
Erlang and its applicationsJoe Armstrong and Thomas ArtsComputer Science LaboratoryEricsson Telecom ABBox 1505, S - 125 25 �Alvsj�oSwedenfjoe,thomasg@cslab.ericsson.seErlang is a functional programming language for programming concur-rent and distributed systems initially developed by Joe Armstrong, RobertVirding, Claes Wikstr�om and Mike Williams [2]. The development of Erlangstarted as an investigation into whether modern declarative programmingparadigms could be used for programming large industrial telecommunica-tion switching systems. The resulting language, Erlang, turned out to besuitable as well for programming telecommunication systems as for a widerange of industrial embedded real-time control problems.Technical requirementsThe technical problems that had to be focussed when developing the lan-guage originated from the typical industrial requirements (cf. [3]):� Real-time - The typical applications require real-time response timesin the order of milliseconds. Erlang is designed for programming \soft"real-time systems where not all timing deadlines have to be met. Thelanguage also provides mechanisms for allowing processes to timeoutwhile waiting for events and to read a real-time clock.� Very large programs - Control systems can have millions of lines ofcode, and are programmed by large teams of programmers.� Non-stop systems - Control systems cannot be stopped for softwaremaintenance. The Erlang abstract machine allows program code to bechanged in a running system. Old code can be phased out and replacedby new code. During the transition, both old code and new code can berun at the same time. This enables faults to be corrected and softwareto be upgraded in systems without disturbing their operation.� Portability - Erlang compiles to abstract machine code which canbe run on any of a large number of di�erent operating systems. Thisapproach makes the system source and object code compatible.1



� Concurrency - Our applications are best modeled by a very largenumber of concurrent processes. At any instant in time most of theseprocesses are idle. The number of processes and their memory re-quirements vary with time and are extremely di�cult to predict inadvance. Erlang has lightweight processes whose memory require-ments vary dynamically. No requirements for concurrency are placedon the host operating system.� Distribution - Erlang is designed to be run in a distributed multi-node environment. Every computation in Erlang is performed withina process. Processes have no shared memory and communicate byasynchronous message passing. An Erlang system running on oneprocessor can create a parallel process running on another system(which need not even be the same processor or operating system) andthereafter communicate with this process.� Garbage collection - Erlang is used to program real-time systems.Long garbage collection delays in such systems are unacceptable. Er-lang implementations are written using bounded-time garbage tech-niques, some of these techniques are described in [1, 7].� Incremental code loading - Users can control in detail how code isloaded. In embedded systems, all code is usually loaded at boot time.In development systems, code is loaded when it is needed. If testinguncovers bugs, only the faulty code need be replaced.� Robustness - The Erlang abstract machine has three independent er-ror detection primitives which can be used to structure fault-tolerantsystems. One of these mechanisms allows processes to monitor theactivities of other processes, even if these processes are executing onother processors. We can group processes together in distributed sys-tems and use these as building blocks in designing distributed trans-action oriented systems.� External Interfaces - Erlang has a "port" mechanism which allowsprocesses to communicate with the outside world in a manner whichis semantically equivalent to internal message passing between Erlangprocesses. This mechanism is used for communication with the hostoperating system and for interaction with other processes (perhapswritten in other languages), which run on the host operating system.If required for reasons of e�ciency, a special version of the \port"concept allows other software to be directly linked into the abstractmachine. Examples of the use of the port mechanism are interactingwith the host �le system, interfacing to a graphical interface and a lowlevel socket interface.Organizational requirementsExcept for the technical problems that have to be addressed, the successof Erlang also depends on overcoming organizational problems. One can2



only speculate about the reasons why Erlang spread so successfully fromthe computer science laboratory to a number of commercial products.� Real problems - We work on real problems. We tend to makeprogress when we cannot solve a particular problem with the exist-ing technology. Progress has often come when a user came with aproblem which could not be solved in Erlang.� Working within the organization - We work within the Ericssonorganization. It is far easier to \sell" an idea internally than to cometo the organization from outside.� Organizational support - There is a gap between the best that alaboratory with limited resources can produce and what is minimallyacceptable for a commercial product. Ericsson has provided �nancialsupport and created new jobs as necessary to help �ll this gap.� Providing good support - Good documentation, courses, e-mail,hot-line telephone support etc. are essential in passing from the \en-thusiast" to the \main-stream" phase of development.� Foreign language interfaces - Typical systems are written in severaldi�erent languages. Erlang is not good at everything. Large parts of asystem might use purchased software packages written in C. E�cientintegration with C is essential.� Lots of tools - Project managers are not interested in programminglanguages. They are not interested in formal anything.They are however, interested in short \time to market" and in bug-freewritten software. The provision of large numbers of software tools cangreatly reduce software development times and improve the quality ofthe software.These tools are speci�c to our problem domain. Thus we have tools formaking SNMP MIBs, for manipulating ASN.1 data types, for buildingfault-tolerant duplicated data-bases with hot-standby [6] etc.Erlang ApplicationsErlang has started to be used by other people than the developers in 1987.The �rst projects, which were within Ericsson, were simple prototypes writ-ten using a very slow version of Erlang which was implemented in Prolog[8].Work with the interpretor led to the development of a much faster Erlangmachine [4] which was loosely based on the WAM with extensions to handleprocess creation and message passing.The availability of a faster Erlang implementation encouraged the spreadof the language within Ericsson and a number of experimental projects werestarted. At the time of writing some of these have developed into full-scaleEricsson products. 3



In 1994 the �rst International Erlang Conference was held in Stockholm.This conference, which publishes no proceedings has been held every yearsince 1994. The 1995 conference attracted 160 delegates from 10 di�erentcountries. The Erlang conference is the principle forum within Ericsson forreporting work done with Erlang.By 1995 three projects had matured into stable commercial products,namely:� NETSim - Network Element Test Simulator.� Mobility Server - The Mobility Server is a fully featured PBX.� Distributed Resource Controller - the distributed resource con-troller (DRC) is a scalable, robust resource controller written in dis-tributed Erlang and running on Windows-NT.ConclusionAfter Erlang had shown to be useful in several projects, on January 1st,1996 a new Ericsson division was created to support applications written inErlang (the Open Telecom Platform (OTP)). The OTP division can provideEricsson users with anything from a simple Erlang system which runs on aPC to an embedded system complete with hardware. The division is nowtaking care of the maintenance and support of the Erlang system.A free version of Erlang, with extensive libraries that solve commonapplication problems, is available on the web http://www.erlang.se.References[1] J. L. Armstrong, S. R. Virding. One pass real-time generationalmark-sweep garbage collection. International Workshop on MemoryManagement (IWMM'95), September 27-29, 1995, Kinross, Scotland[2] J. L. Armstrong, M. C. Williams, C. Wikstr�om and S. R. Virding.Concurrent Programming in Erlang, 2nd ed. Prentice Hall (1995)[3] J. L. Armstrong. Erlang - A survey of the language and its industrialapplications. In Proceedings of the symposium on industrial applica-tions of Prolog (INAP96). 16 { 18 October 1996. Hino, Tokyo Japan.[4] J. L. Armstrong, B. D�acker, S. R. Virding, and M. C. Williams,Implementing a functional language for highly parallel real time ap-plications. 8th Int Conf. on Software Engineering for Telecommuni-cation Switching Systems, Florence 30 March { 1 April 1992.[5] B. Hausman. Turbo Erlang: Approaching the speed of C. In Imple-mentations of Logic Programming Systems, pp. 119-135, ed. EvanTick and Giancarlo Succi, Kluwer Academic Publishers (1994).[6] C. Wikstr�om and H. Nilsson. Mnesia - An Industrial DBMS withTransactions, Distribution and a Logical Query Language. Interna-tional Symposium on Cooperative Database Systems for AdvancedApplications. Kyoto Japan 19964



[7] S. R.Virding. Collector for the concurrent real-time language Er-lang. International Workshop on Memory Management (IWMM'95),September 27-29, 1995, Kinross, Scotland[8] K. �Odling. New technology for prototyping new services. In EricssonReview No. 2 1993.

5


