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ABSTRACT
Recent years have seen a growing interest in the deploy-
ment of sophisticated replication based storage architecture
in data-intensive computing. Existing placement-ideal data
layout solutions place an emphasis on declustered parity
based storage. However, there exist major differences be-
tween parity and replication architectures, especially in data
layouts. We retrofit the desirable properties of optimal par-
allelism in parity architectures for replication architectures,
and propose a novel placement-ideal data layout — shifted
declustering for replication based storage. Shifted decluster-
ing layout obtains optimal parallelism in a wide range of con-
figurations, and obtains optimal high performance and load
balancing in both fault-free and degraded modes. Our the-
oretical proofs and comprehensive simulation results show
that shifted declustering is superiour in performance and
load balancing to traditional replication layout schemes such
as standard mirroring, chained declustering, group rotational
declustering and existing parity layout schemes PRIME and
RELPR in reference [4].

Categories and Subject Descriptors
B.4.3 [Input/Output and Data Communications]: In-
terconnections(Subsystems)—Parallel I/O ; D.4.5 [Operating
Systems]: Reliability—Faut-tolerance

General Terms
Design, Performance, Reliability

Keywords
Multi-way replication, data layout, parallel I/O

1. INTRODUCTION
With the introduction of blade servers and the emergence

of techniques for spreading applications over clusters to ex-
ploit scalability, recent years have seen large-scale data clus-
ters utilizing hundreds of thousands of hard drives [20, 5].
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Because disk failures may cause the loss of valuable data, the
direct and indirect costs associated with the failures become
increasingly important in the deployment and operation of
the data clusters. To attack the problem, more and more
clusters are turning to multi-way replication based storage
architecture due to the requirement of high availability. For-
tunately, recently the capacity of a single magnetic disk has
reached 1 TB [3], so storage efficiency becomes less consid-
ered for building storage cluster than before. Hence, multi-
way replication is a more attractive candidate than parity
for redundant storage. For example, Google file system uses
a three-way replication storage organization [10] by default,
and Amazon’s Dynamo wide-area storage system employs a
customized multi-way replication storage architecture [9].

With the advent of parity or more sophisticated type of
parity-based redundancy, replication has come to be con-
sidered the simplest case, and thus has not attracted spe-
cific research attention in the past decade. However, a new
observation is that, replication is a special case of erasure
codes [17, 14] just in respect of data coding. For data layout,
replication has its own properties that does not fall into the
category of parity-based redundancy schemes. More specif-
ically, there are several major limitations in current data
layout solutions:

•Restricted configurations of ideal layouts: Some
researchers have adopted solutions using BIBD (Balanced
Incomplete Block Design) [15] theories. Unfortunately, only
a small portion of layouts whose parameters agree with sym-
metric BIBD can meet the placement-ideal requirements [4].
On the other hand, previous work developed near-optimal
parallelism layout solutions such as declustered parity or-
ganizations for small-scale storage architectures [11, 4], but
these schemes do not or not always satisfy all of the desirable
properties of an ideal layout. In addition, several replication-
declustered layouts were developed for RAID-1 [16] systems,
such as Interleaved declustering [8], Group-rotate decluster-
ing [7] and Chained declustering [12]. All these existed solu-
tions violates the properties of placement-idealness to some
extent, and they are explained in Section 2.3.

•Limited optimal parallelism studies on multi-way
replication disk architecture: Prior studies emphasize
exploitation of parallelism for parity disk array architec-
tures [11, 4]. For example, Holland and Gibson [11] solve
the placement-ideal layout problem to tolerate one disk fail-
ure. Alvarez et al. [4] present a set of complete, constructive
declustered layouts with near-optimal parallelism that toler-
ate multiple disk failures for parity-based architectures in a
wide range of configuration. Meanwhile, multi-way replica-



tion architecture is often treated as a special case of parity
architectures. Therefore, it does not attract enough inter-
ests. However, there exist important differences between
parity and replication architectures, especially in terms of
data layout: i) checksum units in parity architectures can-
not be directly used to service read requests without data
units, while both data units and replica units in replication
architectures can service read requests individually; ii) writ-
ing a data unit in parity architectures leads to an update on
its corresponding checksum unit, while writing a data unit
leads to updating all other replica units in replication ar-
chitectures; iii) it is write expensive to maintain checksum
units rather than simple replica units; iv) there are different
parallelism exploitation perspectives to perform reconstruc-
tion and recovery between two architectures.

This paper is organized as follows: in Section 2, we retrofit
six desirable properties of placement-ideal layouts for multi-
way replication storage architectures, and analyze the lim-
itations of existing solutions. In Section 3, we develop a
novel placement-ideal data layout scheme named shifted-
declustering by leveraging chained-declustering for RAID-1
layout to a more general case. Our comprehensive simula-
tion experiments given in Section 4 show that the shifted-
declustering architecture obtains wide variety of large-scale
configurations, and consistently outperforms existing repli-
cation and parity schemes under both normal and degraded
modes. Finally, we give the conclusion in Section 5.

2. BACKGROUND

2.1 Properties of Placement-ideal Layouts
Holland et al. [11] originally defined six desirable prop-

erties of declustered disk array layouts that can tolerate a
single disk failure. Alvarez et al. [4] proved that six desir-
able properties can only be satisfied by a small portion of
redundancy configurations. However, we noticed that the
properties were introduced for parity-based redundancy ar-
chitectures. For replication-based redundancy, these proper-
ties do not properly describe a placement-ideal requirement.
We revise the desirable properties for a placement-ideal lay-
out in multi-way replication based architecture. We define
a redundancy group as the set of a data unit and all its
replicas hereinafter.

Property 1 Multiple Failures Correcting.
A k-way (k ≥ 2) replication architecture is able to
provide (k − 1) failures correction. This requires that
no two units within a redundancy group are mapped
to the same disk.

Property 2 Distributed Replica Information.
If we distinguish data between primary copies and sec-
ondary copies (replicas), each disk should hold the
same number of replicas to satisfy this property. How-
ever, if the copies are equally important, for example,
they are accessed in a round robin manner, this prop-
erty is satisfied by nature.

Property 3 Distributed Reconstruction.
If a unit is mapped to a disk, we say that the redun-
dancy group containing this unit is mapped to this
disk. If this property is satisfied, there is a constant
number of redundancy groups mapped to any two disks,
such that if a disk fails, the workload that is supposed
to be handled by the failed disk will be dispatched
evenly to all the surviving disks.
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Figure 1: Two-way replication data layouts

Property 4 Large Write Optimization.
In parity-based architecture, this property means writ-
ing a large number of continuous units without pre-
reading units for updating checksum information. How-
ever, for replication, any writing process incurs updat-
ing all replicas, but no pre-reading is needed. There-
fore, this property is satisfied as long as the architec-
ture is replication-based.

Property 5 Maximal Parallelism
A layout has maximal parallelism if the addresses of
data in any interval {t, t + 1, . . . , t + n − 1} of n con-
secutive addresses are mapped to n different disks.

Property 6 Efficient Mapping
The functions that map client addresses to disk system
locations are efficiently computable.

As far as a replication-based redundant architecture is
concerned, property 4 is satisfied naturally. If primary and
secondary copies are not distinguished, property 2 is also
met. In the following sections, we focus on properties 1, 3
and 5.

2.2 Current Solutions for Replication-based
Architecture

RAID-1 is a major building block in large-scale storage
systems with two-way replication redundancy. It adopts
the simplest data layout—mirroring, in which one disk has
an identical twin with exactly the same data. In a multi-
way replication domain, we refer a mirroring replication
scheme as standard mirroring. To improve service perfor-
mance and load balancing, several replication declustering
schemes were developed. To the best of our knowledge, rep-
resentative declustering strategies include chained decluster-
ing [12], group-rotational declustering [7], and interleaved
declustering [8]. Figure 1 illustrates these layouts.

Chained declustering was developed as a high-availability
data replication scheme for databases [12]. It distributes
the primary copies of data over disks like a chain, and the
secondary copy of one data unit is dispatched to the neigh-
boring disk of the primary copy.

Group rotational declustering was first introduced to im-
prove the performance of standard mirroring, and then ex-
tended to multi-way replication for high throughput media
server systems [6]. It partitions all disks into several groups,
and the number of groups equals to the number of data
copies. Each group stores a complete copy of all data. Com-
pared to standard mirroring, the data in the secondary group
is distributed in a rotational way rather than standard
mirroring.



Interleaved declustering first distributes all primary copies
over all disks. After that, given a specific primary copy, it
splits the secondary copy into several pieces and stores them
evenly over disks that do not carry the primary copy.

In respect of data coding, replication-based redundancy
can be viewed as a special case of parity-based redundancy,
so that parity-based layouts could be adopted for replica-
tion based layouts. Some researchers have adopted solutions
based on BIBD [15] theories. Alvarez et al. [4] proposed
PRIME and RELPR as near-optimal layouts for general re-
dundancy configurations with any parameters.

2.3 Comparison among Layout Schemes
In this section, we analyze the satisfiability of standard

mirroring, chained declustering, interleaved declustering, group-
rotational declustering, RELPR and PRIME in terms of
meeting the properties defined in Section 2.1. Assume that
the number of copies is k, and the number of disks is n,
k ≤ n. We also assume that the replicas are equivalent, so
we just concentrate on properties 1, 3, and 5. A comparison
summary is given in Table 1.

2.3.1 Multiple Failures
This property is satisfied as long as no two replicas

of the same data are located in the same disk. This is the
basic requirement of redundant storage architecture, and all
layout schemes satisfy this property.

2.3.2 Distributed Reconstruction
If this property is satisfied, the requests that are supposed

to be serviced by one failed disk are redirected to all other
disks evenly, and this guarantees load balance of service un-
der degraded mode. Ideally, each surviving disk should han-
dle 1/(n−1) of the workload redirected from the failed disk.
In non-ideal layouts, the workload of a failed disk is not
distributed equally among all surviving disks. We evaluate
this property using a reconstruction workload bound metric,
which denotes the maximum workload fraction of a failed
disk for which a surviving disk is responsible. If the recon-
struction workload bound is larger than 1/(n−1), the layout
does not satisfy this property.

In standard mirroring, each disk is mirrored to k − 1
other disks, so if one disk fails, only k−1 disks can carry the
load of the failed disk. In other words, each of these k − 1
disks should carry 1/(k − 1) workload of the failed disk, so
the reconstruction workload is bounded by 1/(k − 1). If
k < n, 1/(k− 1) > 1/(n− 1). Therefore standard mirroring
does not satisfy this property if k < n.
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Figure 2: Rconstruction workload bound

In chained declustering, a disk shares more redundancy
groups with neighboring disks, but shares less or no redun-
dancy groups with distant disks. Therefore, if one disk fails,
only 2(k − 1) disks share the workload of the failed disk,
so the reconstruction workload is bounded by 2/(k − 1). If
k < 2n−1, 2/(k−1) > 1/(n−1). Hence chained declustering
does not satisfy this property if k < 2n− 1.

In group-rotational declustering, the workload of a
failed disk is shared by disks outside the group of the failed
disk, and the number of disks that can absorb the workload
is n(k− 1)/k, so the reconstruction workload is bounded by
k/n(k − 1). For k < n, n(k − 1)/k > 1/(n − 1). Therefore
group-rotational declustering does not satisfy this property
if k < n.

In RELPR, the reconstruction workload is bounded by
(k − 1)/φ(n), where φ(n) counts the number of positive in-
tegers less than n that are relatively prime to n [4]. In
PRIME, since the number of disks is prime, φ(n) = n− 1,
and each surviving disk carries (k−1)/(n−1) reconstruction
workload [4]. For k > 1 + (φ(n)/(n − 1)), (k − 1)/φ(n) >
1/(n−1), and φ(n) ≤ (n−1), 1+(φ(n)/(n−1)) ≤ 2. Hence,
RELPR and PRIME do not satisfy this property if k ≥ 2.

In summary, standard mirroring, chained declustering,
group rotational declustering, RELPR and PRIME do not
satisfy this property for arbitary values of k and n.

Interleaved declustering meets this property for a two-
way replication architecture. If one disk fails, all the surviv-
ing disks share its workload evenly. Each surviving disk is
responsible for 1/(n− 1) of its workload. However, two ma-
jor limitations exsit. First, because it dispatches data by
dividing them into small pieces, there exists non-negligible
overhead resulting from composing multiple data pieces into
a complete data unit. Second, to scale up to a three-way
replication, it is hard to place the third copy without violat-
ing a basic rule of replica distribution. For any given data
unit, all disks have either a primary copy or part of a second
copy. No matter where to place the third copy, it violates the
basic rule in which no two copies are distributed to the same
disk. Therefore, it is difficult to scale interleaved decluster-
ing up to three-way or higher replication architecture while
still satisfy these properties.

Figure 2 demonstrates the reconstruction workload bound
which is redirected to a surviving disk, in a three-way repli-
cation configuration. We analyze the reconstruction ability
up to 90 disks, since there have already been central con-
trolled disk arrays with 45 drives (e. g. Dell PowerVault MD
1000 disk expansion enclosure [2]) in use. The ideal recon-
struction workload is shown in the bottom curve in Figure 2.
The reconstruction workload bound is 50% and 25% in stan-
dard mirroring and chained declustering, respectively. In
other words, two disks in standard mirroring and four disks
in chained declustering would shoulder a heavy workload
as a result of the redirected load from the failed disk, and
result in a service bottleneck under degraded mode. The
reconstruction workload bound in group-rotational declus-
tering decreases with the number of disks, but there is still
a good portion of disks which do not take on the failed disk’s
workload. For example, suppose there are 90 disks, the value
of “ideal” is 1/89 (1.1%), and the value of “group-rotational”
is 1/60 (1.7%). Although the curves look close in the graph,
the reconstruction load based on group-rotational layout is
54% more than that in the ideal case. The fluctuation of
reconstruction workload in RELPR is because the number



Table 1: Comparison among layout schemes
Multiple Failures Distributed Maximal Comment

Correcting Reconstruction Parallelism
Standard X × X
Chained X × X
Group-rotational X × X
Interleaved X X X Only for 2-way replication
RELPR X × ×
PRIME X X × Only for a prime number of disks

of relative primes to the number of disks. As seen in the
figure, it is far from an ideal reconstruction workload.

2.3.3 Maximal Parallelism
This property requires that if the size of a request is n

units, all n disks in the system should be accessed, and
each disk provides exactly one unit. A metric named paral-
lel read count was introduced to evaluate this property [4].
The function of parallel read count τ(o) is defined by the
maximum number of data units that any disk must sup-
ply when reading any o consecutive units of client data.
A layout is parallel optimal if τ(o) = do/ne for all such
o [4]. Chained declustering meets this property. In standard
mirroring and group-rotational declustering, they could sat-
isfy this property if request dispatch algorithms access all
disks. PRIME and RELPR obain parallel read count of
τ(o) = do/ne+1 or τ(o) = do/ne [4], which deos not always
dissatisfy the property.

3. SHIFTED DECLUSTERING
We develop a new placement-ideal layout named shifted-

declustering that satisfies all six properties and can be de-
ployed in a wide variety of k-way replication configurations.
In previous data layout schemes for replication-based ar-
chitecture, chained-declustering satisfies all properties ex-
cept distributed reconstruction. More specifically, a pair of
neighboring disks share more redundant data than a pair
of distant disks. Shifted-declustering is to leverage chained-
declustering layout for two-way replication [12] to general
cases by incrementing the distance between every two units
belonging to the same redundancy group, one step per iter-
ation, until all k units belonging to the same redundancy
group are distributed over all the disks. The procedure of
layout is like shifting each row of the units over all the disks
in a circular fashion. In this way, it eliminates the limi-
tation that consecutive disks carry more overlapped redun-
dancy data than distant disks in chained declustering. This
renders a satisfaction with distributed reconstruction.

Many large-scale storage systems such as super data clus-
ters [9, 10] employ multi-way replication based storage ar-
chitecture, which is often composed of a cluster of many
building blocks that are connected by a high-speed network.
Each building block is a central-controlled storage subsys-
tem. Our shifted-declustering scheme works for such type
of building-blocks. Some enterprise distributed storage sys-
tems, like FAB from HP lab [18] and IceCube from IBM
lab [19] manage storage replicas by distributed protocols.
The shifted-declustering layout can also be applied if inte-
grated with distributed protocols.

3.1 Definitions and Notations
The notations are summarized in Table 2. There are two

parameters for the shifted declustering layout: the number

Table 2: Notation summary
System configuration parameters
n Number of disks in the cluster
k Number of units per redundancy group

Parameters used in computation
a The address to denote a redundancy group
(a, i) The i-th unit in redundancy group a
q Number of iterations of a complete round of layout
y, z Intermediate auxiliary parameters

Computation output
disk(a, i) The disk where the unit (a, i) is distributed
offset(a, i) The offset within disk(a, i) where the unit

(a, i) is distributed

of disk drives n (n ≥ 2), and the number of units per re-
dundancy group k (k ≤ n). Within a redundancy group,
the units are named from 0 to k − 1, and we view the unit
0 as the data unit, and other units as replica units. Distin-
guishing data units from replica units is only for the ease of
representation, although they are identical. We mention our
replication configuration as k-way replication hereafter. A
k-way replication cluster is able to tolerate k−1 disk failures
simultaneously.

We use an address a (a ≥ 0) to denote a redundancy
group. Also, we give a unit name (a, i), where 0 ≤ i < k, to
the i-th unit in this redundancy group. Hence, a can also
be considered as a redundancy group ID. Without the loss
of generality, (a, 0) represents the data unit, and (a, i) with
i > 0 represents the i-th replica unit. The location of the
unit (a, i) is represented by a tuple (disk(a, i), offset(a, i)).
A complete round of layout is obtained by q iterations, and
in each iteration, one row of data units and k − 1 rows of
replica units are placed, so that the total rows of units in
a complete round is r = kq. Repeating complete rounds of
layouts also yields placement-ideal layouts. In the following,
we only consider the layouts within a complete round.

The most popular configurations of replication based ar-
chitecture are two-way and three-way replication. A com-
plete solution for 2-way replication is given in [4], and at-
tached in Appendix A. In Section 3.2, we give placement-
ideal layouts for 3-way replication.

3.2 Solution for k = 3

3.2.1 Basic solution for n = 4, or n is odd
In this case, the placement-ideal layout is summarized as

equations 1 to 5, where i = 0, 1, 2. For the simplicity of
representation, we use x%y to represent the modulo operator
x mod y as in the C Programming Language.

q =

{
1, if n = 4
(n− 1)/2, if n is odd

(1)

z =
⌊ a

n

⌋
(2)

y = (z%q) + 1 (3)

disk(a, i) = (a + iy)%n (4)

offset(a, i) =
⌊ a

n

⌋
+ (k − 1)z + i = kz + i (5)
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Figure 3: Example layout for k = 3, n = 9

The placement-idealness of the layout for k = 3, n = 4 or
n is odd has been proved by verifying its satisfaction of the
desirable properties, one by one, in Appendix B.1.

Figure 3 gives the layout for k = 3 and n = 9. In this
case, q = 4, so there are 4 iterations within a complete
round of layout. Each block in the figure indicates a unit,
and the unit is represented by its name (a, i).The bold la-
bels illustrate how the units are shifted. In the i-th row of
the iteration l, the units are shifted by a distance of i(l + 1)
disks right-handedly. The colored blocks represent the re-
dundancy groups mapped to each pairs of disk 0 and another
disk. Particularly, the blocks with the same color (shade)
belong to the same redundancy group. In this specific case,
exactly three redundancy groups are mapped to any pair of
disk 0 and another disk. Due to the equivalence between
disks, any two disks share three redundancy groups.

3.2.2 Solution for n > 4 and n is even
For k = 3, shifted declustering provides placement-ideal

layouts over odd number of disks. This motivates us to find
an optimal solution for three-way replication over an even
number (larger than 4) of disks. Notice that n is even, then
n − 1 is odd. Intuitively, we consider to insert a “bubble”
on a disk in each iteration, and distribute the units over the
remaining n − 1 disks based on the layout scheme for odd
number of disks. In the next iteration, the bubble is shifted
to another disk, and then shifted declustering is applied on
the remaining n− 1 disks. This procedure can be imagined
as stretching the data of n−1 disks evenly over n disks. The
layout is summarized in equations 6 to 13.

n′ = n− 1 (6)

q′ = (n′ − 1)/2 (7)

z =
⌊
a/n′

⌋
(8)

db = n′ − (z%n) (9)

y = (z%q′) + 1 (10)

disk(a, 0) = a%n (11)

disk(a, i) =

{
(a + iy + 1)%n∗

(a + iy)%n∗∗ , (i ≥ 1) (12)

offset(a, i) = kz + i, (i ≥ 0) (13)

∗ : if one of the following applies:
i) a%n < db and a + iy ≥ db,
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Figure 4: Example layout for k = 3, n = 6

ii) a%n > db and a + iy ≥ db + n
∗∗ : otherwise
Equation 6 defines the largest number of disks less than

n that basic shifted declustering is applicable. Equation 7
is the same as equation 1 but replaces n with n′.Equation 8
defines the iteration number of a redundancy group a. Equa-
tion 9 defines the position of the bubble in the z-th iteration.
Equation 10 defines the distance to shift between two units
in a redundancy group. Equations 11 to 13 define the posi-
tion of a unit (a, i). The number of iterations of a complete
round q = lcm(q′, n), which is the least common multiple
of the iteration number in the (k, n′) configuration and the
number of possible positions of the bubble. Notice that q
is not necessary in computing disk(a, i) and offset(a, i) in
this case.

Figure 4 gives an example for k = 3, n = 6, where all
the desired properties are satisfied. The proof of placement-
idealness of this extended layout over an even number of
disks is provided in Appendix B.2.

3.3 General solution for k > 3

Although more than three-way replication is expensive
and only applied in some specific scenarios(e.g. saving criti-
cal data) of large-scale storage systems, we still give shifted
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Figure 5: DiskSim simulation architecture

declustering solutions for the general cases. We first rep-
resent a basic solution over a prime number of disks, then
extended it by adding imaginary bubbles over the non-prime
number of disks.

1. n is prime.
In this case, the distribution can be obtained from
Equations 2 to 5, with the definition of q replaced by
q = n − 1, and i = 0 . . . k − 1. According to this pro-
cedure, a complete round of layout has n iterations.

2. n is non-prime.
In this case, the distribution can be obtained from
Equations 8 to 13, with the definition of n′ replaced
by the largest prime number less than n, q′ replaced
by q′ = n′ − 1, and i = 0 . . . k − 1.

4. EXPERIMENTAL RESULTS
Simulations on DiskSim [1] are executed to demonstrate

the performance of shifted declustering data layout for multi-
way replication architecture. We implement the address
mapping algorithms for shifted declustering, chained declus-
tering, group rotational declustering and RELPR1. After
that, we compare their performance through trace driven
simulations.

In DiskSim, the required architecture is demonstrated in
Figure 5. A trace generator or an input trace file is at the
top layer. The storage systems must be at the bottom layer.
Since there must be exactly one or two controllers between
the device driver and each disk with a bus connecting each
pair of components [1], we incorporate a bus (Bus 0) and a
simple controller between the device driver and disks, and
their only job is passing requests.

We take IBM Ultrastar 36Z15 as the disk model, and the
main parameters are shown in Table 3. We pick three-
way replication since it is the most common case in multi-
way replication based architectures. The replica unit size is
64 KB.

In the main comparison experiments, we use 9 disks, be-
cause standard mirroring and group rotational declustering
requires the number of disks to be a multiple of the num-
ber of copies. We generate synthetic traces to test the per-
formance of the different configurations. The request size

1RELPR is chosen instead of PRIME because PRIME re-
quires a prime number of disks, but standard mirroring and
group-rotational declustering needs the number of disks to
be a multiple of the number of replications.

Table 3: Simulation Parameters
System Parameters
Scheduling Policy: C-LOOK Bus Bandwidth: 100 MB/s
Replica Unit: 64 KB Number of Disks: 6, 9, 12, 15
Number of Copies: 3

Disk Parameters:
Capacity: 18.4 GB Average Seek Time: 3.4 ms
Rotation Speed: 15000 RPM Average Rotation Time: 2 ms
Disk Controller Cache: 4 MB Transfer Rate: 55 MB/s

Workload Parameters
Request Size : 128 KB, 256 KB, 320 KB
Alignment :64 KB (stripe unit boundary)
Inter Arrival Time:40 to 500 ms, exponential distribution

changes from 128 KB to 320 KB, and the average inter-
arrival time varies from 40 ms to 500 ms. In each experi-
ment, the request size is fixed, the inter-arrival time follows
an exponential distribution of a given average value, and the
requested addresses are random. In the scalability study, we
scale the number of disks from 6 to 15. We use average re-
sponse time and workload standard deviation to evaluate
the service performance and load balancing, respectively. In
Sections 4.1,4.2 and 4.4, the requests are read only. In Sec-
tion 4.3, the requests are write only.

4.1 Failure-free Performance
The response time statistics under a variety of workloads

are summarized in Figure 6. The left diagrams demonstrate
the overall average disk response time of all requests. Due to
the load balancing capabilities of different data layouts, the
average response time differs from disk to disk. We define
the disk with the longest average response time as the bot-
tleneck disk, and its average response time as the bottleneck
response time. The bottleneck response time is illustrated
in the right diagrams.

Shifted, chained and RELPR declustering obtain compa-
rable performance in terms of both average and bottleneck
response time under failure-free mode. In all diagrams of
Figure 6, their curves almost overlap, and are lower than the
curves of standdard mirroring and group-rotational declus-
tering. These results agree with our theoretical analysis in
Section 2.3. Under the failure-free mode, both shifted and
chained declustering meet the property of maximal paral-
lelism. RELPR has a near optimal parallelism, but is better
than standard mirroring and group-rotational declustering.

4.2 Degraded Mode Performance

4.2.1 One-disk Failure
With one failed disk, the overall performances of all con-

figurations are similar to the scenarios without disk fail-
ures. However, since shifted declustering layout satisfies the
ideal reconstruction property, it redirects the workload of the
failed disk evenly to other disks, it lowers the bottleneck re-
sponse time (the longest average response time among disks)
dramatically comparing to other layout schemes. The aver-
age and bottleneck response times are demonstrated in the
left and right diagrams of Figure 7, respectively. The curve
representing the response time of shifted declustering is al-
ways at the bottom in the diagrams, so shifted declustering
provides the shortest response time in degraded mode with
one failed disk.

To demonstrate the load balancing capability of shifted
declustering, we assume disk 0 fails and implement load
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Figure 6: Overall and bottleneck average response
time under failure-free mode
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Figure 7: Overall and bottleneck average response
time with one failed disk
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Figure 8: The standard deviation of workload with
one failed disk

Table 4: Workload distribution with one failed disk
Layout D1 D2 D3 D4 D5 D6 D7 D8
Shifted 13% 12% 12% 13% 12% 13% 12% 12%
Chained 22% 8% 14% 10% 11% 11% 15% 8%
Group 11% 15% 12% 13% 12% 12% 12% 13%
Standard 11% 15% 22% 4% 11% 11% 18% 8%
RELPR 13% 13% 11% 13% 13% 11% 13% 13%

redirecting codes in Disksim. We compare the workloads
among all surviving disks. Figure 8 shows the standard de-
viation of number of requests which are dispatched to disks.
The smaller the standard deviation is, the better load bal-
ancing capacity the layout scheme has. It is shown that
shifted declustering always has the smallest standard devia-
tion, which implies that it has the best load balancing ability
under degraded mode with one failed disk.

Table 4 lists the percentage of requests on each surviving
disk when the average request size is 256 KB. Since disk 0 is
assumed failed, only disk 1 to 8 are counted (represented by
D1 to D8 in the table). If the workload is perfectly balanced,
each disk is distributed 12.5% (1/8) requests. The closer the
percentage of workload is to 12.5%, the better load balancing
ability the layout scheme provides. As shown in Table 4, the
percentage of requests of each disk in shifted declustering is
between 12% and 13%, and is the closest to 12.5% among
all layouts in comparison.

4.2.2 Two-disk Failure
With two failed disks, shifted declustering still improves

the bottleneck performance significantly, compared to the
other schemes. The average and bottleneck response times
are demonstrated in the left and right diagrams of Figure 9,
respectively.

Similarly, the standard deviation of workload under two
disk failure is shown in Figure 10. It is demonstrated that
shifted declustering still has the least standard deviation.

The workload percentage of each surviving disk when the
average request size is 256 KB is listed in Table 5. In this
case, we assign disk 0 and disk 1 as failed, and there are
seven surviving disks, so the ideal workload is 14.3%. For
different request sizes, shifted declustering remains the load
of each disk between 14% and 15%, and is the closest to
14.3% among all layouts in comparison.

4.3 Write Performance
In replication-based architecture, a writing request re-

quires much more resources than a reading request does.
We fix the average inter-arrival time to 300 ms, and com-
pare the response time under different layout schemes. The
results are shown in Figure 11.

Table 5: Workload distribution with two failed disks
Layout D2 D3 D4 D5 D6 D7 D8
Shifted 14% 14% 15% 15% 14% 14% 14%
Chained 23% 8% 14% 10% 11% 15% 19%
Group 16% 5% 5% 5% 23% 23% 23%
Standard 16% 27% 13% 2% 7% 20% 16%
RELPR 16% 14% 13% 14% 14% 14% 16%
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Figure 9: Comparison of average and bottleneck re-
sponse time for degraded mode with two failed disks
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Figure 10: The standard deviation of workload with
two failed disks
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Figure 11: Writing performance

Table 6: Scalability study
System Workload per disk
size Mode Min Max Standard

deviation

6 disks Failure free 16% 17% 0.0052
1-disk failure 19% 21% 0.0071
2-disk failure 24% 26% 0.0082

9 disks Failure free 11% 12% 0.0033
1-disk failure 12% 14% 0.0076
2-disk failure 13% 16% 0.010

12 disks Failure free 8% 10% 0.0065
1-disk failure 9% 10% 0.0030
2-disk failure 10% 10% 0

15 disks Failure free 6% 7% 0.0049
1-disk failure 6% 8% 0.0047
2-disk failure 6% 8% 0.0066

The overall average response times are close for smaller re-
quest sizes (128 KB). However, given an increasing request
size, shifted declustering obtains a large performance gain
over most of other schemes, due to its optimal parallelism.
In addition, shifted declustering always provides the least
bottleneck response time, which implies that shifted declus-
tering also has the best load balancing capability for write.

4.4 Scalability Study
As mentioned before, shifted declustering is the placement-

ideal layout for multi-way replication over any number of
disks. We scale down the number of disks to 6, and scale it
up to 12 and 15 in our simulation. We fix the request size
to 320 KB, and fix the average inter-arrival time to 200 ms.

The load balancing statistics are shown in Table 6. Under
any circumstances, the workload difference between disks is
less than 2%. This result implies that the load balancing ca-
pability of shifted declustering is not sensitive to the number
of disks.

5. CONCLUSIONS
In this paper, we have exploited the placement-ideal data

layout in multi-way replication based storage architecture.
We have summarized the differences in respect of data layout
between replication and parity-based architectures. These
differences were overlooked in previous researches. We also
retrofitted the desirable properties defined for the declus-
tering parity architecture, and proposed a novel placement-
ideal data layout — shifted declustering. Shifted decluster-
ing layout achieves ideal parallelism in a wide variety of con-
figurations, and thus obtains optimal service performance
and load balancing in both fault-free and degraded modes,
as proved by mathematical theories. Compared with tra-
ditional layout schemes such as standard mirroring, chained
declustering, group rotational declustering, and RELPR declus-
tering, comprehensive simulation results show that shifted
declustering obtains much better service performance and
load balancing.
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APPENDIX
A. SOLUTION FOR K = 2

For k = 2, [4] gives a layout scheme over any number of
disks and proves its idealness. The layout is summarized as
equations 14 to 18, where i = 0, 1:

q =

{
(n− 1)/2, if n is odd
n− 1, if n is even

(14)

z =
⌊ a

n

⌋
(15)

y = ((z mod q) + 1) mod n (16)

disk(a, i) = (a + iy) mod n (17)

offset(a, i) = kz + i (18)

B. PROOF OF PLACEMENT-IDEALNESS OF
SHIFTED DECLUSTERING FOR K = 3

B.1 n = 4 or n is odd
1. Failure Correcting.

A k-way replication redundancy configuration should
be able to provide k − 1 failure correction. This re-
quires that no two units within a redundancy group
are mapped to the same disk. In other words, for a
redundancy group a, disk(a, i) 6= disk(a, j) for 0 ≤ i 6=
j ≤ k−1. The shifted declustering scheme satisfies this
property.

Proof. Without the loss of generality, in the follow-
ing part of the proof, we assume that i > j. Accord-
ing to equation 4, disk(a, i) = disk(a, j) if and only if
(a + iy)mod n = (a + jy)mod n. This happens only if
(i − j)y is a multiple of n. Since 0 ≤ j < i ≤ k − 1,
1 ≤ i − j ≤ k − 1. In addition, according to the defi-
nition of q and y in equations 1 and 3, 1 ≤ y ≤ q, so
1 ≤ (i− j)y ≤ (k − 1)q. Now we will prove that under
the two conditions: 1) n = k + 1, 2) n is odd, (i− j)y
is never a multiple of n.
Case 1: n = k + 1

In this case, q = 1, thus y = 1 and 1 ≤ (i−j)y ≤ k−1.
Since n = k + 1, we can conclude that (i− j)y < n, so
(i− j)y cannot be a multiple of n.
Case 2: n is odd

In this case, q = (n− 1)/2, thus 1 ≤ y ≤ (n − 1)/2
and 1 ≤ (i − j)y ≤ n − 1. Similar to case 1, (i − j)y
cannot be a multiple of n.

2. Distributed Redundancy Information2.
Although the replicas are equivalent of each other,

2The concept of redundancy information is adapted from
checksum information of data-checksum redundancy config-
urations. This property is adapted from the property of
“distributed checksum information” of [4].
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Figure 12: Example layout for k = 3,n = 4

we can view the 0-th unit in a redundancy group as
the data unit, and the remaining k − 1 replicas as re-
dundancy information. Since the i-th replica is always
placed in the i-th row in an iteration, the redundancy
overhead (the fraction of the locations on a disk that
contain redundancy units) of each disk is (k − 1)/k, so
the checksum units are evenly distributed.
Actually, without consideration of data layout, in k-

way replication system, we can always view (k − 1)/k
of data on a disk as redundancy, so this property holds
as long as the system is configured for multi-way repli-
cation redundancy.

3. Distributed Reconstruction.
This property requires that there is a constant λopt,

that any two disks share λopt redundancy groups. Here
disks d and d′ sharing a redundancy group x means
that there are two units of x, say units (x, i) and (x, i′),
distributed to d and d′, respectively.
In our placement, within a complete round of layout,
any two disks share 2 redundancy groups if n = 4, and
share 3 redundancy groups if n is odd and greater than
4, so it satisfies distributed reconstruction.

Proof. According to the definition of q, there are
two cases:

Case 1: n = 4, q = 1.
In this case, y = 1, and n redundancy groups

are needed to complete a round of layout. For any
redundancy group 0 ≤ x ≤ n− 1, its units are dis-
tributed to disks (x mod n), ((x + 1) mod n), and
((x + 2) mod n). Since n = 4, there is exactly one
disk d that does not contain any unit of x, namely,
d = (x + 3) mod n, say that disk d is the “hole” of
redundancy group x.
On the other hand, if disk d is the hole of x, since
a disk has 3 units and n = 4, d has units from all
redundancy groups other than x. Hence, if d is the
hole of x, it is not the hole of other redundancy
groups. In other words, x has only one hole disk
which is d, and d is only the hole of x.
Similarly, for another disk d′, we can find it is the
hole of another redundancy group x′. Therefore,
for any pair of disks d and d′, they share all redun-
dancy groups other than x and x′.
As a result, the number of shared redundancy

groups is n− 2 = 2.
Figure 12 is an example layout for k = 3 and

n = 4, and it is easily enumerable that any two
disks shares 2 redundancy groups.

Case 2: n is odd.
Given any two disks d and d′, without the loss of

generality, d > d′. Based on Equations 1 to 4, they
share a redundancy group x, if and only if there
are i and i′ with 0 ≤ i, i′ ≤ 2 and i 6= i′ such that

d = (x + iy) mod n (19)

d′ = (x + i′y) mod n (20)

In equations 19 and 20, y is defined in equation 3.
Subtracting the two equations of d and d′ gives
d− d′ = (i− i′)y mod n. Defining ∆ = d− d′, and
δ = i− i′, we have

∆ = δy mod n (21)

Since d > d′, 1 ≤ ∆ ≤ n − 1. Since i − i′ 6= 0,
there are 6 combinations of i and i′, which are
(0, 1), (0, 2), (1, 0), (1, 2), (2, 0) and (2, 1). In addi-
tion, the possible values for δ are -2, -1, 1 and 2.
Notice that based on the definition of y, 1 ≤ y ≤
(n−1)/2. Therefore, −(n−1) ≤ δy ≤ n−1. Hence
equation 21 can be written as:

∆ =

{
δy, δ > 0
n + δy, δ < 0

(22)

We will prove that for given d and d′, only 3 com-
binations of i and i′ yield valid y(1 ≤ y ≤ (n−1)/2)
that is the solution of equation 22. As a result, d
and d′ share exactly 3 common redundancy groups.
Given d, d′, i and i′, the values of ∆ and δ are

fixed. Solve y from equation 22 with given ∆ and
δ as follows:
If 1 ≤ ∆ ≤ (n− 1)/2, then

δ = 1⇒y = ∆;
δ = 2⇒y = ∆/2 if ∆ is even;

δ = −2⇒y = (n−∆)/2 if ∆ is odd;
δ = −1⇒no solution for y.

Through these solutions, we can conclude that if
1 ≤ ∆ ≤ (n − 1)/2, δ = 1 always yields a valid
y, either δ = 2 or δ = −2 yields another valid
y. Notice that δ = i − i′, δ = 1 is correspond-
ing to two combinations of i and i′: (1, 0) and
(2, 1), delta = 2 is corresponding to the combina-
tion (2, 0), and delta = −2 is corresponding to the
combination (0, 2). As a result, only three combi-
nations of i and i′ yield valid y for a given ∆ with
1 ≤ ∆ ≤ (n− 1)/2.
Similarly, if (n− 1)/2 + 1 ≤ ∆ ≤ n− 1, then

δ = 1⇒no solution for y;
δ = 2⇒y = ∆/2 if ∆ is even;

δ = −2⇒y = (n−∆)/2 if ∆ is odd;
δ = −1⇒y = n−∆.

Still, only three combinations of i and i′ yield valid
y for a given ∆ with (n− 1)/2 + 1 ≤ ∆ ≤ n− 1.

Moreover, fixing i, y and d fixes x, namely x = (d −
iy) mod n, so for a disk pair d and d′, if a pair of i and
i′ pair yields one common redundancy group, it yields
only one common redundancy group. According to
above cases, any two disks share 2 redundancy groups
if n = 4, and share 3 redundancy groups if n is odd.

4. Large Write Optimization.
Large write optimization requires that each stripe in-

terval containing m = k−f consecutive addresses where
f is the maximum tolerable simultaneous failures, such
that each stripe interval is mapped to the same stripe [4].
A k-way replication redundancy can tolerate k− 1 fail-
ures, so that f = k − 1, and the stripe interval is



m = k−f = 1, it is mapped to the same stripe. There-
fore, large write optimization is satisfied by replication
based redundancy.

5. Maximal Parallelism
A layout has maximal parallelism if the addresses of

data in any interval {t, t+1, . . . , t+n−1} of n consecu-
tive addresses are mapped to n different disks. That is,
for every starting point t with 0 ≤ t ≤ bm−n and every
i and i′ with 0 ≤ i < i′ ≤ n− 1, disk(t + i) 6= disk(t +
i′) [4]. In shifted declustering layout, disk(t + i, 0) is
defined as (t+ i) mod n, so disk(t+ i) 6= disk(t+ i′) al-
ways holds. Defining a metric parallel read count τr(c)
to represent the number of units each disk is accessed if
c continuous data units are requested, then if maximal
parallelism is satisfied, τr(c) = dc/ne [4].

6. Efficient Mapping
Since the computation of the layout is given through
equations 1 to 5, the complexity of obtaining the proper
position of a given unit is constant.

B.2 n > 4, and n is even
1. Failure Correcting.

Similar as in Section B.1, this property requires that
for a redundancy group a, disk(a, i) 6= disk(a, j) for
0 ≤ i 6= j ≤ k − 1. Extended shifted declustering
scheme over even number of disks satisfies this property.

Proof. Without the loss of generality, in the follow-
ing part of the proof, we assume that i > j. According
to equations 11 and 12, disk(a, i) = disk(a, j) is equiv-
alent to ((a + α) mod n) = ((a + β) mod n), where
α = iy or α = iy + 1, and β = jy or β = jy + 1. This
equation holds if and only if α− β is a multiple of n.
The following steps show that it is impossible for α−β
to be a multiple of n:
Since i > j, 1 ≤ i− j ≤ 2. According to the definition
of y in equation 10, 1 ≤ y ≤ (n − 2)/2. The value of
α− β can be one of the following cases:

(a) If α = iy, β = jy, or α = iy + 1, β = jy + 1, then
α−β = (i− j)y. (i− j)y ≤ (n− 2), so α−β is not
a multiple of n.

(b) If α = iy, β = jy +1, then α−β = (i− j)y−1.(i−
j)y − 1 ≤ (n− 2)− 1, so α− β is not a multiple of
n.

(c) If α = iy +1, β = jy, then α−β = (i− j)y +1.(i−
j)y + 1 ≤ (n− 1), so α− β is not a multiple of n.

As a result, disk(a, i) = disk(a, j) does not hold if
i > j.

2. Distributed Redundancy Information
As proved in Section B.1, this property holds as long

as the system is configured as multi-way replication re-
dundancy.

3. Distributed Reconstruction.
This property requires that there is a constant λopt,

that any two disks share λopt redundancy groups. Here
disks d and d′ sharing a redundancy group x means that
there are two units of x, say units (x, i) and (x, i′), dis-
tributed to d and d′, respectively.
In extended shifted declustering layout over even num-
ber of disks, any two disks share qk(k − 1)/n redun-

dancy groups within a complete layout, so it satisfies
distributed reconstruction.

4. Large Write Optimization.
As proved in Section 3.2.1, large write optimization is
satisfied by replication based redundancy.

5. Maximal Parallelism
A layout has maximal parallelism if the addresses of

data in any interval {t, t+1, . . . , t+n− 1} of n consec-
utive addresses are mapped to n different disks. That
is, for every starting point t with 0 ≤ t ≤ bm − n and
every i and i′ with 0 ≤ i < i′ ≤ n − 1, disk(t + i) 6=
disk(t + i′) [4]. In exteded shifted declustering layout,
disk(t+i, 0) is defined as (t+i) mod n, so disk(t+i) 6=
disk(t + i′) always holds.

6. Efficient Mapping
Since the computation of the layout is given through
equations 6 to 13, the complexity of obtaining the proper
position of a given unit is constant.

C. PROOF OF PLACEMENT-IDEALNESS OF
SHIFTED DECLUSTERING FOR
GENERAL K AND N

In Section B.1, proofs for properties 1, 2, 4, 5 and 6 are
not specific to k = 3. In addition, prime numbers (except
two) are a subset of odd numbers, so the proofs are valid
for general values of k if n is prime. Hence, we only need to
prove property 3 for the general k and prime n.

Referring to Equations 1 to 5, and replacing the definition
of q as q = n−1, we get 1 ≤ y ≤ n−1. If disks d and d′ shares
a redundancy group x, there are i and i′ with 0 ≤ i, i′ ≤ k
and i 6= i′ such that

y = ((z mod q) + 1) mod n (23)

d = (x + iy) mod n (24)

d′ = (x + i′y) mod n (25)

Subtracting the two equations of d and d′ gives d − d′ =
(i− i′)y mod n. Defining ∆ = d−d′, and δ = i− i′, we have

∆ = δy mod n (26)

Given ∆ and δ, there is exactly one y between 1 and n−1
satisfies equation 26. This is to say, for any two disks d
and d′, each pair of i and i′ yields one common redundancy
group. In addition, there are k(k − 1) combinations of i
and i′, so the total number of common redundancy groups
yielded is k(k − 1), which is also qk(k − 1)/(n− 1) because
q = n− 1.

Moreover, fixing i, y and d fixes x, namely x = (d −
iy) mod n, so for a disk pair d and d′, if a pair of i and
i′ pair yields one common redundancy group, it yields only
one common redundancy group.

For n is non-prime, we can apply the similar process as in
Section B.2 to get the proof. For property 6, the complexity
is not constant anymore, because the complexity for finding
out the largest prime which is less than n is O(log n). How-
ever, it is better than linear complexity and is affordable.


