si,1 ands2 ∈ Si,0 wheres1 ≡′ s2. Also assume thats1 = (d1, . . . , dm) and

s2 = (e1, . . . , em) wheredj ≡′
j ej. Without loss of generality, we assume that

dj 6= ej for 1 ≤ j ≤ k anddj = ej for k < j ≤ mwhere1 < k ≤ m. Consider

another states3 = (e1, d2, . . . , dm). Sincee1 ∈ E1, dj ∈ Ej for 1 < j ≤ m,

s3 ∈ h−1(ŝi). On the other hand,s1 ≡′ s3 becaused1 ≡′
1 e1 anddj ≡′

j dj for

all j. According to our definition of≡′
1, any two states which only differ in

the jth component are either both inSi,1 or both not inSi,1. Sinces1 ∈ Si,1,

it follows thats3 ∈ Si,1. Furthermore, we considers4 = (e1, e2, d3, . . . , dm).

Following the same argument,s3 ≡′ s4 ands4 ∈ Si,1. Therefore,s1 ≡′ s4. By

repeating this stepk times, we will obtain thats1 ≡′ s2 ands2 ∈ Si,1. Hence,

Si,1 ∩ Si,0 6= ∅. This contradicts our definition ofSi,1 andSi,0. Therefore,

the equivalence relation≡′ partitionsSi,1 andSi,0 into different equivalence

classes.

Finally, we prove that the equivalence relation≡′ defines the coarsest

refinement. Towards contradiction, we assume that there is another equiva-

lence relation≡′′ which defines a coarser refinement than≡′ and it eliminates

the counterexample. Note that a coarser refinement implies that there are a

fewer number of equivalence classes generated by≡′′ than≡′. This implies

that there exists aj such that≡′′
j generates fewer equivalence classes than

≡′
j. Therefore, there must exist two elementsa, b ∈ DV Cj

wherea 6≡′
j b but

a ≡′′
j b. According to the definition of≡′

j, a 6≡′
j b if and only if there exist two

statess1 ands2, s.t.P+
j (s1) = a, P+

j (s2) = b andP−
j (s1) = P−

j (s2), however,

75

eithers1 ∈ Si,1 ∧ s2 6∈ Si,1 or s1 6∈ Si,1 ∧ s2 ∈ Si,1. We will first consider the

case ofs1 ∈ Si,1 ∧ s2 6∈ Si,1. The second case will follow the same argument.

BecauseSi,x is empty,s2 6∈ Si,1 implies thats2 ∈ Si,0. On the other hand,

a ≡′′
j b implies thats1 ≡′′ s2 according to the definition of≡′′. Therefore,≡′′

cannot partitionSi,1 andSi,0 into different equivalence classes, i.e., it cannot

eliminate the counterexample. Hence,≡′ defines the coarsest refinement.2

76

Chapter 4

Refinement for GeneralACTL

Counterexamples

In the previous chapters, we considered counterexamples of a very simple

structure, i.e., paths and loops. Paths and loops have two advantages: (i) they

are easy to understand for the human user and facilitate error detection, and

(ii) they can be used efficiently in the context of the counterexample-guided

abstraction refinement methodology developed in the previous chapter. On the

other hand, it is easy to see that such simple counterexamples suffice only for

a limited subset ofACTL.

In this chapter, we introducetree-likecounterexamples. Tree-like coun-

terexamples retain the abovementioned advantages of path and loop counterex-

amples, but are complete forACTL, i.e., whenever anACTL specification is

violated, a tree-like counterexample can be constructed.

In the first two sections, we explain and motivate the framework for gener-

ating tree-like counterexamples. In the last two sections, we describe a sym-

bolic algorithm that generates tree-like counterexamples for allACTL formu-

las and provide a refinement algorithm for such counterexamples.

77

x
x

x

x

x

x

xI

C

xI

K

Figure 4.1: An counterexample forAF¬x

4.1 What are Counterexamples?

Definition 4.1.1 LetK be a Kripke structure, andϕ be a property in a modal

logic. A counterexampleC is a Kripke structure from which it can be inferred

thatK 6|= ϕ.

While this definition is correct, it is too general to be of practical use, and

does not take into account the specifics of temporal logics. The following ex-

ample highlights what a counterexample looks like in the scenario ofACTL.

Example 4.1.1 Consider theACTL formulaAF¬x on the Kripke structure

K = (S, I, R, L) of Figure 4.1. The Kripke StructureC in the same figure

corresponds to a trace onK which satisfiesEG x. Thus,C is a counterexample

for AF¬x. By investigatingC, it is easy to conclude thatAF¬x is false on

the original Kripke structureK.

Note that the counterexamples for a given Kripke structure can be treated

as a kind of “sub-structure”. In the above example,C = (SC , {sC}, RC, LC)

is a Kripke structure whereSC ⊆ S, sC ∈ I , RC ⊆ R andLC(s) = L(s) for

s ∈ SC.

Intuitively,C includes partial behavior ofK. Recall from Chapter 2.1 that

this relationship is expressed by the simulation relationK � C, i.e.,K simu-

78

latesC. Note that existential properties of the simulated structureC also hold

for the simulating structureK. (As we know, for universal properties, the con-

verse implication holds, and thus the result follows from the fact that existential

properties are negations of universal properties.)

SinceACTL counterexamples are witnesses for existential properties, we

obtain the following definition:

Definition 4.1.2 LetK be a Kripke structure, andϕ be anACTL property. A

counterexample forϕ is a Kripke structureC such that

1. The counterexampleC disprovesϕ, i.e.,C |= ¬ϕ.

2. K � C, and therefore,K |= ¬ϕ.

Thus, a counterexample is a (typically small) Kripke structure which dis-

provesϕ in a manner that can be simulated inK.

Still, our definition of counterexamples is very general, and allows for com-

plicated counterexamples, as outlined by the following case:

Example 4.1.2 Let us return to Example 4.1.1 and Figure 4.1 Consider the

Kripke structureC ′ shown in Figure 4.2. It is easy to see thatC ′ is also a

counterexample sinceK � C ′ andC ′ 6|= AF¬x. However,C ′ contains more

information than necessary to locate bugs, and is harder to understand. In

particular,C contains nested cycles as well as several states and transitions

which are not relevant for disprovingAF¬x.

Therefore, it is desirable for the user to haveC instead ofC ′ as a coun-

terexample.

The problem of understanding counterexamples becomes even more acute

for counterexamples of nested properties, where it is hard to find out which

part of a counterexample is related to which subformula of the property.

79

x
x

x
xI

C ′

Figure 4.2: A counterexample forK |= AF¬x in Example 4.1.1

Therefore, it is important for the model checkers to generate counterex-

amples likeC whose structure is simple and easy to analyze. The remainder

of this chapter discusses a special type of Kripke structures –tree-likeKripke

structures which are easy to understand.

4.2 Tree-like Kripke structures

Recall that a Kripke structureK is a tuple(S, I, R, L), where(S,R) is a di-

rected graph called the graph ofK, I is the set of initial states, andL : S → 2At

is a labeling function.

Throughout this chapter, we will for simplicity assume thatI = {s0} con-

tains a single initial states0, and that all states inS are reachable froms0. We

also assume that the Kripke structure is total. These assumptions simplify the

technical exposition. The results can be easily generalized.

In the following, we will first define tree-like Kripke structures. Later,we

will show how to build a Kripke structure from finite paths and loops.

Definition 4.2.1 Given a Kripke structureK, theskeletonof K is obtained by

collapsing all strongly connected components of the graph ofK into single

80

nodes. K is tree-like if (i) the skeleton ofK is a tree and (ii) the strongly

connected components ofK are directed cycles.

s5s5

K1 K2

s1

s2

s4

s6

s7

s3

s1

s2

s4

s6

s7

s3

Figure 4.3: The left Kripke structure is tree-like, while the right one is not.

Thus, a tree-like Kripke structure is very similar to its skeleton tree, except

for the fact that certain vertices of the skeleton are expanded into cycles.

Example 4.2.1 In Figure 4.3,K1 is a tree-like Kripke structure whileK2 is

not a tree-like Kripke structure.

Lemma 4.2.1 If K is tree-like, then no two distinct directed cycles ofK have

a common node.

Proof If two distinct directed cycles have a common node then their

union is contained in one strongly connected component. This contradicts the

definition of tree-likeness.2
Thus, tree-like Kripke structures are composed of cycles and connections

between them. We will exploit this fact later on in our algorithms. In particu-

lar, the following definitions will facilitate the description of natural recursive

algorithms.

81

Given a finite Kripke structureK, a K-pathp = 〈s1, . . . , sn〉 is the sub-

structure ofK whose transition relation is the finite path, i.e.,si ∈ S and

(si, si+1) ∈ R. A K-loop l = 〈s1, . . . , sn〉
ω is the substructure ofK where

si ∈ S, (si, si+1) ∈ R, and(sn, s1) ∈ R. Both K-paths and K-loops are called

bricks . The first state of a brickq is calledanchor, denoted byanchor(q).

Given a brickq, Sq stands for the set of states appearing inq, andRq for its

transition relation.

Definition 4.2.2 Given a finite Kripke structureK = (S, I, R, L) and a

set of bricksQ = {q1, . . . , qn}, the constructedKripke structureKQ =

(SQ, IQ, RQ, LQ) is defined as follows.

• SQ =
⋃n

1 Sqi
, therefore,SQ ⊆ S;

• IQ = I ∩ SQ;

• RQ =
⋃n

1 Rqi
;

• LQ : SQ → 2At andLQ(s) = L(s).

Lemma 4.2.2 Given a Kripke structureK = (S, {s0}, R, L) where|S| > 1,

there exists a set of bricksQ such that the constructed Kripke structureKQ is

the same asK.

Note thatKQ is not the substructure induced bySQ, since only transitions

from the bricks are allowed inKQ.

Lemma 4.2.2 shows that any Kripke structure can be decomposed as a set

of K-paths and K-loops. The following example shows one way to decompose

a Kripke structure.

Example 4.2.2 Consider the Kripke structure shown in Figure 4.4. The initial

state iss1. A possible set of bricksQ can be

{〈s1, s2〉, 〈s1, s5, s6〉, 〈s6〉
ω, 〈s2, s3, s4〉

ω}

82

s1

s2

s3 s4

s5

s6

〈s1, s2〉

〈s2, s3, s4〉
ω

〈s6〉
ω

〈s1, s5, s6〉

Figure 4.4: Brick representation of a Kripke structure

It is easy to see that the constructed Kripke structureKQ will be exactly the

same asK.

Definition 4.2.3 A set of bricksQ is tree-like if and only if

(i) KQ is tree-like, and

(ii) each cycle inKQ is contained in a brickl ∈ Q.

Condition (ii) ensures that path bricks cannot be combined into loops.

Example 4.2.3 In Example 4.2.2,Q is tree-like. However, the following set of

bricks are not tree-like since the loop〈s2, s3, s4〉
ω does not belong to any brick:

{〈s1, s2, s3〉, 〈s3, s4, s2〉, 〈s1, s5, s6〉, 〈s6〉
ω}

Lemma 4.2.3 Given a tree-like Kripke structureK, there exists a tree-like set

of bricksQ s.t.KQ = K. We refer toQ as aconstructionof K, or say thatQ

constructsK.

For the Kripke structureK1 shown in Figure 4.3, a construction can be

{〈s1, s2〉, 〈s1, s6, s7〉, 〈s2, s3, s4〉
ω, 〈s4, s5〉, 〈s7〉

ω, 〈s5〉
ω}

Intuitively, a construction is another representation of a tree-like Kripke struc-

ture.

83

4.2.1 Indexed Kripke structures

In order to simplify our algorithm, we introduceindexedKripke structures in

this subsection.

An indexed Kripke structureKn is obtained from a Kripke structureK by

creating several copies of each state; these copies are distinguished by anindex,

but cannot be distinguished by temporal formulas. This construction appears

to be a formal trick at first sight, but it has the advantage that we can describe

traces which lead through the same state of a system several times (but possibly

for different reasons) without introducing a loop.

Formally,Kn is described as follows:

Definition 4.2.4 Given a Kripke structureK = (S, I, R, L) and a set of inte-

gersN = {1, 2, . . . , n}, anindexedKripke structureKn = (Sn, In, Rn, Ln) is

defined as follows.

• Sn = S×N , i.e., the states have the form〈s, i〉. By convention, we write

si instead of〈s, i〉. i is called the index of the statesi.

• In = I ×N .

• For any two statessi
1, s

j
2 ∈ Sn, (si

1, s
j
2) ∈ Rn if and only if (s1, s2) ∈ R;

• For all statessi ∈ Sn we haveLn(si) = L(s).

Intuitively,Kn containsn identical copies of each state. It is easy to prove the

following lemma.

Lemma 4.2.4 For alln andK,K andKn are bisimilar, i.e.,K ≡ Kn.

In particular, for each states, indexi, and temporal formulaϕ the following

holds:

84

K, s |= ϕ iff Kn, si |= ϕ

Since our notion of counterexamples is based on the simulation relation,

every counterexample overKn is also a counterexample overK. Note that in

counterexamples overKn, several copies of the same state inK may appear

with different indices.

In the next section, we will discuss an algorithm which generates tree-like

counterexamples forall ACTL formulas based on indexed Kripke structures.

Note however that we will not explicitly construct the indexed Kripke struc-

ture. Instead, we will just an integer variable to keep track of the index. The

indexed Kripke structure model only will serve to make the procedure more

transparent.

4.3 Generating tree-like counterexamples for
ACTL

As defined in Chapter 4.1, a counterexample for a specified property is a Kripke

structureC which (i) is simulated by the original Kripke structure, and (ii)

disproves the property.

We have argued that it is desirable to generate “simple” counterexamples.

We claim that tree-like Kripke structures give rise to such a notion of simple

counterexamples. Formally, we say that a counterexampleC is tree-like, ifC

is a tree-like Kripke structure.

The following example shows what tree-like counterexamples look like.

Example 4.3.1 For anACTL formula AG¬x ∨ AF¬y, a tree-like coun-

terexample can look like the structure in Figure 4.5. Furthermore, consider

85

another formulaAFAG¬x, whose tree-like counterexample is shown in Fig-

ure 4.6.

x

y

y

y
y

Figure 4.5: Counterexample forAG¬x ∨AF¬y

x

Figure 4.6: Counterexample forAFAG¬x

Tree-like counterexamples have the following advantages:

• Because their structure is similar to trees, they are easy to understand by

human users. Moreover, we shall see that subtrees in the tree-like coun-

terexample correspond to counterexamples of subformulas in a natural

manner.

• Moreover, the tree structure facilitates simple and effective recursive al-

gorithms. We will demonstrate this in Section 4.4 where we show an

abstraction refinement procedure for tree-like counterexamples.

86

In this section, we discuss an algorithm to generate tree-like counterexam-

ples for allACTL formulas. First, we define tree representations ofCTL

formulas using their parse trees and sketch how SMV [78] checksCTL prop-

erties.

4.3.1 Fixpoint Characterization for ACTL

Definition 4.3.1 A parse treeTrϕ of a CTL formula ϕ is a tree in which

internal nodes are labeled by the operations∧, ∨, EX, EG, EF, EU, AX,

AG, AF, andAU. Terminal nodes are labeled by atomic formulas or negated

atomic formulas. Note that we assume that negation is only applied to atomic

formulas. Therefore,p ⇒ q is an abbreviation of¬p ∨ q.

As an example, the parse trees forAG[p⇒ AF(q ∧ r)] and EF[p ∧

EG(¬q ∨ ¬r)] are shown in Figure 4.7. The terminal nodes are labelled

by atomic formulas¬p, p, ¬q, q, ¬r andr. The internal nodes are labelled

by temporal operatorsAG, AF, EG andEF or propositional connectives∧

and∨. Given a nodev in a parse tree, we denote the operator atv by op(v)

and the formula sitting atv by fml(v). Furthermore, letsat(v) denote the

set of states which satisfy the formula sitting atv, i.e., fml(v). Formally,

sat(v) = {s | s |= fml(v)}. When the context is clear, we will not distinguish

a subformula and its corresponding node in the parse tree.

Given anACTL formulaϕ, the model checking algorithm in SMV tra-

verses the parse tree corresponding to¬ϕ in depth-first manner. For example,

if ϕ = AG[p⇒ AF(q ∧ r)], then SMV works with the parse tree shown in

Figure 4.7(b). It is easy to see that the parse tree corresponds to anECTL

formula.

Note that the parse tree for the negation of anACTL formula contains no

other temporal operators thanEX, EG, EF andEU. In the case ofEX, SMV

87

∨

AG

AF

∧

¬p

v1

v2

v3

v5

v4

v6 v7

EF

∧

EG

∨

q r ¬q ¬r

(a) (b)

p

Figure 4.7: The parse tree forAG[p⇒ AF(q ∧ r)]

computes the set of states which satisfyEX as follows:

• EX p = ∃s′[TR(s, s′) ∧ p(s′)];

For the other temporal operators, SMV uses fixpoint computation techniques

to compute the set of states which satisfies the formula [26, 78]:

• EF p = µZ[p ∨EXZ];

• EG p = νZ[p ∧ EXZ];

• E(pU q) = µZ[q ∨EX(p ∧ Z)];

In these formulas,µ is the least fixpoint operator andν is the greatest fixpoint

operator. The detailed proofs of the fixpoint characterizations can be found in

[78].

Given a nodev, SMV first computes the sets of states which satisfy the sub-

formulas offml(v). Then it computes the set of states which satisfyfml(v).

For example, consider nodev5 in Figure 4.7(b). Assume that SMV has already

88

computedsat(v6) andsat(v7). Then according to the definition of conjunction

∧ SMV computessat(v5) = sat(v6)∩sat(v7). For nodes which are labeled by

temporal operators, for examplev1 andv4, the model checking algorithm in-

volves the fixpoint computations mentioned above. For example, for the node

v1,

sat(v1) = µZ[sat(v2) ∪ sat(EXZ)],

i.e.,sat(v1) is the least fixpoint of the formulasat(v2) ∪ sat(EXZ).

In general, given a nodev with child u whereop(v) = EF, sat(v) is com-

puted bysat(v) = µZ τ (Z) whereτ (Z) = sat(u)∪ sat(EXZ).

It is well known that the least fixed pointµZ.τ (Z) can be computed by

iterating the operatorτ , starting with the empty set of states, i.e., the set of

states satisfyingFALSE. For a detailed exposition, refer to [26].

More formally, let τ i(FALSE) = τ (τ i−1(FALSE)) for i > 0 and

τ 0(FALSE) = FALSE. Thenτ 1(FALSE) = sat(u) andτ 2(FALSE) = sat(u) ∪

sat[EXsat(u)]. Intuitively, τ i(FALSE) is the set of states from which a state

satisfyingsat(u) is reached withini steps. It is easy to see that

τ 0(FALSE) ⊆ τ 1(FALSE) ⊆ · · · ⊆ τ i(FALSE) ⊆ · · · .

The relation amongτ i is shown in Figure 4.8.

τ i(FALSE)

τ 2(FALSE)

τ 1(FALSE)

Figure 4.8: Relation amongτ i in the least fixpoint computation

Lemma 4.3.1 [26] The sequenceτ 0(FALSE) ⊆ τ 1(FALSE) ⊆ · · · ⊆

τ i(FALSE) ⊆ · · · converges to the least fixed point ofτ . In other words,

µτ (Z) = τ k(FALSE) for somek ≤ 0.

89

The fixed point computation computes all setsτ i(FALSE) until the sequence

converges. Each such set is called astageof the fixpoint computation. By

Lemma 4.3.1, the final stageτ k(FALSE) equalssat(v). We denote the sequence

of stages

(τ 1(FALSE), τ 2(FALSE), . . . , τ k(FALSE))

by stg(fml(v)).

To computeEG, we also need to compute greatest fixpoints. For greatest

fixpoints, the fixpoint computation is exactly the same except for one important

difference: the iteration starts with the setTRUE of all states, and converges to

the greatest fixed point from above.

Given anECTL formulaϕ, stg(ϕ) = (S1, S2, . . . , Sn) denotes the se-

quence of sets of states during the fixpoint computation.

In the next subsection, we will describe our counterexample generation

algorithm.

4.3.2 Algorithms to generate tree-like counterexamples

The algorithmprint witnessto generate counterexamples forACTL is given

as follows.

90

print witness(v, sm
0) : {FAIL, SUCCESS}

if op(v) = EX then
returnprint witnessEX(v, sm

0)
if op(v) = EF then

returnprint witnessEF(v, sm
0)

if op(v) = EG then
returnprint witnessEG(v, sm

0)
if op(v) = EU then

returnprint witnessEU(v, sm
0)

if op(v) = ∧ then
if print witness(v.Left, sm

0) = FAIL then
returnFAIL

returnprint witness(v.Right, sm
0)

if op(v) = ∨ then
if print witness(v.Left, sm

0) = FAIL then
returnprint witness(v.Right, sm

0)
returnSUCCESS

returnSUCCESS

The procedureprint witness takes a parse tree for the negatedACTL

formula (i.e., anECTL formula) and an initial state from the indexed Kripke

structure and returns eitherSUCCESS orFAIL. SUCCESS denotes that a tree-

like counterexample is successfully generated whileFAIL implies that there is

no counterexample. The generated counterexample is output piece by piece in

form of a tree-like set of bricks in the subprocedures ofprint witness.

For a nodev, v.Left andv.Right means the left and right child ofv re-

spectively whilev.Child means the only child of nodev. The procedure is

recursive. It uses four other procedures to compute and print counterexamples

for EX, EF, EU andEG respectively.

The four other procedures use a global integer variableC. C is a global

variable that is always larger or equal tom. The Kripke structure is viewed as

an indexed Kripke structure, whereC is used as an index. IncrementingC will

prevent the procedures from generating the same states in different parts of the

counterexample.

The procedureprint witnessEX is quite simple, and will be omitted

91

here.

The proceduresprint witnessEF andprint witnessEU are similar.

Therefore, we will only explain howprint witnessEF works. At last, we

explain the most complicated procedureprint witnessEG.

print witnessEF(v, sm
0)

(S1, . . . , Sn) = stg(fml(v))
j = 1
while (j < n andsj 6∈ S1)

S = Img(sj−1) ∩ Sn−j

sj = pick a state fromS
j = j + 1

C = C + 1
print 〈sm

0 , s
C
1 , . . . , s

C
n−1〉

returnprint witness(v.Child, sC
n−1)

print witnessEU(v, sm
0)

(S1, . . . , Sn) = stg(fml(v))
j = 1
while (j < n andsj 6∈ S1)

S = Img(sj−1) ∩ Sn−j

sj = pick a state fromS

j = j + 1
C = C + 1
print 〈sm

0 , sC
0 , . . . , sC

n−1〉
if print witness(v.Left, sm

0) = FAIL returnFAIL
for (i=1 to n-2)

if print witness(v.Left, sC
i) = FAIL returnFAIL

returnprint witness(v.Right, sC
n−1)

Given a parse tree rooted atv, assume thatu is the direct child ofv, i.e.,

fml(v) = EF fml(u). (S1, . . . , Sn) = stg(fml(v)) is the sequence of the

set of states computed byEF, i.e.,Si = τ i(FALSE). Note thats0 ∈ Sn. The

procedureprint witnessEF generates a path〈sm
0 , s

C
1 , . . . , s

C
n−1〉 wheresn−i ∈

Si. Note that the generated path is labeled by anew integer. By labeling this

new number, we distinguish these states from the states generated previously.

As we have discussed before,S1 = sat(u), therefore,sn−1 |= sat(u). It is easy

to see that〈s0, . . . , sn−1〉 is a witness offml(v).

92

S1 S2 S3

s0

s1

s2

Figure 4.9: Counterexample for aEF formula
Example 4.3.2

Consider an example shown in Figure 4.9 wherestg(fml(v)) =

(S1, S2, S3) and s0 ∈ S1, according to the procedureprint witnessEF, it

prints 〈sm
0 , s

C
1 , s

C
2 〉 as a counterexample for the indexed Kripke structure.

Using similar notations, let us consider a nodev with fml(v) =

EG fml(u). Similarly, let τ (Z) = sat(u) ∩ sat(EXZ), then sat(v) =

νZτ (Z), i.e.,sat(v) is the greatest fixpoint of the formulaτ (Z).

As explained above, the greatest fixpoint is obtained by iteratingτ starting

from the set of all states, i.e.,

τ 0(TRUE) ⊇ τ 1(TRUE) ⊇ · · · ⊇ τ i(TRUE) ⊇ · · ·

and there exists ak ≥ 0, such that the greatest fixpoint ofτ (Z) equals

τ k(TRUE).

Then (S1, . . . , Sn) = stg(fml(v)) records the sequence of sets of states

computed by fixpoint algorithmEG, i.e., Si = τ i(TRUE). Therefore,S1 =

τ (TRUE) = sat(u) andSn = sat(v). Since,Sn = τ (Sn), the following lemma

holds.

Lemma 4.3.2 LetM be the original Kripke structure andK the Kripke struc-

ture restricted toSn, i.e.,K = M ↓ Sn. ThenK is total.

93

print witnessEG(v, sm
0)

(S1, . . . , Sn) = stg(fml(v))
T = {s0}
j = 1
label = 1
while (T 6= S)

S = Img(sj−1) ∩ Sn

sj = pick a state from (S − T) – pick a successor
Q = Img(sj) ∩ T

if (Q 6= ∅) then break; – loop discovered
j = j + 1
T = T ∪ {sj}
si = pick a state fromQ

if T = S then returnFAIL
C = C + 1
print 〈sm

0 , sC
1 , . . . , sC

j , sC
i 〉

print 〈sC
i , sC

i+1, . . . , s
C
j 〉

ω

if print witness(v.Child, sm
0) = FAIL returnFAIL

for (k = 1 to j)
if print witness(v.Child, sC

k) = FAIL returnFAIL
returnSUCCESS

According to Lemma 4.3.2, there exists a loop among the states inSn.

Our algorithm to find loops inSn is greedy.T stores all the states which are

traversed. Given a statesj−1, it discovers a new statesj ∈ S − T and checks if

we can close the loop. If we can, it stops and returns the loop. If the algorithm

cannot close the loop, it continues untilT = S which implies that there is no

loop.

The procedures print witnessEF, print witnessEU and

print witnessEG output bricks, i.e., either K-paths or K-loops. Note

that each state in the bricks is marked by an integer. Whenever a brick is

generated, the states in the brick are marked by a unique integer which is

provided by the global variableC. Therefore, two states which appear twice

in different procedures are treated as different states because they will have

different labels.

In order to understand how the algorithmprint witnessworks, let us con-

94

EF

x

EG

EF

x

v

w

u

∧

Figure 4.10: The parse tree forEFx ∧EGEF x

sider anACTL property.

Example 4.3.3 Assume that anACTL propertyϕ = AG¬x ∨ AFAG¬x.

Then the parse tree for¬ϕ is shown in Figure 4.10. A set of bricksQ generated

by print witnessmay be

〈s0
0, s

1
1, s

2
2〉 −− counterexample for AG¬x

〈s0
0, s

3
3, s

4
0〉 −− counterexample for AFAG¬x

〈s4
0, s

5
3〉

ω −− counterexample for AFAG¬x
〈s4

0, s
7
2〉 −− counterexample for AG¬x

〈s5
3, s

8
2〉 −− counterexample for AG¬x.

The corresponding constructed counterexampleKQ is shown in Figure 4.11.

It is easy to see thatT is a tree-like Kripke structure. Note thats0, s2, s3 are

repeated several times in the counterexample. However, they are treated as

different states since they have different marks.

It is easy to see that the programprint witness terminates if theACTL

formula is finite.

Lemma 4.3.3 The programprint witnessterminates.

Therefore, the maximal value for the global variableC is finite. Let us assume

that this value isc. Then the following theorem holds.

95

x

x

x

s0
0

s1
1

s2
2

s3
3

s4
0

s5
3

s7
2

s8
2

Figure 4.11: Counterexample forAG¬x ∨AFAG¬x

Theorem 4.3.1 Given an ACTL formula ϕ, a Kripke structureM =

(S, {s0}, R, L) such thatM 6|= ϕ, let Q be the set of bricks generated by

print witness(¬ϕ, s0). ThenKQ is a tree-like counterexample forϕ onM c.

This theorem guarantees that our algorithm will generate a tree-like coun-

terexample for the indexed Kripke structures.

4.4 Refinement algorithm forACTL

In the previous section, we showed that there are tree-like counterexamples

for all ACTL formulas. In particular, we provided an algorithm to gener-

ate tree-like counterexamples for such formulas. The algorithm can be po-

tentially extended to handleACTL⋆ as well. In this section, we extend our

counterexample-guided abstraction refinement methodology (see Chapter 3)

for all the formulas inACTL.

Recall that our counterexample-guided abstraction refinement methodol-

ogy works as follows. Given a Kripke structureM and anACTL property

ϕ, we first generate initial abstraction functions and build the initial abstract

Kripke structurêM accordingly. Then the traditional model checker will check

if ϕ holds onM̂ . If not, it will generate a counterexample. The next step is to

96

check if the counterexample is spurious or not.

As we discussed in the previous section,print witnesswill generate a tree-

like set of abstract brickŝQ from which an abstract counterexampleK bQ can be

derived. The algorithm shown in Figure 4.12 is a recursive procedure based on

depth-first traversal of the abstract counterexample. It takes an abstractinitial

stateŝ0
m marked bym and the set of brickŝQ as arguments. Initially, we call

CheckRefine(ŝ0
0, Q̂). Note thatŝ0

0 is the initial state ofK bQ. CheckRefine

returns the set of states inh−1(ŝ0
m) which have concrete tree-like counterex-

amples. If this set is empty, that implies that the abstract counterexampleis

spurious.

CheckRefine(ŝ0
m, Q̂)

T = h−1(ŝ0)

foreach q̂ ∈ Q̂

if q̂1 6= ŝ0
m continue

len = |q̂|
S1 = h−1(ŝ0)
for (i = 2 to len)

Si = CheckRefine(̂qi , Q̂)
if q̂ is a paththen

T = T ∩ CheckPATH(S1, S2, . . . , Slen)
if q̂ is a loopthen

T = T ∩ CheckLOOP(S1, S2, . . . , Slen)
returnT

Figure 4.12: Refinement algorithm for allACTL formulas

In the procedureCheckRefine, T denotes the set of concrete states which

are the initial states of some concrete counterexamples. Note that for any state

s ∈ T , h(s) = ŝ0. For a brickq = 〈s1, . . . , sn〉, qi denotes the i-th ele-

ment ofq, i.e., si. Given a set of bricksQ, CheckRefinefirst checks all the

bricks which start fromŝ0
m. For such a brick̂p, the procedure recursively

checks the bricks that start from some states inp̂. If anchor(q̂) ∈ p̂, then the

97

x

v

u

w

EG

EF

Figure 4.13: The parse tree forAFAG¬x

procedure checkŝq first and returns the set of states from which the concrete

counterexample corresponding toq̂ can be constructed. Using the obtained sets

of states,CheckRefinechecks whether the current abstract trace corresponds

to a concrete trace by using two subroutinesCheckPATH andCheckLOOP. TO DO: ex-
ample

The function CheckLOOP checks if a sequence of sets of states

〈S0, . . . , Sj〉 includes concrete loops or not. If not, it will usePolyRefineto

refine the abstraction. Otherwise, it returns a set of initial statesS ⊂ S0 which

will lead to a loop. The functionCheckPATH is similar. These two functions

are closely related to the algorithmSplitLOOP andSplitPATH in Chapter 3.3.

The difference is that bothCheckLOOP andCheckPATH need to return the

set of concrete initial states.

Example 4.4.1 Consider anACTL propertyϕ = AFAG¬x. The parse

tree for¬ϕ is in Figure 4.13. Assume thatϕ does not hold on the abstract

Kripke structureM̂ . Also assume that the corresponding counterexampleT

for ϕ is shown in Figure 4.14. The algorithmCheckRefineconsiders the trace

〈ŝ0
0, ŝ3

3〉 first. It usesCheckPATH to determine whether there exists a con-

crete path from a state inh−1(ŝ0) to a state inh−1(ŝ3). If not, then〈ŝ0
0, ŝ3

3〉

is spurious. ThenPolyRefineis used to refine the abstraction. If there exists a

concrete path,CheckPATH will return the set of states inh−1(ŝ0) from which

98

x

x

T
ŝ0

0

ŝ1
1

ŝ3
3

ŝ2
2

ŝ4
4

Q includes

〈ŝ1
1, ŝ2

2, ŝ4
4〉

〈ŝ0
0, ŝ1

1〉ω

〈ŝ0
0, ŝ3

3〉

Figure 4.14: Counterexample forAFAG¬x

the concrete paths start, i.e.,

S0 = {s | ∃π, π0 = s, π1 ∈ h−1(ŝ3)}.

A similar process is applied to〈ŝ1
1, ŝ2

2, ŝ4
4〉. If there exists a concrete path

associated with this abstract path, it will return the set of statesS1 ⊆ h−1(ŝ1
1)

from which the concrete paths start.

Next, CheckRefineconsiders the trace〈ŝ0
0, ŝ1

1〉ω. The functionCheck-

LOOP checks whether there exists a loop inS0 ∪ S1. If not, 〈ŝ0
0, ŝ1

1〉ω is a

spurious loop counterexample. We can still usePolyRefineto refine the ab-

straction function.

The algorithm provided in this section can be adopted to refining abstrac-

tion for ACTL⋆ formulas.

99

Chapter 5

Abstract BDDs

In this chapter, we describe a data structure - abstract BDDs (aBDDs) which fa-

cilitates the abstraction operation. Abstract BDDs (aBDDs) are obtained from

ordinary BDDs by merging BDD nodes whose abstract values coincide. We

discuss four types of abstract BDDs (called S-type, 0-type, 1-type and∨-type

aBDDs) which have found applications in many CAD-related areas such as

equivalence checking, variable ordering and model checking.

In the following three sections, we first discuss how a single abstraction

function h : D → A whereD = Bk is applied to a Boolean function

f : D → B. Then we show how to extend the definition to the case with mul-

tiple abstraction functions. In the last section, we summarize different types of

aBDDs.

5.1 Abstract Binary Decision Trees

An abstract BDD (aBDD) is obtained by collapsing all paths corresponding to

the same equivalence class into a single path. While such a collapse leads to a

loss of information, the size of the aBDD may be significantly decreased, and

certain problems may become feasible.

The above mentioned collapsing operation can be defined in various ways,

and thus, different types of aBDDs are obtained. Since the concepts underlying

100

aBDDs are most easily explained using Binary DecisionTrees, we will usually

outline this special case first, and show later how to deal with the general case.

As described in Chapter 2.3, the abstraction functionh induces an auto-

abstraction functionH : D → D. Given a Boolean functionf : D → B and

a BDTTf , let u, v be two leaves ofTf (note that~u,~v ∈ D) such that~u ≡h ~v

andH(~v) = ~u, i.e., ~u and~v are equivalent with respect to≡h, and~u is the

representative of their equivalence class. In this case we say that the nodeu is

the representative ofv.

0 1 1
C GFA B HED

3

00 01 1

0 1 211 22

g

x1

h(x1)

Figure 5.1: The BDT forg

Example 5.1.1 Assume that forD = B3 a Boolean functiong : D → B is

given by

x1 = 〈011〉 ∨ x1 = 〈100〉 ∨ x1 = 〈110〉 ∨ x1 = 〈111〉.

The BDT for g is depicted in Figure 5.1. We consider the abstraction func-

tion h(x1) = count1(x1) which counts the number of1s in x1. For example,

count1(〈101〉) = 2. The abstract values for each node are listed in Figure 5.1.

It is easy to see thath induces an equivalence relation≡h on 0-1 vectors of

length3. For example,~B ≡h
~C ≡h

~E since they have the same abstract value

1. Assume that the representative of an equivalence class is the lexicographi-

cally least vector in that equivalence class. Then~B is the representative for the

101

equivalence class with respect to the abstract value 1, i.e.,

H(~B) = H(~C) = H(~E) = ~B.

The representative nodes for the abstract values0, 1, 2, 3 areA,B,D, andH

respectively. Consider the representative nodeB which representsB,C, and

E. In this case, we need to collapse the paths leading toB,C, andE into a

single path leading toB.

Different operations can be defined for representative nodes and non-

representative nodes. This will result in different types of abstract BDDs. In

the following sections, we will define four types of aBDDs for the case of a

single variablex1. Later, we will generalize the definitions to the full case.

5.2 S-type Abstract BDDs

Given a Boolean functionf : D → B and a BDTTf , the S-type aBDTHs(f)

of Tf rooted atv is defined by

Hs(f)(~v) = f(H(~v)).

To understand this definition just note thatf(H(~v)) is computed as follows:

first, the input vector~v is transformed into its representativeH(~v), and then,f

is applied to the representative. In other words, the output off for the represen-

tative determines the output off for all the other members of the equivalence

class.

Example 5.2.1 For the Boolean function in Example 5.1.1, the S-type aBDT

is shown in Figure 5.2(a).E is a non-representative node. The value atE

is overwritten by the value atB which is a representative ofE. A similar

situation occurs at nodesC,F,G. The final reduced BDD is in Figure 5.2(b).

102

0
HGFECB DA

0 1

0

1

0 1 1 1

1 2

10

32 2

x1

h(x1)

Hs(g)

Figure 5.2: S-type aBDT forg

0 1

H(g)

Figure 5.3: S-type aBDD forg

103

Intuitively, the construction maintains some “useful”mintermsand ignores

other “uninteresting”minterms.

S-type aBDTs distribute over any logic operations. The following lemma

holds.

Lemma 5.2.1 Let f, p, q : D → B be three Boolean functions,◦ be compo-

sition and⊙ be any logical operation. Then iff = p ⊙ q, thenHs(f) =

Hs(p) ⊙Hs(q). If f = p ◦ q, thenHs(f) = p ◦ Hs(q).

Proof Let ~v ∈ D be an arbitrary vector. For the first case, we have the

following equations:

Hs(f)(~v) = f(H(~v))

= p(H(~v)) ⊙ q(H(~v))

= Hs(p)(~v) ⊙Hs(q)(~v)

Then, for the second case, we have

Hs(f)(~v) = f(H(~v))

= p(q(H(~v)))

= p(Hs(q)(~v))2
Assume thatu, t are two nodes on leveli + 1 (i < k) in the BDTTf . As

before,~u,~t denote the labels concatenated along the paths from the root tou

andt respectively. The concatenation~u · e wheree ∈ Bk−i describes a path to

a leaf inTf because~u · e ∈ D. We define an equivalence relation≡i overBi

(i.e., over 0-1vectors of lengthi) by

~u ≡i
~t iff ∀e ∈ Bk−i.h(~u · e) = h(~t · e)

104

function AbsSame(v)
i = level(v)− 1;
~w = Hi(~v);
if ~w 6= ~v

return w;
else

if nonterminal(v)
left(v) = AbsSame(left(v));
right(v) = AbsSame(right(v));

endif;
return v;

endif

Figure 5.4: S-type Abstraction for BDTs

It is easy to see that≡i is reflexive, symmetric and transitive. Similar to

the definition of the auto-abstraction functionH, Hi(~u) is defined to se-

lect a unique representative from the equivalence class[~u]≡i
. Formally, let

repi : [Bi]≡i
→ Bi be a function which selects a unique representative from

[Bi]≡i
. ThenHi(~u) : Bi → Bi is defined as

Hi(~u) = repi([~u]≡i
).

Note that≡k coincides with≡h, i.e., we can view the equivalence relations

≡1,≡2, . . . as approximations of≡h.

Next, we show how to compute an S-type aBDT from a given BDT. With-

out loss of generality, assume that each equivalence class is represented by

its lexicographically minimal element. Therefore, if≤ denotes lexicograph-

ical ordering, andH(~w) = ~w, then ~w is the lexicographically first vector in

{~v : ~v ≡h ~w}.

The algorithmAbsSameof Figure 5.4 constructs an S-type aBDT is given

in. Its argument is a nodev in the given BDT. The initial call to the algorithm

is AbsSame(rootf) whererootf denotes the root node ofTf . In AbsSame,

the functionlevel(v) returns the level of the nodev. If v is a representative

105

node, the program will recursively callAbsSameto build the subtree of the

function. If v is not a representative node, i.e.,~w 6= ~v, the program will return

the representative nodew. In other words,v is replaced byw.

Theorem 5.2.1 Given an abstraction functionh, if the representative is deter-

mined by the lexicographically least vector, the algorithmAbsSamecorrectly

builds the S-type aBDT for a Boolean functionf , i.e., AbsSame(rootf) =

Hs(f).

Proof Given a pathp, letn(p) denote the corresponding node wherep ends

in the original BDD andnH(p) be the corresponding node wheren(p) maps to

in AbsSame(rootf). Note thatn(~v) = v. In order to prove the theorem, it is

sufficient to show thatn(H(p)) = nH(p) for all the pathsp.

We prove this theorem by induction on the length of pathp. First, the root

is considered whenp = ǫ, i.e., n(p) = root, it is trivial to see thatnH(p) =

n(H(p) = root. Let us assume thatnH(p) = n(H(p) is true for|p| = i. Then

consider a pathp · y wherey ∈ B. It is easy to see that bothnH(p · y) and

n(H(p · y)) are at leveli+ 1. There are two cases:

• p · y = H(p · y), from program in Figure 5.4, we know that

nH(p · y) = n(H(p · y))

• p · y 6= h(p · y), from induction hypothesis, we have

nH(p) = n(H(p))

Furthermore according to program in Figure 5.4,

nH(p · y) = n(H(H(p) · y))

106

SinceH is idempotent,H(p) = H(H(p)) impliesH(p · y) = H(H(p) · y)

according to the definition of consistent function. Thus, we have

nH(p · y) = n(H(p · y)).

By induction, this is true for the last level, which impliesAbsSame(rootf) =

Hs(f). 2
Note that LBDDs are obtained from BDTs by merging isomorphic sub-

trees. In order to build S-type LBDDs directly from LBDDs, we must modify

the algorithmAbsSame. The new algorithmAbsSameMis described in Fig-

ure 5.5. In the algorithm,Sub(v) denotes the subgraph rooted at the nodev.

Sub(v) ≈ Sub(v′) means that the respective subgraphs rooted atv andv′ are

isomorphic. The initial call of the algorithm isAbsSameM(rootf , 〈〉).

function AbsSameM(v, path)
i = level(v)− 1;
~w = Hi(path);
if ~w 6= path

return w;
else

if nonterminal(v)
left(v) = AbsSameM(left(v), path · 0);
right(v) = AbsSameM(right(v), path · 1);
if there existsv1 in cache such thatSub(v) ≈ Sub(v1)

return v1;
endif;

endif;
return v;

endif

Figure 5.5: ModifiedAbsSameMfor LBDDs

Lemma 5.2.2 For a given LBDDf , the size ofHs(f) is less than or equal to

2 +
∏n

i=1 |[B
i]≡i

|.

107

Proof Let ~u and~t be two paths of lengthi such that~u ≡i
~t. According to

our algorithm,u = t. Thus, if two paths belong to the same equivalence class,

then they lead to the same node. Hence, the number of nodes in the LBDD of

Hs(f) is bounded by the number of equivalence classes defined by≡i at each

level. There aren levels of internal nodes and two terminal nodes. Therefore,

the size of LBDDHs(f) is bounded by2 +
∏n

i=1 | ≡i |. 2
Given an LBDDf , the BDDHs(f) obtained from algorithmAbsSameM

is called an abstract LBDD. If we apply the BDD reduction rules on an abstract

LBDD, we will obtain an abstract BDD or an aBDD.

In practice, when|A| ≪ |D|, i.e., the range of the abstraction functionh is

much smaller than the domain ofh, the abstraction overhead and the resulting

S-type aBDD size are usually very small. As a matter of fact, for manyinter-

esting abstraction functions (e.g. modulus, count1, logarithm, linear, partition

functions), the abstraction overhead is polynomial in|A|.

Boolean functions of several vector variables. Given a Boolean function

f : Dn → B, the S-type aBDDHs(f) of f is defined by

Hs(f)(x1, . . . , xn) = f(H(x1), . . . ,H(xn)).

The properties and algorithms given for a single abstraction can be easily gen-

eralized for the multiple abstractions case.

Lemma 5.2.3 Let f, p, q : Dn → B be three Boolean functions,◦ be compo-

sition and⊙ be any logical operation. Then we have

f = p⊙ q → Hs(f) = Hs(p) ⊙Hs(q)
f = p ◦ q → Hs(f) = p ◦ Hs(q)

The algorithm for generating aBDDs for multiple abstraction functions are

shown in Figure 5.6.

108

function AbsSameM(v, p)
i = level(v)− 1;
for (j=1 to n)

pj = cut(p, xj);
qj = Hi(pj);

~w = q1 · q2 · · · · · qn;
if ~w 6= p

return w;
else

if nonterminal(v)
left(v) = AbsSameM(left(v), p · 0);
right(v) = AbsSameM(right(v), p · 1);
if there existsv1 in cache such thatSub(v) ≈ Sub(v1)

return v1;
endif;

endif;
return v;

endif

Figure 5.6:AbsSameMult for multiple abstraction functions

5.3 0-type And 1-type Abstract BDDs

In this section, we introduce two new types of aBDDs (0-type and 1-type aB-

DDs) which have different properties from S-type BDDs. In particular we shall

see that there is a clear relation between 0(1)-type aBDDs and the original func-

tions.

Recall that in the abstraction procedure for S-type aBDDs, non-

representative nodes are replaced by representative nodes. In 0(1)-type aBDDs,

however, non-representative nodes are replaced by 0(1)-nodes, i.e., the repre-

sentative nodes remain unchanged, and all others are uniformly set to output

either0 or 1. Formally, the 0(1)-type abstract BDDH0(f)(or H1(f)) of Tf

rooted atv is defined as

H0(f)(~v) = (H(~v) ↔ ~v) ∧ f(~v) =

{
f(~v) if H(~v) = ~v
0 otherwise

109

H1(f)(~v) = (H(~v) ↔ ~v) → f(~v) =

{
f(~v) if H(~v) = ~v
1 otherwise

Example 5.3.1 Consider again the Boolean function defined in Example 5.1.1.

The 0-type and 1-type aBDD forg are shown in Figure 5.7 and Figure 5.8.

0(1)-type aBDDs do not directly distribute over logic operations. However,

the following lemma holds.

Lemma 5.3.1 Let f, p, q : D → B be three Boolean functions,◦ is composi-

tion and⊙ be any logical operation. Then we have

f = p⊙ q → H0(f) = H0(H0(p) ⊙H0(q))
f = p⊙ q → H1(f) = H1(H1(p) ⊙H1(q))
f = p ◦ q → H0(f) = H0(p) ◦ H0(q)
f = p ◦ q → H1(f) = H1(p) ◦ H1(q)

Proof Let ~v ∈ D be an arbitrary vector. In the following, we prove the case

for 0-type. The case of 1-type follows the same proof. Whenf = p⊙ q, if ~v is

a representative,

H0(f)(~v) = f(H(~v))

= p(H(~v)) ⊙ q(H(~v))

= H0(p)(~v) ⊙H0(q)(~v)

If ~v is not a representative,H0(f)(~v) = 0. Letg = H0(p)⊙H0(q). H0(g)(~v) =

0 for 0-type as well. Therefore,H0(f)(~v) = H0(g)(~v).

Whenf = p ◦ q, if ~v is a representative,

H0(p) ◦ H0(q)(~v) = p(H0(q)(H(~v)))

= p(q(H(H(~v))))

= p(q(H(~v)))

= f(H(~v)) = H0(f)(~v)

110

If ~v is not a representative,H0(f)(~v) = 0 = H0(p) ◦ H0(q)(~v). Overall, the

statements hold for all vectors~v ∈ D. 2
0

A HGFEDCB
1 1

1

00 0

1 2 20 1 2 3

0 100

H
0(g)H

0(g)

x1

(a) 0-type aBDT and aBDD

h(x1)

Figure 5.7: 0-type aBDD forg

1
HGFEDCBA

0 1 1

00 1

2 2 3

10

1

1

2

1 11

H
1(g)H

1(g)

x1

h(x1)

(b) 1-type aBDT and aBDD

Figure 5.8: 1-type aBDD forg

The algorithmAbsZero of Figure 5.9 is a modification of the algorithm

AbsSameM for 0-type abstract LBDDs. A similar algorithmAbsOnecan be

used to build 1-type abstract LBDDs. The only difference betweenAbsZero

andAbsOneis thatAbsOnereturns 1 andAbsZero returns 0 whenpath is not

a representative.

Theorem 5.2.1 and Lemma 5.2.2 analogously hold for 0(1) type abstract

LBDDs. Furthermore, the following lemma shows that the 0(1) type aBDDs

can be viewed as lower (respectively upper) approximations of the original

function.

111

function AbsZero(v, path)
i = level(v);
~w = Hi(path);
if ~w 6= path

return 0;
else

if nonterminal(v)
left(v) = AbsZero(left(v), path · 0);
right(v) = AbsZero(right(v), path · 1);
if there existsv1 in cache such thatSub(v) ≈ Sub(v1)

return v1;
endif;

endif;
return v;

endif

Figure 5.9: ModifiedAbsZero for LBDDs

Following the same argument as Theorem 5.2.1, the algorithmsAb-

sZero and AbsOne correctly compute the 0(1)-type abstract LBDDs, i.e.,

AbsZero(rootf)=H0(f) and AbsOne(rootf)=H1(f). At the same time,

Lemma 5.2.2 also holds for 0(1)-type abstract LBDDs.

Lemma 5.3.2 The following tautologies hold.

H0(f) → f and f → H1(f).

The lemma can be easily proved. Therefore, the proof is omitted.

Similar as for S-type aBDDs, the approach can be extended to several vec-

tor variables and abstraction functions. For a functionf : Dn → B, we define

H0(f)(x1, . . . , xn) =

{
f(x1, . . . , xn) H(x1) = x1, . . . ,H(xn) = xn

0 otherwise

H1(f)(x1, . . . , xn) =

{
f(x1, . . . , xn) H(x1) = x1, . . . ,H(xn) = xn

1 otherwise

The properties and algorithms can be easily extended to this general case.

112

5.4 ∨-type Abstract BDDs

S-type, 0-type and 1-type aBDDs are similar in the sense that the representative

nodes remain unchanged while the non-representative nodes are replaced by

new functions.

In this section, we define∨-type aBDDs. For∨-type aBDDs, both rep-

resentative nodes and non-representative nodes are modified. Recall that in a

BDT Tf , ~v is the path from the root to nodev in a BDTTf . The∨-type aBDT

H∨(f) corresponding to the Boolean functionf : D → B is defined by the

following equation:

H∨(f)(~v) =

{ ∨
~u≡h~v f(~u) if ~v = H(~v)

0 otherwise

Hence, in the obtained aBDTH∨(f), the Boolean function of a represen-

tative node is thedisjunctionof all the Boolean functions corresponding to the

nodes in the same equivalence class, i.e., the representative node outputs 1 if at

least one of its equivalent nodes outputs 1. For non-representative nodes, the

Boolean function is defined to befalseor 0, similar as in 0-type aBDTs.

Example 5.4.1 To illustrate how to build∨-type aBDDs, let us return to Ex-

ample 5.1.1. According to our definition,

H∨
g (~B) = g(~B) ∨ g(~C) ∨ g(~E) = 1.

The∨-type aBDT forg is shown in Figure 5.10.

The next lemma describes how the auto-abstraction functionH interacts with

conjunctions and disjunctions.

Lemma 5.4.1 Let f, p, q : D → B be Boolean functions. Then the following

tautologies hold:

(f = p ∨ q) → (H∨(f) = H∨(p) ∨H∨(q))

(f = p ∧ q) → (H∨(f) → H∨(p) ∧H∨(q))

113

00
HGEC

0 1
B F

0 1

DA
1

1

00

1

1

2

01

322

x1

h(x1)

H
∨(g)H

∨(g)

Figure 5.10:∨-type aBDD forg

Proof Assume that~v is ak-bit 0-1 vector. If~v is a representative, according

to the definition,H∨(f)(~v) =
∨

H∨(~v′)=~v
f(~v′); Otherwise,H∨(f)(~v) = 0. The

same formula holds whenf is replaced byp and byq. In the following, we will

prove the case wheref = p ∧ q. The case off = p ∨ q can be easily proved

following the same proof.

When~v is a non-representative, it is easy to see thatH∨(p)(~v)∧H∨(q)(~v) =

0 = H∨(f)(~v). When~v is a representative, we have

H∨(f) =
∨

H(~v′)=v

f(~v′) =
∨

H(~v′)=v

(p(~v′) ∧ q(~v′))

Likewise,

H∨(p)(~v) ∧ H∨(q)(~v) =
∨

H(~v′)=v

p(~v′) ∧
∨

H(~v′)=v

q(~v′)

It is easy to prove that
∨

i(ai∧bi) → (
∨

i ai)∧(
∨

i bi) is a tautology. Therefore,

∨

H(~v′)=v

(p(~v′) ∧ q(~v′)) →
∨

H(~v′)=v

p(~v′) ∧
∨

H(~v′)=v

q(~v′).

Consequently, H∨(f)(~v) → H∨(p)(~v) ∧ H∨(q)(~v). In general,

H∨(f) → H∨(p) ∧H∨(q). 2
The∨-type aBDDs can be used to compute existential abstraction which is

defined in Chapter 2.4 according to the following lemma.

114

Lemma 5.4.2 Given a Boolean functionf(x) and an abstraction functionh :

D → A and its corresponding auto-abstraction functionH : D → D, the

following formula holds

H∨(f)(y) = ∃x[H(x) = y ∧ f(x)]

Proof We prove this lemma by looking at two conditions.

1. y is a representative, i.e., existsx ∈ D,H(x) = y. Then

H∨(f)(y) =
∨

H(x)=y

f(x) = ∃x[H(x) = y ∧ f(x)].

2. y is not a representative, i.e., there is nox ∈ D,H(x) = y. In other

words,H(x) = y is always false. Therefore,∃x[H(x) = y ∧ f(x)] is

always false. According to the definition of∨-type aBDDs,H∨(f)(y) =

0 in this case.

Overall, the lemma holds.2
Similarly to S-type, 0-type or 1-type aBDDs,∨-aBDDs can be easily extended

to deal with multiple abstraction functions. For a Boolean functionf : Dn →

B, the∨-type aBDDH(f) is defined as

H∨(f)(x1, · · · , xn) =

{ ∨
f(y1, · · · , yn) x1 = H(y1), · · · , xn = H(yn)

0 otherwise

Vectorsxi, yi ∈ D, andH(yi) = xi implies thatxi is the representative in the

equivalence class ofyi. It is easy to prove that Lemma 5.4.1 holds for multiple

abstraction functions. Moreover, we have

Lemma 5.4.3 Given a Boolean functionf(x1, · · · , xn) and an abstraction

functionH : D → D, the following formula holds

H∨(f) = ∃x1, · · · , xn[H(x1) = y1 ∧ · · · ∧ H(xn) = yn ∧ f(x)]

This lemma will be the foundation for the results of Chapter 6.3.

115

5.5 Summary

In the previous three sections, we discussed four types of aBDDs for Boolean

functions. We also show that each of these four types of aBDDs can be ex-

tended to the case of multiple abstraction functions as well. As a summary, the

definition of these four types of aBDDs are described in the following table.

S-type: Hs(f)(x1, . . . , xn) = f(H(x1), . . . ,H(xn))

0-type: H0(f)(x1, . . . , xn) =

{
f(x1, . . . , xn) H(x1) = x1, . . .
0 otherwise

1-type: H1(f)(x1, . . . , xn) =

{
f(x1, . . . , xn) H(x1) = x1, . . .
1 otherwise

∨-type: H∨(f)(x1, · · · , xn) =

{ ∨
f(y1, · · · , yn) x1 = H(y1), . . .

0 otherwise

Here,xi andyi denote vectors inD, andH(yi) = xi means thatxi is the

representative of the equivalence class ofyi. The properties and algorithms

given for a single abstraction can be easily generalized for the multiple ab-

stractions case.

Given an abstraction functionh, the auto-abstraction functionH determines

the representatives and non-representatives. Selecting different functions for

representatives and non-representatives results in different types aBDDs. In

Table 5.5, we summarize the properties of each type of aBDDs.

aBDDs Rep NonRep Distribute Algorithm
Types Nodes Nodes Over Ops
S-type kept changed yes for any DFS based
0-type kept changed yes for∧,∨ DFS based
1-type kept changed yes for∧,∨ DFS based
∨-type changed changed no except∨ BFS based

In the next chapter, we will discuss how to apply different types of aBDDs

in different situations.

116

Chapter 6

Applications of abstract BDDs

In this chapter, we will discuss three applications of abstract BDDs: equiva-

lence checking, dynamic reordering and model checking.

6.1 Equivalence checking using abstract BDDs

For many abstraction functions, aBDDs are usually much smaller than the

BDDs of the original function. Moreover, aBDDs maintain partial information

of the original Boolean functions. They can be used as a sufficient condition to

checkin-equivalence of large combinational circuits.

Lemma 6.1.1 Given two Boolean functionsf, g : Dn → B whereD = Bk,

Hs(f) 6= Hs(g) → f 6= g
H0(f) 6= H0(g) → f 6= g
H1(f) 6= H1(g) → f 6= g
H∨(f) 6= H∨(g) → f 6= g

Proof Let us assume thatHs(f) 6= Hs(g). Therefore, there must exist

~v1, . . . , ~vn ∈ D, where

Hs(f)(~v1, . . . , ~vn) 6= Hs(g)(~v1, . . . , ~vn).

According to the definition,

Hs(f)(~v1, . . . , ~vn) = f(Hs(~v1), . . . ,Hs(~vn))
Hs(g)(~v1, . . . , ~vn) = g(Hs(~v1), . . . ,Hs(~vn)),

117

therefore,

f(Hs(~v1), . . . ,H
s(~vn)) 6= g(Hs(~v1), . . . ,H

s(~vn))

Generally,f 6= g. Using the similar argument, we can easily prove that the

rest three formulas also hold.2
When the BDDs for a large multiple-output combinational circuit become ex-

tremely large, aBDDs can usually be built instead.

The equivalence checking procedure using aBDDs is sketched as follows.

1. Given a circuit, choose a set of appropriate abstraction functions.

2. Select an abstraction functionh out of a set of abstraction functions. This

set will be provided based on the nature of the circuit.

3. Build S-type (0-type or 1-type) aBDDs for the specification and the im-

plementation circuit using the abstraction functionh.

4. For S-type aBDDs, directly compare the two aBDDs obtained for spec-

ification and implementation. For 0-type or 1-type aBDDs, apply ab-

straction once again and then compare the two obtained aBDDs. If they

are different, an error is detected. Otherwise, choose a different abstrac-

tion function from the set and repeat step 3 with a different abstraction

function.

In general, there is no procedure to select a set of abstraction functions that

will detect all the errors in a circuit. Nevertheless, we believe that our method-

ology can be extremely useful in practice, since an initial design is much more

likely to contain errors than to be correct.

118

We use a simple example to illustrate our algorithm. Assume that we have

an abstraction functionh for the circuit in Figure 6.1. Assume that we have

built the BDDs forp and q. By performing S-type abstraction on them, we

obtainedHs(p) andHs(q). According to Lemma 5.2.1,Hs(g) = ¬[Hs(p) ∧

Hs(q)]. Therefore, we can obtain an S-type aBDD forg using ordinary logic

operations. On the other hand, the procedure is slightly different for 0(1)-type

aBDDs. According to Lemma 5.3.1,H0(g) = H0(¬[H0(p) ∧ H0(q)]) and

H1(g) = H1(¬[H1(p) ∧ H1(q)]). In order to obtain the 0(1)-type aBDDs,

abstraction has to be applied again after the logic operations.

g

q

p

x4

x3

x2

x1

Figure 6.1: A simple combinational circuit

We have implemented S-type and 0-type aBDDs into the CMU BDD pack-

age and performed two sets of experiments on the ISCAS85 benchmark circuits

using both S-type and 0-type aBDDs. Design errors in the circuit were injected

one by one by selecting a stuck-at fault on one input of an arbitrary gate. In

the first experiments (Table 6.1,6.2), we use S-type aBDDs and disable the

dynamic reordering. We chooseD = B#var, i.e., all the Boolean variables

are mapped as one symbolic variables. The experiments using two different

abstraction functions:h1(x) = count1(x) andh2(x) = x mod p wherep is

a prime number. In Table 6.1,6.2 ,Det Errs is the number of faults detected

by these three methods, andMax # Nodesis the maximum number of BDD

nodes that need to be held in memory, which is usually much larger than the

final BDD size. Avg.Timeis the average time to detect a design error. The

119

OBDD results for c2670, c5315, c6288 and c7552 are not reported because

they exceeded the memory limit.

circuits Errs Det Errs
OBDD Symm Resid

c432 50 50 50 33
c499 50 50 40 28
c880 50 50 28 7
c1355 50 50 40 28
c1908 50 48 40 36
c2670 10 unable 5 2
c3540 50 50 24 16
c5315 10 unable 10 3
c6288 10 unable 6 6
c7552 10 unable 9 10

Table 6.1: Number of detected errors using OBDDs and aBDDs

circuits Max # Nodes Avg.Time
OBDD Symm Resid OBDD Symm Resid

c432 4712 4604 3902 1.15 7.94 19.70
c499 95745 9481 27121 22.74 16.72 48.64
c880 637338 7705 4999 138.25 58.17 180.56
c1355 96357 9497 27476 25.49 44.93 129.48
c1908 70196 6274 15838 35.95 22.82 61.86
c2670 – 132593 774009 – 5449.37 5073.17
c3540 1522988 9927 8267 299.89 109.61 379.06
c5315 – 208795 234716 – 4618.01 10052.3
c6288 – 7317 38 – 86.52 61.20
c7552 – 366462 2301523 – 11963.65 18405.8

Table 6.2: BDD overhead and Average time used

In the second experiments, we use 0-type aBDDs with dynamic reording.

We chooseD = B10 and the abstraction functionh(x1) = count1(x1). The

abstraction function for the other variables is the identity abstraction function,

i.e.,h(xi) = xi for i > 1.

120

Circuit Errs Detected Errors BDD Size
OBDD aBDD OBDD 0-type

c432 10 10 10 4403 3307
c499 10 10 10 16850 12767
c880 10 10 10 12905 5077
c1355 10 10 10 28582 16661
c1908 10 10 9 13153 7737
c2670 10 10 10 28926 16643
c3540 10 9 5 67586 12790
c5315 10 10 10 17905 13677
c6288 10 – 10 — 8128
c7552 10 10 10 13637 16889

In this experiment, the aBDD based approach can detect over 90% of the errors.

6.2 Improving variable ordering using 0-type ab-
stract BDDs

Let f : Bm → B be a Boolean function over the Boolean variables

y1, y2, . . . , ym. A cubeci is a monomial over the variablesy1, · · · , yk (k < m).

Cube based sampling[60] partitions the domain off into smaller cubes

c1, · · · , c2m−k and uses dynamic variable ordering to select a good ordering

for the restrictionfi = f ∧ ci. The ordering forf is obtained by combining

the orderings of several randomly chosenfi. The quality of the resulting or-

dering may not be very good iffi does not closely approximatef . Thus, if the

subset of cubes is selected randomly, there may be significant variance in the

approximations. Consequently, the final ordering forf may not be good.

This problem can be alleviated by using a new sampling technique. Instead

of analyzingonerandom cube, we automatically consider multiple cubes at the

same time by using 0-type aBDDs. We call this new techniquewindow based

sampling.

Intuitively, a window is a union of some number of cubes. Assume that

we chooset disjoint windowsw1, . . . , wt. Hence, we can partitionf into

121

f1, . . . , ft, wherefi = f ∧ wi. In our window based approach we choose

the sampling windows using 0-type aBDDs.

According to our definition, we know thatx1 ∈ D = Bk. Setting

n = ⌊m/k⌋ + 1, we can rewrite the Boolean functionf(y1, . . . , ym) as

f(x1, . . . , xn), wherexi = 〈y(i−1)k+1, . . . , yi∗k〉 for i = 1, . . . , n − 1 and

xn = 〈y(n−1)k+1, . . . , ym, 0 . . . 0〉. Let d = 〈a1, . . . , ak〉 be ak-bit vector where

ai ∈ B andd ∈ D = Bk. It is easy to see thatd induces a cubecd where

cd =
k∧

i=1

{
yi ai = 1
¬yi ai = 0

Given an abstraction functionh, assume thath1 = h andhi(xi) = xi for i > 1.

In other words, abstraction is only applied to the top variablex1. The other

variables are kept unabstracted. If we define a windowwH = ∪~u=H(~u)c~u, then

the following lemma holds.

Lemma 6.2.1 Letf be a Boolean function andH be an auto-abstraction func-

tion. ThenH0(f) = f ∧ wH.

Proof Note thathi (i > 1) is identity function. Therefore, the corresponding

auto-abstraction functionHi is also identity function. Therefore, the 0-type

aBDD forf can be defined as

H0(f)(x1, . . . , xn) =

{
f(x1, . . . , xn) H(x1) = x1

0 otherwise

Or, it can also be written as

H0(f)(x1, . . . , xn) = f(x1, . . . , xn) ∧ (
∨

d=H(d)

x1 = d).

It is easy to see thatx1 = d is the same ascd. Therefore,H0(f) = f ∧ wH. 2
According to Lemma 6.2.1, using 0-type aBDDs provides a natural way to

implement the window based sampling method. First, we select a set ofcontrol

122

variables. These variables are heuristically determined by traversing the circuit

in a depth-first order where nodes are selected so that the distance from a node

to the primary inputs is minimized. Next, we choose an abstraction function

for a set of control variables and build an abstract BDD for the functionf with

dynamic reordering. Since this abstract BDD partially captures the functional-

ity of f , a good ordering for the abstract BDD is likely to be a good ordering

for f as well. Different abstraction functions usually produce different orders.

From our experiments, we have found that thecount1function
∑k

i=1 yi and

the logarithmicabstraction function⌊log2

∑k
i=1(2

iyi)⌋ are good choices. Note

that these abstraction functions are parameterized by the number of variables.

In each case, the number of cubes is relatively small. For example, a count1

abstraction function onk variables determinesk + 1 cubes.

Our method has 4 steps: the estimation phase, the candidate-order selection

phase, the testing phase (circuit filter phase), and the evolution phase. These

4 phases produce an initial ordering for building the final BDD and are de-

scribed below.

Step 1. In the estimation phase, we try j different abstraction functions and

determine the number of variables in each. Starting from the top variable, we

choose the set of abstracted variableski(i ≤ j) incrementally. For each cube in

the window given by the abstraction function, we partially simulate the circuit.

We chooseki to be the size of the abstraction function if simulating one of the

cubes greatly decreases the number of gates left in the circuit.

Step 2.In thecandidate-order selection phase, we applyj different abstraction

functions to the topki(i < j) variables selected in the previous phase. Then,

we build the aBDDs for the original Boolean function with dynamic reordering.

Each produces a new variable ordering. In our experiments, we choosej to be

123

2 or 3 and use the subsequent phases to reject and refine these orderings.

Step 3. The purpose of thecircuit filter phaseis to filter out the bad order-

ings. We estimate the quality of a given variable ordering by building the BDD

with this ordering up to a certain target gate inside the circuit (with dynamic

reordering disabled). An obvious question is how we choose the target gate.

Using some threshold level, we pick the gate between the primary inputs and

this threshold level whose cone covers the maximum number of primary in-

puts. The intuition for this step is that we want to consider as many variables

as possible to compare the orderings for all of the variables obtained from Step

2.

Step 4. After filtering out the bad orderings, we use theevolution filter to

decide which is the best ordering from the ones that remain. Using another

window defined by a new abstraction function, we build aBDDs for the re-

maining orderings obtained from Step 3. We choose the ordering which has

the minimum number of BDD nodes as our final order. This idea is also dis-

cussed in [60]. The difference is that we select windows using abstract BDDs

instead of randomly selected cubes.

In a cube based sampling technique, since only one cube is considered at a

given time, a sample may map to a trivial function. A window based sampling

method considers a large number of cubes at one time; it is highly unlikely

that each of these cubes will reduce to a trivial function. Thus, even if random

cubes were generated, a window based sampling is far more stable.

A function sampled using windows effectively contains a restriction of the

original function on each of the cubes. Thus, when we reorder our sampled

function, we are implicitly trying to produce an order which is simultaneously

“good” for each of these restrictions. Intuitively, this is important because a

124

variable order produced from restriction by any single cube may not be good

for the whole function. Considering multiple cubes at the same time and “av-

eraging” their effect is more likely to produce better results. For many circuits

we find that the variable order produced by using windows is far better than the

order produced by cubes.

The advantages of a window based method are particularly impressive

when a single order is needed for all outputs of a multiple-output circuit. In

fact, if we rely on cubes alone, then since the control variables may differ for

different outputs, the cubes effective for one output may not yield good results

for another. Techniques based on aBDDs are far superior in this case as well.

Our experiments are performed on a 360MHz Sun UltraSparc-60 with

512Mb RAM using the CUDD-2.2.0 package. In our tables, BDD size is

measured by the number of BDD nodes. Runtime entries refer to the time

taken for the sampling phases, as well as the time taken to construct the final

BDD from the order computed by sampling. The “DFS-MIN” entries refer to

the DFS based static variable ordering method described earlier. Similarly, all

CUDD entries refer to CUDD-2.2.0 usingsift, except for “CUDD SiftConv”

which was obtained by replacingsift with sift-convergencethroughout the ex-

periment. The “Using aBDD” column refers to the sampling technique which

uses 0-type abstract BDDs. We conducted two sets of experiments. The first

experiment shows how the technique behaves on single output functions, while

the second experiment deals with multiple output functions.

Note that our aBDD method gives deterministic results (unlike [60]). For

this purpose, in our experiments, we use two abstraction functions: thecount1

function and thelogarithmicfunctions (see Chapter 5.2).

Experiment 1 (Table 6.3, and Figure 6.2): First, we use the order com-

puted by sampling to build the BDD statically. Except for slightly inferior

125

�
�
�

�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

EX3

EX6

a
b

d
d

a
b

d
d

a
b

d
d

a
b

d
d

a
b

d
d

2

4

5

1

3

6

7

8

cu
b

e

cu
b

e

cu
b

e

cu
b

e

cu
b

e

(1355gat)

c3540
(72)

c1355

cube based method cannot
finish EX3 and EX6 for
some of the runs EX9

Figure 6.2: Static ordering with aBDD vs. cube based method

orderings on c499 and c1355 (both circuits are functionally equivalent) we find

that our methods always produce better variable orderings than those produced

by DFS search based static techniques (Table 6.3). For many industrial ex-

amples we find that DFS-MIN cannot even process the circuits. Interestingly,

for c3540 and EX1, we find that our static order using abstract BDD based

windows is better than even the dynamic ordering obtained using the CUDD-

2.2.0 package, and for EX6, comparable. Thus, we believe that our window

based sampling method is superior to other static ordering methods in terms of

efficiency as well as stability.

Figure 2 gives some representative data for comparing the performance of

static ordering methods that use an initial ordering provided by cube based

sampling vs. window based sampling using aBDDs. It is easy to see that cube

based method suffers from very large variance. However, since window based

sampling is deterministic, there is no variance at all. Interestingly,for EX3 and

126

BDD Nodes TIME (sec)
DFS Using DFS Using

Ckts -MIN aBDDs -MIN aBDDs
c432 5624 3956 1.6 3.1
c499 3466 3429 0.1 5.1
c1355 3652 3109 0.1 5.0
c1908 2187 1428 0.2 2.6
c3540 55730 6976 9.1 30
c6288 19417 22360 5.1 132
c6288 48483 42781 17.0 127
EX1 fail 2779448 fail 111
EX2 881339 596415 9.5 24
EX3 966210 738906 8.8 91
EX6 fail 20994 fail 134
EX8 fail 34918 fail 89
EX10 fail 942 fail 88

Table 6.3: Static order using sampling with aBDDs

EX6, aBDD based methods can create a small BDD for the output function,

but cube based sampling fails for some of the runs!

Experiment 2 (Table 6.4 and Figure 6.3) demonstrates the utility of window

based sampling in a dynamic variable ordering scheme. That is, we show how

sifting based reordering techniques can be significantly improved if they are

supplied with an initial variable ordering generated using a window based sam-

pling technique. In Table 6.4, we find that we can produce far smaller graphs

than the traditional dynamic reordering methods (sift, sift-convergence). Also,

for most of the large circuits we take less time. Sometimes, the difference is

dramatic; in EX3 we take almost an order of magnitude less space and 6 times

less runtime. Compared with sampling approaches, our method is also superior

(Figure 6.3) since our method does not have the large deviation problem.

Experiment 3 (Table 6.2): We performed another set of experiments to verify

the efficiency of window based methods on multiple output functions. It is

127

SPACE (# of BDD Nodes) TIME (in seconds)
CUDD CUDD Using CUDD CUDD Using

Ckts Sift SiftConv aBDDs Sift SiftConv aBDDs
c432 379 377 367 1.3 2.8 2.9
c499 3457 3650 3117 3.5 7.2 5.3
c1355 2557 3337 3529 3.2 11.0 6.9
c1908 901 758 763 2.0 4.5 2.6
c3540 8045 5486 5510 46.0 54.0 31.0
c6288 16774 16693 16746 40.0 110.0 56.0
c6288 40024 39942 40024 88.0 251.0 103.0

EX1 1467 644 748 41 89 33
EX2 13390 14771 9431 22 98 33
EX3 633780 655556 63404 1320 6780 230
EX4 163854 fail 130589 3535 fail 2667
EX5 190674 190674 63916 2616 2586 480
EX6 20343 15905 13457 146 334 120
EX7 118378 67384 40698 522 517 191
EX8 289619 387116 186754 786 4781 1365

Table 6.4: Deterministic sampling using aBDD

(402)c1908
(72)

c3540

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�

�
�
�

2

4

5

1

3

6

EX3

a
b

d
d

a
b

d
d

a
b

d
d

a
b

d
d

c
u

b
e

c
u

b
e

c
u

b
e

c
u

b
e

EX5

a
b

d
d

c
u

b
e

EX6

BDD size (normalized)

minimum
deviation

Figure 6.3: Dynamic ordering with aBDD vs. cube based method

128

known that sifting works very well for ISCAS85 circuits [85] and for many

circuits, there may not be scope for significant improvement. However, our

approach still outperforms CUDD for some of the circuits (c1908 and c7552).

For large industrial circuits, our approach is definitely much better than CUDD

(sift) with respect to both time and space.

CUDD Sift Using aBDDs
BDD CPU BDD CPU

Ckts Size Time Size Time
c432 1246 0:02 1224 0:03
c499 25897 0:29 26798 1:03
c880 4821 0:06 4463 0:06
c1355 25897 0:31 26579 0:56
c1908 9102 0:07 5946 0:08
c2670 2412 0:15 3070 0:31
c3540 23857 0:27 24122 1:02
c5315 2108 0:06 2712 0:07
c7552 18363 2:26 7206 0:59

M1 2595K 1:54:45 1866K 1:26:41
M2 4283K 8:36:00 4120K 2:50:15
M3 963K 1:17:15 487K 28:49
M4 fail fail 2195K 1:13:26
M5 5976 0:48 1568 2:23
M6 89639 4:24 13625 2:36

Table 6.5: Sampling using 0-type aBDD for ISCAS85 circuits

6.3 Model Checking Using∨-type Abstract BDDs

In this section, we will discuss how to use∨-type aBDDs to construct an ab-

stract Kripke structure and applications.

6.3.1 Abstraction for ACTL⋆

Given a structureM = (S, S0, R), whereS is the set of states,S0 ⊆ S is the set

of initial states, andR ⊆ S × S is the transition relation, the abstract structure

129

Mh = (Sh, S0,h, Rh) is defined as follows:

S0,h = ∃x1 · · ·xn[h(x1) = x̂1 ∧ · · · ∧ h(xn) = x̂n ∧ S0]

Rh = ∃x1 · · · ∃x′1 · · · [h(x1) = x̂1 ∧ · · · ∧ h(x′1) = x̂′1 ∧ · · · ∧ R]

whereS = Dn andxi is a symbolic variable overD. On the other hand, we

define another abstract structureMH = (SH, S0,H, RH), which we construct

using∨-type aBDDs:

• Thestate setSH is the image ofS under the auto-abstraction functionH.

• Theinitial set of statesS0,H is the image ofS0 under the functionH. No-

tice that ifS0 is represented as a boolean function, thenS0,H corresponds

to the∨-type aBDDH(S0) (see Lemma 5.4.3).

• The transition relationRH is the image ofR under the functionH. No-

tice that ifR is represented as a boolean function, thenRH corresponds

to the∨-type aBDDH(R) (see Lemma 5.4.3).

In Chapter 2.4, Theoerem 2.4.2 states thatMh andMH are isomorphic

structures, i.e., there is a bijectionu : Sh → SH such thatu(S0) = S0,H and

u(Rh) = RH.

According to the definition of existential abstraction, the standardrela-

tional producttechnique can be used to build the abstract transition relation

Rh. We call this straightforward approach the traditional approach or method.

Using∨-type aBDDs has advantages over the traditional approach. First, in the

traditional method the BDD for the abstraction functions has to be constructed

before applying the method. For many abstraction functions, these BDDs are

very hard to build. Second, in our experience a good variable ordering for an

abstraction function might be different from a good variable ordering for the

transition relation of the system, but standard model checkers would enforce

them to coincide. Our approach using abstract BDDs does not suffer from

130

these problems since we never explicitly build the BDDs for the abstraction

functions [27]. Abstraction functions are employed while building the abstract

BDD corresponding to the transition relation.

In order to test our ideas we modified the model-checker SMV. In our im-

plementation, the user gives an abstraction function for each variable of inter-

est. Once the user provides a system model and the abstraction functions, our

method is completely automatic. We consider two examples in this paper: a

pipelined multiplier design and the PCI local bus protocol.

6.3.2 Case studies

Verification of a pipelined multiplier In [31], Clarke, Grumberg, and Long

propose an approach based on theChinese Remainder Theoremfor verifying

sequentialmultipliers. The statement of theChinese Remainder Theoremcan

be found in most texts on elementary number theory and will not be repeated

here. Clarke, Grumberg, and Long use the modulus functionh(i) = i mod m

for abstraction. They exploit the distributive property of the modulus function

over addition, subtraction, and multiplication.

((i mod m) + (j mod m)) mod m ≡ (i+ j) mod m

((i mod m)− (j mod m)) mod m ≡ (i− j) mod m

((i mod m)× (j mod m)) mod m ≡ (i× j) mod m

Let • represent the operation corresponding to theimplementation. The

goal is to prove that• is actually multiplication×, or, in other words, for

all x andy (within some finite range)x • y is equal tox × y. If the actual

implementation of the multiplier is composed ofshift-addcomponents, then

131

the modulus function will distribute over the• operation. Therefore, we have

the following equation:

(x • y) mod m = [(x mod m) • (y mod m)] mod m

Using this property and the Chinese Remainder Theorem, Clarke, Grumberg,

and Long verify a sequential multiplier.

CSA CSACSA

CSA CSA

b0b15 b14

stage1

stage2

stagei

stagen

����������������������������������
����������������������������������
����������������������������������

����������������������������������
����������������������������������
����������������������������������

����������������������������������
����������������������������������
����������������������������������

����������������������������������
����������������������������������
����������������������������������

����������������������������������
����������������������������������
����������������������������������

����������������������������������
����������������������������������
����������������������������������

����������������������������������
����������������������������������
����������������������������������

����������������������������������
����������������������������������
����������������������������������

FULL ADDER

a15 - a0

Figure 6.4: Carry-save-adder pipeline multiplier

Unfortunately, this approach may not work if the multiplier is not com-

posed of shift-add components. Suppose there is a mistake in the design of the

multiplier, then there is no guarantee that the modulus operator will distribute

over the operation• (corresponding to the actual implementation). For exam-

ple, the mistake might scramble the inputs in some arbitrary way which breaks

the distributive property of the• operation. In this case, the method proposed

by Clarke, Grumberg and Long is not complete and may miss some errors.

Therefore, before we apply the methodology in [31] it is necessary to check

the distributive property of the modulus function with respect to the• operator.

In other words, we must show that the following equation holds:

(x • y) mod m = [(x mod m) • (y mod m)] mod m

132

We illustrate our ideas by verifying a16 × 16 pipelined multiplier which

uses carry-save adders (see Figure 6.4). Notice that the first stage consistsof

shift operations and the last stage corresponds to theadd operation. It easy to

show that the first and the last stages satisfy the distributive property. In fact,

this can be determined using classical equivalence checking methods. We will

focus our attention on the intermediate stages.

Notice that the Chinese Remainder Theorem implies that it is enough to

verify the multiplier by choosingm = 5, 7, 9, 11, 13, 16, 17, 19, 23 because of

the following equation:

5 ∗ 7 ∗ 9 ∗ 11 ∗ 13 ∗ 16 ∗ 17 ∗ 19 ∗ 23 = 5354228880 > 232 = 4294967296.

Our technique works as follows:

• First verify that each pipelined stage satisfies the distributive prop-

erty using numbers in the set{5, 7, 9, 11, 13, 16, 17, 19, 23}). For-

mally, let •i correspond to the operation of thei-th stage in the

pipeline. We want to verify the following equation for allm in the set

{5, 7, 9, 11, 13, 16, 17, 19, 23} and1 ≤ i ≤ 6:

(x •i y) mod m = (x mod m •i y mod m) mod m

If the equation given above is violated, we have found a error. Notice

that the equation given above can be checked by building the abstract

BDD for the transition relation corresponding to thei-th stage.

• Next, assume that all the pipelined stages satisfy the distributive prop-

erty. In this case, we can apply the method proposed by Clarke, Grum-

berg, and Long because the entire design will also satisfy the distributive

property.

133

In Figure 6.5 we give our experimental results for the first step. The row for

space usage corresponds to the largest amount of memory that is used during

verification.

modulus 5 7 9 11 13 16 17 19 23
time(s) 99 137 199 372 636 130 1497 2648 6977
space(MB) 7.7 12.8 21.5 51.7 92.5 9.2 210 231 430

Figure 6.5: Experimental Results for various modulus

We detected a number of actual errors in our design using this technique. All of

the errors that we found were caught usingm = 3. The average time and space

requirements to find the errors for the different stages are shown in Figure 6.6.

The 16 × 16 multiplier design could not be verified by SMV without using

abstraction. Therefore, we could not measure how much we saved by using

our technique.

stages st 1 st 2 st 3 st 4 st 5 st 6 total
bugs 4 1 1 0 0 1 7
avg. time(s) 5.1 4.4 3.0 2.5 1.7 1.2 89.1
avg. space(M) 5.6 2.7 3.7 4.8 3.6 1.7 5.96

Figure 6.6: Space and Time requirements to find bugs

Verifying the PCI local bus The second example we tried is the PCI local bus

protocol. During verification, we found a potential error in the PCI bus protocol

specification. In particular, we discovered an inconsistency between thetextual

specification and one of the state machines given in the PCI standard [88]. The

precise nature of the error will be explained later.

During model-checking, we used following abstraction functions on vari-

ous state variables:

• h(x) = ⊥, where⊥ means constant;

134

• h(x) = if x 6= 0 then1 else0;

• h(x) = if x > 1 then1 else0;

Incidentally, the bug we discovered wasnot found when we applied the tech-

niques proposed in [31].

The PCI Local Bus [88, 89, 100] is a high performance, synchronous bus ar-

chitecture that can transfer 32-bit or 64-bit data. Its primary goal is to establish

an industry standard and optimize for direct silicon (component) interconnec-

tion with minimum glue logic required. It supports most processor designs and

connects various types of devices on a chip. Bridges are used to extend the PCI

bus based systems. There are three types of devices that can be connected to

the PCI local bus: masters, target, and bridges. Masters can start transactions.

Targets respond to transactions and bridges connect buses. Masters and targets

are controlled by a finite-state machine.

A typical PCI bus transaction is demonstrated in Figure 6.7. The request

for a transaction starts when a subsystem asserts its request line REQ#. It then

waits until being granted the bus by the arbiter by asserting the correspond-

ing GNT# line. This phase is known as thearbitration phase. The transac-

tion begins when signal FRAME# is asserted. In the first clock after asserting

FRAME#, address is put on the data/address multiplexed lines in theaddress

phaseand the command lines carry the transaction-type. All target devices lis-

ten to this address and if the address maps to their address space, they assert

their DEVSEL# lines, indicating they are present on the bus. The master then

asserts the signal IRDY#, meaning that it is ready for data transfer. The bus

target asserts its TRDY# signal to indicate that the target is ready for data trans-

fer. Data transfer occurs when both IRDY# and TRDY# are asserted, whichis

known as onedata phase. A transaction can have more than onedata phase,

135

and wait cycles can be inserted between data phases by the master (target)by

deasserting the IRDY# (TRDY#) signal. One clock cycle before the end of the

data transfer phase, the FRAME# signal is deasserted. In the next cycle both

IRDY# and TRDY# are deasserted, and the bus goes back to the idle state.

1 3 4 5 6 7 8 92

CLOCK

REQ#

GNT#

FRAME#

ADDRESS/DATA ADDRESS DATA 1

IRDY#

COMMAND/BE# BUS CMD BYTE ENABLE#s

DATA 2 DATA 3

D
A

TA
 T

R
A

N
S
F
E
R

W
A

IT

D
A

TA
 T

R
A

N
S
F
E
R

Arbitration
Phase

Address Phase Data Phase Data Phase Data Phase Data Phase Idle Bus

TRDY#

D
A

TA
 T

R
A

N
S
F
E
R

W
A

IT

Figure 6.7: A typical PCI bus transaction

In our verification efforts, we considered a simple model which consists

of one master, one target, and one bus arbiter. The model includes different

timers to meet the timing specification. The master and target both include

a lock machine to support exclusive read/write. The master also has a data

counter to remember the number of data phases.

In the verification, we applied different abstractions to some of the timers,

the lock machine and the data counter in the master. We also clustered the

transition relations of the major state controllers in both master and the target.

We checked various properties dealing with handshaking, read/write transac-

tions, and timing in this simplified model. Next, we describe in detail the prop-

erty which demonstrates the inconsistency in the design. Description of all the

136

properties that we checked is not given here because of space restrictions.

One of the textual requirements is thatthe target responds to every

read/write transaction issued by the master. This important property turns out

to be false for the state machine given in the standard when the master reads

or writes a single data value. The negation of this property can be expressed in

ACTL⋆ as follows:

AG(m.req∧ m.datacnt=1) → A[(m.req∧ ¬t.ack)U(m.timeout)]) (∗)

wherem.req corresponds to the master issuing a transaction;m.datacnt=1

means that the master requests one data value;t.ackmeans that the target ac-

knowledges the master’s request; andm.timeoutmeans that the time the master

has allowed for the transaction has expired. If thisACTL⋆ formula is true in

the abstract model, it is also true in the concrete model. We verified that this

formula is true, so there must be an inconsistency in the standard.

The experimental results are shown in Figure 6.8. the first row in Figure 6.8

(Error) corresponds to the inconsistency we discovered. The remaining prop-

erties are not described here. The second and third columns show the running

time and maximum BDD nodes for the original version of SMV. The fourth

and fifth columns show the results obtained using our methodology. For some

cases our approach reduces the space needed for verification by a factor of 20.

Properties SMV SMV ABS
Time(s) # nodes Time(s) # nodes

Error 278 727K 65 33K
Property 1 20 164K 18 14K
Property 2 137 353K 30 66K
Property 3 99 436K 138 54K
Property 4 185 870K 40 36K
Property 5 67 352K 42 57K

Figure 6.8: Experimental Results for Verifying PCI using Abstraction

137

6.3.3 Abstraction for Variable Ordering

In model checking, the problem of generating a good initial variable ordering

is even more serious than the case with combinational circuits. Many static

ordering approaches have been proposed [4]. Because the best ordering may

change dynamically during the fixpoint computation, these approaches are not

powerful enough for many applications. In reality, people generate the initial

orders manually or statically and run model checker iteratively to produce a

goldenvariable order. This approach is not systematic and may be inefficient

for large designs.

Since the abstract Kripke structure describes the basic behavior of the orig-

inal structure, a good variable order for the abstract structure is likely to bea

good ordering for the orginal one. Based on this observation, we propose a new

variable ordering scheme as follows:

1. Given a set of abstraction functions, the system automatically builds the

abstract Kripke structure using∨-type aBDDs.

2. Next, we run the model checker on the CTL property with the abstract

structure with dynamic reordering on. Counterexample generation is dis-

abled in this phase.

3. Finally, we restart the model checker on the original structure using the

ordering obtained from the previous step as the initial variable ordering.

As an example, we verified the PCI bus protocol. The PCI local bus pro-

tocol includes three types of devices: masters, targets, and bridges. Mas-

ters can start transactions, targets respond to transactions, and bridges con-

nect buses. Masters and targets are controlled by finite-state machines.We

considered a simple model which consists of one master, one target, and one

138

bus arbiter. The model includes different timers to meet the timing specifica-

tion. The master and target both include alock machine to support exclusive

read/write. The master also has a data counter to supportburst transactions

(multiple data phases). We have observed that the BDD sizes constructed dur-

ing model checking can be reduced significantly by using the procedure de-

scribed above. In our verification phase, we have applied abstractions to some

of the timers, the lock machine and the data counter in the master. Address and

data in both the master and the target are also abstracted. Various properties

dealing with handshaking, read/write transactions, and timing are checked in

this model. The experimental results are listed in Table 6.6. The initial or-

dering for both “SMV” and “Using aBDD” columns are provided manually.

Obviously, aBDD based approaches are superior to the traditional approach.

Note that our approach is totally automatic.

139

Prop- TIME (sec) # Nodes
erty SMV SMV (aBDD SMV SMV (aBDD

Based Order) Based Order)

P1 542 289 11984K 3327K
P2 242 204 1778K 718K
P3 5882 207 36077K 862K
P4 15 77 50K 44K
P5 424 269 4458K 3700K
P6 179 118 2472K 520K
P7 8970 3956 28924K 13964K
P8 84 117 645K 504K
P9 9946 793 37288K 5084K
P10 14 75 59K 39K
P11 5580 2713 20680K 7850K
P12 293 376 4632K 3506K
P13 2043 1209 19703K 6002K
P14 2932 1862 38210K 17386K
P15 2831 118 12740K 520K
P16 fail 3955 fail 13964K
P17 63 117 649K 504K

Table 6.6: Generating Initial Ordering for Model Checking using∨-type aB-
DDs

140

Chapter 7

Conclusion and Future Work

The state explosion problem is the major problem in applying model checking

to real life hardware designs. In this dissertation, I have demonstrated two

powerful abstraction techniques to reduce the model size and still prove the

property. First, I have showed a counterexample-guided abstraction refinement

methodology which is complete forACTL. Secondly, I have defined a new

data structure - abstract BDDs which is a better data structure for building

abstract Kripke structure.

One advantage of our counterexample-guided abstraction refinement

methodology is that the initial abstraction and the refinement steps are efficient

and entirely automatic. All algorithms are symbolic. In comparison to methods

like the localization reduction [68], we distinguish more degrees of abstraction

for each variable. Thus, the changes in the refinement are potentially finer in

our approach. The refinement procedure is guaranteed to eliminate spurious

counterexamples while keeping the state space of the abstract model small.

These claims are demonstrated by experimental results.

There are many interesting avenues for future research. First, our initial

abstraction generation is syntax driven. A semantic driven initial abstraction

generation will be more powerful. Using better static analysis techniques on

this problem will be very interesting.

141

Next, it is important to find more efficient approximation algorithms for

the NP-complete separation problem encountered during the refinement steps.

This will allow us to generate even smaller refined abstract Kripke structures.

In the experiments, however, I did not find cases where the described polyno-

mial time computable heuristic works poorly. Identifying such examples may

be the starting point of further research.

More fundamentally, the previous research on counterexample-guided re-

finement including this thesis mostly focusses on searching thecoarsestre-

finement. This refinement approach is conservative but not optimal in most

cases, because the refinement steps may be smaller than necessary. Looking

for optimal refinement will significantly improve the performance of the model

checker.

7.1 Using other data structures instead of BDDs

The symbolic methods described in this thesis are not tied to representation

by BDDs. In particular, no fixpoint computation is involved. Therefore, it is

interesting to investigate other approaches including satisfiability based,ATPG

based and symbolic simulation approaches. The advantages of using other data

structures are as follows.

• In checking spurious counterexample, the original models are typically

used. Building transition relations for large models is usually difficult.

Sometimes, it is hopeless. However, other data structures do not explic-

itly build the transition relations.

• Since there is no fixpoint computation during the abstraction and refine-

ment phases, canonicity is not as demanded as for BDD based symbolic

model checking. It is possible that satisfiability based techniques can

142

handle significantly larger designs.

7.2 Implementing abstraction inside BDDs

In Chapter 5, we introduced a general framework for applying abstraction to

BDDs. Abstract BDDs are a first attempt to implement abstraction operations

inside BDD packages. By exploiting the nature of abstraction functions, ab-

stract BDDs can improve the performance of abstraction operations signifi-

cantly.

In this thesis, I described four types of abstract BDDs and their applica-

tions. Other types of abstract BDDs can be easily defined following a simi-

lar procedure. In my experience, the definition of abstract BDDs should be

application-driven.

143

Bibliography

[1] Fujitsu aims media processor at DVD.MicroProcessor Report, pages

11–13, 1996.

[2] P. A. Abdulla et al. Verification of infinite-state systems by combining

abstraction and reachability analysis. InComputer-Aided Verification,

July 1999.

[3] F. Van Aelten, S. Liao, J. Allen, and S. Devadas. Automatic generation

and verification of sufficient correctness properties for synchronous pro-

cessors. InInternational Conference of Computer-Aided Design, 1992.

[4] A. Aziz, S. Tasiran, and R. K. Brayton. BDD variable ordering for inter-

acting finite state machines. InDesign Automation Conference, 1994.

[5] F. Balarin and A. L. Sangiovanni-Vincentelli. An iterative approachto

language containment. InComputer-Aided Verification, volume 697 of

LNCS, pages 29–40, 1993.

[6] Roberto Bayardo, , and Robert Schrag. Using csp look-back techniques

to solve exceptionally hard sat instances. InProceedings of the Sec-

ond International Conference on Principles and Practice of Constraint

Programming, volume 1118 ofLNCS, pages 46–60, 1996.

[7] S. Bensalem, A. Bouajjani, C. Loiseaux, and J. Sifakis. Property pre-

serving simulations. InComputer-Aided Verification, July 1992.

144

[8] S. Bensalem, Y. Lakhnech, and S. Owre. Computing abstractions of

infinite state systems compositionally and automatically. InComputer-

Aided Verification, June 1998.

[9] S. Berezin et al. Combining symbolic model checking with uninter-

preted functions for out-of-orderprocessor verification. InFormal Meth-

ods in Computer-Aided Design, pages 369–386, 1998.

[10] A. Biere, A. Cimatti, E. Clarke, M. Fujita, and Y. Zhu. Symbolic model

checking using SAT procedures instead of BDDs. InDesign Automation

Conference, pages 317–320, 1999.

[11] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model check-

ing without bdds. InTACAS’99, number 1579 in LNCS. Springer-

Verlag, 1999.

[12] N. S. Bjorner, A. Browne, and Z. Manna. Automatic generation of

invariants and intermediate assertions.Theoretical Computer Science,

173(1):49–87, 1997.

[13] B. Bollig. Improving the variable ordering of OBDDs is np-complete.

IEEE Transaction on Computers, 1996.

[14] B. Bollig, M. Lobbing, and I. Wegener. Simulated annealing to improve

variable orderings for oBDDs. InInternational Workshop on Logic Syn-

thesis, pages 5b:5.1–5.10, 1995.

[15] Richard John Boulton.Efficiency in a Fully-Expansive Theorem Prover.

PhD thesis, University of Cambridge Computer Laboratory, May 1994.

Technical Report 337.

145

[16] K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficient implementation of

a BDD package. InDesign Automation Conference, pages 40–45, 1990.

[17] R. E. Bryant. Graph-based algorithms for boolean function manipula-

tion. IEEE Transaction on Computers, pages 35(8):677–691, 1986.

[18] R. E. Bryant. On the complexity of vlsi implementations and graph

representations of boolean functions with application to integer multi-

plication. IEEE Transaction on Computers, pages 40:205–213, 1991.

[19] R. E. Bryant and Y. A. Chen. Verification of arithmetic functions with bi-

nary moment diagrams. InDesign Automation Conference, pages 535–

541, 1995.

[20] R. E. Bryant, S. German, and M. N. Velve. Exploiting positive equality

in a logic of equality with uninterpreted functions. InComputer-Aided

Verification, LNCS, pages 470–482, 1999.

[21] J. Burch and D. Dill. Automatic verification of pipelined microprocessor

control. In Computer-Aided Verification, volume 818 ofLNCS, pages

68–80, 1994.

[22] J. R. Burch, E. M. Clarke, and K. L. McMillan. Symbolic model check-

ing: 1020 states and beyond.Information and Computation, 98:142–170,

1992.

[23] P. Chauhan, E. Clarke, Y. Lu, and D. Wang. Verifying IP-core based

System-On-Chip design. InIEEE ASIC, September 1999.

[24] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: a new

symbolic model checker.Software Tools for Technology Transfer, 1998.

146

[25] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-

guided abstraction refinement. InComputer-Aided Verification, volume

1855 ofLNCS, pages 154–169, 2000.

[26] E. Clarke, O. Grumberg, and D. Peled.Model Checking. MIT Publish-

ers, 1999.

[27] E. Clarke, S. Jha, Y. Lu, and D. Wang. Abstract BDDs: a technique for

using abstraction in model checking. InCorrect Hardware Design and

Verification Methods, volume 1703 ofLNCS, pages 172–186, 1999.

[28] E. M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons

for branching time temporal logic. InLogic of Programs: Workshop,

LNCS, 1981.

[29] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification

of finite-state concurrent system using temporal logic. InProceedings

of the Tenth Annual ACM Symposium on Principles of Programming

Languages (POPL), January 1983.

[30] E. M. Clarke, M. Fujita, and X. Zhao. Hybrid decision diagrams - over-

coming the limitations of MTBDDs and BMDs. InInternational Con-

ference of Computer-Aided Design, pages 159–163, 1995.

[31] E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and ab-

straction. ACM Transactions on Programming Languages and System

(TOPLAS), 16(5):1512–1542, September 1994.

[32] E. M. Clarke, K. McMillan, X. Zhao, M. Fujita, and J. Yang. Spectral

transforms for large boolean functions with applications to technology

mapping. InDesign Automation Conference, pages 54–60, 1993.

147

[33] M. A. Colón and T. E. Uribe. Generating finite-state abstraction of reac-

tive systems using decision procedures. InComputer-Aided Verification,

pages 293–304, 1998.

[34] P. Cousot and R. Cousot. Abstract interpretation : A unified lattice

model for static analysis of programs by construction or approximation

of fixpoints. ACM Symposium of Programming Language, pages 238–

252, 1977.

[35] D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive

systems. ACM Transactions on Programming Languages and System

(TOPLAS), 19(2), 1997.

[36] D. R. Dams, O. Grumberg, and R. Gerth. Generation of reduced models

for checking fragments of ctl. InComputer-Aided Verification, pages

479–490, 1993.

[37] D. R. Dams, O. Grumberg, and R. Gerth. Abstract interpretation of

reactive systems : Abstractions preserving∀ctl*, ∃ctl*, ctl*. In IFIP

Working Conference on Programming Concepts, Methods and Calculi

(PROCOMET 94), pages 573–592, 1997.

[38] S. Das, D. L. Dill, and S. Park. Experience with predicate abstraction.

In Computer-Aided Verification, volume 1633 ofLNCS, pages 160–171.

Springer Verlag, July 1999.

[39] J. Dingel and T. Filkorn. Model checking for infinite state systems using

data abstraction, assumption-commitment style reasoning and theorem

proving. In P. Wolper, editor,Proceedings of the 7th International Con-

ference On Computer Aided Verification, volume 939 ofLecture Notes

148

in Computer Science, pages 54–69, Liege, Belgium, July 1995. Springer

Verlag.

[40] R. Drechsler et al. Efficient representation and manipulation of switch-

ing functions based on Ordered Kronecker Functional Decision Dia-

grams. InDesign Automation Conference, 1994.

[41] R. Drechsler et al. A genetic algorithm for variable ordering of OBDDs.

In IEEE Proceedings of Computer Digital Techniques, 1996.

[42] E.A. Emerson. Temporal and modal logic. InHandbook of

Theor.Comp.Science. Vol. B., pages 995–1072. Elsevier, 1990.

[43] E.A. Emerson and A.P. Sistla. Symmetry and model checking.Formal

Methods in System Design, 9(1/2):105–130, 1996.

[44] E.A. Emerson and R.J. Trefler. From asymmetry to full symmetry: new

techniques for symmetry reduction in model checking. InCorrect Hard-

ware Design and Verification Methods, volume 1703 ofLNCS, pages

142–156, 1999.

[45] M. Fujita et al. Evaluation and improvements of Boolean comparison

method based on binary decision diagrams. InInternational Conference

of Computer-Aided Design, 1988.

[46] M. Fujita et al. On variable ordering of Binary Decision Diagrams for

the application of multi-level logic synthesis. InEuropean Design Au-

tomation Conference, 1991.

[47] D.A. Fura, P.J. Windley, and A.K. Somani. Abstraction techniques for

modeling real-world interface chips. In J.J. Joyce and C.-J.H. Seger, ed-

itors, International Workshop on Higher Order Logic Theorem Proving

149

and its Applications, volume 780 ofLecture Notes in Computer Science,

pages 267–281, Vancouver, Canada, August 1993. University of British

Columbia, Springer Verlag, published 1994.

[48] M. R. Garey and D. S. Johnson.Computers and interactability: a guide

to the theory of NP-Completeness. W. H. Freeman And Company, 1979.

[49] Ian Gent and Toby Walsh. The sat phase transition. InProceedings of

the 11th European Conference on Artificial Intelligence, pages 105–109,

1994.

[50] J. Gergov et al. Efficient boolean manipulation with OBDD’s can be

extended to FBDD’s. InIEEE Transaction of Computers, 1994.

[51] P. Godefroid, D. Peled, and M. Staskauskas. Using partial order methods

in the formal verification of industrial concurrent programs. InISSTA’96

International Symposium on Software Testing and Analysis, pages 261–

269, 1996.

[52] Shankar G. Govindaraju and David L. Dill. Verification by approxi-

mate forward and backward reachability. InProceedings of Interna-

tional Conference on Computer-Aided Design, November 1998.

[53] S. Graf. Verification of distributed cache memory by using abstractions.

In David L. Dill, editor, Proceedings of the sixth International Confer-

ence on Computer-Aided Verification CAV, volume 818 ofLecture Notes

in Computer Science, pages 207–219, Standford, California, USA, June

1994. Springer Verlag.

150

[54] S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In

Computer-Aided Verification, volume 1254 ofLNCS, pages 72–83, June

1997.

[55] P.-H. Ho, A. J. Isles, and T. Kam. Formal verification of pipeline control

using controlled token nets and abstract interpretation. InInternational

Conference of Computer-Aided Design, pages 529–536, 1998.

[56] R. Hojati and R. K. Brayton. Automatic datapath abstraction in hardware

systems. In P. Wolper, editor,Proceedings of the 7th International Con-

ference On Computer Aided Verification, volume 939 ofLecture Notes in

Computer Science, pages 98–113, Liege, Belgium, July 1995. Springer

Verlag.

[57] G. E. Hughes and M. J. Creswell.Introduction to Modal Logic.

Methuen, London, 1977.

[58] C.N. Ip and D.L. Dill. Better verification through symmetry.Formal

Methods in System Design, pages 41–76, 1996.

[59] N. Ishiura et al. Minimization of Binary Decision Diagrams based on

exchange of variables. InDesign Automation Conference, 1991.

[60] J. Jain, W. Adams, and M. Fujita. Sampling schemes for computing

OBDD variable orderings. InInternational Conference of Computer-

Aided Design, 1998.

[61] J. Jain et al. Indexed bdds: Algorithmic advances in techniques to rep-

resent and verify boolean functions.IEEE Transactions on Computers,

46(11):1230–1245, 1997.

151

[62] K. Jensen. Condensed state spaces for symmetrical colored petri nets.

Formal Methods in System Design, 9(1/2):7–40, 1996.

[63] S.-W. Jeong et al. Structural BDDs: Trading canonicity for structure in

verification algorithms. InInternational Conference of Computer-Aided

Design, 1991.

[64] R. B. Jones, J. U. Skakkebak, and D. L. Dill. Reducing manual abstrac-

tion in formal verification of out-of-order execution. InFormal Methods

in Computer-Aided Design, pages 2–17, 1998.

[65] U. Kebschull et al. Multilevel logic synthesis based on Functional De-

cision Diagrams. InEuropean Design Automation Conference, 1992.

[66] S. Kimura. Residue BDD and its application to the verification of arith-

metic circuits. InDesign Automation Conference, 1995.

[67] R. P. Kurshan. Analysis of discrete event coordination. InProceed-

ings of the REX workshop on stepwise refinement of distributed systems,

models, formalisms, correctness, volume 430 ofLNCS, 1989.

[68] R. P. Kurshan.Computer-Aided Verification of Coordinating Processes.

Princeton University Press, 1994.

[69] Y. Lakhnech. personal communication. 2000.

[70] W. Lee, A. Pardo, J. Jang, G. Hachtel, and F. Somenzi. Tearing based

abstraction for CTL model checking. InInternational Conference of

Computer-Aided Design, pages 76–81, 1996.

[71] D. Lesens and H. Sadi. Automatic verification of parameterized net-

works of processes by abstraction. InInternational Workshop on Verifi-

cation of Infinite State Systems (INFINITY), Bologna, July 1997.

152

[72] J. Lind-Nielsen and H. R. Andersen. Stepwise CTL model checking of

state/event systems. InComputer-Aided Verification, volume 1633 of

LNCS, pages 316–327. Springer Verlag, 1999.

[73] J. Lind-Nielsen, H. R. Andersen, and H. Hulgaard. Verification of large

state/event systems using compositionality and dependency analysis. In

FORM, 1998.

[74] C. Loiseaux et al. Property preserving abstractions for the verification

of concurrent systems.Formal Methods in System Design, pages 1–36,

1995.

[75] D. E. Long. Model Checking, Abstraction and Compositional Verifica-

tion. PhD thesis, School of Computer Science, Carnegie Mellon Uni-

versity, July 1993. CMU-CS-93-178.

[76] S. Malik et al. Logic verification using binary decision diagrams in a

logic synthesis environment. InInternational Conference of Computer-

Aided Design, 1988.

[77] Z. Manna et al. Abstraction and modular verification of infinit-state

reactive systems. InRequirements Targeting Software and Systems En-

gineering (RTSE), 1998.

[78] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publish-

ers, 1993.

[79] K. L. McMillan. Verification of infinite state systems by compositional

model checking. InCorrect Hardware Design and Verification Methods,

September 1999.

153

[80] C. Meinel, K. Schwettmann, and A. Slobodov. Application driven vari-

able reordering and an example implementation in reachability analysis.

In ASP-DAC, 1999.

[81] C. Meinel and A. Slobodov. Sample method for minimization of obdds.

In International Workshop of Logic Synthesis, pages 311–316, 1998.

[82] C. Meinel and C. Stangier. Speeding up symbolic model checking by

accelerating dynamic variable reordering. In10th ACM Great Lake Sym-

posium on VLSI, 2000.

[83] David G. Mitchell, Bart Selman, and Hector Levesque. Hard and easy

distributions of sat problems. InProceedings of Tenth National Confer-

ence on Artificial Intelligence, pages 459–465, 1992.

[84] S. Panda and F. Somenzi. Symmetry detection and dynamic variable or-

dering of decision diagrams. InInternational Conference of Computer-

Aided Design, 1994.

[85] S. Panda and F. Somenzi. Who are the variables in your neighborhood.

In International Conference of Computer-Aided Design, 1995.

[86] A. Pardo.Automatic Abstraction Techniques for Formal Verification of

Digital Systems. PhD thesis, University of Colorado at Boulder, Dept.

of Computer Science, August 1997.

[87] A. Pardo and G.D. Hachtel. Incremental CTL model checking using

BDD subsetting. InDesign Automation Conference, pages 457–462,

1998.

[88] PCI SIG Group.PCI Local Bus Specification, June 1995.

154

[89] PCI Special Interest Group.PCI to PCI Bridge Architecture Specifica-

tion Rev 1.1, December 1998.

[90] A. Pnueli. The temporal semantics of concurrent programs. InProceed-

ings of the Eighteenth Annual Symposium on Foundations of Computer

Science, 1977.

[91] J.P. Quielle and J. Sifakis. Specification and verification of concurrent

systems in cesar. InProceedings of the Fifth International Symposium

in Programming, 1981.

[92] S. Rajan, N. Shankar, and M. K. Srivas. An integration of model check-

ing with automated proof checking. InComputer-Aided Verification,

pages 84–97, 1995.

[93] K. Ravi, A. Pardo, G. D. Hachtel, and F. Somenzi. Modular verification

of multipliers. In Formal Methods in Computer-Aided Design, pages

pp.49 – pp.63, November 1996.

[94] R. Rudell. Dynamic variable ordering for ordered binary decision dia-

grams. InInternational Conference of Computer-Aided Design, 1993.

[95] J. Rushby. Integrated formal verification: using model checking with

automated abstraction, invariant generation, and theorem proving. In

Theoretical and practical aspects of SPIN model checking: 5th and 6th

international SPIN workshops, pages 1–11, 1999.

[96] V. Rusu and E. Singerman. On proving safety properties by integrating

static analysis, theorem proving and abstraction. InIntl. Conference

on Tools and Algorithms for the Construction and Analysis of Systems,

pages 178–192, 1999.

155

[97] H. Saidi and N. Shankar. Abstract and model checking while you prove.

In Computer-Aided Verification, number 1633 in LNCS, pages 443–454,

July 1999.

[98] Bart Selman, Hector Levesque, and David G. Mitchell. A new method

for solving hard satisfiability problems. InProceedings of Tenth Na-

tional Conference on Artificial Intelligence, pages 440–446, 1992.

[99] J. Sifakis. Property preserving homomorphisms of transition systems.

In 4th Workshop on Logics of Programs, June 1983.

[100] E. Solari and G. Willse.PCI Hardware and Software - Architecture and

Design. Annabooks, 1998.

[101] F. Somenzi. CUDD: CU decision diagram package. Technical report,

University of Colorado at Boulder, 1997.

[102] K. Takayama, T. Satoh, T. Nakata, and F. Hirose. An approach to verify

a large scale system-on-chip using symbolic model checking. InInter-

national Conference of Computer Design, pages 308–313, 1998.

[103] M. N. Velve and R. E. Bryant. Exploiting positive equality and partial

non-consistency in the formal verification of pipelined microprocessors.

In Design Automation Conference, pages 397–401, 1999.

[104] M. N. Velve and R. E. Bryant. Formal verification of superscalar mi-

croprocessors with multicycle functional units, exceptions, and branch

prediction. InDesign Automation Conference, pages 112–117, 2000.

[105] P. Wolper and V. Lovinfosse. Verifying properties of large sets of pro-

cesses with network invariants. InProceedings of the 1989 International

156

Workshop on Automatic Verification Methods for Finite State Systems,

volume 407 ofLNCS, 1989.

[106] B. Yang et al. A performance study of BDD-based model checking.

In Formal Methods in Computer-Aided Design, volume 1522 ofLNCS.

Springer Verlag, 1998.

157

