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The use of biomarkers is of ever-increasing importance in clinical diagnosis of disease. In practice, a cutpoint is
required for dichotomizing naturally continuous biomarker levels to distinguish persons at risk of disease from
those who are not. Two methods commonly used for establishing the ‘‘optimal’’ cutpoint are the point on the
receiver operating characteristic curve closest to (0,1) and the Youden index, J. Both have sound intuitive inter-
pretations—the point closest to perfect differentiation and the point farthest from none, respectively—and are
generalizable to weighted sensitivity and specificity. Under the same weighting of sensitivity and specificity, these
two methods identify the same cutpoint as ‘‘optimal’’ in certain situations but different cutpoints in others. In this
paper, the authors examine situations in which the two criteria agree or disagree and show that J is the only
‘‘optimal’’ cutpoint for given weighting with respect to overall misclassification rates. A data-driven example is used
to clarify and demonstrate the magnitude of the differences. The authors also demonstrate a slight alteration in the
(0,1) criterion that retains its intuitive meaning while resulting in consistent agreement with J. In conclusion, the
authors urge that great care be taken when establishing a biomarker cutpoint for clinical use.

area under curve; biological markers; cutpoints; data interpretation, statistical; epidemiologic methods; ROC
curve; statistics; Youden index

Abbreviations: AUC, area under the curve; ROC, receiver operating characteristic.

The proper diagnosis of disease and treatment adminis-
tration is a task that requires a variety of tools. Through ad-
vancements in biology and laboratory methods, a multitude
of biomarkers are available as clinical tools for such diagno-
sis. These biomarkers are usually measured on a continuous
scale with overlapping levels for diseased and nondiseased
persons. Cutpoints dichotomize biomarker levels, providing
benchmarks that label people as diseased or not diseased on
the basis of ‘‘positive’’ or ‘‘negative’’ test results. Biomarker
levels of persons with known disease status are used to eval-
uate potential cutpoint choices and, hopefully, identify a cut-
point that is ‘‘optimal’’ under some criterion.

Such a data set would comprise biomarker levels for per-
sons classified as coming from the diseased (D) or nondis-

eased ( �D) population. These levels could then be classified
in terms of positive (þ) or negative (�) test results on
the basis of whether the biomarker levels were above or
below a given cutpoint. In most instances, some persons will
be misclassified, truly belonging to a population other than
the one indicated by their test results. The sensitivity (q(c))
and specificity (p(c)) of that biomarker for a given cut-
point, c, are the probabilities of correctly identifying a per-
son’s disease status (i.e., identifying true positives and true
negatives):

qðcÞ¼ Probðtest result¼þjDÞ

pðcÞ¼ Probðtest result¼�j �DÞ;
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making 1 minus these values the probability of incorrect
classification or of obtaining false negatives (1 � q(c))
and false positives (1 � p(c)).

A receiver operating characteristic (ROC) curve is a map-
ping of this sensitivity by 1 minus specificity. The ROC
curve has become a useful tool in comparing the effective-
ness of different biomarkers (1–3). This comparison takes
place through summary measures such as the area under the
curve (AUC) and the partial AUC, with higher area values
indicating higher levels of diagnostic ability (1, 2, 4). A
biomarker with an AUC of 1 differentiates perfectly be-
tween diseased persons (sensitivity ¼ 1) and healthy persons
(specificity ¼ 1). An AUC of 0.5 means that, overall, there is
a 50-50 chance that the biomarker will correctly identify
diseased or healthy persons as such.

Though useful for biomarker evaluation, these measures
do not inherently lead to benchmark ‘‘optimal’’ cutpoints
with which clinicians and other health-care professionals
can differentiate between diseased and nondiseased persons.
Several methods for identifying ‘‘optimal’’ cutpoints using
sensitivity, specificity, and the ROC curve have been pro-
posed and applied (4–8). Confidence intervals and correc-
tions for measurement error are some of the supporting
statistical developments accompanying cutpoint estimation
(9). Applications of these techniques have been demon-
strated in several fields, including nuclear cardiology, epi-
demiology, and genetics (7, 10, 11).

In the ‘‘Criteria’’ section of this article, we describe two
criteria for locating this cutpoint that have similar intuitive
justifications. In describing the mathematical mechanisms
behind these criteria, we demonstrate that one of the criteria
retains the intended meaning, while the other inherently
depends on quantities that may differ from an investigator’s
intentions. In the ‘‘Example’’ section, we use data from
a nested case-control study carried out in the Calcium for
Pre-Eclampsia Prevention cohort (12) to demonstrate how
these two criteria identify different cutpoints for the classi-
fication of 120 preeclampsia cases and 120 controls based
on levels of placenta growth factor, a biomarker of angio-
genesis. Next, we discuss the appropriateness of the term
‘‘optimal’’ as it applies to each criterion. This is handled first
with equally weighted sensitivity and specificity. Consider-
ation of differing disease prevalences and costs due to mis-
classification is also presented as a practical generalization
(5, 13). We end with a brief discussion.

CRITERIA

The closest-to-(0,1) criterion

If a biomarker perfectly differentiates persons with dis-
ease from those without disease on the basis of a single
cutpoint, where q(c) ¼ 1 and p(c) ¼ 1, the ROC curve is
a vertical line from (0,0) to (0,1) joined with a line from
(0,1) to (1,1) with an AUC of 1. However, for a less-than-
perfect biomarker, where q(c) < 1 and/or p(c) < 1, the ROC
curve does not touch the (0,1) point. Here the choice of an
‘‘optimal’’ cutpoint is less straightforward. A criterion by
which the point on the curve closest to (0,1) is identified and
the corresponding cutpoint is labeled ‘‘optimal’’ has been

suggested and utilized (6, 7). The rationale behind this ap-
proach is that the point on the curve closest to perfection
(i.e., closest to q(c) ¼ 1 and p(c) ¼ 1) should correspond to
the optimal cutpoint chosen from all of the cutpoints avail-
able, thus intuitively minimizing misclassification. Mathe-
matically, the point c* that satisfies the equation

minf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�qðcÞÞ2 þð1�pðcÞÞ2

q
g

or

minfð1�qðcÞÞ2 þð1�pðcÞÞ2g ð1Þ
fulfills this criterion and is thus labeled the cutpoint that best
differentiates between diseased and nondiseased persons.

This criterion can be viewed as searching for the shortest
radius originating at the (0,1) point and terminating on the
ROC curve. Reference arcs can be used to visually compare
radial distances, with the arc corresponding to c* being
tangent to the ROC curve and thus the minimum and interior
of any of the concentric arcs possible. Figure 1 demonstrates
this point at which the dotted arc is completely interior to,
and thus closer to (0,1) than, the arc formed by the distance
to an alternate point on the curve.

The Youden index

Another measure for evaluating biomarker effectiveness is
the Youden index (J), first introduced in the medical literature
by Youden (14). J is also a function of q(c) and p(c), such that

FIGURE 1. Receiver operating characteristic curve based on
simulated diseased and nondiseased populations. The vertical lines
and reference arcs identify the Youden index, J (solid lines), and the
point closest to the (0,1) point (dotted lines) and their corresponding
‘‘optimal’’ cutpoints cJ and c*, respectively.
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J¼maxfqðcÞþpðcÞ�1g
¼maxfqðcÞ�ð1�pðcÞÞg ð2Þ

over all cutpoints c, with cJ denoting the cutpoint corre-
sponding to J. On a ROC curve, J is the maximum vertical
distance from the curve to the chance line or positive di-
agonal (figure 1), making cJ the ‘‘optimal’’ cutpoint (5, 15).
The intuitive interpretation of the Youden index is that J is the
point on the curve farthest from chance. It has also been de-
fined as the accuracy of the test in clinical epidemiology (16).

Agreement/disagreement

The above criteria agree with respect to intuition; they
maximize and minimize the rates of people’s being classi-
fied correctly and incorrectly, respectively. The question
‘‘Do they agree on the same ‘optimal’ cutpoint?’’ now begs
to be answered.

Suppose the biomarker of interest follows continuous dis-
tributions for both diseased and nondiseased populations
that are known completely, leading to a true ROC curve.
Our only distributional restriction is that a ROC curve is
generated that is differentiable everywhere. This is intrinsic
to the case where diseased and nondiseased persons are
assumed to follow any number of common continuous den-
sities (i.e., normal, lognormal, gamma, etc.). Through dif-
ferentiation, Appendix 1 shows that the two criteria only
agree, c* ¼ cJ ¼ c, when q(c*) ¼ p(c*) and q(cJ) ¼ p(cJ).
When either criterion identifies a point on the curve such
that q(c*) 6¼ p(c*) or q(cJ) 6¼ p(cJ), the criteria disagree on
what cutpoint is ‘‘optimal,’’ that is, c* 6¼ cJ.

An investigator with complete knowledge of a biomarker’s
data distribution could be faced with two different cut-
points labeled ‘‘optimal’’ under two criteria that are intui-
tively the same. Our motivation here is simply to show that
they are different and address the appropriateness of the
label ‘‘optimal.’’

EXAMPLE

Preeclampsia affects approximately 5 percent of pregnan-
cies, resulting in substantial maternal and neonatal morbid-
ity and mortality (16). Although the cause remains unclear,
the syndrome may be initiated by placental factors that enter
the maternal circulation and cause endothelial dysfunction,
resulting in hypertension and proteinuria (12). Identifying
women suffering from preeclampsia is a very important step
in the management of the disease. Placenta growth factor is
a promising biomarker for such classification, with an AUC
of 0.60 (95 percent confidence interval: 0.53, 0.67); how-
ever, at what level would a woman be classified as at risk for
the disease? Levine et al. (12) conducted a nested case-
control study of 120 women with preeclampsia and 120
normal women randomly chosen from the Calcium for
Pre-Eclampsia Prevention cohort study. Placenta growth
factor levels were measured from serum specimens obtained
before labor. Figure 2 shows the ROC curve generated from
the log-transformed placenta growth factor levels. After cal-
culation of the distance to (0,1) and the distance to the di-

agonal for each point, the cutpoints c* ¼ 4.64 and cJ¼ 4.12,
respectively, are identified. Thus, criteria with seemingly
identical intuitive intents produce close results but disagree
on the ‘‘optimal’’ cutpoint. Again, here it is sufficient to dem-
onstrate that disagreement exists. We will revisit this example
after the question of ‘‘optimality’’ has been addressed.

‘‘Optimality’’

When attempting to classify people on the basis of bio-
marker levels, it is always one’s intent to do so ‘‘optimally.’’
However, the event of interest may intrinsically involve
constraints which must, for ethical or fiscal reasons, be con-
sidered. These constraints commonly account for the prev-
alence of the event in both populations and the costs of
misclassification, both monetary and physiologic. Thus, math-
ematical techniques of optimality must now operate within
these constraints, but the idea of an ‘‘optimal’’ cutpoint should
remain; one still wishes to choose a point that classifies the
most people correctly and the fewest incorrectly.

First let us assume the simplest scenario, absent of con-
straints or weighting. By definition, the cJ found by equation
2 succeeds ideologically by maximizing the overall rate of
correct classification, q(cJ) þ p(cJ). As a result, the overall
rate of misclassification, (1 � q(cJ)) þ (1 � p(cJ)), is min-
imized. Thus, we can say that cJ is ‘‘optimal’’ with respect
to the total correct and incorrect classification rates and any
cutpoint that deviates from it is not.

FIGURE 2. Empirical receiver operating characteristic curve obtained
using placenta growth factor levels to differentiate between women
diagnosed with preeclampsia and those without it. The two points
corresponding to cutpoints labeled ‘‘optimal’’ by the closest-to-(0,1)
criterion (c*) and the Youden index (cJ ) differ. Data source: Levine
et al. (12).
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Under the same scenario, the closest-to-(0,1) criterion in
equation 1 minimizes the total squared misclassification
rates, quadratic terms for which an ideology does not seem
to exist, other than being geometrically intuitive. Equation 1
can be expanded and rewritten as

minfð1�qðcÞÞþð1�pðcÞÞþðqðcÞ2 þpðcÞ2Þ=2g ð3Þ

to show that this criterion minimizes the total of the mis-
classification rates and a third term, the average of squared
correct classification rates. Unless a specific justification for
this third term exists, its usage results in unwarranted and
thus unnecessary misclassification, because it identifies
a point c* 6¼ cJ.

Now, let us consider the circumstance in which cost and
prevalence are thought to be factors, as they usually are in
practice. Using decision theory, a generalized J can be
formed where these factors are represented as a weighting
of sensitivity and specificity. The function that minimizes
expected loss in classifying a subject can be written as

minfapð1�qðcÞÞþð1�pÞð1�pðcÞÞg; ð4Þ

where a denotes the relative loss (cost) of a false-negative
classification as compared with a false-positive classifica-
tion and p is the proportion of diseased persons in the pop-
ulation of interest (prevalence) (17, 18). It is easy to see that
minimizing this expected loss over all possible threshold
values is the same as

J¼maxfqðcÞþ r3pðcÞ�1g; ð5Þ
where r ¼ (1 � p)/ap. For r ¼ 1, this is equivalent to J.

Weighting of the (0,1) criterion occurs similarly,

minfð1�qðcÞÞ2 þ r3ð1�pðcÞÞ2g; ð6Þ

where r is exactly the same weighting estimate for cost and
prevalence. The issue of the quadratic term remains

minfð1�qðcÞÞþ r3ð1�pðcÞÞ
þðqðcÞ2 þ r3pðcÞ2Þ=2g; ð7Þ

only now it is weighted and unnecessary. Comparing this
equation to equation 4, it is easy to see that this absolutely
does not minimize loss due to misclassification.

Example revisited

To demonstrate this unnecessary misclassification and its
possible magnitude, we revisit the example of placenta
growth factor levels’ being used to differentiate preeclamp-
tic women from those without the disease. Sensitivity and
specificity at the cutpoints previously identified are q(c*) ¼
0.592, p(c*) ¼ 0.558 and q(cJ) ¼ 0.817, p(cJ) ¼ 0.358,
respectively. The overall correct classification rate (q þ p)
is 1.150 for c* and 1.175 for cJ out of a possible 2, with
a difference of 0.025. Without the justification for the third
term in equation 3 and without weighting, this difference
can be thought of as one person out of 100 being unneces-
sarily misclassified. Relative cost and disease prevalence are
often difficult to assess, as discussed by Greiner et al. (18)

and the references cited therein. Thus, we will not attempt
adjustment in this example.

DISCUSSION

In this paper, we demonstrated the intuitive similarity of
two criteria used to choose an ‘‘optimal’’ cutpoint. We then
showed that the criteria agree in some instances and disagree
in others. Placenta growth factor levels used to classify
women as preeclamptic or not preeclamptic were used to
demonstrate this point and quantify the extent of disagreement.

We addressed both criteria in the context of what an
investigator might view as ‘‘optimal,’’ with and without
attention to misclassification cost and prevalence. Mathe-
matically, J reflects the intention of maximizing overall
correct classification rates and thus minimizing misclassifi-
cation rates, while choosing the point closest to (0,1) in-
volves a quadratic term for which the clinical meaning is
unknown. It is for this reason that we advocate for the use
of J to find the ‘‘optimal’’ cutpoint.

Since the (0,1) criterion is visually intuitive, we have
provided an amended (0,1) criterion in Appendix 2 that is
likewise geometrically satisfying while consistently identi-
fying the same ‘‘optimal’’ cutpoint as J. This criterion relies
on a ratio of radii originating at (0,1).

Additional motivation for using J is an ever-increasing
body of supporting literature (9, 15, 19). Topics such as
confidence intervals and correcting the estimate for mea-
surement error have been considered, whereas the (0,1) cri-
terion lacks such support.

Most importantly, cutpoints chosen through less than
‘‘optimal’’ criteria or criteria that are ‘‘optimal’’ in some
arbitrary sense can lead to unnecessary misclassifications,
resulting in needlessly missed opportunities for disease
diagnosis and intervention. We showed above that J is ‘‘op-
timal’’ when equal weight is given to sensitivity and spec-
ificity, r ¼ 1, and a generalized J is ‘‘optimal’’ when cost
and prevalence lead to weighted sensitivity and specificity,
r 6¼1. Thus, when the point closest to (0,1) differs from
the point resulting in J, using this criterion to establish an
‘‘optimal’’ cutpoint unnecessarily introduces an increased
rate of misclassification.
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APPENDIX 1

For continuous receiver operating characteristic (ROC) curves, we make no distributional assumptions beyond the assump-
tion that the probability density functions fD and f �D for biomarker levels of diseased and nondiseased persons, respectively,
form a ROC curve that is differentiable everywhere. This is the case when fD and f �D are assumed to be any common continuous
parametric distributions (i.e., normal, gamma, lognormal).

In order to locate the cutpoints that minimize and maximize equations 1 and 2, respectively, it is first necessary to locate
critical values. Thus, differentiating equation 1,

@

@c
½ð1�pðcÞÞ2 þð1�qðcÞÞ2� ¼ 2ð1�pðcÞÞ @ð1�pðcÞÞ

@c

� �
�2ð1�qðcÞÞ @qðcÞ

@c

� �
: ðA1:1Þ

Then set the derivative equal to zero:

2ð1�pðc*ÞÞ @ð1�pðc*ÞÞ
@c

� �
�2ð1�qðc*ÞÞ @qðc*Þ

@c

� �
¼ 0

ð1�pðc*ÞÞ @ð1�pðc*ÞÞ
@c

� �
¼ð1�qðc*ÞÞ @qðc*Þ

@c

� �

@qðc*Þ
@ð1�pðc*ÞÞ¼

1�pðc*Þ
1�qðc*Þ : ðA1:2Þ

Now, we differentiate the second criterion,

@

@c
½qðcÞ�ð1�pðcÞÞ� ¼ @qðcÞ

@c
�@ð1�pðcÞÞ

@c
; ðA1:3Þ

and then setting the derivative equal to zero,

@qðcJÞ
@c

�@ð1�pðcJÞÞ
@c

¼ 0

@qðcJÞ
@c

¼ @ð1�pðcJÞÞ
@c

@qðcJÞ
@ð1�pðcJÞÞ

¼ 1: ðA1:4Þ
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The forms of both equation A1.2 and equation A1.4 define the critical points of the criteria in equations 1 and 2, respectively,
by the slopes of their corresponding points on the ROC curve. Since these solutions are not necessarily unique, multiple
solutions may exist—that is, local maximums or minimums. Therefore, all solutions and endpoints must be evaluated so that
c* and cJ are global solutions.

Equations A1.2 and A1.4 show us that the (0,1) and J methods agree, c* ¼ cJ ¼ c, only when q(c*) ¼ p(c*) and thus
(1 � p(c*))/(1 � q(c*)) ¼ 1. When q(c*) 6¼ p(c*), the criteria disagree on what point is optimal (c* 6¼ cJ).

APPENDIX 2

Equation 1 identifies the point closest to perfection irrespective of the possibilities of imperfection. In other words, this
criterion minimizes the distance from (0,1) to the curve but fails to take into account the possible distance to the chance line. To
obtain a weighted criterion that accounts for this deficiency, minimize the proportion of the smaller radius (r2) to the larger
radius (r1), as displayed in appendix figure 1, such that

min

ffiffiffiffiffiffiffi
r

2
2

r
2

1

vuut
8<
:

9=
;¼min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�pðcÞÞ2 þð1�qðcÞÞ2

1 � pðcÞ
1 � d

� �2

þ 1�1 � pðcÞ
1 � d

� �2

vuuuut

8>>><
>>>:

9>>>=
>>>;

¼minf1�dg; ðA2:1Þ

where d ¼ q(c) � (1 � p(c)).
The relation in equation A2.1 can be derived algebraically or by using the proportionality of the triangles in appendix figure 1,

such that

r2

r1
¼ r1 �ðr1 � r2Þ

r1
¼ 1�ðr1 � r2Þ

r1
¼ 1�d

1
:

Appendix figure 1 also provides a visual reference for the proposed weighting, as radii passing through different points on the
curve have different distances to the chance line but are treated uniformly in equation 1.

It is now easily seen that the differentiation

@

@c
f1�dg¼�@qðcÞ

@c
þ@ð1�pðcÞÞ

@c
¼ 0

@qðcÞ
@ð1�pðcÞÞ¼ 1

leads to the same critical points on the receiver operating characteristic curve as J and thus to identical cutpoints (c* ¼ cJ).

APPENDIX FIGURE 1. Receiver operating characteristic curve displaying radii extending from the point (0,1) to points on the curve and chance line,
denoted by r2 and r1, respectively. Through similar triangles, the ratio of radii r2:r1 is shown to equal 1minus the height, d, of the curve from the diagonal
or chance line.
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