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Abstract. Markovian behavioral equivalences are a means to relate and
manipulate the formal descriptions of systems with an underlying CTMC
semantics. There are three fundamental approaches to their definition:
bisimilarity, testing, and trace. In this paper we survey the major re-
sults appeared in the literature about Markovian bisimilarity, Markovian
testing equivalence, and Markovian trace equivalence. The objective is
to compare these equivalences with respect to a number of criteria such
as their discriminating power, the exactness of the CTMC-level aggre-
gations they induce, the achievement of the congruence property, the
existence of sound and complete axiomatizations, the existence of logical
characterizations, and the existence of efficient verification algorithms.

1 Introduction

Performance-oriented notations provide the designer with the capability of build-
ing performance-aware system models, which can be used in the early develop-
ment stages to predict the satisfiability of certain performance requirements as
well as to choose among alternative designs on the basis of their expected QoS
guarantees. These notations range from more theoretical ones – like queueing net-
works [38], stochastic Petri nets [1], and stochastic process algebras [32] – to more
applicative ones – like formal modeling languages (Modest [12]), architectural
description languages (Æmilia [5]), coordination languages (StoKlaim [22]),
and object-oriented modeling languages (UML SPT/MARTE [48]).

An important feature shared by most of the performance-oriented notations
mentioned above is that of providing behavioral models of the systems under
construction. Given two such models, establishing whether they are equivalent
amounts to establishing whether the systems they represent behave the same.
What is needed is thus a notion of behavioral equivalence. This would be useful
not only to relate models that are syntactically different, but also to manipulate
models in a way that preserves their functional and performance properties.

Among the various proposals appeared in the literature [25], there are three
fundamental approaches to the definition of behavioral equivalences: bisimilar-
ity [43, 41], testing [21], and trace [33]. In the first approach, two models are
considered to be equivalent if they are able to mimic each other’s behavior step-
wise. In the second approach, two models are considered to be equivalent if an
external observer cannot distinguish between them, with the only way for the
observer to compare their behaviors being to interact with them by means of



tests and look at their reactions. In the third approach, similarly to traditional
automata theory, two models are considered to be equivalent if they are able to
perform the same sequences of activities.

These three approaches, originally conceived for reasoning about functional
aspects, have been subsequently extended to deal with non-functional aspects. As
far as performance aspects are concerned, research has mainly concentrated on
models of systems with an underlying continuous-time Markov chain (CTMC)
semantics. The reason is that, due to their memoryless property, exponential
distributions result in a simpler mathematical treatment without sacrificing ex-
pressiveness. In fact, besides being adequate for many real-life phenomena (like
arrival processes and failure events), exponential distributions provide the most
appropriate stochastic approximation if only the average duration of an activity
is known, and proper combinations of them (called phase-type distributions) can
approximate most of the general distributions arbitrarily closely.

This has resulted in the development of the Markovian versions of bisimi-
larity, testing equivalence, and trace equivalence, which will be surveyed in this
paper by recalling from [32, 15, 31, 14, 18, 4, 23, 10, 30, 8, 7, 9, 49] their properties.

Although behavioral equivalences abstract from specific kinds of models,
most of their properties can be better investigated and understood in a process
algebraic framework [41, 33, 2, 6]. For this reason, the three Markovian behav-
ioral equivalences mentioned above will be defined in this paper over Marko-
vian process calculi. Many such calculi have been proposed in the literature,
like TIPP [27], PEPA [32], MPA [16], EMPAgr [10], Sπ [44], IMC [30], and
PIOA [46]. They differ for the action representation – durational actions (TIPP,
PEPA, MPA, EMPAgr, Sπ, PIOA) vs. instantaneous actions separated from time
passing (IMC) – as well as for the action synchronization discipline – symmetric
(TIPP, MPA, Sπ, IMC), asymmetric (EMPAgr, PIOA), or both (PEPA).

In this paper we shall start with a sequential Markovian process calculus
(SMPC) with durational actions, which generates all the finite CTMCs with as
few operators as possible: the null term, the action prefix operator, the alterna-
tive composition operator, and recursion. Then we shall add a parallel composi-
tion operator governed by an asymmetric action synchronization discipline, thus
resulting in a concurrent Markovian process calculus (CMPC). We shall also
address some syntax variations – like the inclusion of rewards, nondeterminism,
and prioritized/weighted immediate actions – in order to present some useful
variants of the considered equivalences.

Markovian bisimilarity, Markovian testing equivalence, and Markovian trace
equivalence will be compared with respect to the following criteria:

1. Discriminating power. The three Markovian behavioral equivalences, to-
gether with some variants of Markovian trace equivalence, will be ordered
according to a finer-than/coarser-than relation, thus providing information
about the linear-time/branching-time spectrum in the Markovian case. As
we shall see, similarly to what happens in the probabilistic case [36, 35], the
Markovian spectrum is more condensed than the nondeterministic one [25].



2. Exactness. Each of the three Markovian behavioral equivalences induces an
aggregation at the CTMC level. In general, a CTMC aggregation is exact
whenever the transient/stationary probability of being in a macrostate of an
aggregated CTMC is the sum of the transient/stationary probabilities of be-
ing in one of the constituent microstates of the original CTMC. This guaran-
tees the preservation of the performance characteristics when going from the
original CTMC to the aggregated one. As we shall see, all the three Marko-
vian behavioral equivalences induce exact aggregations. In other words, the
three approaches – bisimilarity, testing, trace – to the definition of behav-
ioral equivalences are not only intuitively appropriate from the functional
viewpoint, but also meaningful for performance evaluation purposes.

3. Congruence. A behavioral equivalence that is a congruence with respect to
the typical process algebraic operators is particularly helpful in practice, as
it supports compositional reasoning. This enables the compositional reduc-
tion of the model state space. As we shall see, Markovian bisimilarity and
Markovian testing equivalence are congruences, whereas Markovian trace
equivalence – unlike the nondeterministic case but similarly to the proba-
bilistic one [36] – is not a congruence with respect to parallel composition.

4. Axiomatization. The axiomatization of a behavioral equivalence elucidates
the fundamental equational laws on which the equivalence relies. This equa-
tional characterization is thus useful to understand what models can be
related by the equivalence. Whenever it is sound and complete, the axiom-
atization gives rise to the specific rules of a deduction system – including
reflexivity, symmetry, transitivity, and substitutivity – that can be exploited
as a rewriting system to syntactically manipulate the models in a way that
is consistent with the equivalence.

5. Logical characterization. The modal/temporal logic characterization of a be-
havioral equivalence shows what behavioral properties are preserved by the
equivalence. This can be exploited to provide diagnostic information that ex-
plains why two models are not equivalent. As we shall see, Markovian bisim-
ilarity preserves branching-time properties, while Markovian trace equiva-
lence preserves linear-time properties.

6. Verification complexity. In order to be applicable in practice, a behavioral
equivalence must be equipped with an efficient verification algorithm. As we
shall see, not only Markovian bisimilarity but also Markovian testing and
trace equivalences – unlike the nondeterministic case [37] but similarly to
the probabilistic one [35] – are all decidable in polynomial time.

This paper is organized as follows. In Sect. 2 we introduce the syntax and the
semantics for SMPC and CMPC. In Sect. 3 we study Markovian bisimilarity. In
Sect. 4 we address some of its variants that include rewards, nondeterminism, and
prioritized/weighted immediate actions. In Sect. 5 we present Markovian testing
equivalence. In Sect. 6 we illustrate Markovian trace equivalence together with
some other trace-based Markovian behavioral equivalences. Finally, in Sect. 7
we summarize the comparison of the Markovian behavioral equivalences based
on the criteria explained above and we discuss some open problems.



2 Basic Markovian Process Calculi

In this section we introduce two basic Markovian process calculi with durational
actions. The first one is a sequential Markovian process calculus (SMPC) that
generates all the finite CTMCs with as few operators as possible: the null term,
the action prefix operator, the alternative composition operator, and recursion.
The second one is a concurrent Markovian process calculus (CMPC) as it ad-
ditionally includes a parallel composition operator governed by an asymmetric
action synchronization discipline. Then we introduce some notation concerned
with the exit rates of the process terms and the attributes associated with their
computations.

2.1 Syntax and Semantics for SMPC

In SMPC every action is durational, hence it is represented as a pair <a, λ>,
where a ∈ Name is the name of the action while λ ∈ RI >0 is the rate of the
exponential distribution quantifying the duration of the action. The average
duration of an exponentially timed action is equal to the inverse of its rate.

Whenever several exponentially timed actions are enabled, the race policy is
adopted, hence the fastest action is the one that is executed. As a consequence
of this generative [26] selection mechanism, the execution probability of any
enabled exponentially timed action is proportional to its rate and the average
sojourn time associated with a process term is exponentially distributed with
rate given by the sum of the rates of the actions enabled by the term.

We denote by ActS = Name × RI >0 the set of the actions of SMPC. Unlike
standard process theory, where a distinguished symbol τ is used as the name of
the invisible action, here we assume that all the actions are visible.

Definition 1. The set LS of the process terms of SMPC is generated by the
following syntax:

P ::= 0
| <a, λ>.P
| P + P
| X
| rec X : P

where X is a process variable. We denote by PS the set of the closed and guarded
process terms of SMPC.

The semantics for SMPC is given by a state-transition model that can be
defined in the usual operational style. However, unlike nondeterministic process
calculi, idempotency no longer holds. In fact, a term like <a, λ>.P + <a, λ>.P
is not the same as <a, λ>.P , as the average sojourn time associated with the
latter, i.e. 1/λ, is twice the average sojourn time associated with the former, i.e.
1/(λ + λ). To keep the two terms distinct at the semantic level, it is necessary
to take into account the multiplicity of each transition, intended as the number
of different proofs for the derivation of the transition.



Therefore, the behavior of each process term P ∈ PS is given by a labeled
multitransition system [[P ]], whose states correspond to process terms and whose
transitions – each of which has a multiplicity – are labeled with actions. From
such a labeled multitransition system the CTMC underlying the process term
can easily be retrieved by (i) discarding the action names from the transition
labels and (ii) collapsing all the transitions between any two states into a single
transition whose rate is the sum of the rates of the original transitions.

We now provide the semantic rules for the various operators of SMPC:

– Null term: 0 cannot execute any action, hence the corresponding labeled
multitransition system is just a state with no transitions.

– Exponentially timed action prefix: <a, λ>.P can execute an action of name a
and rate λ and then behaves as P :

<a, λ>.P
a,λ−−−→ P

– Alternative composition: P1 + P2 behaves as either P1 or P2 depending on
whether P1 or P2 executes an action first:

P1

a,λ−−−→ P ′

P1 + P2

a,λ−−−→ P ′

P2

a,λ−−−→ P ′

P1 + P2

a,λ−−−→ P ′

– Recursion: rec X : P behaves as P after replacing every occurrence of X
with rec X : P :

P{(rec X : P )/X} a,λ−−−→ P ′

rec X : P
a,λ−−−→ P ′

2.2 Syntax and Semantics for CMPC

CMPC extends SMPC with a parallel composition operator governed by an
asymmetric action synchronization discipline, which is enforced on an explicit
set of action names and makes use of passive actions. Multiway synchronizations
are allowed provided that they involve at most one exponentially timed action,
with all the other actions being passive.

A passive action is of the form <a, ∗w>, where w ∈ RI >0 is called weight and
is used to quantify choices among passive actions with the same name. Every
passive action has a duration that will become specified upon synchronization
with an exponentially timed action having the same name.

Whenever several passive actions are enabled, the reactive [26] preselection
policy is adopted. This means that, within every set of enabled passive actions
with the same name, each such action is given an execution probability pro-
portional to its weight. The choice between two enabled passive actions having
different names is instead nondeterministic.

We denote by ActC = Name × Rate the set of the actions of CMPC, where
Rate = RI >0 ∪ {∗w | w ∈ RI >0} is the set of the action rates (ranged over by λ̃).
As for SMPC, we assume that all the actions are visible.



Definition 2. The set LC of the process terms of CMPC is generated by the
following syntax:

P ::= 0
| <a, λ>.P
| <a, ∗w>.P
| P + P
| P ‖S P
| X
| rec X : P

where S ⊆ Name and X is a process variable. We denote by PC the set of the
closed and guarded process terms of CMPC.

Due to the memoryless property of exponential distributions and the fact
that the probability that two concurrent exponentially timed actions terminate
simultaneously is zero, the semantics for the parallel composition operator can
be defined in the usual interleaving style like in the nondeterministic case. In
fact, term <a, λ>.0 ‖∅<b, µ>.0 behaves exactly like term <a, λ>.<b, µ>.0 +
<b, µ>.<a, λ>.0 as the execution of an exponentially timed action can be
thought of as being started in the last state in which the action is enabled.

We now provide the semantic rules for the additional operators of CMPC:

– Passive action prefix: <a, ∗w>.P can execute a passive action of name a and
weight w and then behaves as P :

<a, ∗w>.P
a,∗w−−−→ P

– Parallel composition: P1 ‖S P2 behaves as P1 in parallel with P2 as long as
actions are executed whose names do not belong to S:

P1

a,λ̃−−−→ P ′1 a /∈ S

P1 ‖S P2

a,λ̃−−−→ P ′1 ‖S P2

P2

a,λ̃−−−→ P ′2 a /∈ S

P1 ‖S P2

a,λ̃−−−→ P1 ‖S P ′2

Generative-reactive synchronizations are forced between any exponentially
timed action executed by one term and any passive action executed by the
other term that have the same name belonging to S:

P1

a,λ−−−→ P ′1 P2

a,∗w−−−→ P ′2 a ∈ S

P1 ‖S P2

a,λ· w
weight(P2,a)−−−−−−−−−−−−→ P ′1 ‖S P ′2

P1

a,∗w−−−→ P ′1 P2

a,λ−−−→ P ′2 a ∈ S

P1 ‖S P2

a,λ· w
weight(P1,a)−−−−−−−−−−−−→ P ′1 ‖S P ′2



while reactive-reactive synchronizations are forced between any two passive
actions executed by the two terms that have the same name belonging to S:

P1

a,∗w1−−−→ P ′1 P2

a,∗w2−−−→ P ′2 a ∈ S

P1 ‖S P2

a,∗ w1
weight(P1,a)

· w2
weight(P2,a)

·(weight(P1,a)+weight(P2,a))

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ P ′1 ‖S P ′2

where the weight of a process term P with respect to the passive actions of
name a that P enables is defined as follows:

weight(P, a) =
∑{|w ∈ RI >0 | ∃P ′ ∈ PC. P

a,∗w−−−→ P ′ |}

We point out that the CTMC underlying a process term in PC can be re-
trieved only if its labeled multitransition system has no passive transitions. In
this case we say that the process term is performance closed. We denote by PC,pc

the set of the performance closed process terms of PC. Note that PS,pc = PS.

2.3 Exit Rates and Computations of Process Terms

The Markovian behavioral equivalences that we shall define over SMPC and
CMPC are based on concepts like the exit rates of the process terms and the
traces, the probabilities, and the durations of their computations. Since these
concepts will be used several times in the paper, we collect in this section the
related notation.

The exit rate of a process term is the rate at which it is possible to leave
the term. We distinguish among the rate at which the process term can execute
actions of a given name that lead to a given set of terms, the total rate at which
the process term can execute actions of a given name, and the total exit rate of
the process term. The latter is the sum of the rates of all the actions that the
process term can execute, and coincides with the reciprocal of the average sojourn
time in the CTMC-level state corresponding to the process term whenever the
process term is performance closed.

Since there are two kinds of actions – exponentially timed and passive –
we consider a two-level definition of each variant of exit rate, where level 0
corresponds to exponentially timed actions and level −1 corresponds to passive
actions.

Definition 3. Let P ∈ PC, a ∈ Name, l ∈ {0,−1}, and C ⊆ PC. The exit
rate of P when executing actions of name a and level l that lead to C is defined
through the following non-negative real function:

rate(P, a, l, C) =





∑{|λ ∈ RI >0 | ∃P ′ ∈ C. P
a,λ−−−→ P ′ |} if l = 0

∑{|w ∈ RI >0 | ∃P ′ ∈ C.P
a,∗w−−−→ P ′ |} if l = −1

where each summation is taken to be zero whenever its multiset is empty.



Definition 4. Let P ∈ PC and l ∈ {0,−1}. The total exit rate of P at level l is
defined through the following non-negative real function:

ratet(P, l) =
∑

a∈Name

rate(P, a, l,PC)

where rate(P, a, l,PC) is the total exit rate of P with respect to a at level l.

A computation of a process term is a sequence of transitions that can be
executed starting from the state corresponding to the term. The length of a
computation is given by the number of transitions occurring in it. We say that
two computations are independent of each other if it is not the case that one
of them is a proper prefix of the other one. In the following, we denote by
Cf(P ) and If(P ) the multisets of the finite-length computations and independent
computations of P ∈ PC. Below we inductively define the trace, the execution
probability, and the duration of an element of Cf(P ), using symbol “◦” to denote
the sequence concatenation operator.

Definition 5. Let P ∈ PC and c ∈ Cf(P ). The trace associated with the execu-
tion of c is the sequence of the action names labeling the transitions of c, which
is defined by induction on the length of c through the following Name∗-valued
function:

trace(c) =

{
ε if length(c) = 0

a ◦ trace(c′) if c ≡ P
a,λ̃−−−→ c′

where ε is the empty trace.

Definition 6. Let P ∈ PC,pc and c ∈ Cf(P ). The probability of executing c is
the product of the execution probabilities of the transitions of c, which is defined
by induction on the length of c through the following RI ]0,1]-valued function:

prob(c) =

{
1 if length(c) = 0

λ
ratet(P,0) · prob(c′) if c ≡ P

a,λ−−−→ c′

We also define the probability of executing a computation of C as:

prob(C) =
∑
c∈C

prob(c)

for all C ⊆ If(P ).

Definition 7. Let P ∈ PC,pc and c ∈ Cf(P ). The stepwise average duration of
c is the sequence of the average sojourn times in the states traversed by c, which
is defined by induction on the length of c through the following (RI >0)∗-valued
function:

timea(c) =

{
ε if length(c) = 0

1
ratet(P,0) ◦ timea(c′) if c ≡ P

a,λ−−−→ c′



where ε is the empty stepwise average duration. We also define the multiset of
the computations of C whose stepwise average duration is not greater than θ as:

C≤θ = {| c ∈ C | length(c) ≤ length(θ) ∧
∀i = 1, . . . , length(c). timea(c)[i] ≤ θ[i] |}

for all C ⊆ Cf(P ) and θ ∈ ( RI >0)∗.

Definition 8. Let P ∈ PC,pc and c ∈ Cf(P ). The stepwise duration of c is the
sequence of the random variables quantifying the sojourn times in the states tra-
versed by c, which is defined by induction on the length of c through the following
random-variable-sequence-valued function:

timed(c) =

{
ε if length(c) = 0

Expratet(P,0) ◦ timed(c′) if c ≡ P
a,λ−−−→ c′

where ε is the empty stepwise duration while Expratet(P,0) is the exponentially
distributed random variable with rate ratet(P, 0) ∈ RI >0.

Definition 9. Let P ∈ PC,pc, C ⊆ If(P ), and θ ∈ (RI >0)∗. The probability
distribution of executing a computation of C within a sequence θ of time units
is given by:

probd(C, θ) =
length(c)≤length(θ)∑

c∈C

prob(c) ·
length(c)∏

i=1

Pr(timed(c)[i] ≤ θ[i])

where Pr(timed(c)[i] ≤ θ[i]) = 1 − e−θ[i]/timea(c)[i] is the cumulative distribu-
tion function of the exponentially distributed random variable timed(c)[i], whose
expected value is timea(c)[i].

We conclude by observing that the average duration (resp. duration) of a
finite-length computation has been defined as the sequence of the average sojourn
times (resp. of the random variables quantifying the sojourn times) in the states
traversed by the computation. The same quantity could have been defined as the
sum of the same basic ingredients, but this would not have been appropriate.

Example 1. Consider the two following process terms:
<g, γ>.<a, λ>.<b, µ>.0 + <g, γ>.<a, µ>.<d, λ>.0
<g, γ>.<a, λ>.<d, µ>.0 + <g, γ>.<a, µ>.<b, λ>.0

with λ 6= µ and b 6= d. Observed that the two terms have identical non-maximal
computations, we further notice that the first term has the two following maxi-
mal computations each with probability 1/2:

c1,1 ≡ .
g,γ−−−→ .

a,λ−−−→ .
b,µ−−−→ .

c1,2 ≡ .
g,γ−−−→ .

a,µ−−−→ .
d,λ−−−→ .

while the second term has the two following maximal computations each with
probability 1/2:



c2,1 ≡ .
g,γ−−−→ .

a,λ−−−→ .
d,µ−−−→ .

c2,2 ≡ .
g,γ−−−→ .

a,µ−−−→ .
b,λ−−−→ .

If the average duration were defined as the sum of the average sojourn times,
then c1,1 and c2,2 would have the same trace g ◦ a ◦ b and the same average
duration 1

2·γ + 1
λ + 1

µ , and similarly c1,2 and c2,1 would have the same trace
g ◦a◦d and the same average duration 1

2·γ + 1
µ + 1

λ . This would lead to conclude
that the two terms are equivalent, whereas an external observer equipped with a
button-pushing machine displaying the names of the actions that are performed
and the instants at which they are performed [49] would be able to distinguish
between the two terms.

3 Markovian Bisimilarity

Markovian bisimilarity considers two process terms to be equivalent whenever
they are able to mimic each other’s functional and performance behavior step-
wise. In this section we provide the definition of Markovian bisimilarity over PC

and we recall its properties from [32, 15, 31, 14, 18, 4, 23].

3.1 Equivalence Definition

The basic idea behind Markovian bisimilarity is that, whenever a process term
can perform actions with a certain name that reach a certain set of terms at
a certain speed, then any process term equivalent to the given one has to be
able to respond with actions with the same name that reach an equivalent set
of terms at the same speed. This can be formalized through the comparison of
the process term exit rates when executing actions of the same name (and level)
that lead to the same set of equivalent terms.

Definition 10. An equivalence relation B ⊆ PC × PC is a Markovian bisimu-
lation iff, whenever (P1, P2) ∈ B, then for all action names a ∈ Name, levels
l ∈ {0,−1}, and equivalence classes C ∈ PC/B:

rate(P1, a, l, C) = rate(P2, a, l, C)

Since the union of all the Markovian bisimulations can be proved to be the
largest Markovian bisimulation, the definition below follows.

Definition 11. Markovian bisimilarity, denoted by ∼MB, is the union of all the
Markovian bisimulations.

Obviously, ∼MB is strictly finer than classical bisimilarity [43, 41] and probabilis-
tic bisimilarity [40]. We conclude with an easy-to-check necessary condition.

Proposition 1. Let P1, P2 ∈ PC. Whenever P1 ∼MB P2, then for all a ∈ Name
and l ∈ {0,−1}:

rate(P1, a, l,PC) = rate(P2, a, l,PC)



3.2 Exactness

Markovian bisimilarity is consistent with an exact aggregation for CTMCs that
is known under the name of ordinary lumping.

Definition 12. A partition O of the state space of a CTMC is an ordinary
lumping iff, whenever s1, s2 ∈ O for some O ∈ O, then for all O′ ∈ O:∑{|λ ∈ RI >0 | ∃s′ ∈ O′. s1

λ−−−→ s′ |} =
∑{|λ ∈ RI >0 | ∃s′ ∈ O′. s2

λ−−−→ s′ |}
Theorem 1. The CTMC-level aggregation induced by ∼MB is an ordinary lump-
ing.

Corollary 1. The CTMC-level aggregation induced by ∼MB is exact.

3.3 Congruence

Markovian bisimilarity is a congruence with respect to all the operators of
CMPC.

Theorem 2. Let P1, P2 ∈ PC. Whenever P1 ∼MB P2, then:

1. <a, λ̃>.P1 ∼MB <a, λ̃>.P2 for all <a, λ̃> ∈ ActC.
2. P1 + P ∼MB P2 + P and P + P1 ∼MB P + P2 for all P ∈ PC.
3. P1 ‖S P ∼MB P2 ‖S P and P ‖S P1 ∼MB P ‖S P2 for all S ⊆ Name and

P ∈ PC.

As far as recursion is concerned, we need to extend ∼MB to open process terms.
These are terms containing free process variables, i.e. variables not occurring
within the scope of a rec binder.

Definition 13. Let P1, P2 ∈ LC containing a free process variable X. We define
P1 ∼MB P2 iff P1{Q/X} ∼MB P2{Q/X} for all Q ∈ PC.

Theorem 3. Let P1, P2 ∈ LC containing a free process variable X. Whenever
P1 ∼MB P2, then rec X : P1 ∼MB rec X : P2.

3.4 Axiomatization

Markovian bisimilarity has a sound and complete axiomatization over PC, whose
specific axioms are shown Table 1. This includes three basic laws for alternative
composition, two laws characterizing the race policy and the reactive preselection
policy, an expansion law for parallel composition, and three laws for recursion.
As far as AMB

6 is concerned, I and J are finite index sets (if empty, the related
summations are taken to be 0). The validity of this law is a consequence of the
memoryless property of the exponentially distributed durations and of the fact
that the probability that two concurrent exponentially timed actions terminate
simultaneously is zero, which allows the semantics for the parallel composition
operator to be defined in the usual interleaving style.

Theorem 4. The deduction system DED(AMB) is sound and complete for ∼MB

over PC, i.e. for all P1, P2 ∈ PC:
P1 ∼MB P2 ⇐⇒ AMB ` P1 = P2



(AMB
1 ) P1 + P2 = P2 + P1

(AMB
2 ) (P1 + P2) + P3 = P1 + (P2 + P3)

(AMB
3 ) P + 0 = P

(AMB
4 ) <a, λ1>.P + <a, λ2>.P = <a, λ1 + λ2>.P

(AMB
5 ) <a, ∗w1>.P + <a, ∗w2>.P = <a, ∗w1+w2>.P

(AMB
6 )

∑
i∈I

<ai, λ̃i>.P1,i ‖S

∑
j∈J

<bj , µ̃j>.P2,j =

∑
k∈I,ak /∈S

<ak, λ̃k>.

(
P1,k ‖S

∑
j∈J

<bj , µ̃j>.P2,j

)
+

∑
h∈J,bh /∈S

<bh, µ̃h>.

(∑
i∈I

<ai, λ̃i>.P1,i ‖S P2,h

)
+

∑
k∈I,ak∈S,λ̃k∈RI >0

∑
h∈J,bh=ak,µ̃h=∗wh

<ak, λ̃k · wh
weight(P2,bh)

>.(P1,k ‖S P2,h) +

∑
h∈J,bh∈S,µ̃h∈RI >0

∑
k∈I,ak=bh,λ̃k=∗vk

<bh, µ̃h · vk
weight(P1,ak)

>.(P1,k ‖S P2,h) +

∑
k∈I,ak∈S,λ̃k=∗vk

∑
h∈J,bh=ak,µ̃h=∗wh

<ak, ∗ vk
weight(P1,ak) ·

wh
weight(P2,bh) ·(weight(P1,ak)+weight(P2,bh))>.(P1,k ‖S P2,h)

(AMB
7 ) rec X : P = rec Y : P{Y/X} if Y not in P

(AMB
8 ) rec X : P = P{(rec X : P )/X}

(AMB
9 ) Q = P{Q/X} ⇒ Q = rec X : P

Table 1. Axiomatization of ∼MB over PC

3.5 Logical Characterization

Markovian bisimilarity has a modal logic characterization over PC,pc based on
a Markovian variant of the Hennessy-Milner logic [29], in which the diamond
operator is decorated with a rate lower bound.

Definition 14. The set of the formulas of HMLMB is generated by the following
syntax:

φ ::= true | ¬φ | φ ∧ φ | ∇a | 〈a〉λφ

where a ∈ Name and λ ∈ RI >0.

Definition 15. The satisfaction relation |=MB of HMLMB over PC,pc is defined
by structural induction as follows:

P |=MB true
P |=MB ¬φ if P 6|=MB φ
P |=MB φ1 ∧ φ2 if P |=MB φ1 and P |=MB φ2

P |=MB ∇a if rate(P, a, 0,PC) = 0
P |=MB 〈a〉λφ if rate(P, a, 0, sat(φ)) ≥ λ

where sat(φ) = {P ′ ∈ PC | P ′ |=MB φ}.



Theorem 5. Let P1, P2 ∈ PC,pc. Then:
P1 ∼MB P2 ⇐⇒ (∀φ ∈ HMLMB. P1 |=MB φ ⇐⇒ P2 |=MB φ)

We also mention that Markovian bisimilarity has a temporal logic characteri-
zation based on the branching-time logic CSL [3]. Besides the usual propositional
connectives, this logic comprises:

– a probability operator, which replaces the universal and existential com-
putation quantifiers and allows to refer to the probability of performing a
computation that satisfies a certain formula;

– a time-bounded next operator, which expresses that the next state is reached
within a certain amount of time and a certain formula holds in it;

– a time-bounded until operator, which expresses that a certain formula is
satisfied at some instant no later than a certain amount of time and at all
preceding instants another given formula holds;

– a steady-state operator, which enables to reason about the probability to be
in the long run in some state that satisfies a certain formula.

3.6 Verification Complexity

Markovian bisimilarity can be decided in polynomial time by means of a parti-
tion refinement algorithm in the style of [42]. This algorithm exploits the fact
that ∼MB can be characterized as a fixed point of successively finer relations. In
fact we have: ∼MB =

⋂
i∈NI

∼MB,i

where ∼MB,0 = PC × PC and ∼MB,i for i ≥ 1 is defined as follows: whenever
(P1, P2) ∈∼MB,i, then for all a ∈ Name, l ∈ {0,−1}, and C ∈ PC/∼MB,i−1:

rate(P1, a, l, C) = rate(P2, a, l, C)
In other words, ∼MB,0 induces a trivial partition with a single equivalence class
that coincides with PC, ∼MB,1 refines the previous partition by creating an
equivalence class for each set of terms that satisfy the necessary condition stated
by Prop. 1, and so on.

The algorithm to check whether P1 ∼MB P2 thus proceeds as follows:

1. Build a partition with a single class including all the states of the disjoint
union of [[P1]] and [[P2]], then initialize a list of splitters with this class.

2. Refine the current partition by splitting each of its classes according to the
exit rates towards one of the splitters, then remove this splitter from the list.

3. For each split class, insert into the list of splitters all the resulting subclasses
except for the largest one.

4. If the list of splitters is empty, return yes/no depending on whether the
initial state of [[P1]] and the initial state of [[P2]] belong to the same class or
not, otherwise go back to the refinement step.

The time complexity is O(m · log n), where n is the number of states and m
is the number of transitions of the disjoint union of [[P1]] and [[P2]]. To achieve
this complexity it is necessary to resort to a splay tree when representing the
subclasses arising from the splitting of a class.



4 Variants of Markovian Bisimilarity

Due to the nice properties presented in the previous section, Markovian bisimi-
larity has received more attention than Markovian testing and trace equivalences.
For this reason, some useful variants of it have appeared in the literature, three
of which will be recalled in this section.

The first one – reward Markovian bisimilarity [10] – takes rewards into ac-
count in order to allow process terms to be compositionally manipulated in a
way that is sensitive to specific performance measures. The second one – interac-
tive Markovian bisimilarity [30] – stems from the interaction of nondeterministic
process calculi and CTMCs and deals with both Markovian branchings and non-
deterministic branchings. The third one – extended Markovian bisimilarity [8]
– considers immediate actions à la GSPN [1] and deals with both Markovian
branchings and prioritized/probabilistic branchings.

4.1 Reward Markovian Bisimilarity

Although Markovian bisimilarity is consistent with ordinary lumping, which is an
exact aggregation, it may happen that specific performance measures distinguish
between ordinarily lumpable states by ascribing them a different meaning.

The usual approach to the specification of performance measures for CTMC-
based models relies on reward structures [34]. This requires associating real
numbers with model behaviors and activities, which are then transferred to the
proper states (as yield rewards) and transitions (as bonus rewards) of the un-
derlying CTMC, respectively. A yield reward expresses the rate at which a gain
(or a loss, if the number is negative) is accumulated while sojourning in the
related state. By contrast, a bonus reward specifies the instantaneous gain (or
loss) implied by the execution of the related transition.

The instant-of-time value of a performance measure specified through a re-
ward structure is computed as follows for a CTMC:

∑
s

yr(s) · π(s) +
∑

s
λ

−−−→ s′

br(s, λ, s′) · φ(s, λ, s′)

where:

– yr(s) is the yield reward associated with state s.
– π(s) is the probability of being in state s at the considered instant of time.

– br(s, λ, s′) is the bonus reward associated with transition s
λ−−−→ s′.

– φ(s, λ, s′) is the frequency of transition s
λ−−−→ s′ at the considered instant

of time, which is given by π(s) · λ.

In this setting, ascribing a different meaning to ordinarily lumpable states
amounts to giving different rewards to such states or their outgoing transitions.
In order to manipulate process terms in a performance-sensitive way, the defini-
tion of Markovian bisimilarity can be modified by taking rewards into account.



Before doing that, we need to extend CMPC with rewards. While bonus re-
wards can naturally be associated with actions, the treatment of yield rewards is
not trivial because in process calculi the concept of state is implicit. An approach
that can be followed is to associate yield rewards with actions too, with the yield
reward of a state being given by the sum of the yield rewards associated with
the actions enabled in that state (additivity assumption).

Therefore, we derive from CMPC a new calculus, which we call concurrent
reward Markovian process calculus (CRMPC):

– The syntax is extended as follows:

P ::= 0
| <a, λ, yr , br>.P
| <a, ∗w, ∗, ∗>.P
| P + P
| P ‖S P
| X
| rec X : P

where yr ∈ RI is the yield reward and br ∈ RI is the bonus reward. We
denote by PCR the set of the closed and guarded process terms of CRMPC.

– The semantic rules are modified accordingly. In particular, the synchroniza-
tion rules change as follows:

P1

a,λ,yr ,br−−−−−−→ P ′1 P2

a,∗w,∗,∗−−−−−−→ P ′2 a ∈ S

P1 ‖S P2

a,λ· w
weight(P2,a) ,yr · w

weight(P2,a) ,br

−−−−−−−−−−−−−−−−−−−−−−−−−−−→ P ′1 ‖S P ′2

P1

a,∗w,∗,∗−−−−−−→ P ′1 P2

a,λ,yr ,br−−−−−−→ P ′2 a ∈ S

P1 ‖S P2

a,λ· w
weight(P1,a) ,yr · w

weight(P1,a) ,br

−−−−−−−−−−−−−−−−−−−−−−−−−−−→ P ′1 ‖S P ′2

P1

a,∗w1 ,∗,∗
−−−−−−→ P ′1 P2

a,∗w2 ,∗,∗
−−−−−−→ P ′2 a ∈ S

P1 ‖S P2

a,∗ w1
weight(P1,a)

· w2
weight(P2,a)

·(weight(P1,a)+weight(P2,a))
,∗,∗

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ P ′1 ‖S P ′2

Note that the yield rewards are subject to the same normalization as the
rates, because they are strictly related to the sojourn time in the states.
By contrast, no normalization is needed for the bonus rewards, as they are
earned upon the execution of the transitions.

We now introduce the concept of exit reward, on the basis of which we shall
define the performance-sensitive variant of Markovian bisimilarity.

Definition 16. Let P ∈ PCR, a ∈ Name, l ∈ {0,−1}, and C ⊆ PCR. The
exit reward of P when executing actions of name a and level l that lead to C is



defined through the following real function:

reward(P, a, l, C) =

{∑{| yr+λ·br ∈ RI | ∃P ′ ∈ C. P
a,λ,yr ,br−−−−−−→ P ′ |} if l = 0

0 if l = −1

where the summation is taken to be zero whenever its multiset is empty.

Definition 17. An equivalence relation B ⊆ PCR×PCR is a reward Markovian
bisimulation iff, whenever (P1, P2) ∈ B, then for all action names a ∈ Name,
levels l ∈ {0,−1}, and equivalence classes C ∈ PCR/B:

rate(P1, a, l, C) = rate(P2, a, l, C)
reward(P1, a, l, C) = reward(P2, a, l, C)

Definition 18. Reward Markovian bisimilarity, denoted by ∼RMB, is the union
of all the reward Markovian bisimulations.

∼RMB enjoys the same properties as ∼MB. The characterizing axioms are:

<a, λ1, yr1, br1>.P + <a, λ2, yr2, br2>.P =
<a, λ1 + λ2, yr1 + yr2,

λ1
λ1+λ2

· br1 + λ2
λ1+λ2

· br2>.P

<a, ∗w1 , ∗, ∗>.P + <a, ∗w2 , ∗, ∗>.P = <a, ∗w1+w2 , ∗, ∗>.P

or equivalently:

<a, λ, yr , br>.P = <a, λ, yr + λ · br , 0>.P
<a, λ1, yr1, 0>.P + <a, λ2, yr2, 0>.P = <a, λ1 + λ2, yr1 + yr2, 0>.P

<a, ∗w1 , ∗, ∗>.P + <a, ∗w2 , ∗, ∗>.P = <a, ∗w1+w2 , ∗, ∗>.P

or equivalently:

<a, λ, yr , br>.P = <a, λ, 0, br + yr
λ >.P

<a, λ1, 0, br1>.P +<a, λ2, 0, br2>.P = <a, λ1+λ2, 0, λ1
λ1+λ2

·br1+ λ2
λ1+λ2

·br2>.P

<a, ∗w1 , ∗, ∗>.P + <a, ∗w2 , ∗, ∗>.P = <a, ∗w1+w2 , ∗, ∗>.P

4.2 Interactive Markovian Bisimilarity

Markovian bisimilarity deals with fully probabilistic models. However, it may
happen that not all the details of a model are known in the early design stages.
In that case, nondeterminism is a useful abstraction.

A way to recover nondeterminism in a Markovian framework is to combine
nondeterministic process calculi and CTMCs. This can be accomplished by re-
placing durational actions with two distinct prefix operators – one for interacting
actions that take no time and one for exponential delays – with the inter-process
communication being implemented through the synchronization of visible inter-
acting actions. Since an invisible action – which we denote by τ as usual – takes
no time and cannot be prevented by any synchronization constraint, we assume
maximal progress, i.e. τ -actions take precedence over time passing.

We now derive from CMPC a new calculus, which we call concurrent inter-
active Markovian process calculus (CIMPC):



– The syntax is modified as follows:

P ::= 0
| a.P
| (λ).P
| P + P
| P ‖S P
| X
| rec X : P

where a ∈ Name ∪ {τ}. We denote by PCI the set of the closed and guarded
process terms of CIMPC.

– Two transition relations are necessary: one for interacting actions and one
for exponential delays. Besides handling recursion, the semantic rules for
interacting actions include:

a.P
a−−−→I P

P1

a−−−→I P ′

P1 + P2

a−−−→I P ′
P2

a−−−→I P ′

P1 + P2

a−−−→I P ′

P1

a−−−→I P ′1 a /∈ S

P1 ‖S P2

a−−−→I P ′1 ‖S P2

P2

a−−−→I P ′2 a /∈ S

P1 ‖S P2

a−−−→I P1 ‖S P ′2

P1

a−−−→I P ′1 P2

a−−−→I P ′2 a ∈ S

P1 ‖S P2

a−−−→I P ′1 ‖S P ′2

while the semantic rules for exponential delays include:

(λ).P
λ−−−→M P

P1

λ−−−→M P ′

P1 + P2

λ−−−→M P ′

P2

λ−−−→M P ′

P1 + P2

λ−−−→M P ′

P1

λ−−−→M P ′1

P1 ‖S P2

λ−−−→M P ′1 ‖S P2

P2

λ−−−→M P ′2

P1 ‖S P2

λ−−−→M P1 ‖S P ′2

Before defining the interactive variant of Markovian bisimilarity, we adapt to
this setting the concept of exit rate.

Definition 19. Let P ∈ PCI and C ⊆ PCI. The exit rate of P towards C is
defined through the following non-negative real function:

rateM(P,C) =
∑{|λ ∈ RI >0 | ∃P ′ ∈ C. P

λ−−−→M P ′ |}
where the summation is taken to be zero whenever its multiset is empty.



Definition 20. An equivalence relation B ⊆ PCI×PCI is an interactive Marko-
vian bisimulation iff, whenever (P1, P2) ∈ B, then for all action names a ∈
Name ∪ {τ} and equivalence classes C ∈ PCI/B:

– P1

a−−−→I P ′1 implies P2

a−−−→I P ′2 for some P ′2 with (P ′1, P
′
2) ∈ B.

– P1 6
τ−−−→I implies rateM(P1, C) = rateM(P2, C).

Definition 21. Interactive Markovian bisimilarity, denoted by ∼IMB, is the
union of all the interactive Markovian bisimulations.

∼IMB enjoys properties similar to those of ∼MB. The characterizing axioms
are:

a.P + a.P = a.P
(λ1).P + (λ2).P = (λ1 + λ2).P

τ.P + (λ).Q = τ.P

which encode idempotency, race policy, and maximal progress, respectively.
Since τ -actions are invisible and take no time, when comparing process terms

they should be abstracted away. This can be achieved by weakening ∼IMB in such
a way that, after any non-pre-emptable exponential delay, all the states that can
evolve via a finite sequence of τ -transitions to a given class are skipped.

Definition 22. Let C ⊆ PCI. The internal backward closure of C is defined as
follows:

Cτ = {P ′ ∈ PCI | ∃P ∈ C.P ′ τ∗====⇒I P}
where P ′ τ∗====⇒I P means that P ′ can evolve to P after a finite sequence of zero
or more τ -transitions.

Definition 23. An equivalence relation B ⊆ PCI × PCI is a weak interactive
Markovian bisimulation iff, whenever (P1, P2) ∈ B, then for all action names
a ∈ Name and equivalence classes C ∈ PCI/B:

– P1

a−−−→I P ′1 implies P2
τ∗aτ∗====⇒I P ′2 for some P ′2 with (P ′1, P

′
2) ∈ B.

– P1

τ−−−→I P ′1 implies P2
τ∗====⇒I P ′2 for some P ′2 with (P ′1, P

′
2) ∈ B.

– P1
τ∗====⇒I P ′1 6 τ−−−→I implies P2

τ∗====⇒I P ′2 6 τ−−−→I for some P ′2 with
rateM(P ′1, Cτ ) = rateM(P ′2, Cτ ).

Definition 24. Weak interactive Markovian bisimilarity, denoted by ≈IMB, is
the union of all the weak interactive Markovian bisimulations.

≈IMB is strictly coarser than ∼IMB but it is not a congruence with respect to
alternative composition. As usual, initial τ -actions need a different treatment.

Definition 25. Let P1, P2 ∈ PCI. We say that P1 is weakly interactive Marko-
vian bisimulation congruent to P2, written P1 'IMB P2, iff for all action names
a ∈ Name ∪ {τ} and equivalence classes C ∈ PCI/≈IMB:



– P1

a−−−→I P ′1 implies P2
τ∗aτ∗====⇒I P ′2 for some P ′2 with P ′1 ≈IMB P ′2.

– P2

a−−−→I P ′2 implies P1
τ∗aτ∗====⇒I P ′1 for some P ′1 with P ′1 ≈IMB P ′2.

– P1 6
τ−−−→I iff P2 6

τ−−−→I .

– P1 6
τ−−−→I implies rateM(P1, C) = rateM(P2, C).

It turns out ∼IMB ⊂ 'IMB ⊂ ≈IMB with 'IMB enjoying the same properties
as ∼IMB. Moreover, 'IMB has the following additional characterizing axioms:

a.τ.P = a.P
P + τ.P = τ.P

a.(P + τ.Q) + τ.Q = a.(P + τ.Q)
(λ).τ.P = (λ).P

which are called τ -laws and witness the capability of 'IMB of abstracting from
τ -actions.

4.3 Extended Markovian Bisimilarity

Markovian bisimilarity is restricted to exponential distributions. Although their
combinations can approximate most of the general distributions arbitrarily
closely, some useful distributions are left out, specially the one representing a
zero duration. The capability of expressing zero durations would also constitute
a good performance abstraction mechanism, similarly to the functional abstrac-
tion mechanism given by the invisible action name τ .

In the modeling process it often happens to deal with choices among logical
events (like the reception of a message vs. its loss) with which no timing can
reasonably be associated, or to encounter activities that are several orders of
magnitude faster than the activities that are important for the evaluation of
certain performance measures. In all of these cases, using a zero duration would
be an adequate solution from the modeling standpoint.

Zero durations can be introduced by admitting the so-called immediate ac-
tions. Each of them has a name and a zero duration (or, equivalently, an infinite
rate), together with a priority level l ∈ NI >0 and a weight w ∈ RI >0. Priority
levels and weights are used to choose among several immediate actions that are
simultaneously enabled. According to the generative [26] preselection policy, each
of the highest priority immediate actions that are enabled is given an execution
probability proportional to its weight.

It is worth noting that this extended Markovian framework is complemen-
tary with respect to the interactive Markovian framework, because it is as if
nondeterminism were ruled out by augmenting each interacting action with a
priority level and a weight. Here maximal progress is subsumed by pre-emption:
immediate τ -actions take precedence over all the lower priority actions.

We now derive from CMPC a new calculus, which we call concurrent extended
Markovian process calculus (CEMPC):



– The syntax is extended as follows:

P ::= 0
| <a, λ>.P
| <a,∞l,w>.P

| <a, ∗l′
w>.P

| P + P
| P ‖S P
| X
| rec X : P

where a ∈ Name ∪ {τ}, l ∈ NI >0, and l′ ∈ NI . We denote by PCE the set
of the closed and guarded process terms of CEMPC. We point out that ev-
ery passive action has been augmented with a priority constraint, which is
useful to keep under control the process priority interrelation. Besides syn-
chronizing with passive actions with the same priority constraint, a passive
action with priority constraint 0 can only synchronize with an exponentially
timed action, while a passive action with priority constraint l′ > 0 can only
synchronize with an immediate action with priority level l = l′.

– The additional semantic rules specific for immediate actions are the follow-
ing:

<a,∞l,w>.P
a,∞l,w−−−→ P

P1

a,∞l,w−−−→ P ′1 P2

a,∗l
v−−−→ P ′2 a ∈ S

P1 ‖S P2

a,∞l,w· v
weight(P2,a,l)−−−−−−−−−−−−−−−→ P ′1 ‖S P ′2

P1

a,∗l
v−−−→ P ′1 P2

a,∞l,w−−−→ P ′2 a ∈ S

P1 ‖S P2

a,∞l,w· v
weight(P1,a,l)−−−−−−−−−−−−−−−→ P ′1 ‖S P ′2

Note that, consistently with the asymmetric action synchronization disci-
pline, immediate actions can synchronize only with passive actions.

Before defining the extended variant of Markovian bisimilarity, we extend to
immediate actions the notion of exit rate. Below, the priority level of an action is
encoded through a number in ZZ , which is 0 if the action is exponentially timed,
l if the action rate is ∞l,w, −l − 1 if the action rate is ∗l

w.

Definition 26. Let P ∈ PCE, a ∈ Name ∪ {τ}, l ∈ ZZ , and C ⊆ PCE. The exit
rate of P when executing actions of name a and priority level l that lead to C is
defined through the following non-negative real function:

rate(P, a, l, C) =





∑{|λ ∈ RI >0 | ∃P ′ ∈ C.P
a,λ−−−→ P ′ |} if l = 0

∑{|w ∈ RI >0 | ∃P ′ ∈ C.P
a,∞l,w−−−→ P ′ |} if l > 0

∑{|w ∈ RI >0 | ∃P ′ ∈ C.P
a,∗−l−1

w−−−→ P ′ |} if l < 0



where each summation is taken to be zero whenever its multiset is empty.

In the following we denote by priτ
∞(P ) the priority level of the highest priority

immediate τ -action enabled by P , and we set priτ
∞(P ) = 0 if P does not enable

any immediate τ -action. Moreover, given l ∈ ZZ , we use no-pre(l, P ) to denote
that no action whose priority level is l can be pre-empted in P . Formally, this is
the case whenever l ≥ priτ

∞(P ) or −l − 1 ≥ priτ
∞(P ).

Definition 27. An equivalence relation B ⊆ PCE ×PCE is an extended Marko-
vian bisimulation iff, whenever (P1, P2) ∈ B, then for all action names a ∈
Name ∪{τ}, equivalence classes C ∈ PCE/B, and priority levels l ∈ ZZ such that
no-pre(l, P1) and no-pre(l, P2):

rate(P1, a, l, C) = rate(P2, a, l, C)

Definition 28. Extended Markovian bisimilarity, denoted by ∼EMB, is the
union of all the extended Markovian bisimulations.

∼EMB enjoys the same properties as ∼MB. The characterizing axioms are:

<a, λ1>.P + <a, λ2>.P = <a, λ1 + λ2>.P
<a,∞l,w1>.P + <a,∞l,w2>.P = <a,∞l,w1+w2>.P

<a, ∗l
w1

>.P + <a, ∗l
w2

>.P = <a, ∗l
w1+w2

>.P
<τ,∞l,w>.P + <a, λ>.Q = <τ,∞l,w>.P

<τ,∞l,w>.P + <a,∞l′,w′>.Q = <τ,∞l,w>.P if l > l′

<τ,∞l,w>.P + <a, ∗l′
w′>.Q = <τ,∞l,w>.P if l > l′

with the last three encoding pre-emption.
Similarly to the interactive framework, when comparing process terms the

immediate τ -actions should be abstracted away, as they are unobservable both
from the functional viewpoint and from the performance viewpoint. However,
weakening ∼EMB is harder than weakening ∼IMB, because it is necessary to
keep track of the priority levels and of the weights associated with the actions
to be abstracted away. Furthemore, it is also necessary to take into account the
degree of observability of the states.

Definition 29. Let P ∈ PCE and l ∈ NI >0. We say that P is l-unobservable iff
priτ

∞(P ) = l and P does not enable any visible action with priority level l′ ∈ ZZ
such that l′ ≥ l or −l′ − 1 ≥ l.

Definition 30. Let n ∈ NI >0 and P1, P2, . . . , Pn+1 ∈ PCE. A computation c of
length n:

P1

τ,∞l1,w1−−−→ P2

τ,∞l2,w2−−−→ . . .
τ,∞ln,wn−−−→ Pn+1

is unobservable iff for all i = 1, . . . , n process term Pi is li-unobservable. In that
case, the probability of executing c is given by:

prob(c) =
n∏

i=1

wi

rate(Pi,τ,li,PCE)



Definition 31. Let P ∈ PCE, a ∈ Name ∪{τ}, l ∈ ZZ , and C ⊆ PCE. The weak
exit rate of P when executing actions with name a and priority level l that lead
to C is defined through the following non-negative real function:

ratew(P, a, l, C) =
∑

P ′∈Cw

rate(P, a, l, {P ′}) · probw(P ′, C)

where:

– Cw is the weak backward closure of C:
Cw = C ∪ {Q ∈ PCE − C | Q can reach C via unobservable computations}

– probw is a RI ]0,1]-valued function representing the sum of the probabilities of
all the unobservable computations from a term in Cw to C:

probw(P ′, C) =





1 if P ′ ∈ C∑{| prob(c) |c unobservable computation from P ′ to C |}
if P ′ ∈ Cw − C

The definition of ∼EMB can be weakened by using ratew instead of rate and
by skipping the weak exit rate comparison for some equivalence classes that
contain certain unobservable states:

– An observable state is a state that enables an observable action that cannot
be pre-empted by any enabled unobservable action.

– An initially unobservable state is a state in which all the enabled observable
actions are pre-empted by some enabled unobservable action, but at least
one of the computations starting at this state with one of the higher priority
enabled unobservable actions reaches an observable state.

– A fully unobservable state is a state in which all the enabled observable
actions are pre-empted by some enabled unobservable action, and all the
computations starting at this state with one of the higher priority enabled
unobservable actions are unobservable (note that 0 is fully unobservable).
We denote by PCE,fu the set of the fully unobservable process terms of PCE.

Definition 32. An equivalence relation B ⊆ PCE × PCE is a weak extended
Markovian bisimulation iff, whenever (P1, P2) ∈ B, then for all action names a ∈
Name ∪ {τ} and priority levels l ∈ ZZ such that no-pre(l, P1) and no-pre(l, P2):

ratew(P1, a, l, C) = ratew(P2, a, l, C) for all observable C ∈ PCE/B
ratew(P1, a, l,PCE,fu) = ratew(P2, a, l,PCE,fu)

Definition 33. Weak extended Markovian bisimilarity, denoted by ≈EMB, is the
union of all the weak extended Markovian bisimulations.

≈EMB enjoys the same properties as ∼EMB except for congruence. In fact, to
recover congruence with respect to parallel composition, we have to restrict our-
selves to the set PCE,wp of the well-prioritized process terms of PCE. This is the
smallest subset of PCE closed with respect to null term, action prefix, alternative
composition, recursion and closed with respect to parallel composition under the



following constraint: If P1, P2 ∈ PCE,wp and any immediate/passive transition of
each of [[P1]] and [[P2]] has priority level/constraint less than the priority level of
any unobservable transition departing from an unobservable state of the other
one, then P1 ‖S P2 ∈ PCE,wp.

The additional characterizing axioms of ≈EMB over PCE,wp are the following:

<a, λ>.
∑
i∈I

<τ,∞l,wi
>.Pi =

∑
i∈I

<a, λ · wi/ Σk∈I wk>.Pi

<a,∞l′,w′>.
∑
i∈I

<τ,∞l,wi
>.Pi =

∑
i∈I

<a,∞l′,w′·wi/ Σk∈I wk
>.Pi

<a, ∗l′
w′>.

∑
i∈I

<τ,∞l,wi
>.Pi =

∑
i∈I

<a, ∗l′
w′·wi/ Σk∈I wk

>.Pi

which witness the capability of ≈EMB of abstracting from immediate τ -actions
in a way that correctly takes into account their weights.

5 Markovian Testing Equivalence

Markovian testing equivalence considers two process terms to be equivalent
whenever an external observer, who can interact with them by means of tests, is
not able to distinguish between them from the functional or performance view-
point. In this section we provide the definition of Markovian testing equivalence
over PC,pc and we recall its properties from [7, 9].

5.1 Test Formalization

The only way that the external observer has to infer information about the
behavior of the process terms is to interact with them by means of tests and
look at their reactions. Was the test passed? If so, with which probability? And
how long did it take to pass the test?

In our Markovian framework with asymmetric action synchronization disci-
pline, the most convenient way to represent a test is through another process
term composed of passive actions only, which interacts with the terms to be
tested by means of a parallel composition operator that enforces synchroniza-
tion on any action name. In this way, the parallel composition of a performance
closed term to be tested and a test will still be performance closed.

From the testing viewpoint, in any of its states a process term to be tested
generates the proposal of an action to be executed by means of a race among the
exponentially timed actions enabled in that state. Then the test either reacts by
participating in the interaction with the process term through a passive action
having the same name as the proposed exponentially timed action, or blocks the
interaction if it has no passive actions with the proposed name.

Since it is necessary to measure the probability with which process terms pass
tests within a finite amount of time, for the test formalization we can restrict
ourselves to non-recursive terms (composed of passive actions only). In other
words, the expressiveness provided by labeled multitransition systems with a
finite dag-like structure will be enough for the tests.



In order to represent the fact that a test is passed or not, each of the terminal
nodes of the dag-like semantic model underlying a test must be suitably labeled
so as to establish whether it is a success or failure state. At the process calculus
level, this amounts to replace 0 with two zeroary operators, which we denote by
“s” (for success) and “f” (for failure).

Ambiguous terms like s + f will be avoided in the test syntax by replacing
the action prefix operator and the binary alternative composition operator with
a set of n-ary guarded alternative composition operators, with n ranging over
the whole NI >0.

Definition 34. The set T of the tests is generated by the following syntax:

T ::= f
| s
| ∑

i∈I

<ai, ∗wi>.Ti

where I is a non-empty finite index set.

5.2 Equivalence Definition

Markovian testing equivalence relies on comparing the process term probabilities
of performing a successful test-driven computation within a given sequence of
average amounts of time. A test-driven computation is a sequence of transitions
in the labeled multitransition system underlying the parallel composition of a
process term and a test. Due to the restrictions imposed on the test syntax, all
the considered test-driven computations will turn out to have a finite length,
hence the inductive definitions of Sect. 2.3 apply to them.

Definition 35. Let P ∈ PC,pc and T ∈ T . The interaction system of P and T
is process term P ‖Name T ∈ PC,pc, where we say that:

– A configuration is a state of [[P ‖Name T ]].
– A configuration is formed by a process part and a test part.
– A configuration is successful (resp. failed) iff its test part is “s” (resp. “f”).
– A computation is successful (resp. failed) iff so is its last configuration.
– A computation that is neither successful nor failed is interrupted.

We denote by SC(P, T ) the multiset of the successful computations
of Cf(P ‖Name T ).

Note that SC(P, T ) ⊆ If(P ‖Name T ), because of the maximality of the successful
test-driven computations, and that SC(P, T ) is finite, because of the finitely-
branching structure of the considered terms.

Definition 36. Let P1, P2 ∈ PC,pc. We say that P1 is Markovian testing equiv-
alent to P2, written P1 ∼MT P2, iff for all tests T ∈ T and sequences θ ∈ (RI >0)∗

of average amounts of time:
prob(SC≤θ(P1, T )) = prob(SC≤θ(P2, T ))



Obviously, ∼MT is strictly finer than classical testing equivalence [21] and prob-
abilistic testing equivalence [17, 19]. On the other hand, it is strictly coarser than
∼MB as it is less sensitive to branching points. A consequence of this fact is that
the derivatives of two Markovian testing equivalent terms are not necessarily
related by ∼MT. We conclude with a necessary condition.

Proposition 2. Let P1, P2 ∈ PC,pc and T ∈ T . Whenever P1 ∼MT P2, then
for all ck ∈ SC(Pk, T ) with k ∈ {1, 2} there exists ch ∈ SC(Ph, T ) with h ∈
{1, 2} − {k} such that:

trace(ck) = trace(ch)
timea(ck) = timea(ch)

and for all a ∈ Name:
rate(Pk,last, a, 0,PC) = rate(Ph,last, a, 0,PC)

with Pk,last (resp. Ph,last) being the process part of the last configuration of ck

(resp. ch).

5.3 Alternative Characterizations

We now present two alternative characterizations of ∼MT. The first one is based
on the probability distribution of passing a test within a certain sequence of
amounts of time. A consequence of this characterization is that considering the
(more accurate) stepwise durations of the test-driven computations leads to the
same equivalence as considering the (easier to work with) stepwise average du-
rations of the test-driven computations. This justifies the use of expected values
instead of random variables in the definition of ∼MT.

Definition 37. Let P1, P2 ∈ PC,pc. We say that P1 is Markovian distribution-
testing equivalent to P2, written P1 ∼MT,d P2, iff for all tests T ∈ T and se-
quences θ ∈ (RI >0)∗ of amounts of time:

probd(SC(P1, T ), θ) = probd(SC(P2, T ), θ)

Theorem 6. Let P1, P2 ∈ PC,pc. Then:
P1 ∼MT,d P2 ⇐⇒ P1 ∼MT P2

The second alternative characterization of ∼MT is based on traces that are
suitably extended with the sets of the action names permitted at each step by the
environment. This means that it is possible to characterize ∼MT in a way that
fully abstracts from the tests. A consequence of the proof of this characterization
is the identification of a set of canonical tests, i.e. a set of tests that are necessary
and sufficient in order to establish whether two process terms are Markovian
testing equivalent. Each such test admits a single computation leading to success,
whose states can have additional computations each leading to failure in one step.

Definition 38. An element σ of (Name×2Name)∗ is an extended trace iff either
σ is the empty sequence or:

σ ≡ (a1, E1) ◦ (a2, E2) ◦ . . . ◦ (an, En)
for some n ∈ NI >0 with ai ∈ Ei for each i = 1, . . . , n. We denote by ET the set
of the extended traces.



Definition 39. Let σ ∈ ET . The trace associated with σ is defined by induction
on the length of σ through the following Name∗-valued function:

trace(σ) =
{

ε if length(σ) = 0
a ◦ trace(σ′) if σ ≡ (a, E) ◦ σ′

where ε is the empty trace.

Definition 40. Let P ∈ PC,pc, c ∈ Cf(P ), and σ ∈ ET . We say that c is com-
patible with σ iff:

trace(c) = trace(σ)
We denote by CC(P, σ) the multiset of the computations of Cf(P ) that are com-
patible with σ.

Note that CC(P, σ) ⊆ If(P ) because of the compatibility of the considered com-
putations with the same extended trace σ.

Definition 41. Let P ∈ PC,pc, σ ∈ ET , and c ∈ CC(P, σ). The probability of
executing c with respect to σ is defined by induction on the length of c through
the following RI ]0,1]-valued function:

probσ(c) =





1 if length(c) = 0
λ∑

b∈E
rate(P,b,0,PC)

· probσ′(c′) if c ≡ P
a,λ−−−→ c′

with σ ≡ (a, E) ◦ σ′

We also define the probability of executing a computation of C with respect to σ
as:

probσ(C) =
∑
c∈C

probσ(c)

for all C ⊆ CC(P, σ).

Definition 42. Let P ∈ PC,pc, σ ∈ ET , and c ∈ CC(P, σ). The stepwise average
duration of c with respect to σ is defined by induction on the length of c through
the following ( RI >0)∗-valued function:

timeσ
a (c) =





ε if length(c) = 0
1∑

b∈E
rate(P,b,0,PC)

◦ timeσ′
a (c′) if c ≡ P

a,λ−−−→ c′

with σ ≡ (a, E) ◦ σ′

where ε is the empty stepwise average duration. We also define the multiset of
the computations of C whose stepwise average duration with respect to σ is not
greater than θ as:

Cσ
≤θ = {| c ∈ C | length(c) ≤ length(θ) ∧

∀i = 1, . . . , length(c). timeσ
a (c)[i] ≤ θ[i] |}

for all C ⊆ CC(P, σ) and θ ∈ (RI >0)∗.



Definition 43. Let P1, P2 ∈ PC,pc. We say that P1 is Markovian extended-trace
equivalent to P2, written P1 ∼MTr,e P2, iff for all extended traces σ ∈ ET and
sequences θ ∈ (RI >0)∗ of average amounts of time:

probσ(CCσ
≤θ(P1, σ)) = probσ(CCσ

≤θ(P2, σ))

Theorem 7. Let P1, P2 ∈ PC,pc. Then:
P1 ∼MTr,e P2 ⇐⇒ P1 ∼MT P2

Definition 44. The set Tc of the canonical tests is generated by the following
syntax:

T ::= s
| <a, ∗1>.T +

∑
b∈E−{a}

<b, ∗1>.f

where the summation is absent whenever E − {a} = ∅.

Corollary 2. Let P1, P2 ∈ PC,pc. Then P1 ∼MT P2 iff for all T ∈ Tc and
θ ∈ (RI >0)∗:

prob(SC≤θ(P1, T )) = prob(SC≤θ(P2, T ))

5.4 Exactness

Markovian testing equivalence induces a CTMC-level aggregation that is strictly
coarser than ordinary lumping and was not known in the CTMC field. This
aggregation can be depicted through the following rewriting rule:

λ1

|  |I

|  |Iλ

µ |  |,1Iµ1,1 |  |II J|  |, |      |

0s

1s s

µ1, J|   |1
µ

i,js

|  |Iλ
Σ λkk

λ1
Σ λkk

___ . µ1,1 |  |II J|  |, |      |

s’

s’’

Σ λkk

___ . µ

i,js

where:

– I is a finite index set with |I| ≥ 2.
– k ranges over I.
– Ji is a non-empty finite index set for all i ∈ I.
– For all i1, i2 ∈ I: ∑

j∈Ji1

µi1,j =
∑

j∈Ji2

µi2,j

with each summation being zero whenever its index set is empty.

Theorem 8. The CTMC-level aggregation induced by ∼MT is exact.



5.5 Congruence

Markovian testing equivalence is a congruence with respect to all the operators
of CMPC. In particular, we have what follows.

Theorem 9. Let P1, P2 ∈ PC,pc. Whenever P1 ∼MT P2, then:

1. <a, λ>.P1 ∼MT <a, λ>.P2 for all <a, λ> ∈ ActS.
2. P1 + P ∼MT P2 + P and P + P1 ∼MT P + P2 for all P ∈ PC,pc.
3. P1 ‖S P ∼MT P2 ‖S P and P ‖S P1 ∼MT P ‖S P2 for all S ⊆ Name and

P ∈ PC containing only passive actions such that P1 ‖S P, P2 ‖S P ∈ PC,pc.

5.6 Axiomatization

Markovian testing equivalence is strictly coarser than Markovian bisimilarity,
hence the axioms of Table 1 are still valid for ∼MT over PC,pc, but not complete.
In fact, the two process terms depicted below (with P ′ 6∼MB P ′′):

MT~
~MB/1λ 2λ +1λ 2λ

+1λ 2λ
b,_____ µ1λ .

+1λ 2λ
b,_____ µλ2 .

a, a,

µ µb, b,

a,

P’ P’P’’ P’’

show that ∼MB is highly sensitive to branching points. By contrast, ∼MT allows
choices to be deferred as long as they are related to branches starting with
actions having the same name that are immediately followed by actions having
the same names and the same total rates in all the branches.

The two terms above constitute the simplest instance of an axiom schema
subsuming AMB

4 that characterizes ∼MT. The axiom schema is the following:
∑
i∈I

<a, λi>.
∑

j∈Ji

<bi,j , µi,j>.Pi,j =

<a, Σ
k∈I

λk>.
∑
i∈I

∑
j∈Ji

<bi,j ,
λi

Σk∈I λk
· µi,j>.Pi,j

where:

– I is a finite index set with |I| ≥ 2.
– Ji is a finite index set for all i ∈ I, with the related summation being 0

whenever Ji = ∅.
– For all i1, i2 ∈ I and b ∈ Name:

∑
j∈Ji1

{|µi1,j | bi1,j = b |} =
∑

j∈Ji2

{|µi2,j | bi2,j = b |}

with each summation being zero whenever its index set is empty.



5.7 Logical Characterization

Markovian testing equivalence has a modal logic characterization over PC,pc

based on a Markovian variant of a restriction of the Hennessy-Milner logic, in
which both negation and logical conjunction are ruled out, while the diamond
operator is made dependent from the environment.

Unlike HMLMB, where the syntax is decorated with rate lower bounds and
the satisfaction relation is qualitative, here there is no extra information in the
syntax and a quantitative interpretation inspired by [39] is adopted. This es-
tablishes the probability with which a process term satisfies a formula quickly
enough on average, i.e. within a given sequence of average amounts of time.

Definition 45. The set of the formulas of HMLMT is generated by the following
syntax:

φ ::= true | 〈a|E〉φ
where a ∈ Name and E ⊆ Name such that a ∈ E.

Definition 46. The interpretation function [[.]]MT of HMLMT over PC,pc ×
(RI >0)∗ is defined by structural induction as follows:

[[true]]MT(P, θ) = 1

[[〈a|E〉φ]]MT(P, θ) =





0 if θ = ε ∨ 1
Σ

b∈E
rate(P,b,0,PC) > θ[1]

∑

P
a,λ

−−−→ P ′

λ
Σ

b∈E
rate(P,b,0,PC) · [[φ]]MT(P ′, θ′)

if θ = t ◦ θ′ ∧ 1
Σ

b∈E
rate(P,b,0,PC) ≤ t

where the summation is taken to be zero whenever there are no a-transitions
departing from P .

Theorem 10. Let P1, P2 ∈ PC,pc. Then:
P1 ∼MT P2 ⇐⇒ ∀φ ∈ HMLMT. ∀θ ∈ ( RI >0)∗. [[φ]]MT(P1, θ) = [[φ]]MT(P2, θ)

5.8 Verification Complexity

Markovian testing equivalence can be decided in polynomial time because two
action-labeled CTMCs are Markovian testing equivalent iff their corresponding
embedded action-labeled DTMCs (with suitably enriched labels) are probabilis-
tic testing equivalent, with the latter coinciding with probabilistic ready equiv-
alence and hence being decidable in polynomial time [35].

The algorithm to check whether P1 ∼MT P2 thus proceeds as follows:

1. Transform [[P1]] and [[P2]] into their corresponding embedded discrete-time
versions:
(a) Divide the rate of each transition by the total exit rate of its source state.



(b) Augment the name of each transition with the total exit rate of its source
state.

2. Compute the equivalence R that relates any two states of the disjoint union
of [[P1]] and [[P2]] such that their two sets of (original) action names labeling
their outgoing transitions coincide.

3. For each equivalence class R induced by R, apply the algorithm of [47] to
check the embedded discrete-time versions of [[P1]] and [[P2]] for probabilistic
language equivalence by considering R as the set of accepting states.

The time complexity is O(n5), where n is the number of states of the disjoint
union of [[P1]] and [[P2]].

6 Markovian Trace Equivalence

Markovian trace equivalence considers two process terms to be equivalent when-
ever they are able to perform computations with the same functional and per-
formance characteristics. In this section we provide the definition of Markovian
trace equivalence over PC,pc and we recall its properties from [49, 7, 9].

6.1 Equivalence Definition

Markovian trace equivalence relies on comparing the process term probabilities
of performing a computation within a given sequence of average amounts of
time. We emphasize that here, given a process term P ∈ PC,pc, we no longer
have tests that interact with P . Instead, we directly consider the finite-length
computations of P , to which the inductive definitions of Sect. 2.3 apply.

Definition 47. Let P ∈ PC,pc, c ∈ Cf(P ), and α ∈ Name∗. We say that c is
compatible with α iff: trace(c) = α
We denote by CC(P, α) the multiset of the finite-length computations of P that
are compatible with α.

Note that CC(P, α) ⊆ If(P ), because of the compatibility of the computations
with the same trace α, and that CC(P, α) is finite, because of the finitely-
branching structure of the considered terms.

Definition 48. Let P1, P2 ∈ PC,pc. We say that P1 is Markovian trace equiv-
alent to P2, written P1 ∼MTr P2, iff for all traces α ∈ Name∗ and sequences
θ ∈ (RI >0)∗ of average amounts of time:

prob(CC≤θ(P1, α)) = prob(CC≤θ(P2, α))

Obviously, ∼MTr is strictly finer than classical trace equivalence [33] and prob-
abilistic trace equivalence [36]. On the other hand, it is strictly coarser than
∼MT as it completely overrides branching points. Thus, similarly to ∼MT, the
derivatives of two Markovian trace equivalent terms are not necessarily related
by ∼MTr. We conclude with a necessary condition.



Proposition 3. Let P1, P2 ∈ PC,pc and α ∈ Name∗. Whenever P1 ∼MTr P2,
then for all ck ∈ CC(Pk, α) with k ∈ {1, 2} there exists ch ∈ CC(Ph, α) with
h ∈ {1, 2} − {k} such that:

trace(ck) = trace(ch)
timea(ck) = timea(ch)

and:
ratet(Pk,last, 0) = ratet(Ph,last, 0)

with Pk,last (resp. Ph,last) being the last configuration of ck (resp. ch).

6.2 Alternative Characterizations

Similarly to ∼MT, it turns out that ∼MTr has an alternative characterization
based on the probability distribution of executing a trace within a certain se-
quence of amounts of time. A consequence of this characterization is that con-
sidering the (more accurate) stepwise durations of the computations leads to
the same equivalence as considering the (easier to work with) stepwise average
durations of the computations. This justifies the use of expected values instead
of random variables in the definition of ∼MTr.

Definition 49. Let P1, P2 ∈ PC,pc. We say that P1 is Markovian distribution-
trace equivalent to P2, written P1 ∼MTr,d P2, iff for all traces α ∈ Name∗ and
sequences θ ∈ (RI >0)∗ of amounts of time:

probd(CC(P1, α), θ) = probd(CC(P2, α), θ)

Theorem 11. Let P1, P2 ∈ PC,pc. Then:
P1 ∼MTr,d P2 ⇐⇒ P1 ∼MTr P2

6.3 Other Markovian Trace-Based Equivalences

Like for classical trace equivalence, it is possible to define some variants of ∼MTr,
which are based on the notions of completed trace, failure set, ready set, failure
trace, and ready trace, respectively.

These variants were originally conceived to overcome some drawbacks of clas-
sical trace equivalence. Completed traces are traces ending up in deadlock states,
so considering them apart is useful to make classical trace equivalence sensitive
to deadlock. A failure set is a set of names of actions that cannot be executed in
a certain state, and a failure trace is a trace extended at each step with a fail-
ure set. Considering failures makes classical trace equivalence sensitive to safety
properties. Likewise, a ready set is the set of the names of all the actions that
must be executable in a certain state, and a ready trace is a trace extended at
each step with a ready set. Considering readies makes classical trace equivalence
sensitive to liveness properties.

Definition 50. Let P ∈ PC,pc, c ∈ Cf(P ), and α ∈ Name∗. We say that c is a
maximal computation compatible with α iff c ∈ CC(P, α) and the last configura-
tion of c is deadlocked. We denote by MCC(P, α) the multiset of the finite-length
maximal computations of P that are compatible with α.



Definition 51. Let P1, P2 ∈ PC,pc. We say that P1 is Markovian completed-
trace equivalent to P2, written P1 ∼MTr,c P2, iff for all traces α ∈ Name∗ and
sequences θ ∈ (RI >0)∗ of average amounts of time:

prob(CC≤θ(P1, α)) = prob(CC≤θ(P2, α))
prob(MCC≤θ(P1, α)) = prob(MCC≤θ(P2, α))

Definition 52. Let P ∈ PC,pc, c ∈ Cf(P ), and ϕ ≡ (α,F) ∈ Name∗ × 2Name .
We say that c is a failure computation compatible with ϕ iff c ∈ CC(P, α) and
the last configuration of c cannot execute any action whose name belongs to the
failure set F . We denote by FCC(P, ϕ) the multiset of the finite-length failure
computations of P that are compatible with ϕ.

Definition 53. Let P1, P2 ∈ PC,pc. We say that P1 is Markovian failure equiv-
alent to P2, written P1 ∼MF P2, iff for all traces with final failure set ϕ ∈
Name∗ × 2Name and sequences θ ∈ (RI >0)∗ of average amounts of time:

prob(FCC≤θ(P1, ϕ)) = prob(FCC≤θ(P2, ϕ))

Definition 54. Let P ∈ PC,pc, c ∈ Cf(P ), and ρ ≡ (α,R) ∈ Name∗ × 2Name .
We say that c is a ready computation compatible with ρ iff c ∈ CC(P, α) and
the set of the names of all the actions executable by the last configuration of c
coincides with the ready set R. We denote by RCC(P, ρ) the multiset of the
finite-length ready computations of P that are compatible with ρ.

Definition 55. Let P1, P2 ∈ PC,pc. We say that P1 is Markovian ready equiv-
alent to P2, written P1 ∼MR P2, iff for all traces with final ready set ρ ∈
Name∗ × 2Name and sequences θ ∈ (RI >0)∗ of average amounts of time:

prob(RCC≤θ(P1, ρ)) = prob(RCC≤θ(P2, ρ))

Definition 56. Let P ∈ PC,pc, c ∈ Cf(P ), and φ ∈ (Name × 2Name)∗. We say
that c is a failure-trace computation compatible with φ iff c is compatible with
the trace component of φ and each configuration of c cannot execute any action
whose name belongs to the corresponding failure set in the failure component
of φ. We denote by FT CC(P, φ) the multiset of the finite-length failure-trace
computations of P that are compatible with φ.

Definition 57. Let P1, P2 ∈ PC,pc. We say that P1 is Markovian failure-trace
equivalent to P2, written P1 ∼MFTr P2, iff for all failure traces φ ∈ (Name ×
2Name)∗ and sequences θ ∈ (RI >0)∗ of average amounts of time:

prob(FT CC≤θ(P1, φ)) = prob(FT CC≤θ(P2, φ))

Definition 58. Let P ∈ PC,pc, c ∈ Cf(P ), and % ∈ (Name × 2Name)∗. We say
that c is a ready-trace computation compatible with % iff c is compatible with the
trace component of % and the sets of the names of all the actions executable by
the configurations of c coincide with the corresponding ready sets in the ready
component of %. We denote by RT CC(P, %) the multiset of the finite-length ready-
trace computations of P that are compatible with %.



Definition 59. Let P1, P2 ∈ PC,pc. We say that P1 is Markovian ready-trace
equivalent to P2, written P1 ∼MRTr P2, iff for all ready traces % ∈ (Name ×
2Name)∗ and sequences θ ∈ (RI >0)∗ of average amounts of time:

prob(RT CC≤θ(P1, %)) = prob(RT CC≤θ(P2, %))

Similarly to the probabilistic case [36, 35], in the Markovian framework trace
equivalence becomes deadlock sensitive, hence ∼MTr coincides with Markovian
completed-trace equivalence. Moreover, Markovian failure equivalence coincides
with Markovian ready equivalence – with both coinciding with ∼MT – and
Markovian failure-trace equivalence coincides with Markovian ready-trace equiv-
alence. As a consequence, the Markovian linear-time/branching-time spectrum
turns out to be more condensed than the nondeterministic one [25].

Theorem 12. The Markovian linear-time/branching-time spectrum is:
∼MB ⊂∼MRTr =∼MFTr ⊂∼MR =∼MT =∼MTr,e =∼MF ⊂∼MTr,c =∼MTr

6.4 Exactness

From the point of view of the induced CTMC-level aggregation, nothing changes
when moving from ∼MT to ∼MTr.

Theorem 13. ∼MTr induces the same CTMC-level aggregation as ∼MT.

Corollary 3. The CTMC-level aggregation induced by ∼MTr is exact.

6.5 Congruence

Markovian trace equivalence is a congruence with respect to all the operators of
SMPC. In particular, we have what follows.

Theorem 14. Let P1, P2 ∈ PS. Whenever P1 ∼MTr P2, then:

1. <a, λ>.P1 ∼MTr <a, λ>.P2 for all <a, λ> ∈ ActS.
2. P1 + P ∼MTr P2 + P and P + P1 ∼MTr P + P2 for all P ∈ PS.

Unfortunately, similarly to the probabilistic case [36], ∼MTr is not a congru-
ence with respect to parallel composition. Consider for instance the following
two Markovian trace equivalent process terms:

P1 ≡ <a, λ1>.<b, µ>.P ′ + <a, λ2>.<c, µ>.P ′′

P2 ≡ <a, λ1 + λ2>.(<b, λ1
λ1+λ2

· µ>.P ′ + <c, λ2
λ1+λ2

· µ>.P ′′)
where b 6= c. If we place each of them in the following context:

‖{a,b,c}<a, ∗1>.<b, ∗1>.0
we obtain two performance-closed process terms – which we call Q1 and Q2 –
that are no longer Markovian trace equivalent.

In fact, the following trace:
α ≡ a ◦ b

can distinguish between Q1 and Q2. The reason is that the only computation of



Q1 compatible with α is formed by a transition labeled with <a, λ1> followed
by a transition labeled with <b, µ>, which has execution probability λ1

λ1+λ2
and

stepwise average duration 1
λ1+λ2

◦ 1
µ . By contrast, the only computation of Q2

compatible with α is formed by a transition labeled with <a, λ1 + λ2> followed
by a transition labeled with <b, λ1

λ1+λ2
· µ>, which has execution probability 1

and stepwise average duration 1
λ1+λ2

◦ λ1+λ2
λ1·µ .

6.6 Axiomatization

Markovian trace equivalence is strictly coarser than Markovian testing equiva-
lence, hence the axioms of ∼MT are still valid for ∼MTr over PS, but not complete.
In fact, the two process terms depicted below (with b 6= c):

1λ 2λ +1λ 2λ

+1λ 2λ +1λ 2λ

a, a,

µ µb,

P’ P’’

c,
~
~/ MT

MTr

a,

P’ P’’

b,_____ µ1λ . _____ µλ2 .c,

show that, when moving from ∼MT to ∼MTr, the action prefix operator tends
to become left-distributive with respect to the alternative composition operator.
More precisely, choices can be deferred as long as they are related to branches
starting with actions having the same name that are followed by terms having
the same total exit rate. Note that the names and the total rates of the initial
actions of such derivative terms can be different in the various branches.

The two terms above constitute the simplest instance of an axiom schema
that characterizes ∼MTr, which is more liberal than the one characterizing ∼MT.
The axiom schema is the following:

∑
i∈I

<a, λi>.
∑

j∈Ji

<bi,j , µi,j>.Pi,j =

<a, Σ
k∈I

λk>.
∑
i∈I

∑
j∈Ji

<bi,j ,
λi

Σk∈I λk
· µi,j>.Pi,j

where:

– I is a finite index set with |I| ≥ 2.
– Ji is a finite index set for all i ∈ I, with the related summation being 0

whenever Ji = ∅.
– For all i1, i2 ∈ I: ∑

j∈Ji1

µi1,j =
∑

j∈Ji2

µi2,j

with each summation being zero whenever its index set is empty.

6.7 Logical Characterization

Markovian trace equivalence has a modal logic characterization over PC,pc simi-
lar to the one for Markovian testing equivalence, in which the diamond operator
is no longer dependent from the environment.



Definition 60. The set of the formulas of HMLMTr is generated by the following
syntax:

φ ::= true | 〈a〉φ
where a ∈ Name.

Definition 61. The interpretation function [[.]]MTr of HMLMTr over PC,pc ×
(RI >0)∗ is defined by structural induction as follows:

[[true]]MTr(P, θ) = 1

[[〈a〉φ]]MTr(P, θ) =





0 if θ = ε ∨ 1
ratet(P,0) > θ[1]

∑

P
a,λ

−−−→ P ′

λ
ratet(P,0) · [[φ]]MTr(P ′, θ′)

if θ = t ◦ θ′ ∧ 1
ratet(P,0) ≤ t

where the summation is taken to be zero whenever there are no a-transitions
departing from P .

Theorem 15. Let P1, P2 ∈ PC,pc. Then:
P1 ∼MTr P2 ⇐⇒ ∀φ ∈ HMLMTr. ∀θ ∈ ( RI >0)∗. [[φ]]MTr(P1, θ) = [[φ]]MTr(P2, θ)

6.8 Verification Complexity

Markovian trace equivalence can be decided in polynomial time because two
action-labeled CTMCs are Markovian trace equivalent iff their corresponding
embedded action-labeled DTMCs (with suitably enriched labels) are probabilis-
tic trace equivalent, with the latter being decidable in polynomial time [35].

Similarly to the verification of ∼MT, the algorithm to check whether P1 ∼MTr

P2 thus proceeds as follows:

1. Transform [[P1]] and [[P2]] into their corresponding embedded discrete-time
versions:

(a) Divide the rate of each transition by the total exit rate of its source state.
(b) Augment the name of each transition with the total exit rate of its source

state.

2. Apply the algorithm of [47] to check the embedded discrete-time versions of
[[P1]] and [[P2]] for probabilistic language equivalence by considering each of
their states as being an accepting state.

The time complexity is O(n4), where n is the number of states of the disjoint
union of [[P1]] and [[P2]].



7 Conclusion

In this survey we have recalled the definitions and the properties of Marko-
vian behavioral equivalences. Besides providing information about the Marko-
vian linear-time/branching-time spectrum, we have compared Markovian bisim-
ilarity, Markovian testing equivalence, and Markovian trace equivalence with
respect to a number of criteria, as summarized below:

exact congruence sound & complete logical verification
aggregation property axiomatization characteriz . complexity

∼MB OK OK OK OK O(m · log n)
∼MT OK OK OK OK O(n5)
∼MTr OK OK SMPC OK SMPC OK O(n4)

As can be noted, ∼MB is satisfactory with respect to all the criteria, although
it is often too discriminating. A good alternative may be ∼MT, as it encodes the
viewpoint of an external observer and is more flexible with respect to branching
points. By contrast, ∼MTr cannot be considered as a valid alternative, as it fails
to be a congruence with respect to parallel composition.

It is also worth emphasizing the exactness of the CTMC-level aggregations
induced by each of the three considered Markovian behavioral equivalences. This
means that ∼MB, ∼MT, and ∼MTr are all meaningful for performance evaluation
purposes. Besides justifying the investigation of the other properties, this can
be exploited in practice. For instance, such Markovian behavioral equivalences
can be used to aggregate the state space of a model by taking advantage of
symmetries within the model [24], or to reduce the state space of a model be-
fore applying analysis techniques like model checking [45], without altering the
performance properties to be assessed.

We conclude by mentioning some open problems in the field of Markovian
behavioral equivalences:

– In our framework based on an asymmetric action synchronization discipline,
while ∼MB is defined over non-performance-closed terms too, this is not the
case for ∼MT and ∼MTr. Finding a way to extend their definitions so that
it is still possible to determine the execution probability and the stepwise
average duration of the computations in the presence of passive transitions
is highly desirable.

– The exactness of the CTMC-level aggregations induced by ∼MB, ∼MT, and
∼MTr establishes a strong connection between concurrency theory and
Markov chain theory, which in particular gives rise to a process algebraic
characterization of the aggregations themselves. The question here is whether
the aggregation induced by ∼MT and ∼MTr is the coarsest exact non-trivial
one that can be obtained, or whether it can be further extended.

– The set of logical operators necessary to characterize Markovian behav-
ioral equivalences decreases as the discriminating power of the equivalences



decreases. However, the logical characterization of ∼MT relies on a non-
standard variant of the diamond operator. What if we replace the non-
standard operator with the standard one and we reintroduce logical conjunc-
tion? We claim that this may result in an alternative logical characterization
of ∼MT if the diamonds occurring in a conjunction are independent of each
other, i.e. if the names of the related actions are all different [39].

– The verification algorithm for ∼MB can also be used as a minimization al-
gorithm (with respect to ∼MB), whereas this is not the case for the ver-
ification algorithms for ∼MT and ∼MTr. As far as testing is concerned, it
should be investigated whether the algorithm for verifying classical testing
equivalence [20] can be adapted to the Markovian framework. The reason is
that this algorithm reduces the verification of classical testing equivalence
over standard state-transition models to the verification of (a generalization
of) classical bisimilarity over transformed models inspired by acceptance
trees [28], hence it can be exploited for minimization purposes as well.

– We would like to assess whether ∼MT can be used also for quantitative
analysis. So far, it supports a merely qualitative analysis, in the sense that
it only allows one to establish whether two models pass an arbitrary test in
the same way. What we envision is the possibility of identifying classes of
tests that are related to specific performability measures, which may thus
be used to evaluate models with respect to certain indices of interest.

– Finally, it would be interesting to develop weaker versions of ∼MB, ∼MT,
and ∼MTr. In this survey we have seen ≈IMB and ≈EMB, which abstract from
invisible immediate actions. However, one could also consider the possibility
of abstracting from invisible actions that are exponentially timed, which
amounts to understand to what extent exponential delays can be neglected.
This issue has been tackled in [32, 11, 13, 4], but none of the proposals seems
to induce an exact aggregation at the CTMC level.
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