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On the Efficiency of Sequential Auctions for Spectrum Sharing

Junjik Bae, Eyal Beigman, Randall Berry, Michael L. Honig, and Rakesh Vohra

Abstract— In previous work we have studied the use of
sequential second price auctions for sharing a wireless resource,
such as bandwidth or power. The resource is assumed to
be managed by a spectrum broker (auctioneer), who collects
bids and allocates discrete units of the resource. It is well
known that a second price auction for a single indivisible
good has an efficient dominant strategy equilibrium; this is
no longer the case when multiple units of a homogeneous good
are sold in repeated iterations. Previous work attempted to
bound this inefficiency loss for two users with non-increasing
marginal valuations and full information. This work was based
on studying a setting in which one agent’s valuation for each
resource unit is strictly larger than any of the other agent’s
valuations and assuming a certain property of the price paid by
such a dominant user in any sub-game. Using this assumption
it was shown that the worst-case efficiency loss was no more
than e−1. However, here we show that this assumption is not
satisfied for all non-increasing marginals with this dominance
property. In spite of this, we show that it is always true for the
worst-case marginals for any number of goods and so the worst-
case efficiency loss for any non-increasing marginal valuations
is still bounded by e−1.

I. INTRODUCTION

It is becoming widely accepted that the current mecha-
nisms for allocating wireless spectrum are not agile enough
to efficiently exploit this resource. This has led to interest in
a variety of different dynamic spectrum sharing approaches.
One such approach is for a spectrum manager or broker to
dynamically lease spectrum to secondary users for relatively
short time periods. For example, in [1], [5], [6] various
models with such a spectrum manager are described (see also
[2]–[4] for more general discussions of secondary spectrum
markets).

One natural approach for allocating spectrum to secondary
users is to use an auction mechanism. Numerous auction
mechanisms have been studied in the literature. Of these the
Vickrey-Clarke-Groves (VCG) mechanism is a well known
to yield the efficient outcome.1 However, there are pragmatic
reasons to prefer alternative mechanisms over VCG. In [1]
one such mechanism was considered for allocating spectrum,
namely a sequential second price auction. In this mechanism,
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1For a given auction mechanism, the bidders can be viewed as playing
a game, in which their actions are their bids. The auction is efficient if the
equilibrium of this game maximizes the total utility of the agents.

the resource is divided into discrete units and each resource
unit is auctioned off sequentially according to a second-
price auction. Namely, each unit is allocated to the highest
bidder, who pays the second-highest bid. In [1] such auctions
were studied for allocating either the power of a particular
secondary user or the total bandwidth available to all sec-
ondary users. Here, we further consider this mechanism in
the context of a bandwidth auction.

Sequential auctions have been used in many applications
(e.g., see [7]–[10]) since they require relatively little com-
putation and information exchange among the agents and
the broker, compared with other mechanisms. In addition,
sequential auctions easily accommodate scenarios in which
agents enter and leave the market at arbitrary times, and
allow the broker to allocate resources incrementally. How-
ever, it is well known that sequential auctions do not always
achieve an efficient allocation [9]. In work such as [9]–[17]
this efficiency loss has been studied for models in which
valuations are private information. Since the assumption of
private information so complicates the analysis, these papers
restrict attention to the case of bidders with unit demands
and in some cases, to just two bidders.

In the present paper we will instead consider a model as
in [1] in which bidders may have multi-unit demands but for
tractability assume full information. Abstracting away from
private information also allows us to focus on the strategic
implications of bidding in sequential auctions. 2 For such
a model in [1], it was shown that for two users and an
arbitrary number of resource units, the sequential second
price auction always has a unique equilibrium3 allocation.
Following [1], our focus is on characterizing the efficiency
loss of this equilibrium for the two users and an arbitrary
number of goods, when each agent has a concave utility for
the spectrum resource. In [1] it was argued that this efficiency
loss was at most 1

e . This argument was based on studying
a setting in which one user was dominant, meaning that the
user’s valuation for each resource unit was greater than the
other user’s valuation for any unit. It was assumed that in
the equilibrium of the sequential auction in which such a
dominant user received l units, she would pay for each unit
an amount equal to the other agent’s marginal valuation for
the (n−l+1)-th unit, and moreover, that the equilibrium was
given by the allocation that maximized her pay-off subject to
this payment property. However, as we will show, neither part
of this assumption need be true for every dominant utility
profile and so the proof in [1] does not apply to all decreasing

2Similar assumptions are made in [18], [19].
3See Section II for a precise definition of the equilibrium concept we use.
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marginal valuations. In spite of this, we will show that this
property does apply for the worst-case marginal valuations
and that indeed the worst-case efficiency loss is at most 1

e .

II. MODEL

We consider a model as in the bandwidth auction studied
in [1]. There are n resource units to be allocated among
k = 2 agents via a sequential second-price auction. In this
auction, the units are allocated sequentially in n rounds. In
round m ≤ n, each agent submits a bid for the mth unit. The
auctioneer allocates this unit to the agent with the largest bid
and charges that agent the second largest bid.

This mechanism can be viewed as an extensive form game
with a balanced binary game tree. Each decision node in
the game tree designates a state of the world, where a
certain quantity of goods (resource units) are allocated to
the two agents. Let s = (s1, s2) denote such an allocation.
Since the goods are homogeneous, the decision nodes with
the same allocation can be unified and the game tree can
be replaced with a directed graph G = (V,E), where
V = {s ∈ [1, . . . , n]2|s1 + s2 ≤ n} (see Fig. 1). A node
s ∈ V represents the outcome of the (s1 + s2)-th round, in
which agent i has been allocated si. For s1 + s2 < n, each
node s has directed edges to the two children (s1 + 1, s2)
(corresponding to agent 1 winning the current round) and
(s1, s2 +1) (corresponding to agent 2 winning). The auction
begins at the root node (0, 0).

Let uij denote the marginal valuation of agent i for the
jth unit. We assume that both agents have non-increasing
marginal valuations so that ui1 ≥ ui2 ≥ · · · ≥ uin. Agent i’s
total valuation for receiving si units is therefore

∑si

j=1 u
i
j .

Let H designate the set of observable bidding histories. A
strategy σi : V ×H → R+ is a function mapping states of the
allocation and observable histories to bids. The strategy set of
an agent is the set of all such functions. The outcome path of
a strategy profile {σ1, σ2} is a directed path δ = {s1, . . . , sn}
in G such that if st+1

i = sti + 1 and st+1
j = stj for j 6= i

then σi(st,Γt) ≥ σj(st,Γt), for all j 6= i, where Γt is the
bidding history of the first t units.4 The total payment of
agent i along the path δ is Pi(δ) =

∑n
t=1 pi(s

t), where for
each st ∈ δ, pi(st) = σj(st,Γt), j 6= i, if st+1

i = sti + 1 and
pi(st) = 0, otherwise.

Here we focus on sophisticated bidding strategies in which
an agent maximizes her payoff over final outcomes. The
ability to make inferences on the final outcome requires
that the agent be sufficiently informed about the preferences
and strategies of the other agent. Here, we assume full
information, i.e., each agent knows the number of units being
sold, bidding histories, and the valuations of the other agent.
A similar analysis could be made for the case where the
agent is Bayesian and knows the distribution of the other
agent’s marginal values.

4In the case of ties, any tie-breaking rule that allocates the good to one
of the agents can be used.

III. ANALYSIS

First we review the analysis in [1] regarding the outcome
of the preceding auction for two agents with sophisticated
bidding and full information. Since all agents know when the
last unit is being sold, regardless of the bidding history, the
last round of the auction is a standard second-price auction
for the n-th good. (The values for this good will, of course,
depend on the outcomes of the previous rounds). Hence it is a
weakly dominant strategy for the agents to bid their marginal
values on the last round.5 Since those values are common
knowledge, all agents know beforehand the allocation and
payments in the last round. Thus, we can think of the
penultimate round as an auction over the right to participate
in one of two auctions in the last round. Since the payoffs
of each one of those auctions is common knowledge, we
can think of the penultimate round as a second-price auction
with valuation equal to payoff difference between those two
auctions. It is therefore a weakly dominant strategy in the
penultimate round to bid the payoff difference associated
with the outcomes of the two auctions in the last round.

We can proceed in this way inductively until we reach
the root. This shows that sophisticated bidding is the only
strategy that survives iterative elimination of weakly domi-
nated strategies.6 This does not rule out other equilibria and
in fact there may exist other Nash equilibria with higher
payoffs for both agents (if, for example, they conspire against
the seller). However, those equilibria must rely on unreliable
threats and commitments. We eliminate those equilibria from
consideration by focusing on subgame perfect equilibria
that survive the iterative elimination of weakly dominated
strategies.7 This discussion is summarized in the following
theorem.

Theorem 1: With two fully informed agents, the sophisti-
cated bidding equilibrium is the only subgame perfect equi-
libria that survives iterative elimination of weakly dominated
strategies.

We define the equilibrium path to be the outcome path
when both agents use a sophisticated bidding strategy, and
the sequential allocation to be the allocation at the terminal
node of the equilibrium path. From the previous discussion
if all agents apply a sophisticated bidding strategy, then all
equilibria have the same equilibrium path, and the same
(unique) sequential allocation.

Example 1: Consider a sequential auction with n = 2
units. Figure 1 (c) shows the directed graph G with each node
labeled by the allocation (s1, s2). Assume that u1

1 = u1
2 = 5,

u2
1 = 4 and u2

2 = 1. Since agent 1 values each unit more
than agent 2 values any unit, the efficient allocation is to
give both units to agent 1.

Now let us examine sophisticated bidding for this example.

5A strategy is weakly dominant for an agent if no other strategy gives
that agent a larger pay-off, for any choice of strategies for the other agents.

6In other words all strategies which are weakly dominated are removed
from consideration [20].

7A subgame perfect equilibrium is a refinement of the concept of Nash
equilibrium with the restriction that agents cannot make non-credible threats
[20].
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Fig. 1. Example of the sequential auction with k = 2 agents and n = 2
resource units. (a) and (b) show the valuations of each node and (c) shows
the equilibrium path.

Assume that the game reaches node v = (1, 0), so that the
agents bid for the one remaining unit, given that the first
unit has gone to agent 1. (See Fig. 1 (a).) In this stage it
is weakly dominate for the agents to bid their valuations,
i.e., agent 1 bids u1

2 = 5 and agent 2 bids u2
1 = 4. The

auctioneer then allocates the unit to agent 1 and charges her
a price of 4. Hence the value of node v = (1, 0) to agent 1 is
u1

1 + (u1
2−u2

1) = 6, where u1
1 is the value from winning the

first unit and u1
2 − u2

1 is the surplus for winning the second
unit. The value of v = (1, 0) to agent 2 is 0. Similarly,
the value of v = (0, 1) is 4 to either agent. Given these
values, the agents can optimize their bids for the first unit.
In particular, agent 1 bids her marginal valuation, which is
6− 4 = 2, and agent 2 bids 4− 0 = 4. It follows that agent
2 wins the first unit and pays 2. Therefore the equilibrium
path is δ = {(0, 0), (0, 1), (1, 1)}, i.e., each user receives one
unit. Note that δ does not terminate in an efficient allocation.
In what follows, we characterize the efficiency loss of this
equilibrium.

A. Worst-case efficiency loss

Given n resource units and two agents, let (l, n−l) denote
the efficient allocation, and (l′, n− l′) denote the sequential
allocation. The worst-case efficiency is defined by

η(n) = min
{u1

i },{u2
i }∈U

∑l′

i=1 u
1
i +

∑n−l′
i=1 u2

i∑l
i=1 u

1
i +

∑n−l
i=1 u

2
i

.

That is, the worst-case is with respect to the marginal values
in some admissible set U .8 We refer to 1−η(n) as the worst-
case efficiency loss. Our main result given in the following
theorem is to characterize this worst-case loss when U is the
set of all non-increasing marginal valuations.

Theorem 2: In a two-agent sequential second-price auc-
tion with non-increasing marginal values η(n) ≥ 1− e−1.

In other words, the worst case efficiency loss is bounded
by e−1. Moreover, it can be shown that η(n) decreases with
n, and the bound 1− e−1 is asymptotically tight as n→∞.

8The quantity 1/η(n) is similar to the “price of anarchy” as in [18], [19],
except that we are using a stricter equilibria concept here.

1) Dominant Utility Profiles: An attempt to prove Theo-
rem 2 was given in [1] that was based on studying the family
of utility functions defined next.

Definition 1: Agent 1’s utilities are dominant if u1
1 ≥

. . . ≥ u1
n ≥ u2

1 ≥ . . . ≥ u2
n. We will also refer to this as a

dominant utility profile. Agent 1’s utilities are flat dominant
if u1

1 = . . . = u1
n ≥ u2

1 ≥ . . . ≥ u2
n.

The efficient allocation for a dominant utility profile is
to assign all units to agent 1. In the sequential allocation,
however, agent 2 may receive up to n− 1 units (e.g. this is
the case in Example 1).

In [1], it was (incorrectly) argued that for agents with a
dominant utility profile the following properties are always
true:

Property D1: In the sequential allocation (s, t) agent 1
pays u2

n−s+1 for each unit she receives.
Property D2: The sequential allocation (s, t) satisfies

s = arg max
s̃≤n

s̃∑
i=1

(u1
i − u2

n−s̃+1). (1)

Note that with a dominant utility profile, agent 1 will
always win at least the last unit and thus in Property D1,
s ≥ 1. Property D2 states that in the sequential allocation,
agent 1 receives the maximum pay-off she could over all
allocations if her pay-offs were subject to satisfying Property
D1. Hence, we refer to an allocation that satisfies (1) as the
dominant user optimal allocation.

Referring to Example 1, note that the agents have a
dominant utility profile and in the sequential allocation, agent
1’s payment satisfies the Property D1. Moreover, it can easily
be seen that this is also the dominant user optimal allocation
(i.e., it satisfies D2).

In [1], assuming both of these properties the worst-case
efficiency for an auction with n goods and a flat dominant
profile was characterized. Furthermore it was argued that
the worst-case efficiency over all (non-increasing) valuations
for a given number of goods is always achieved by a flat
dominant profile. Combining all of these observations, it
was argued that η(n) → 1 − e−1 as the number of goods
increases. Furthermore, in [1] flat dominant utility profiles
which asymptotically achieve this bound were constructed.
These profiles all satisfy both Properties D1 and D2. How-
ever, as the next example illustrates, Properties D1 and D2
need not hold for all flat dominant profiles.

Example 2: Consider an auction with n = 3 goods and
k = 2 agents. Suppose that the agents have the following
flat dominant utility profiles: u1

1 = u1
2 = u1

3 = 1, u2
1 = u2

2 =
2/3−ε and u2

3 = 0. In other words, agent 1 values each unit
at 1 while agent 2 only values the first two units at 2/3− ε
each, where ε is some small number. It can be shown that
for this example the sequential allocation is to give 1 unit
to agent 1 and two units to agent 2. However, the dominant
user optimal allocation is for agent 1 to receive all three
units. The problem here is that at the first stage, if agent 2
wins, she will also win at the next stage, while if she loses
she will not win anything. Hence her bid at the first stage is



1−3ε, which for small enough ε is larger than her valuation
for the first good (2/3− ε). Thus to win, user 1 would have
to bid at a larger value than that predicted by Property D1.

In this example, user 1’s payment for the good she
receives in the sequential allocation does satisfy Property
D1, however if we instead changed user 2’s utility profile
to be u2

1 = u2
2 = 1/2 + ε and u2

3 = 0, then the sequential
allocation becomes (3, 1) but user 1 will pay 1/2 + 3ε for
the first unit she receives, which does not satisfy Property
D2.

Because of this example, it follows that the proof in [1]
does not apply to all flat dominant utility profiles and so the
worst-case efficiency bound given there may also not apply.

2) A Second Try: We denote the worst-case efficiency
by η′(n) in an auction with n goods when the agents are
constrained to having a flat dominant utility profile. As in
[1] we will again first bound the efficiency loss assuming
that the utility functions are in this class and then argue that
this class also gives the worst-case efficiency over all possible
valuations.

To begin we first explicitly derive η′(n) for n = 2 goods
in the following example.

Example 3: As in Example 1 consider an auction with
n = 2 goods and k = 2 agents with a flat dominant utility
profile. Without loss of generality, we assume u1

1 = u1
2 = 1

for agent 1 and u2
1 = b1, u

2
2 = b2 for agent 2. Note that 1 ≥

b1 ≥ b2 with a flat dominant utility profile. Using backward
induction as in Example 1, the value of node v = (1, 0)
is [2 − b1, 0]. Similarly, the value of node v = (0, 1) is
[1 − b2, b1]. Given these values, agent 1’s bid for the first
unit is (2−b1)− (1−b2) = 1−b1 +b2 and agent 2’s bid for
the first unit is b1. If 1− b1 + b2 > b1, then agent 1 wins the
first unit and pays b1. In this case, the sequential allocation
is (2, 0) and there is no efficiency loss. On the other hand, if
1− b1 + b2 < b1, the sequential auction reaches the terminal
node (1, 1) and the efficiency of the auction becomes 1+b1

1+1 .
From the set of constraints{

1 > b1 > b2
1− b1 + b2 < b1

(2)

to have the equilibrium path δ = {(0, 0), (0, 1), (1, 1)}, it
can be shown that the worst-case efficiency in this case
occurs when b1 = 1/2 + ε and b2 = 0, and so η′(2) =
limε→0

1+b1
2 = 3/4. Interestingly, with the worst-case utility

profile Properties D1 and D2 hold, and indeed 3/4 is the
same as the worst-case efficiency given in [1] for n = 2
goods.

Directly generalizing the approach in Example 3 to an
arbitrary number of goods is complex due to the increase
in the number of constraints that must be accounted for.
To simplify this we first further restrict the class of flat
dominant utility profiles to a class that supports subgame
perfect equilibrium paths along which agent 2 consumes the
first n− j units and agent 1 consumes the remaining j units
in that order. Later, we show that these profiles give the
worst-case efficiency among all flat dominant utility profile.

Definition 2: A node in an equilibrium path is a “kink” if
immediately prior to that node (on the equilibrium path) one
agent wins and immediately following the other agent wins.

Definition 3: A profile of marginal utilities is said to have
the subgame kink property if (1) each path that corresponds
to a subgame perfect equilibrium of the entire game has at
most one kink, and (2) each path that corresponds to an
equilibrium path for a subgame starting at any node not on
a path in (1) has zero kinks.

Definition 4: The subgame perfect equilibrium is called a
subgame kink when the profile of marginal utilities has the
subgame kink property.

Note that if a flat dominant utility has the subgame kink
property is must be that in equilibrium agent 2 consumes
the first n− j units (for some j < n) and agent 1 consumes
the remaining j units. Additionally, the resulting allocation
will satisfy Property D1. The following lemma shows that
for any j ≥ 1, we can find a flat dominant utility profile with
the subgame kink property that results in that allocation.

Lemma 3: For any allocation (j, n−j) in a n-unit auction
with j ≥ 1, there is a flat dominant utility profile with the
subgame kink property for which (j, n− j) is the sequential
allocation.

Proof: The following profile of marginal utilities has
the subgame kink property with the sequential allocation
(j, n− j): u1

1 = · · · = u1
n = 1 for agent 1 and{

u2
i = 1− j

n−i+1 + εi, i = 1, · · · , n− j,
u2
i = 0, i = n− j + 1, · · · , n, (3)

for agent 2. Note that εi → 0+ for all i. Backward induction
verifies that this results in a subgame kink.

Note that when εi → 0 with these marginal utilities, all
subgame kinks with the sequential allocations (i, n− i) for
i = j, · · · , n can be supported in equilibrium with the values
of the root node [j, 0]. In addition, the following relations
among the marginal utilities of agent 2 hold

n− n · u2
1 = (n− 1)− (n− 1) · u2

2

...

= (j + 1)− (j + 1) · u2
n−j

= j.

(4)

Essentially this shows that Property D2 holds for these
marginals.

Lemma 4: For n = 2, the worst-case efficiency among
the flat dominant utility profiles is achieved by one with the
subgame kink property.

Proof: We have shown in Example 3 that the worst-
case efficiency with n = 2 is given by a flat dominant utility
profile with u1

1 = u1
2 = 1, u2

1 = 1/2 and u2
2 = 0 and this

profile induces a subgame kink.
For given b ≤ 1, let h′′(n, b) be the worst-case efficiency

in a n-unit auction among all flat dominant utility profiles
with the subgame kink property and for which b1 ≤ b (i.e.,
agent 2’s marginal utility for the first unit is no greater than
b). For example, for n = 2, if b < 1

2 , then h′′(2, b) = 1,



while for b ≥ 1
2 , h′′(2, b) = 3/4. Note that the first case is

achieved when agent 2 has marginal utilities b1 = b2 = 0,
which correspond to the profile in Lemma 3 for j = 2; the
second case is achieved by the marginal utilities b1 = 1

2 and
b2 = 0 (Lemma 3 with j = 1).

Lemma 5: For all n, h′′(n, b) is achieved by one of the
profiles in Lemma 3.

Proof: This is proved by induction on n. We have
already shown that this is true for n = 2. Assume it is
true for n − 1 and consider the worst-case efficiency of a
subgame kink for n units. If the first unit goes to agent 1,
we are done since the only subgame kink is then for agent 1
to win everything, which corresponds to the marginal utilities
in Lemma 3 for j = n.

If the first unit goes to agent 2 with a marginal utility
of b1 < b, then the worst-case efficiency on the subtree
from the node (0, 1) must be given by h′′(n − 1, b1). By
the induction hypothesis this is achieved on the subtree by
a set of marginal utilities b2, b3, . . . , bn given by Lemma 3
for some j. Furthermore, the worst-case efficiency is (b1 +
(n− 1) · h′′(n− 1, b1))/n.

If b2, . . . , bn satisfy Lemma 3 for some j and n−1 units,
then, in particular, b2 = 1 − j

n−1 . At the root node of the
n-unit auction, for agent 2 to win the first unit in a subgame
kink, it must be that 1− (n− 1) · b1 + (n− 1) · b2 < b2, or

n · (1− b1) < (n− 1) · (1− b2). (5)

By combining this inequality with b2 = 1 − j
n−1 , it can

be seen that in the worst-case efficiency it should be that
b1 = 1 − j

n , which corresponds to one of the profiles in
Lemma 3.

Lemma 6: For all n and b ≤ 1,

1 + (n− 1)h′′(n− 1, b)
n

≥ h′′(n, b). (6)

Proof: Suppose h′′(n − 1, b) is achieved when agent
1 receives j units. From Lemma 5, it follows that this is
achieved by one of the profiles in Lemma 3 and so 1− j

n−1 <
b.

Consider the marginal utilities from Lemma 3 for n units
where agent 1 receives j + 1 units and note that

1− j + 1
n

< 1− j

n− 1

so that this marginal will satisfy b1 < b. Let h̃(n, b) denote
the efficiency achieved with these marginal utilities. It can
be seen that

n− n · h̃(n, b) =
n−(j+1)∑
i=1

j + 1
n− i+ 1

≥
(n−1)−j∑
i=1

j

(n− 1)− i+ 1

= (n− 1)− (n− 1) · h′′(n− 1, b),

or
1 + (n− 1) · h′′

n
≥ h̃(n, b) ≥ h′′(n, b).

The bound then follows from noting that h′′(n, b) must be
no greater than h̃(n, b).

Corollary 7: Amongst all the flat dominant profiles with
the subgame kink property, the worst-case efficiency is
h′′(n, 1), where h′′(n, 1) can be obtained explicitly from
Lemma 3 and is given by

η′′(n) ≡ h′′(n, 1) = min
j∈[1,··· ,n]

1− j

n

n−1∑
i=j

1
i+ 1

 . (7)

Now we are ready to prove the worst-case efficiency of
the sequential auction with a flat dominant utility profile.
For given b ≤ 1, let h′(n, b) be the worst-case efficiency in
a n-unit auction among all flat dominant profiles for which
b1 ≤ b. Note that η′(n) = h′(n, 1).

Theorem 8: For all n, h′(n, b) is achieved by one of the
profiles in Lemma 3, i.e., h′(n, b) = h′′(n, b). Especially
when b = 1, then η′(n) = η′′(n).

Proof: We prove this by induction on n. From
Lemma 4, it is true for n = 2. Suppose it is true for n−1 and
consider a n-unit auction with a given constant b. Let b1 ≤ b
be agent 2’s marginal in the worst-case. If the first unit goes
to agent 1, then by induction the worst-case from (1, 0) is
a subgame kink with an efficiency at least h′′(n − 1, b1).
Suppose that agent 2 wins the second unit, then the worst-
case efficiency would be

1 + (n− 1) · h′′(n− 1, b1)
1 + n− 1

≥ h′′(n, b1), (8)

from Lemma 6. If agent 1 wins the second unit, then by
induction, the subgame starting at (1, 0) has no kinks, and
so h′(n, b) = 1, which is trivially assumed by the marginal
utilities in Lemma 3 for j = n.

On the other hand, if the first unit goes to agent 2, by
induction we have a subgame kink from the node (0, 1)
for any marginal utility of b1 due to Lemma 5. Now we
have to show that the subtree starting from the node (1, 0)
is a line with no kinks for the worst-case efficiency with n
units. Given agent 2 wins the first unit in the worst-case, the
marginals for b2, . . . , bn must satisfy Lemma 3 and we have
b2 = 1− j

n−1 for some j. Suppose that the subtree starting
from the node (1, 0) in the worst-case is not a line. Then
it must be that b1 < 1 − j

n . Otherwise, we could lower
b1 to this value and get the subgame kink in Lemma 3
with a lower efficiency. Furthermore, if this subtree is not
a line, it must be that for some m < n, at node (n−m, 0),
m · (1− b1) < (m− 1) · (1− b2). However, this can only be
true if b1 > 1 − j

n , which contradicts the above. Therefore,
the subtree from the node (1, 0) is a line with no kinks for
the worst-case efficiency.

From Corollary 7 and Theorem 8, the worst-case efficiency
of the sequential auction with the flat dominant utility profile
η′(n) is given by (7), which converges to 1−e−1 as n→∞.
To complete the proof of Theorem 2, we use the following
lemma.

Lemma 9: For any number of goods n, the worst-case
efficiency is achieved with a flat dominant utility profile.



agent1

agent2

(k, n-k)(s, t)
n1 n2

Fig. 2. Marginal values of two agents. n1 (n2) is the number of units that
agent 1 (2) obtains along the sequential auction. (l, n − l) is the optimal
allocation and (s, t) is the sequential allocation. The shadowed region shows
the efficiency loss.

Proof: Suppose that u1
1 ≥ . . . ≥ u1

n and u2
1 ≥ . . . ≥

u2
n, and let (l, n − l) denote the efficient allocation. After

auctioning m (≤ n) units, the sequential game reaches a
decision node where either agent 1 or agent 2 obtains her
efficient allocation (l for agent 1 or n − l for agent 2). For
that agent the marginal values of the remaining units must
be smaller than that for the other agent. (See Figure 2.) Up
to this decision node, there is no loss in efficiency. Any
efficiency loss in the final allocation procures in the subgame
tree rooted at this decision node. Therefore, the efficiency
loss of the full game tree cannot be larger than the efficiency
loss of this subgame tree. Since the utility profile associated
with the subgame tree is dominant, the worst-case efficiency
must always correspond to a dominant utility profile.

We now show that changing a dominant utility profile to
a flat dominant utility profile can only decrease efficiency.
We assume that the sequential allocation is (s, t) with the
following flat dominant utility profile: u1

1 = · · · = u1
n ≥

u2
1 ≥ · · ·u2

n. Now if we change the marginal utilities of agent
1 to ū1

1 ≥ · · · ≥ ū1
n = u1

n, then the sequential allocation
should be (s̄, t̄), where s̄ ≥ s. This can be verified easily
with the tree of the extensive form game. At every node,
agent 1’s bidding becomes larger with the marginal utilities
ū1
i , either agent 1 wins a unit otherwise agent 2 would win

or agent 2 has to pay more, which implies s̄ ≥ s. Due to
ū1
i ≥ u1

i and s̄ ≥ s, therefore, the efficiency of the sequential
auction can only be lowered by changing the dominant utility
profile to a flat dominant utility profile.

3) Worst-case utility profiles: Table I shows some exam-
ples of the marginal utilities that give the lowest efficiency
η(n), which is also shown. As can be seen, η(n) is decreas-
ing with n. As n→∞, these quantities approach the bound
from Theorem 2.

We note that these are exactly the same as the constructive
examples given in [1]. Also note that in these examples
Properties D1 and D2 hold.

n Marginal utilities j∗ η(n)
2 1, 1 ; 1/2 + ε1, 0 1 3/4
3 1, 1, 1 ; 2/3 + ε1, 1/2 + ε2, 0 1 13/18
4 1, 1, 1, 1 ; 1/2 + ε1; 1/3 + ε2, 0, 0 2 17/24
...

...
...

...
∞ 1- 1

e

TABLE I
MARGINAL UTILITIES AND CORRESPONDING WORST-CASE EFFICIENCY

ACHIEVED BY TWO USER THE SEQUENTIAL AUCTION FOR GIVEN n.

IV. CONCLUSIONS

We have considered a sequential second price auction
for allocating n units of bandwidth among non-cooperative
wireless devices. This mechanism is relatively simple and
requires little information exchange among users, which
may make it attractive for dynamic bandwidth allocation
among secondary users who wish to share spectrum with the
primary user (spectrum owner or licensee). Our main result
is to characterize the worst-case efficiency of the subgame
perfect equilibrium for two users with full knowledge of
bidding histories and user utilities. Earlier work attempted
to characterize this but did so under an incorrect assumption
about the equilibria in auctions in which one user was
dominate. Here we show that though this assumption was
wrong, the conclusions were correct and that for decreasing
marginal utilities, the worst-case efficiency decreases with n
and converges to 1− e−1.

Although the worst-case efficiency loss due to sophisti-
cated bidding can be significant, simulation results reported
in [1] with randomly placed users show that with the rate
utility function, the sequential auction typically gives the
efficient allocation. Furthermore, when the equilibrium is
inefficient, the efficiency loss is typically less than the worst-
case efficiency loss. This is due to the rate utility function,
which places constraints on the ratios of marginal utilities
for the successive units being auctioned.
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