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Abstract

In recent years, peer-to-peer networks and application-level overlays without dedicated infrastructure have been widely
proposed to provide on-demand media services on the Internet. However, the scalability issue, which is caused by the asyn-
chronism and the sparsity of the online peers, is a major problem for deploying P2P-based MoD systems, especially when
the media server’s capacity is limited. In this paper, we propose a novel probabilistic caching mechanism for P2P-based
MoD systems. Theoretical analysis is presented to show that by engaging our proposed mechanism with a flexible system
parameter, better scalability could be achieved by a MoD system with less workload imposed on the server, and the service
capacity of the MoD system could be tradeoff with the peers’ gossip cost. We verify these properties with simulation exper-
iments. Moreover, we show by simulation results that our proposed caching mechanism could improve the quality of the
streaming service conceived by peers when the capacity of the server is limited, but will not cause notable performance
degradation under highly lossy network environments, compared with the conventional continuous caching mechanism.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

With the deployment of broadband techniques,
peer-to-peer (P2P) based systems have been widely
proposed to provide the media-on-demand service
(MoD) on the Internet in recent years. The basic
idea of a P2P-based MoD system is to allow the
peers accessing the same media object to share the
media data cached in their buffers with each other,
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thus reducing the workload imposed on the media
server of the system. Typically, for a P2P-based
MoD system, an index overlay and a data overlay
will be formed by the online peers, as demonstrated
in Fig. 1.

The index overlay of a P2P-based MoD system is
usually formed by all the online peers, and serves for
managing the information such as the peers’ mem-
berships and their current playback offsets. With
an index overlay, incidents such as peer joining, peer
departure and VCR operations (e.g., pause, fast-for-
ward, rewind, etc.) could be handled in a distributed
fashion efficiently. Usually some well designed
structures and dedicated algorithms (e.g., trees,
.
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Fig. 1. A typical P2P-based MoD system.
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DHTs) are engaged for constructing and maintain-
ing this overlay. While for the data overlay of a
P2P-based MoD system, it is formed by the peers
which are actually exchanging media data. As a peer
would be able to cache in its buffer only limited
media content, a data overlay connection could only
be setup between two peers when there is media data
exchange. In the data overlay, peers could use ‘‘
push’’ or ‘‘gossip + pull’’ mechanisms to distribute
and obtain the media data. Note that unlike the glo-
bal structured index overlay, in the data overlay,
only a few peers with media data exchanging could
have links among themselves, and a cluster is
formed by these peers. Usually several disconnected
clusters may be formed among all the online peers,
as shown in Fig. 1.

In a P2P-based MoD system, the streaming
media object is split into segments, which is the
smallest playable media content unit, and peers will
use the segments as the unit for requesting and cach-
ing the media data. Typically, a peer in the P2P-
based MoD system will try to pre-fetch and cache
some segments which are immediately before its cur-
rent playback offset in case of network jitters, where
the available bandwidth might decrease unpredict-
ably. As these pre-fetched segments are cached some
time before their playback deadlines, the peer could
ensure the quality of the streaming service under an
unstable network environment to some degree.
After a segment is played, the peer could either dis-
card it immediately, or keep it in its buffer for some
time. When requesting a segment, the peer will first
try to obtain it from some other peers which have
cached this segment in their buffers; if failed, it will
then request the segment from the server. Obviously
in such a peer-assisted mechanism, in order to
improve the system’s service capacity, it is essential
to increase the ‘‘hit ratio’’ of the segment requests
among the peers, especially when the server’s service
capacity is limited. In this paper, we present a novel
data overlay for P2P-based MoD systems, in partic-
ular, we propose a probabilistic caching mechanism
for peers to request and discard the segments. We
evaluate our proposed mechanism via extensive the-
oretical analysis as well as simulation experiments,
and show that by engaging our proposed mecha-
nism, the following favorable properties could be
achieved:

• Scalability: We find that the main performance
bottleneck for a P2P-based MoD system is in
the media server of the system, and is caused by
the asynchronism and the sparsity of the online
peers. Without enlarging the peers’ buffering
space, we show that our proposed caching mech-
anism could reduce the workload imposed on the
server notably, or improve the quality of the
streaming service conceived by peers consider-
ably when the server’s capacity is limited, thus
improving the system’s scalability.

• Flexibility: We provide means for system design-
ers to make tradeoffs between the system’s scala-
bility and the peers’ gossip cost in a P2P-based
MoD system. Specifically, by varying the buffer-
ing space partition, a P2P-based MoD system
could trade better scalability with larger peer gos-
sip cost under the situation of sparse online peers
or weak media server; or it could reduce the gos-
sip cost of the peers at the price of sacrificing the
system’s scalability by imposing more workload
on the server of the system.

We also study the performance of the proposed
caching mechanism under a lossy network environ-
ment, and show that our approach will not cause
serious performance degradation, even when not
all the buffering space is allocated for pre-fetching;
moreover, when the loss rates of the network links
are extremely high, our mechanism works even bet-
ter than the conventional continuous caching mech-
anism, which is usually considered to be more
robust under the lossy network environment.

For the remainder of this paper, we discuss the
related work in Section 2; we introduce our pro-
posed caching mechanism in Section 3; and in Sec-
tion 4, theoretical analysis on the system’s
performance is given; we present and discuss our
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simulation results in Section 5; and finally we
conclude this paper and discuss the future work in
Section 6.

2. Related work

With the advance of P2P technologies, many ser-
vices which are traditionally provided with a client–
server architecture are successfully migrated to P2P
networks. For example, file swarming systems such
as BitTorrent [2] are widely used on today’s Inter-
net, and have become the major source of the net-
work traffic [19,20]; and P2P multicast systems
such as ESM [3,4] and CoolStreaming [21] are suc-
cessfully deployed to provide live media services
without the deployment of an IP-multicast infra-
structure. In recent years, many works [1,5–7,10,
11,13] have been proposed on providing on-demand
media streaming services with P2P approaches.

For data overlays of the P2P-based MoD sys-
tems, oStream [1] uses a spanning tree algorithm
for peers to construct an overlay for media stream-
ing. Designs of tree-like overlays could also be
found in P2Cast [5] and P2VoD [6]: which differ in
their caching strategies and failure recovery mecha-
nisms. To make the system robust and to balance
the workload, CoopNet [7] proposes to use a multi-
ple tree overlay to distribute the MDC encoded
media data. A tree-assisted mesh overlay is pre-
sented in [11], in which mesh links will be formed
when the parent–child relationship could not be
set up. In [8], a segment scheduling algorithm is pro-
posed when network coding techniques [16,17] are
engaged for the on-demand media distribution. In
[9], the authors aim to support the on-demand video
viewing functionality based on file swarming sys-
tems, and a probabilistic pre-fetching technique
which has some similarity to our approach is pro-
posed. However, the key difference between our
work and [9] is that in our solution, peers are only
caching very limited content in their memories,
while peers in the system proposed in [9] actually
download the entire video file on their hard disks.
Moreover, we present a theoretical analysis in our
work to enable a more insightful understanding on
the probabilistic caching mechanism.

Besides data overlays, many index overlays have
also been proposed recently for managing the MoD
system. oStream [1] uses a set of centralized servers
to record the peers’ playback information. Pure dis-
tributed solutions such as DHT algorithms, which
are widely used in file sharing applications, are also
adopted for index overlay construction. In OBN
[10], the finger table of Chord [22] is used for peers
to maintain links to their neighbors on the overlay;
and in [12], CAN [23] is adopted to organize the
peers in a proxy-assisted on-demand streaming sys-
tem. For supporting specific MoD operations such
as jump, fast forward and rewind, some dedicated
structures are proposed, such as the AVL tree [11]
and the Skip List [13], the former is featured with
non-sequential accesses and the latter supports the
VCR-operations very well. And recently an overlay
construction algorithm based on AVL tree is pro-
posed in [8] for improving the searching efficiency
by not involving all the peers on the overlay.

To understand the performance of the P2P-based
MoD systems, analytical performance evaluation is
an effective way. A stochastic process model is pro-
posed in [14], which shows that the service capacity
of peer-assisted MoD systems will start to scale after
the transition time; and in [1], a modeling frame-
work is used to study the bandwidth required on
the server and the overhead engaged under different
MoD system designs. In this paper, we adopt the
modeling framework in [1] to analyze our proposed
caching mechanism.

3. Probabilistic caching mechanism

3.1. The caching problem

Before describing the caching problem in P2P-
based MoD systems, we first look at the size of
the media objects and the buffering space size of
the clients in a MoD system. With today’s multime-
dia techniques, multimedia objects integrating audio
and video are getting larger in order to have better
audio/video effects. For example, a two-hour movie
encoded with a CBR (constant bit rate) playback
rate of 512 bps will have a size of 450 MB. Obvi-
ously, in an on-demand media application, it is
impractical for today’s personal computer with a
typical sized memory (e.g., 512 MB) to cache the
entire media object such as a movie in its memory.
On the other hand, to cope with network jitters,
where the future available bandwidth decreases
unpredictably, many media streaming systems use
a fixed length client buffer to pre-fetch and cache
the media content ahead of their playback dead-
lines. For example, Windows Media Player allows
a pre-fetching buffer up to 60 s, while Real Player
uses a buffer with a default size of 30 s. Obviously,
these pre-fetching buffers are relatively small
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Fig. 2. Relationship between segment availability and required
number of online peers, under the continuous caching scheme.
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compared with the computer’s entire memory: for
example, it takes less than 4 MB for caching 60 s
of a 512 bps encoded video object, and caching
5 min of the video content requires 18.75 MB, which
is a reasonable cost for today’s personal computers.
In summary, we believe that under today’s multi-
media techniques and with today’s personal com-
puters, peers are incapable of caching an entire
media object or a large portion of it with their
buffers, but they should be able to cache the media
content which is more than just enough to handle
network jitters.

With limited sized buffers, which segments a peer
should cache is problematic. Following we investi-
gate the caching problem formally. Suppose in a
P2P-based MoD system, a media object is divided
into M segments, indexed as 0 to M � 1. Suppose
at a time, there are N online peers accessing this
object, and each peer has a buffer of B segments,
and for a particular segment i (0 6 i < M), we
assume that it is cached on Ci different peers at
the time. Now consider that a peer requests segment
i, as it does not know on which peer this segment is
cached, it just requests it blindly by sending its
request to another peer with a probability p. Then
for segment i, the probability that the request is
answered by a peer caching it is 1� ð1� pÞCi , and
in this case, the request is successful. For all the
M segments, our purpose is to maximize the proba-
bility of the successful segment requests among the
online peers as

PM�1
i¼0 ð1� ð1� pÞCiÞ given the buf-

fering space B and the peer population N, or we
seek to

minimize
XM�1

i¼0

ð1� pÞCi

s:t:
XM�1

i¼0

Cj 6 N � B

It is not difficult to find that this optimization prob-
lem has a solution of Ci ¼ N�B

M , which means the seg-
ments should be cached evenly among the online
peers. However, evenly caching the segments is
impractical to implement in a P2P-based MoD sys-
tem for two reasons: (1) It is hard for peers to know
the global segment caching information, as seg-
ments are cached and discarded by peers very fre-
quently all the time, thus, a peer can only make its
decisions based on local information; (2) another
purpose for peers to cache segments in their buffers
is to cope with network jitters, which means peers
must cache certain number of segments continu-
ously ahead of their playback deadlines; as peers
are asynchronous when accessing the media object,
from a global view, their cached segments for net-
work jitters are randomized instead of well orga-
nized to optimize the global segment availability.
In summary, segments are unlikely to be cached
evenly among all the online peers in P2P-based
MoD systems.

On the other hand, we consider the situation that
peers use a simple continuous caching scheme which
is widely engaged in many systems to pre-fetch and
cache the segments. Specifically, we suppose that
each peer caches B segments which are immediately
ahead of its current playback offset. For a particular
segment, the probability that it is cached by one
peer is B

M, and the probability that it is not cached
by any of the total N online peers is P ¼ 1�
ð1� B

M Þ
N . In other words, given the peers’ buffering

space of size B, to achieve a segment availability
among the online peers as P, the required number
of the peers simultaneously online is

N ¼ logð1�B
MÞ
ð1� P Þ ð1Þ

Fig. 2 shows the relationship between the seg-
ment availability P among the online peers and
the required peer number N, according to Eq. (1).
From the figure, it is observed that a lot of peers
are required to be online simultaneously for the sys-
tem to maintain a high segment availability. For
example, when peers have a 4-min buffer and the
media object is two hours long, to have a segment
availability of 0.98, more than 100 peers should be
kept online at any time. Note that under this situa-
tion, the total buffering space on all the online peers
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(more than 400 min) is much larger than the entire
media object, meaning that if there is a practical
evenly caching mechanism, the entire media objects
could be served by the online peers completely.
Moreover, we can see from the figure that when
the target segment availability approaches one, the
number of the online peers required increases rap-
idly to infinity. Obviously for a MoD system, it is
hard to maintain too many peers online for just
one media object, especially when this object is
not very popular. When a segment request can not
be answered by any online peer, the server will have
to take the workload by providing the segment to
the requesting peer. Clearly, under this continuous
caching scheme, a server with limited service capac-
ity is likely to become a bottleneck of the system.

In conclusion, we find that the optimized solution
of evenly caching the segments cannot be practically
implemented in P2P-based MoD systems due to
peers’ asynchronous behaviors and their incapabil-
ity of having a global view; meanwhile, with the
continuous caching scheme, the poor segment avail-
ability of the MoD system caused by the sparsity of
the online peers will make the server a performance
bottleneck, when its service capacity is limited.
Based on this observation, we believe that a caching
mechanism, between the extremes of evenly caching
and continuous caching, which are practical to be
implemented, could improve the system’s segment
availability and relieve the server’s workload, and
eventually improve the MoD system’s performance
effectively.

3.2. The probabilistic caching mechanism

In P2P-based MoD systems, peers cache seg-
ments for two reasons: First, segments which are
immediately before a peer’s playback offset are usu-
ally pre-fetched and cached by the peer to handle
unpredictable network jitters; second, a peer could
use the segments cached in its buffer to serve other
Fig. 3. Demonstration of the pro
peers which are requesting them. And we can see
from Fig. 2 that by only caching enough segments
(e.g. 2 min) for the first usage will cause a poor sys-
tem wide segment availability, and from the discus-
sion in the previous section, we find that it is also
possible for peers to cache segments which are more
than just enough against network jitters. Based on
this observation, we propose a novel probabilistic
caching mechanism for P2P-based MoD systems.
Our simple idea is to let peers request and cache
the segments probabilistically and cooperatively to
improve the system’s service capacity, while keeping
enough segments pre-fetched before their playback
offsets against network jitters. Our proposed cach-
ing mechanism is composed of a probabilistic cach-
ing scheme which determines the amount and the
location of the segments cached, and a segment
requesting and discarding algorithm. We will intro-
duce them separately in the following sections.

3.2.1. The caching scheme

We demonstrate the probabilistic caching scheme
in Fig. 3. In this scheme, we divide a peer’s buffering
space into two parts: a primary buffer with a size of
BP segments and a secondary buffering space with a
size of BS segments. The former is basically designed
for handling network jitters, while the latter helps to
improve the system’s service capacity. Suppose a
peer’s current playback offset is at O, then for its
primary buffer, its range is [O,O + W1), meaning
that the peer pre-fetches and caches the segments
within this range continuously. Obviously, W1 seg-
ments will be cached in the primary buffer and
BP = W1. As the objective for the primary buffer is
to handle the network jitter, its size should be just
enough for this purpose. For the remaining buffer-
ing space, it is allocated in a number of secondary
buffers. We further divide the secondary buffering
space into a series of forward secondary buffers
and a series of backward secondary buffers. Count-
ing from the peer’s playback offset, we call these
babilistic caching scheme.
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buffers as the 1st, 2nd, . . ., forward/backward sec-
ondary buffers respectively. As demonstrated in
Fig. 3, the forward secondary buffer is composed
of the 1st forward secondary buffer caching seg-
ments in the range of [O + W1,O + W1 + W2), the
2nd forward secondary buffer caching segments in
the range of [O + W1 + W2,O + W1 + 2W2), . . .,
etc. For the ith forward secondary buffer with the
range of [O + W1 + (i � 1)W2,O + W1 + iW2), the
peer will cache a portion of qi segments in this
range, here q is a system parameter named caching
ratio with a positive value smaller than one. For the
backward secondary buffer, we have a similar
scheme, in which the peer caches a portion of qi seg-
ments in the range of the (O � iW2,O � (i � 1)W2]
for its ith backward secondary buffer. Note that in
the practical implementation, for the ith forward/
backward secondary buffering range, actually a
number of dqiW2e segments are cached, and the
number of the secondary buffers is constrained by
the total secondary buffering space BS. For the
choice of the secondary buffer length W2, we let
W 2 ¼ dBSð1�qÞ

2q e, so as to make 2
P1

i¼1q
iW 2 � BS.

The number of the secondary buffers n is determined
by the equation of 2

Pn
i¼1dqiW 2e ¼ BS. For example,

suppose the total buffering space is 5 min (300 s),
and each segment is a one-second content. If the pri-
mary buffer has BP = 120 s, secondary buffering
space is BS = 180, and the caching ratio is q = 0.5,
then the specific caching scheme is summarized in
Table 1.

From Table 1, we can see that under the caching
scheme, 45 of 90 segments should be cached in the
first forward/backward secondary buffer; and 23
of 90 segments should be cached for the second for-
ward/backward secondary buffer; and so on. The
total secondary buffering space is used up with six
forward/backward secondary buffers. From this
example we can see that under the probabilistic
caching scheme, although segments of 300 s are
actually cached, a peer’s buffer will cache segments
Table 1
Example caching scheme

Buffer Cached/range

Primary buffer 120/120
First forward/backward secondary buffer 45/90
Second forward/backward secondary buffer 23/90
Third forward/backward secondary buffer 12/90
Fourth forward/backward secondary buffer 6/90
Fifth forward/backward secondary buffer 3/90
Sixth forward/backward secondary buffer 1/90
within a range of 1200 s, and the chance of a seg-
ment being cached is determined by its distance to
the peer’s playback offset. On the other hand, as
the secondary buffering space is limited, a peer will
only have a few forward/backward secondary buf-
fers. Therefore it will only need to be concerned
with the system wide segment caching information
within its caching range, which is usually much
smaller than the entire media object, and could
avoid the communication cost caused by obtaining
the segment caching information on a large caching
range.

3.2.2. Segment requesting and discarding algorithm

With the probabilistic caching scheme, we could
describe the algorithm for peers to request and dis-
card their segments. Our simple idea is that peers
should request the least available segments and dis-
card the most available ones. Before describing the
algorithm formally, we first discuss the relationship
among peers determined by their caching ranges.

In our probabilistic caching scheme, as a peer will
cache the segments in its secondary buffers probabi-
listically, for a forward/backward secondary buffer,
we use W0

2 = n · W2 for the range that the second-
ary buffers cover on the segment index in one direc-
tion. For example, for the caching scheme described
in Table 1, the range for the forward/backward sec-
ondary buffer is 6 · 90 = 540 s, as there are six sec-
ondary buffers and each covers 90 s. For any two
peers, if one peer’s entire caching range is overlap-
ping with another peer’s caching range, then they
are neighbors to each other. Formally, for peer PA

with a playback offset at OA, if peer PB’s playback
offset OB is within the range of (OA �W1 �
2W0

2,OA + W1 + 2W0
2), then PA and PB are neigh-

bors. Note that with this definition, the neighboring
relationship between any two peers is bidirectional.

We assume an efficient index overlay (e.g., Skip
List [13]) is available for peers to discover and main-
tain their neighboring peers, and for each peer, it
manages to keep a set of its neighboring peers in
the set of Neighbor_Set. Note that as all the peers
have the same playback rate, the neighboring rela-
tionship between any two peers will not get changed
unless one of them departs or performs some VCR-
operations such as pause, fast forward, etc. Thus, it
is inexpensive for the index overlay to maintain the
neighboring relationships among the online peers.
For each peer, it obtains its local caching informa-
tion by exchanging gossips periodically with its
neighbors, specifically, it will send a gossip message
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indicating the segments cached in its buffers to all its
neighbors, and will receive the gossip messages from
all its neighbors periodically. For constructing the
gossip message, the bit-map scheme used in CoolS-
treaming [21] or a Bloom filter [24] could be
engaged. After having a complete view on all the
segments cached by its neighbors on its concerned
range, which is the caching range of the primary
buffer plus all the forward/backward secondary buf-
fers, the peer will request and discard segments fol-
lowing the procedure below:

• The peer will request all the missing segments in
its primary buffer from the neighboring peers
which are caching them; if a segment is unavail-
able on the neighbors, it is requested from the
server;

• For the ith forward secondary buffer, if the num-
ber of the actually cached segments are smaller
than the regulated number dqiW2e of the proba-
bilistic caching scheme, the peer will request the
segments which are least cached by its neighbors
from a neighboring peer caching it, until it caches
exactly dqiW2e segments for this forward second-
Segment Requesting and Discarding Algorithm (

1. sends gossips to all the neighboring peers 

2. receives gossips from all the neighboring p

3. for each missing segment s in primary buff

4.   if (s is cached by a neighboring peer PN)

5.     requests s from PN; 

6.   if (s is not cached by any neighboring pe

7.     requests s from server; 

8. for the ith forward secondary buffer 

9.   while (the segment cached < ) an

10.     requests the segment least cached by

11. for the ith backward secondary buffer 

12.   while (the segment cached > )  

13.     discards the segment most cached by 

iW2

iW2

Fig. 4. Segment requesting and discarding algorith
ary buffer; however, if there is not enough seg-
ments to be requested for satisfying the number
of dqiW2e, the peer will not request from the ser-
ver, but will just go to the (i + 1)th forward sec-
ondary buffer;

• For the ith backward secondary buffer, if the
number of the actually cached segments are lar-
ger than the regulated number dqiW2e of the
probabilistic caching scheme, the peer will dis-
card the segments which are most cached by its
neighbors, until it caches exactly dqiW2e seg-
ments for this backward secondary buffer.

Fig. 4 presents the segment requesting and dis-
carding algorithm in pseudo-code.

4. Performance analysis

4.1. Analytical methodology

We extend the analytical model in [1] to study the
performance of the MoD system with our proposed
probabilistic caching mechanism. Especially, we are
interested in the workload imposed on the server of
Neighbor_Set) 

in Neighbor_Set; 

eers in Neighbor_Set; 

er 

er) 

d (segment available to request) 

 all the neighboring peers; 

all the neighboring peers; 

m for the probabilistic caching mechanism.
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the system, as the server is usually the performance
bottleneck of the entire system. The analytical
model is presented in the following.

We consider that under a P2P-based MoD sys-
tem, for a particular random segment x, how fre-
quently it must be served by the server. As in [1],
we use X for the events that x is being requested,
and denote its requesting rate as KX. We use Z for
the events that x is served by the server. Obviously,
{Z} � {X}. We further use a random variable w to
denote the interval length between two consecutive
events in {X}, and use s to denote the average length
of the intervals between two consecutive events in
{Z}. We let E[s|x] be the conditional expectation
of s given x. If a media object contains T segments
as [0, T], then the total workload on the server could
be calculated as

B ¼
Z T

0

dx
E½sjx�

We assume that peers request the media object fol-
lowing a Poisson process with an arrival rate of k,
and for a peer request, on average its session is of
the length S. We further assume that each segment
in the media object is requested with an equal
chance. Then, the arrival rate for the events in
{X} could be expressed as KX ¼ kS

T . With the Pois-
son process assumption, for w, the interval length
between two consecutive events in {X}, its condi-
tional distribution function is

F wðtjxÞ ¼ Prðw 6 tÞ ¼ 1� e�tKx

and its conditional density function is

fwðtjxÞ ¼ Kxe
�tKx

With w’s density function, it is easy to show that for
a particular length W, the length expectation of all
the intervals between two consecutive events in
{X} with their length no longer than W could be ex-
pressed as

Ew6W ðwjxÞ ¼
R W

0
tfwðtjxÞ

Prðw 6 W Þ ð2Þ

and the length expectation for all the intervals long-
er than W could be expressed as

Ew>W ðwjxÞ ¼
R1

W tfwðtjxÞ
Prðw > W Þ ð3Þ

We now consider E[s|x], which is the length expecta-
tion of the intervals between two consecutive events
in {Z}, under the probabilistic caching mechanism.
For the segment x, when it is first requested from
the server, it must be cached in the requesting peer’s
primary buffer, as there is no replica of it among the
online peers. After being cached on the requesting
peer, it will be discarded at some position of the peer’s
backward secondary buffers. If we assume that each
segment is discarded with an equal chance, then it will
be discarded at the 1st backward secondary buffer
with a probability of (1 � q), it will be discarded at
the 2nd backward secondary buffer with a probability
of q(1 � q), . . ., and it will be discarded at the ith
backward secondary buffer with a probability of
qi�1(1 � q). If we assume that a segment is discarded
at the center of a backward secondary buffer, then on
average, the segment will stay in a peer’s backward
secondary buffer for a time of

W 00
2 ¼

X1
i¼1

qi�1ð1� qÞ 2i� 1

2

� �
W 2 ¼

W 2

1� q
� W 2

2

after it is played. Similarly, the time that the seg-
ment will stay in a peer’s forward secondary buffer
is also W00

2, as it could be requested in different for-
ward secondary buffers with different probabilities.

Summarizing all the discussions, we can see that
if x is requested by a peer from the server, on aver-
age it will stay for a time of W1 + W00

2 in the peer’s
buffer, and if it is requested from another online
peer, it will stay for a time of W 1 þ 2W 00

2. If we view
the series of the requests that x is first requested by a
peer from the server, and is passed from the caching
peer to the next requesting peer repeatedly, until the
time that x is lost among all the online peers and
must be served by the server again, as a request
chain. Then, the interval between the first two
requests of the chain should be no longer than
W 1 þ W 00

2, and if the chain is broken immediately
after the first request, the interval between the last
two consecutive requests of the chain should be
longer than W 1 þ W 00

2; while for the case that the
chain is successfully prolonged after the first
request, then the intervals between any two follow-
ing consecutive requests which successfully prolong
the chain should not be longer than W 1 þ 2W 00

2, and
the interval between the last two consecutive
requests should be longer than W 1 þ 2W 00

2 so as to
break the chain. Applying Eqs. (2) and (3), we have

E1 ¼ Ew6W 1þW 00
2
ðwjxÞ ¼

RW 1þW 00
2

0 tfwðtjxÞ
Prðw 6 W 1 þ W 00

2Þ

E2 ¼ Ew>W 1þW 00
2
ðwjxÞ ¼

R1
W 1þW 00

2
tfwðtjxÞ

Prðw > W 1 þ W 00
2Þ
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Fig. 5. Analytical results on server’s workload and with varying
peer arrival rates under different segment caching schemes.
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E3 ¼ Ew6W 1þ2W 00
2
ðwjxÞ ¼

R W 1þ2W 00
2

0 tfwðtjxÞ
Prðw 6 W 1 þ 2W 00

2Þ

E4 ¼ Ew>W 1þ2W 00
2
ðwjxÞ ¼

R1
W 1þ2W 00

2
tfwðtjxÞ

Prðw > W 1 þ 2W 00
2Þ

for the expectations of different intervals’ lengths.
Let P1 = Pr(w 6W1 + W00

2) and P2 = Pr(w 6
W1 + 2W00

2), then we could obtain the length of the
chain, which is also the length expectation of the
intervals between two consecutive requests of x

from the server, E[sjx], as

E½sjx� ¼ ð1� P 1ÞE2 þ P 1

X1
i¼1

P i�1
2 ð1� P 2Þ

� ðE1 þ ði� 1ÞE3 þ E4Þ

and the workload on the server could be expressed
as

BðkÞ ¼
Z T

0

dx
E½sjx� ¼

kS

ekSðW 1þ2W 00
2
Þ=T � ekSW 00

2
=T þ 1

ð4Þ

It is also important to investigate the gossip cost en-
gaged in our probabilistic caching mechanism. As
neighboring peers exchange gossip messages on
their segment caching information with each other
regularly, the cost incurred for a peer should be pro-
portional to the number of its neighboring peers.
According to the neighboring condition, for a peer
with the playback offset O, another peer with its
playback offset in the range of ðO� W 1 � 2W 0

2;Oþ
W 1 þ 2W 0

2Þ will be its neighbor, then there are on
average kð2W 1 þ 4W 0

2ÞS=T neighboring peers for
it. If any two peers exchange gossip messages peri-
odically, then the gossip cost for a peer in the
MoD system with the probabilistic caching mecha-
nism per gossip period is

OðkÞ ¼ kð2W 1 þ 4W 0
2ÞS

T
ð5Þ
Table 2
Parameter values for numerical study

Parameter Value

T 7200
S 1187
q 0.5
W 1;W 2;W 0

2;W
00
2 300, 0, 0, 0 (for scheme 300:0)

240, 30, 150, 45 (for scheme 240:60)
180, 60, 360, 90 (for scheme 180:120)
120, 90, 540, 135 (for scheme 120:180)
60, 120, 840, 180 (for scheme 60:240)
4.2. Analytical results and discussions

We numerically study the MoD system’s perfor-
mance based on the analysis in this section. Fig. 5
presents the server’s workload (in the unit of num-
ber of segments served per second) calculated by
Eq. (4) under different peer arrival rate k (in the unit
of number of peers arrived per second). The media
object has 7200 segments, and for each peer, its
buffer size is 300 segments. If the segment is one
second playable content, then the media object is
two hours long and a peer could cache 5 min of con-
tent in its buffer. We use ‘‘a:b’’ to denote a caching
scheme, in which the size of the primary buffer is a

segments and the total size of all the secondary buf-
fers is b segments. For example ‘‘300:0’’ is the con-
tinuous caching scheme. And for the schemes with
b > 0, we set the caching ratio q as 0.5, then the
scheme denoted as ‘‘120:180’’ is actually the scheme
we have described in Table 1. The average session
length of peers to access the media object is
1187 s. The values of the system parameters are
listed in Table 2.

From the figure we can see that clearly all the
probabilistic caching schemes impose less workload
on the server, and the more buffering space is allo-
cated for the secondary buffers, the less workload
the server will have, and consequently the better sca-
lability could be achieved by the MoD system.
Moreover, it is observed that all the curves have a
peak regarding the server’s workload, and after
the peak, the server’s burden will decrease with the
increasing of the peers’ arriving rate, meaning that
the MoD system starts to scale and benefit from
more users accessing the on-demand media object.
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Fig. 7. Analytical results on server’s workload and with varying
peer arrival rates under different caching ratios.
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We call the arrival rate that the system reaches its
peak as the system’s turning point. From the figure,
we can see that with more buffering space allocated
for the secondary buffers, the MoD system’s turning
point appears at a lower peer arrival rate, meaning
that the system could start to scale at a lower
threshold.

Fig. 6 presents the gossip cost (in the unit of
number of gossip messages per gossip interval, we
assume that the gossip interval is 30 s) engaged by
each peer in different caching schemes according
to Eq. (5). Note that even under the continuous
caching scheme of ‘‘300:0’’, there is still some gossip
cost, as peers need to know the segments which are
actually cached instead of supposed to be cached on
their neighboring peers. Together with Fig. 5, we
can see that to achieve a better scalability, i.e., less
workload imposed on the server, the peers in the
MoD system must maintain and communicate with
more neighboring peers, at a higher gossip cost.
Moreover, the analytical results in Figs. 5 and 6
show that by caching segments probabilistically,
we provide a means to tradeoff the system’s perfor-
mance with the peers’ gossip cost in designing P2P-
based MoD systems.

Besides varying the buffering space partition
‘‘a:b’’, another tunable parameter in the probabilis-
tic caching mechanism is the caching ratio q, which
determines the portions of the segments cached in
the secondary buffering ranges. In the following
study, we consider the caching schemes with a fixed
buffering space partition of ‘‘180:120’’, but with dif-
ferent values of q as 0.2, 0.5 and 0.8. The workload
imposed on the server and the gossip cost for each
peer are presented in Figs. 7 and 8 respectively.
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Fig. 6. Gossip cost per peer with varying peer arrival rates under
different segment caching schemes.
From the figures we can see that with a smaller
value of q, a better scalability could be achieved at
the price of a larger gossip cost, as the peers under
the probabilistic caching mechanism have a rela-
tively larger buffering range on the segment index
by having more secondary buffers; while with a lar-
ger valued q, the system works with a smaller peer
gossip cost but imposing heavier workload on the
server, for the reason that the peers cache the seg-
ments on a relatively smaller buffering range. For
example, when q = 0.2, there are as many as 46 for-
ward/backward secondary buffers on each direction;
and with q = 0.8, each peer has only one forward
secondary buffer and one backward secondary buf-
fer. To avoid complexity, in this paper we fix the
value of q as 0.5, and make the buffering space par-
tition ‘‘a:b’’ as the only means to trade off the service
capacity with the gossip cost in a P2P-based MoD
system.
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5. Performance evaluation

In this section, we use simulation-based experi-
ments to evaluate the proposed probabilistic cach-
ing mechanism for P2P-based MoD systems. A
time-driven simulator is developed for this purpose.
The simulator operates in discrete intervals of time,
where each interval is of the length equal to the time
that one segment is played. We call the intervals the
simulation seconds (referred to seconds for brief-
ness). In our experiments, the media object served
by the MoD system is CBR-encoded, and is of the
length equal to 7200 s (i.e., 7200 segments). We
allow each peer to have a buffering space of 300 s
(i.e., 300 segments). In our simulator, a peer will
try to play the segment at its individual playback
offset in each second, if the segment is missing, a
segment loss event is recorded for this peer, and
the peer will play the next segment in the next sec-
ond. Every 30 s, a peer will gossip with its neighbor-
ing peers, and requests/discards the segments
following the algorithm presented in Fig. 4.

For the peers’ behaviors, we assume that peers
enter the MoD system and access the media object
following a Poisson process, and their beginning off-
sets are uniformly randomized between 0 and 7200
on the segment index. For the lengths of the ses-
sions, we assume that each peer will access the
media object for a random period of time, and the
session lengths follow a Pareto distribution reported
in [15]. We generate a synthetic trace for the events
of peer joinings and departures under the assumed
models, and use the trace as the input to the simula-
tor. The average session length for a peer to access
the media derived from the trace is approximately
1187 s. We do not explicitly simulate the VCR
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Fig. 9. Simulation results on server’s workload with varying pe
jumps as it could be viewed as a departure followed
by a rejoining of the peer. Finally, as mentioned in
previous sections, we assume an efficient index over-
lay (e.g., Skip List [13]) is available for peers to dis-
cover and maintain their neighboring peers.
5.1. Experimental results

Fig. 9a presents the workload of the server for
the simulated MoD system with different caching
schemes engaged and under varying peer arrival
rates. We also use the denotation of ‘‘a:b’’ for differ-
ent caching schemes as in the previous section. It
could be observed that the simulated results in the
figure has the same trends with the analytical results
in Fig. 5, with the following features: (1) The prob-
abilistic caching schemes impose less workload on
the server, and the more buffering space is allocated
for the secondary buffers, the less workload the ser-
ver will have; (2) with more buffering space allo-
cated for the secondary buffers, the MoD system’s
turning point appears at a lower peer arrival rate.
However, we find that the simulation results in
Fig. 9a are obviously better than the analytical ones
in Fig. 5, with less workload on the server observed.
We believe this could be explained as in our analy-
sis, we do not consider the fact that peers tend to
request the least available segments and discard
the most available ones, but simply assume that
all the segments are cached with an equal chance.
To validate our point, we run the simulation again
under the same settings, but this time the peers
request and discard segments just randomly. The
experimental outputs are plotted in Fig. 9b. From
the figure, we can see that the benefits brought by
simply expanding peers’ caching range are very lim-
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er arrival rates under different segment caching schemes.
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Fig. 11. Segment missing ratio with varying server’s capacities
under different segment caching schemes.
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ited, while the algorithm of requesting/discarding
the least/most available segments is essential in
our caching mechanism for P2P-Based MoD
systems.

Fig. 10 presents the numbers of the gossip mes-
sages a peer sends out per 30 s with different caching
schemes. We can see that the simulation results on
the gossip cost are very close to the analytical results
in Fig. 6. In conclusion, we have verified our analy-
sis in the previous section and have illustrated
improved performance regarding the server’s work-
load and the system’s scalability, and we have also
demonstrated the inherent tradeoff between the sys-
tem’s performance and the peers’ gossip cost via
simulation.

In previous experiments we assume that the
capacity of the server in the MoD system is unlim-
ited, however, usually a MoD server could only
serve a limited number of requests simultaneously.
In this experiment, we investigate the quality of
the service received by peers when the server’s
capacity is limited in the simulated MoD system.
We assume that a server could only upload a limited
number of segments per second, and measure the
segment missing ratio, which is defined as the ratio
of the segments which are missed on their playback
deadlines, compared with all the segments
requested. As we let the peers’ uploading/download-
ing capacities to be unlimited in the system, the only
reason that a segment is missed lies in the fact that it
is not cached among the online peers, and the server
is not able to serve it as its service capacity is ful-
filled. Fig. 11 presents the segment missing ratios
of the peers in the MoD system under different cach-
ing schemes with varying capacities of the server,
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Fig. 10. Simulation results on gossip cost per peer with varying
peer arrival rates under different segment caching schemes.
which is denoted as the number of the segments it
could upload per second. The peers’ arrival rate is
fixed as 0.03 s�1. It is observed from the figure that
a considerable portion of the segments requested are
missing due to the very limited service capacity of
the server, but with the increase of the server’s
capacity, the missing ratio decreases rapidly under
any caching scheme. Moreover, we find that for
the caching schemes allocating some buffering space
for probabilistic caching, the segment missing ratios
are lower than the continuous scheme of ‘‘300:0’’,
and the more space is allocated for probabilistic
caching, the lower segment missing ratio could be
achieved.

Our last experiment focuses on the performance
of the simulated MoD system when the underlying
network is lossy. As we have discussed before, con-
tinuously pre-fetching and caching segments before
a peer’s playback offset is an effective way to handle
unpredictable network jitters, thus the ‘‘300:0’’
scheme using all the buffering space as the primary
buffer is expected to have a better performance than
the schemes with secondary buffers and caching seg-
ments probabilistically. On the other hand, by cach-
ing segments in the forward secondary buffers, a
peer is allowed to request segments with an increas-
ing probability from the furthest forward secondary
buffer to its primary buffer, and has relatively more
chances to request one segment if it is lost in the pre-
vious downloading. In this way, probabilistic cach-
ing schemes should perform better than a
continuous one under lossy network environments.
To study how the two different factors influence
the MoD system, in our experiment, we deploy
the MoD system on a simulated network topology
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created by the GT-ITM transit-stub model [25]. We
deploy the server and all the peers on stub domains,
and vary the loss rate of the links to simulate a lossy
network environment. We present the results in
Fig. 12. It is interesting to see from the figure that
the continuous caching scheme behaves differently
compared to the probabilistic schemes: when the
link loss rate is low, the continuous scheme outper-
forms all the probabilistic schemes, but it has a
higher segment missing ratio than the probabilistic
caching schemes when the loss rate is high enough.
Our observation indicates that when the network
is not very lossy, the continuous scheme is better
regarding the segment missing ratio due to its larger
primary buffer, but when the link loss rate is high
enough to overwhelm the benefit caused by pre-
fetching in the primary buffer, some probabilistic
schemes perform better because peers have more
chances to download a segment which was unsuc-
cessful in its previous request. Moreover, we can
find that there is no obvious performance gap
between the ‘‘300:0’’ scheme and the ‘‘240:60’’ or
the ‘‘180:120’’ schemes even under low link loss
rates, indicating that by engaging a probabilistic
caching scheme with a proper buffering space parti-
tion, there is just trivial performance degradation
regarding the segment missing ratio under lossy net-
work environments for P2P-based MoD systems.

5.2. Discussions

The experimental results indicate that our
proposed caching mechanism for P2P-based MoD
systems could reduce the server’s workload, thus
improving the system scalability greatly, at the cost
of the gossip communication among the peers.
However, we believe that the gossiping cost is trivial
for the following reasons: (1) a peer only exchanges
gossip messages with its neighboring peers, which is
much fewer than the total online peers; (2) a gossip
message is much smaller in size compared with a
media segment, and for the secondary buffers, delay
is tolerable as the segments requested in them are
not very urgent. For example, suppose we use one
bit for the existence of a segment in a peer’s buffer,
then under our simulation setting, the gossip mes-
sage could be as small as 300 bits, which is sent
out every 30 s.

Another related issue is the selfish behaviors
under the P2P-based MoD applications: a selfish
peer may avoid uploading the cached media data
by declaring in its gossip messages with very few
segments cached. However, it is easy to detect those
peers which are frequently declaring obviously
fewer segments than they are supposed to cache
according to the caching scheme, and other peers
may choose not to upload to these selfish lying peers
any more. Another possible selfish behavior is that a
selfish peer simply does not upload the requested
segments, although it has declared to hold them in
its gossip message. To combat this behavior, we
propose that a peer will keep a record of the success-
ful/failed segment requests for each of its neighbor-
ing peers. If the ratio between the two numbers for a
neighboring peer is lower than a threshold, this
neighboring peer may be believed as selfish and
other peers may choose not to upload segments to
it any more.

6. Conclusion and future work

Peer-assisted application-level overlay is a prom-
ising direction to deploy the interactive on-demand
media services on the Internet. However, the scala-
bility of the P2P-based MoD systems are usually
constrained by the bottleneck on the server, due to
the asynchronism and the sparsity of the online
peers accessing the same media object. To improve
the system’s scalability, we propose a novel probabi-
listic caching mechanism for MoD systems on P2P
networks in this paper. We show via theoretical
analysis as well as experimental studies that without
enlarging the buffering space on clients, the MoD
system with our proposed caching mechanism
imposes less workload on the server, thus having a
better scalability compared with the system engag-
ing the conventional continuous caching mecha-
nism. Moreover, by adjusting the buffering space
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partition, we provide means for people to tradeoff
the scalability of the system with the peers’ gossip
cost, thus making the mechanism flexible under var-
ious application contexts. We also show that by
engaging our proposed caching mechanism, a
higher quality of service could be conceived by peers
when the server’s capacity is limited, and our pro-
posed caching mechanism will not degrade the ser-
vice quality under lossy network environments.

For future work, as we have discussed in Section
5.2, a mechanism is necessary to be integrated into
the P2P-based MoD systems against selfish peers.
Furthermore, our proposed probabilistic caching
mechanism could be improved from the following
aspects: First, recall that when the server’s service
capacity is limited, usually it is not able to upload
all the segments requested by the peers, thus it is nec-
essary for the server to have a scheduling mechanism
for determining which request should be responded
with priority. Generally speaking, the server should
upload the segments which are likely to be for-
warded among the peers for the most times, in order
to lower the server’s workload. Another direction is
to investigate the feasibility of incorporating the net-
work coding technique with our caching mechanism.
Although with network coding, higher throughput is
expected, other issues arise, such as the segment
deadline problem and the malicious block problem
addressed in [8,18] respectively. Finally, we plan to
validate the proposed probabilistic caching mecha-
nism under real-world deployments.
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