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Abstract

Bayesian model averaging (BMA) weights the in-
ferences produced by a set of competing models,
using as weights the models posterior probabili-
ties. An open problem of BMA is how to set the
prior probability of the models. Credal model av-
eraging (CMA) is a credal ensemble of Bayesian
models, which generalizes BMA by substituting
the single prior over the models by a set of pri-
ors. The base models of the ensemble are learned
in a Bayesian fashion. We use CMA to ensem-
ble base classi�ers which are Bayesian logistic
regressors, characterized by di�erent sets of co-
variates. CMA returns indeterminate classi�ca-
tions when the classi�cation is prior-dependent,
namely when the most probable class depends
on the prior probability assigned to the di�er-
ent models. We apply CMA for modelling the
presence and absence of marmot burrows in an
Alpine valley in Italy and show that it compares
favorably to BMA.

Keywords. Bayesian model averaging, credal
model averaging, logistic regression, classi�ca-
tion, ecological modeling.

1 Introduction

Over the last years, classi�ers based on imprecise
probabilities have been mostly developed by ex-
tending probabilistic graphical models (see [30]
for a pioneering work and [7] for a recent re-
view) or decision trees (see [1] and the references
therein). Alternatively, extension of the k nearest
neighbors have been also proposed [11].

In this paper we consider the idea of credal model

averaging (CMA) [8, 6], which can be described
as a credal ensemble of Bayesian classi�ers. In
other words, the parameters of the base models
are learned in a Bayesian way. The ensemble of
the base models is instead carried out in an im-
precise way, modelling a condition of ignorance
about the prior probability of the di�erent mod-
els.

Model uncertainty is the problem of many models
being consistent with the available data. In this
condition, there is substantial uncertainty about
which model should be chosen for drawing infer-
ences or computing predictions. Choosing a sin-
gle model and then ignoring the substantial un-
certainty of the model selection leads to overcon-
�dent inferences [3]. Bayesian model averaging
(BMA) is a sound approach to deal with model
uncertainty, based on the key idea of averaging
the inferences produced by a set of di�erent mod-
els, using the models' posterior probabilities as
weights.

However, BMA requires to specify the prior prob-
ability of each model. This is a critical issue, as it
is recognized in the BMA literature [5]. To tackle
this issue, some authors repeat the BMA analysis
assigning di�erent prior probabilities to the mod-
els [21, 28]. From the viewpoint of the credal clas-
si�cation, it is well-known the relying on a sin-
gle prior implies unavoidable arbitrariness, which
entails the risk of drawing prior-dependent clas-
si�cations.

CMA generalizes BMA, overcoming the problem
of the prior speci�cation by adopting a set of
prior over the models. As a result, the posterior
probability of the models lies within an interval
rather being a punctual value. Moreover, CMA



automatically detects the instances which are
prior-dependent, namely whose most probable
class varies depending on the prior probability as-
signed to the di�erent models. On such instances,
CMA suspends the judgment by returning more
than one class, thus automating the sensitivity
analysis. So far, CMA has been proven e�ec-
tive in ensembling probabilistic graphical models
[8, 6].

We develop CMA for ensembling logistic regres-
sion models characterized by di�erent feature
sets. Indeed, BMA of logistic regressors was al-
ready used to model presence or absence of eco-
logical populations [21, 28]; we then compare
BMA and CMA on the case study of predict-
ing the presence of marmot burrows in an Alpine
valley.

2 Bayesian model averaging
(BMA)

Let us consider a logistic regression model for pre-
dicting the value of a binary class C, with classes
c0 and c1. The set of covariates (or features) is
X = {X1, X2, . . . Xk}; in a generic instance, the
value of the covariates is x = x1, . . . , xk. We de-
note π0 = P (C = c0|x) and π1 = P (C = c1|x).
The logistic regression model is

y = logit(π0) = ln
π0

1− π0
= ln

π0
π1

=

= β0 +

j=k∑
j=1

βjxj (1)

where xj is the observation of Xj .

Given k covariates, the model space M is com-
posed of 2k possible model structures. Each
model structure includes a speci�c set of covari-
ates. We denote by mi the i-th structure. The
model size is de�ned as the number of covariates
included in the structure.

Feature selection is the problem of identifying the
supposedly best set of covariates for the model.
The traditional feature selection approach is to
assess the signi�cance of each covariate through
hypothesis tests [10]. More modern approaches
for feature selection are instead based on the so-
called Information Criteria [3], such as the Akaike
Information Criterion (AIC) or the Bayesian In-

formation Criterion (BIC)1. Information Criteria
have been recognized to be more e�ective than
repeated hypothesis tests for the purpose of fea-
ture selection [3]. Yet, even adopting Information
Criteria one could face the problem of model un-
certainty. If, for instance, di�erent models obtain
a similar value of BIC, a substantial uncertainty
underlies the choice of a single model. The sub-
sequent inferences are hence overcon�dent if this
uncertainty is disregarded.

BMA addresses model uncertainty by combin-
ing the inferences of multiple models, using as
weights the posterior probability of the mod-
els. We denote by D the available dataset, by
P (mi|D) the posterior probability of model mi

and by P (Y |D) the entire posterior distribution
of Y given D, from which posterior probabilities
P (y|D) of a speci�c value y can be obtained. The
posterior of Y under BMA is [5]:

P (Y |D) =
∑

mi∈M
P (Y |mi, D)P (mi|D) (2)

where:

P (mi|D) =
P (mi)P (D|mi)∑

mk∈M P (mk)P (D|mk)

P (D|mi) =

ˆ
P (D|βi,mi)P (βi|mi)dβi,

having denoted by P (mi) the prior probability
of model mi, βi the vector of its parameters and
P (D|mi) its marginal likelihood, which in the lin-
ear case can be exactly computed [25]. Equation
(2) requires an extensive summation over 2k mod-
els, which is usually carried out by sampling the
model space . Only for small k it is possible to
exhaustively treat the model space.

As a result of averaging across di�erent models,
P (Y |D) is given by a sum of distributions and
thus has a multi-modal shape. Inferences about
other quantities of interest such as the parameter
of the models can be obtained by averaging over
the models as in Eq(2).

BMA requires to set a precise prior over the pa-
rameters and over the models. As a prior dis-
tribution on the parameters P (βi|mi) we adopt
Zellner's g-prior [13], setting g equal to the num-
ber of observations. As for the prior over the

1The BIC provides a simple but e�ective approxima-
tion of the posterior probability of a given model [24].



models, we adopt the binomial prior [25, 13];
namely, every covariate has the same prior proba-
bility θ of being included in the model; moreover,
the probability of inclusion of each covariate is in-
dependent. Thus, the prior probability of model
mi, which includes a number ki of covariates, is:

P (mi) = θki(1− θ)k−ki . (3)

Once the prior probability of each possible model
is speci�ed according to Eq.3, it can be analyzed
the prior distribution of the random variable con-
stituted by the model size, namely the number of
covariates included in the model. The model size
follows a binomial distribution with mean θk and
variance θ(1− θ)k [19], where k is the total num-
ber of available covariates. An easy way to elicit
the prior distribution over the models is to ask
the expert his beliefs about the model size.

3 Credal Model Averaging(CMA)

CMA generalizes BMA by substituting the sin-
gle binomial prior over the models by a set of
binomial priors: thus, the prior probability of in-
clusion of each covariate varies within the range
[θ, θ]; thus, the mean model size a priori varies
within the range [θk, θk]. Thus, CMA allows elic-
iting from the expert an upper and a lower model
size. If no expert is available, one can model a
situation of ignorance a priori, by setting θ = ε
and θ = 1− ε. In our experiments we adopt this
approach, setting ε=0.05.

Each model of the ensemble is learned in a
Bayesian fashion, using a precise prior over the
parameters. Instead, the prior probability of the
models is imprecisely modelled. Hence CMA is
a credal ensemble of Bayesian models. Because
of imprecision, CMA computes for the logit the
interval [y, y] rather than a point value as in tra-
ditional logistic regression. The length of such
interval varies instance by instance, showing the
sensitivity of the prediction on the priors which
has been set over the models, namely how much
the BMA prediction would vary as a consequence
of θ varying between θ and θ. No coverage prob-
ability can be assigned to the CMA intervals. To
compute y and y, CMA solves a maximization
and a minimization problem on each instance.
Since the prior probability of inclusion θ is equal
for all covariates, the optimization problem in-
volves only a single variable.

Let us focus on the minimization case. We de-
note by a hat the estimated values. Given the
data set D and the observation x = x1, . . . , xk of
the covariates, we denote the prediction of model
mi as ŷi = βi0 +

∑j=ki
j=1 βijxj , where β

i
0 and βij

denote the parameters of mi (the previous for-
mula assumes, with no loss of generality, that for
model mi the covariates have been re-ordered, so
that the �rst ki covariates are those included in
the model). For simplicity of notation we do not
indicate the dependence of ŷi on D and x. The
lower bound ŷ of the CMA interval is computed
as:

ŷ = min
θ∈[θ,θ]

∑
mi∈M

ŷiP (mi|D) =

min
θ∈[θ,θ]

∑
mi∈M

ŷi
P (D|mi)P (mi)∑

mj∈M P (D|mj)P (mj)
=

= min
θ∈[θ,θ]

∑
mi∈M ŷiP (D|mi)θ

ki(1− θ)k−ki∑
mj∈M P (D|mj)θkj (1− θ)k−kj

:= min
θ∈[θ,θ]

h(θ)

Let us de�ne the k sets M1 . . .Mk which in-
clude all the models containing respectively
{1, 2, . . . , k} covariates. For instance, M2 con-
tains all the models which include two covariates.
To address the optimization problem it is useful
noting that all the models contained in the set
Mj have the same prior probability θj(1−θ)k−j .
We introduce Zj =

∑
mv∈Mj

ŷvP (D|mv) and

Lj =
∑
v∈Mj

P (D|mv) and then rewrite func-

tion h(θ) as:

h(θ) =

∑k
j=0 θ

j(1− θ)k−jZj∑k
j=0 θ

j(1− θ)k−jLj
(4)

In the interval [θ, θ], the maximum and minimum
of h(θ) should lie either in the boundary points
θ = θ and θ = θ, or in an internal point of the
interval in which the �rst derivative of h(θ) is 0.

Let us introduce f(θ) =
∑k
j=0 θ

j(1−θ)k−jZj and
g(θ) =

∑k
j=0 θ

j(1− θ)k−jLj . The �rst derivative
h′(θ) is:

h′(θ) =
f ′(θ)g(θ)− f(θ)g′(θ)

g(θ)2
, (5)



where g(θ) is strictly positive because Lj is a
sum of marginal likelihoods. We can therefore
search the solutions looking only at the numera-
tor f ′(θ)g(θ)−f(θ)g′(θ), which is a polynomial of
degree k(k−1) and thus has k(k−1) solutions in
the complex plain. We are interested only in the
real solutions that lie in the interval (θ, θ). Such
solutions, together with the boundary solutions
θ = θ and θ = θ, constitute the set of candidate
solutions. To �nd the minimum and the max-
imum h(θ), we evaluate h(θ) in each candidate
solution point, and eventually we retain the min-
imum and maximum among such values.

Having determined the upper and lower logit val-
ues y and y, we obtain the upper and lower pos-
terior probabilities of the two classes by inverting
Eq.(1):

π0 =
exp(y)

1 + exp(y)

π0 =
exp(y)

1 + exp(y)

π1 = 1− π0

π1 = 1− π0

CMA adopts the criterion of interval-dominance
[27] to take decisions: class c1 is returned if
π1 > π0, namely if π1 > 1/2. Conversely, class
c0 is returned if π0 > 1/2. In these cases the in-
stance is safe because the rank between the two
classes is the same regardless the prior probabili-
ties assigned to the competing models. If instead
the intervals of the posterior probability of the
two classes overlap, the judgment is suspended.
The instance is prior-dependent, since the rank
among the classes changes when di�erent prior
probabilities are assigned to the competing mod-
els.

A �nal note regards the relation between the logit
computed by BMA and CMA. If the value of θ
used to induce BMA is included in the interval
[θ, θ] used to induce CMA, the logit computed
by BMA is included within the the logit interval
computed by CMA. Thus when CMA returns a
single class, this is the same class returned by
BMA.

4 Case study

The study area is located in the Italian Alps, near
the Stelvio National Park. The valley has an alti-

tude comprised between 2100 and 3100 m above
sea level. The �eld surveys identi�ed the position
of the Alpine marmot burrows and the character-
istics of their surrounding territory. The censuses
were carried out in the summers 2010 and 2011;
three di�erent areas of the valley were investi-
gated. To develop the species distribution model
we divide the area into cells of 100m2; the cen-
sused area is overall of about 95 ha ( 9500 cells).
Presence of burrows has been detected in about
4.5% of the cells. Each cell is then labelled as
presence or absence.

The considered covariates are altitude, slope, as-
pect (the direction in which the slope faces) to-
pographic ruggedness index (TRI) [26], hillshade,
curvature, soil temperature and soil cover. For
the aspect, we did not directly use the angle from
North, but we divided the information into two
sub-variables that we called northitude and easti-
tude. The northitude is calculated as the cosine of
the angle from North, while the eastitude is cal-
culated as the sine of the same quantity. While
the former represents the attitude of the mar-
mot to select sunny slopes, the latter represents
the preference to have a sunny territory during
the sunrise and the morning rather than during
the sunset and the evening. To build the soil
temperature map we relied on �ve di�erent me-
teorological stations (altitude comprised between
1800 and 2600 m a.s.l.) located in the surround-
ings, which provide the data of air temperature
and snow depth. The soil temperature is a mean
yearly value and was calculated starting from the
DEM (digital elevation model) and the data of air
temperature and snow depth, using the model
developed by [14]. Finally, we express the soil
cover as the percentage of cells with debris and
outcrops cover in the bu�er area (see later for an
explanation of the bu�er area).

As a pre-processing step we removed some highly
cross-correlated (|ρ| > .8) covariates: more pre-
cisely the soil temperature (anti-correlated with
the altitude), the TRI (anti-correlated with the
slope) and the hillshade, correlated with the nor-
thitude.

The Alpine marmot is a mobile species, which
uses a huge territory for its activities. Thus,
we supposed that the decision to dig a burrow
in a given cell does depend also on the envi-
ronmental conditions of surrounding cells. For



this reason, the value associated to each cell (for
each environmental variable) is calculated as the
mean of the values of the variable in a surround-
ing of the same cell. We refer to this area with
the term bu�er area, and, in our case, it has a
pseudo-circular shape, since we considered the
cells within a circular area built around the given
cell. The home range of the Alpine marmot
ranges between 1 and 3 ha [23, 17]. We con-
sidered bu�er areas of size 1 ha, 2 ha and 3 ha.
Since the results are quite consistent when di�er-
ent bu�er areas are considered, in the following
we present results referring only to a bu�er area
of 2 ha.

5 Results

To gain understanding of the data and to inves-
tigate the role of the di�erent covariates, we de-
velop a BMAmodel using the entire dataset. The
prior probability of inclusion of the covariates is
set to 0.5, corresponding to a uniform prior prob-
ability over the models.

Under BMA the posterior probability of inclu-
sion of a covariate is calculated as the sum of the
posterior probability of the models in which the
covariate is included. In Table 1 we report the
posterior probability of inclusion of the covari-
ates, the expected values and the standard devi-
ations of the parameters of the models, obtained
using the standardized values of the variables.
The expected values and the standard deviations
of the coe�cients are calculated averaging over
the models which do include the covariate.

Variable 2ha
p.inc. EV SD

altitude 1 -1.050 0.158
slope 1 0.491 0.067

curvature 0.02 0.001 0.011
northitude 1 -1.381 0.010
eastitude 1 -0.553 0.056

% of outcrops and debris cover 0.97 -0.399 0.122

Table 1: Posterior probability of inclusion of
the covariates (p.inc), expected values (EV) and
standard deviations (SD) of the model parame-
ters.

The most important variables are the altitude,
the slope, the eastitude and the northitude. The
signs of the parameters con�rm, for most of the
variable, what is reported in literature. The co-
e�cient of the altitude has a negative value, and

the valley altitude ranges from ca. 2200 m a.s.l.
and 3000 m a.s.l.. The suitable altitude for the
marmot is approximately between 1650 m a.s.l.
and 1950 m a.s.l. [4, 2] with maximum altitudes
around 3000 m a.s.l.. Since the valley is above
the optimal altitude range of the marmot, the
fact that the suitability of the valley decreases
with the altitude con�rm the past results. The
slope positively in�uences the presence of bur-
rows. In this case, we have con�icting results re-
ported in literature, with an optimal slope that
varies from 0 to 60◦[22]. The northitude nega-
tively in�uences the presence of burrows, so that
the marmot preference is for southerly exposed
slopes, as previously reported in several studies
[2]. The eastitude negatively in�uences the pres-
ence of burrows, contrary to what is reported in
literature [2], with a preference for the westerly
exposed slopes in the valley. This preference is
probably due to the fact that, in the valley, the
areas located at a higher elevation and with a low
suitability, are mainly westerly exposed. This re-
sult seems therefore to be mainly due to the val-
ley shape. A high percentage of outcrops and
debris cover negatively in�uences the presence of
marmot burrows, showing the importance of the
alpine meadows for the species, as reported by
[2, 22].

5.1 Comparing BMA and CMA

We compare BMA and CMA using training
data sets of varying sample size. For compar-
ing BMA and CMA, we downsample the orig-
inal data set, generating training sets of size
n ∈ {30, 60, 90 . . . , 300}. For each sample size, we
build 30 di�erent training sets. The instances not
contained in the training set constitute the test
set. The training sets contain the same preva-
lence (fraction of presence data) of the entire
dataset, namely 4.6%. For CMA we assume a
situation of substantial ignorance a priori, set-
ting θ = 0.95 and θ = 0.05.

CMA can be seen as dividing the instances into
two groups: the safe ones, for which a single
class is returned, and the prior-dependent ones,
for which instead the judgment is suspended
and both classes are returned. For the prior-
dependent instances, presence or absence is more
probable depending on the prior probability of
the competing models.



The most common measure of performance in
classi�cation is the accuracy, de�ned as the pro-
portion of instances correctly classi�ed. To eval-
uate the e�ectiveness of CMA, we assess the ac-
curacy of BMA on the safe and on the prior-
dependent instances. As can be seen in Fig.1,
BMA undergoes a sharp drop of accuracy on the
instances indeterminately classi�ed by CMA.
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Figure 1: The accuracy of BMA drops on the
prior-dependent instances. For each sample size,
the boxplot refers to 30 experiments.
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Figure 2: The length of the CMA interval (π0, π0)
decreases with the sample size. For each sample
size, the boxplot refers to 30 experiments.

The length of the logit interval [y, y] of CMA de-
creases with the dimension of the training set as
shown in Figure 2: the larger the sample size, the
less in�uential the prior probability of the mod-
els.

5.2 Credal Classi�cation and Reject

Option

Traditional classi�ers can be equipped with a re-
ject option [16], thus refusing to classify an in-
stance if the posterior probability of the most
probable class is below a certain threshold. To
adopt the reject option, it is necessary setting the
rejection cost which is incurred into when reject-
ing an instance. When classifying an instance,
the expected cost [12] associated to decision of re-
turning each class is computed. The instance is
rejected if the expected classi�cation cost of each
class is higher than the rejection cost. This cor-
responds to rejecting all the instances in which
the posterior probability p∗ of the most probable
class is below a threshold t [16].

However, the behavior induced by the reject op-
tion is quite di�erent from that of a credal classi-
�er. On a large data set the posterior probability
of the classes is not sensitive on the choice of the
prior; a credal classi�er will generally return a
single class. On the other hand, the determinate
classi�er could reject even a considerable num-
ber of instances, if the rejection cost is small. To
fairly compare a traditional classi�er equipped
with rejection option against a credal classi�er,
it would be necessary making the credal classi-
�er aware of the rejection cost. This point we
leave for future research.

However, applying a rejection option to BMA
does in general yield a behavior which is quite dif-
ferent from that of CMA. The point is that on the
prior-dependent instances the BMA predictions
are not tightly distributed around a 50% poste-
rior probability; instead, there are many prior-
dependent instances in which BMA estimates a
posterior probability larger than 60-70% for the
most probable class: see for an example Figure
3. Thus, BMA equipped with rejection option
would reject only part of the prior-dependent in-
stances. Conversely, it will instead reject some
instances which are not prior-dependent.

5.3 Utility-discounted accuracy

To further compare CMA and BMA we adopt the
utility-discounted accuracy introduced in [29].
We brie�y summarize here the idea underlying
this approach. The starting point is the dis-
counted accuracy, which rewards a prediction
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Figure 3: Distribution of the posterior proba-
bility associated by BMA to the most probable
class in the prior-dependent instances. The �gure
refers to a training set of dimension n=210.

containing m classes with 1/m if it contains
the true class, and with 0 otherwise. Within
a betting framework based on fairly general as-
sumptions, discounted-accuracy is the only score
which satis�es some fundamental properties for
assessing both determinate and indeterminate
classi�cations; thus, the discounted accuracy
of a credal classi�er can be compared to the
accuracy achieved by a determinate classi�er.
Yet discounted-accuracy has severe shortcom-
ings. Consider two medical doctors, doctor ran-
dom and doctor vacuous, who should diagnose
whether a patient is healthy or diseased. Doc-
tor random issues uniformly random diagnosis;
doctor vacuous instead always returns both cat-
egories, thus admitting his/her ignorance. Let
us assume that the hospital pro�ts a quantity of
money proportional to the discounted-accuracy
achieved by its doctors at each visit. Both doc-
tors have the same expected discounted-accuracy
for each visit, namely 1/2. For the hospital,
both doctors provide the same expected pro�t
from each visit, but with a substantial di�er-
ence: the pro�t of doctor vacuous has no vari-
ance. Any risk-averse hospital manager should
thus prefer doctor vacuous over doctor ran-
dom: under risk-aversion, the expected utility
increases with expectation of the rewards and
decreases with their variance [18]. To model
this fact, it is necessary to apply a utility func-
tion to the discounted-accuracy score assigned
to each instance. The utility function is de-

signed as follows in [29]: the utility of a cor-
rect and determinate classi�cation (discounted-
accuracy 1) is 1; the utility of a wrong classi�ca-
tion (discounted-accuracy 0) is 0. Therefore, the
utility of a traditional determinate classi�er cor-
responds to its accuracy. The utility of an accu-
rate but indeterminate classi�cation consisting of
two classes (discounted-accuracy 0.5) is assumed
to lie between 0.65 and 0.8. Two quadratic util-
ity functions are then derived corresponding to
these boundary values, and passing respectively
through {u(0) = 0, u(0.5) = 0.65, u(1) = 1} and
{u(0) = 0, u(0.5) = 0.8, u(1) = 1}, denoted as
u65 and u80 respectively. Since u(1) = 1, util-
ity and accuracy coincide for determinate classi-
�ers; therefore, utility of credal classi�ers and ac-
curacy of determinate classi�ers can be directly
compared. Interestingly, the u65 and u80 func-
tions provides score which are numerically close
to respectively the F1 and F2 metric, which have
been used to score indeterminate classi�cations
in [9], adopting an approach based on informa-
tion retrieval.

In Figure 4 we compare the CMA utility (cal-
culated using the u80 utility function) and the
BMA accuracy. The utility produced by CMA
is slightly higher on average than that of BMA;
however the most striking feature of Fig.4 is that
the CMA boxplots are much tighter than the
BMA ones. This means that the utility yielded
by CMA is not only higher on average, but also
much more stable and predictable than that of
BMA. The result do not change substantially
if the u65 utility function is considered instead,
apart from a slight shift downwards of the CMA
boxplots.

5.4 The cost-sensitive setup

The classes of our problem are strongly skewed:
about 4.5% and 95.5% of the instances are re-
spectively presence and absence. It is unlikely
that the two di�erent kind of errors (false pres-
ence and false absence) have identical costs, as
it is assumed by both the classi�cation accuracy
and the utility-discounted accuracy. To make the
assessment more realistic, it is thus worth consid-
ering a cost-sensitive setup.

A simple measure of performance which accounts
for costs is the AUC [20], namely the area un-
der the receiver operating characteristic (ROC)
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curve. Figure 5 shows that BMA achieves much
higher AUC on the safe instances (determinately
classi�ed by CMA) than on the prior-dependent
ones (indeterminately classi�ed by CMA). This
is a further favorable result for CMA.
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dependent instances.

Yet, the AUC summarizes into a single scalar the
whole area under the ROC curve, mixing the per-
formance obtained under very di�erent cost sce-
narios [20]. To provide a more detailed picture of
the behavior of the classi�er in the cost-sensitive
setup, we then follow the approach of [12]. We
introduce the cost matrix ; in particular, we de-
note by d(ci, cj) the cost of predicting class ci
when the actual class is cj . The cost matrix is
2x2 since the problem has two classes (presence
and absence), as shown in Table 2. Let us as-
sume that the model is used to predict the pres-

ence/absence of burrows in a territory that has
not yet been censused. If the model predicts the
presence of a burrow in a given cell, an operator
is sent to search for burrows, incurring the cost
κ (this is a simpli�cation, since the cost could
vary for instance with the position of the cell to
be surveyed). If a burrow is found, a gain ζ is
obtained; overall, the negative cost (namely the
reward) for having correctly predicted the pres-
ence is κ − ζ < 0. If absence is predicted no
survey is organized; thus, no costs are incurred
regardless whether the considered cell contains or
not a burrow.

Actual

Predicted Absence Presence
Absence 0 0
Presence κ κ− ζ

Table 2: Cost matrix.

In the cost-sensitive setup, the classi�er should
return the class with the lowest expected
cost rather than the most probable class.
The expected cost of predicting class ci is∑
cj∈C πjd(ci, cj), where C denotes the set of

classes and πj is the posterior probability of class
cj , computed according to the logistic regression
model. Given the above cost matrix, the ex-
pected cost of predicting absence is 0. Thus pres-
ence is predicted if the expected cost of doing so
is negative:

Expected cost (predicting presence) < 0⇔
π1(κ− ζ) + π0(κ) < 0⇔

κ− π1ζ < 0

In other words, presence is predicted if its pos-
terior probability is higher than the threshold
t = κ/ζ. Dealing with CMA, in some instances
the posterior probability of presence might �uc-
tuate below and above the threshold t depending
on the prior probability assigned to the compet-
ing models. In this case, the decision should be
suspended since the evidence coming from data
is not strong enough to take a decision. How-
ever, we want CMA to take a decision. To this
purpose, we consider the Γ-maximin approach
[27], namely worst-case optimisation; this implies
returning a prediction of absence on the prior-
dependent instances. We also consider the oppo-
site approach Γ-maximax, namely optimization



of the best case; this implies returning a pre-
diction of presence on the prior-dependent in-
stances.

We perform experiments with di�erent values of
the threshold t = κ/ζ. Moreover, to compare the
results obtained with di�erent t, we �xed ζ = 1; it
is indeed easy to prove that ζ is only a multiplica-
tive factor in the computation of the total cost,
so that its value does not in�uence the quality of
the results. In Figure 7 we report the results for
the case t=0.5 (ζ = 2κ) and t=1/23 (ζ = 23κ).
The latter value, in which the threshold equals
the marginal probability of presence, is referred
to as Kolmogorov-Smirnov statistic in [15]. Given
the rarity of presence, we do not consider values
of ζ smaller than 2κ, namely t > 0.5. Figures
6 and 7 show the results for the prior-dependent
instances only; on the instances which are not
prior-dependent, BMA and CMA take the same
decisions and thus incur the same costs. Given
the cost matrix of Table 2, the Γ-maximin strat-
egy incurs a cost of 0 on the prior-dependent
instances. In the case t = 1/2 (Figure 6), Γ-
maximin incur lower costs than if the decision
is taken according to the single posterior proba-
bility computed by BMA. The highest costs are
instead incurred adopting the Γ-maximax strat-
egy. However, the situation is reversed in the
case t=1/23 (Figure 7): Γ-maximax incurs the
lowest costs, followed by BMA; Γ-maximin in-
curs instead the highest costs. Interestingly the
di�erences among the costs incurred by the vari-
ous policies generally decrease with the size of the
training set. For the case t = 1/5 (not shown) the
costs of all policies are almost equivalent, lying
close to 0.

It cannot be predicted whether deciding accord-
ing to either Γ-maximin or Γ-maximax will even-
tually incur lower or higher total costs, for the
prior-dependent instances, than deciding accord-
ing to BMA. Our viewpoint is that on the prior-
dependent instances taking a decision should be
preferably avoided, trying instead to acquire new
information.

6 Conclusions

CMA has proven e�ective on the real-world case
study of predicting the presence of the Alpine
marmot. Some future extensions can be fore-
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Figure 6: Mean costs incurred on the prior-
dependent instances (t = 1/2).
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Figure 7: Mean costs incurred on the prior-
dependent instances (t = 1/23).

seen. The �rst is adopting maximality rather
than interval-dominance for detecting the prior-
dependent instances; this should decrease the
number of instances indeterminately classi�ed
without compromising the robustness of the clas-
si�cations. Secondly, one could allow the prior
probability of inclusion of each covariate to vary
within a di�erent interval; this would however
imply solving a more complex optimization prob-
lem to detect the upper and lower bounds of the
logit interval. Eventually the current algorithms
could be extended to deal with more than two
classes; for this purpose, the base classi�ers to
be ensembled should be polytomous (rather than
dychotomous) logistic regressors.
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