Erlang and its applications

Joe Armstrong and Thomas Arts
Computer Science Laboratory
Ericsson Telecom AB

Box 1505, S - 125 25 Alvsjo
Sweden
{joe,thomas}@cslab.ericsson.se

Erlang is a functional programming language for programming concur-
rent and distributed systems initially developed by Joe Armstrong, Robert
Virding, Claes Wikstrom and Mike Williams [2]. The development of Erlang
started as an investigation into whether modern declarative programming
paradigms could be used for programming large industrial telecommunica-
tion switching systems. The resulting language, FErlang, turned out to be
suitable as well for programming telecommunication systems as for a wide
range of industrial embedded real-time control problems.

Technical requirements

The technical problems that had to be focussed when developing the lan-
guage originated from the typical industrial requirements (cf. [3]):

e Real-time - The typical applications require real-time response times
in the order of milliseconds. Erlang is designed for programming “soft”
real-time systems where not all timing deadlines have to be met. The
language also provides mechanisms for allowing processes to timeout
while waiting for events and to read a real-time clock.

e Very large programs - Control systems can have millions of lines of
code, and are programmed by large teams of programmers.

e Non-stop systems - Control systems cannot be stopped for software
maintenance. The Erlang abstract machine allows program code to be
changed in a running system. Old code can be phased out and replaced
by new code. During the transition, both old code and new code can be
run at the same time. This enables faults to be corrected and software
to be upgraded in systems without disturbing their operation.

¢ Portability - Erlang compiles to abstract machine code which can
be run on any of a large number of different operating systems. This
approach makes the system source and object code compatible.



e Concurrency - Our applications are best modeled by a very large
number of concurrent processes. At any instant in time most of these
processes are idle. The number of processes and their memory re-
quirements vary with time and are extremely difficult to predict in
advance. Erlang has lightweight processes whose memory require-
ments vary dynamically. No requirements for concurrency are placed
on the host operating system.

¢ Distribution - Erlang is designed to be run in a distributed multi-
node environment. Every computation in Erlang is performed within
a process. Processes have no shared memory and communicate by
asynchronous message passing. An Erlang system running on one
processor can create a parallel process running on another system
(which need not even be the same processor or operating system) and
thereafter communicate with this process.

¢ Garbage collection - Erlang is used to program real-time systems.
Long garbage collection delays in such systems are unacceptable. Er-
lang implementations are written using bounded-time garbage tech-
niques, some of these techniques are described in [1, 7].

e Incremental code loading - Users can control in detail how code is
loaded. In embedded systems, all code is usually loaded at boot time.
In development systems, code is loaded when it is needed. If testing
uncovers bugs, only the faulty code need be replaced.

e Robustness- The Erlang abstract machine has three independent er-
ror detection primitives which can be used to structure fault-tolerant
systems. One of these mechanisms allows processes to monitor the
activities of other processes, even if these processes are executing on
other processors. We can group processes together in distributed sys-
tems and use these as building blocks in designing distributed trans-
action oriented systems.

e External Interfaces - Erlang has a ”port” mechanism which allows
processes to communicate with the outside world in a manner which
is semantically equivalent to internal message passing between Erlang
processes. This mechanism is used for communication with the host
operating system and for interaction with other processes (perhaps
written in other languages), which run on the host operating system.
If required for reasons of efficiency, a special version of the “port”
concept allows other software to be directly linked into the abstract
machine. Examples of the use of the port mechanism are interacting
with the host file system, interfacing to a graphical interface and a low
level socket interface.

Organizational requirements

Except for the technical problems that have to be addressed, the success
of Erlang also depends on overcoming organizational problems. One can



only speculate about the reasons why Erlang spread so successfully from
the computer science laboratory to a number of commercial products.

e Real problems - We work on real problems. We tend to make
progress when we cannot solve a particular problem with the exist-
ing technology. Progress has often come when a user came with a
problem which could not be solved in Erlang.

e Working within the organization - We work within the Ericsson
organization. It is far easier to “sell” an idea internally than to come
to the organization from outside.

¢ Organizational support - There is a gap between the best that a
laboratory with limited resources can produce and what is minimally
acceptable for a commercial product. Ericsson has provided financial
support and created new jobs as necessary to help fill this gap.

¢ Providing good support - Good documentation, courses, e-mail,
hot-line telephone support etc. are essential in passing from the “en-
thusiast” to the “main-stream” phase of development.

¢ Foreign language interfaces- Typical systems are written in several
different languages. Erlang i1s not good at everything. Large parts of a
system might use purchased software packages written in C. Efficient
integration with C is essential.

e Lots of tools - Project managers are not interested in programming
languages. They are not interested in formal anything.

They are however, interested in short “time to market” and in bug-free
written software. The provision of large numbers of software tools can
greatly reduce software development times and improve the quality of
the software.

These tools are specific to our problem domain. Thus we have tools for
making SNMP MIBs, for manipulating ASN.1 data types, for building
fault-tolerant duplicated data-bases with hot-standby [6] etc.

Erlang Applications

Erlang has started to be used by other people than the developers in 1987.
The first projects, which were within Ericsson, were simple prototypes writ-
ten using a very slow version of Erlang which was implemented in Prolog
[8].

Work with the interpretor led to the development of a much faster Erlang
machine [4] which was loosely based on the WAM with extensions to handle
process creation and message passing.

The availability of a faster Erlang implementation encouraged the spread
of the language within Ericsson and a number of experimental projects were
started. At the time of writing some of these have developed into full-scale
Ericsson products.



In 1994 the first International Erlang Conference was held in Stockholm.
This conference, which publishes no proceedings has been held every year
since 1994. The 1995 conference attracted 160 delegates from 10 different
countries. The Erlang conference is the principle forum within Ericsson for
reporting work done with Erlang.

By 1995 three projects had matured into stable commercial products,
namely:

e NETSim - Network Element Test Simulator.
e Mobility Server - The Mobility Server is a fully featured PBX.

¢ Distributed Resource Controller - the distributed resource con-
troller (DRC) is a scalable, robust resource controller written in dis-
tributed Erlang and running on Windows-NT.

Conclusion

After Erlang had shown to be useful in several projects, on January lst,
1996 a new Ericsson division was created to support applications written in
Erlang (the Open Telecom Platform (OTP)). The OTP division can provide
Ericsson users with anything from a simple Erlang system which runs on a
PC to an embedded system complete with hardware. The division is now
taking care of the maintenance and support of the Erlang system.

A free version of Erlang, with extensive libraries that solve common
application problems, is available on the web http://www.erlang.se.

References

[1] J. L. Armstrong, S. R. Virding. One pass real-time generational
mark-sweep garbage collection. International Workshop on Memory
Management (IWMM’95), September 27-29, 1995, Kinross, Scotland

[2] J. L. Armstrong, M. C. Williams, C. Wikstrom and S. R. Virding.
Concurrent Programming in Erlang, 2nd ed. Prentice Hall (1995)

[3] J. L. Armstrong. Erlang - A survey of the language and its industrial
applications. In Proceedings of the symposium on industrial applica-
tions of Prolog (INAP96). 16 — 18 October 1996. Hino, Tokyo Japan.

[4] J. L. Armstrong, B. Diacker, S. R. Virding, and M. C. Williams,
Implementing a functional language for highly parallel real time ap-
plications. 8th Int Conf. on Software Engineering for Telecommuni-
cation Switching Systems, Florence 30 March — 1 April 1992.

[5] B. Hausman. Turbo Erlang: Approaching the speed of C. In Imple-
mentations of Logic Programming Systems, pp. 119-135, ed. Evan
Tick and Giancarlo Succi, Kluwer Academic Publishers (1994).

[6] C. Wikstrom and H. Nilsson. Mnesia - An Industrial DBMS with
Transactions, Distribution and a Logical Query Language. Interna-
tional Symposium on Cooperative Database Systems for Advanced
Applications. Kyoto Japan 1996



[7] S. R.Virding. Collector for the concurrent real-time language FEr-
lang. International Workshop on Memory Management (IWMM’95),
September 27-29, 1995, Kinross, Scotland

[8] K. édling. New technology for prototyping new services. In Ericsson
Review No. 2 1993.



