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Let k be a field, let A be a finite dimensional k-algebra. Krause [K] has
considered A-modules which are obtained as direct limits of an increasing
chain of finite dimensional A-modules and which are similar to the Priifer
groups occurring in abelian group theory. He has shown that the Ziegler
closure of such a module X always contains an indecomposable endofinite
module of infinite length, a socalled “generic” module. This is of importance
since the “generic” modules seem to parametrize the families of finite length
modules, and families of finite length modules are one of the main objects of
present concern [C]. An essential condition used by Krause is the existence
of a locally nilpotent endomorphism of X with kernel of finite length. In
his proof, Krause uses functor categories as well as model theoretical con-
siderations. The aim of the present note is to present a direct approach
(using only modules and their elements) in order to recover and strengthen
his result. The author is endebted to Krause for many stimulating remarks.

Let ¢ be an endomorphism of the A-module X. Then ¢ induces an injection
of Ker ¢!/ Ker ¢! into Ker ¢!/ Ker p?~!, for t > 1. In case Ker ¢ is finite
dimensional, it follows that the vector spaces Ker ¢!/ Ker o' ! have the
same dimension, for almost all ¢.

Given a module M and any set I, we denote by M! the product of
copies of M which are indexed by the elements of I, and M@ denotes
the corresponding direct sum of these copies (the module M’ may be con-
structed as the set of functions I — M, and M (D is the submodule of all
functions with finite support).

Theorem 1. Let X be an infinite dimensional A-module, let ¢ be a
locally nilpotent endomorphism of X with kernel of finite length. Let I be
some infinite set. Then the product X' is the direct sum of a non-zero
module P of finite endolength and of copies of X.

The endolength of P is bounded by the minimum of the dimension of
the vector spaces Ker o'/ Ker o'~ 1 with t > 1.
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Note that if X is a A-module and ¢ is a locally nilpotent endomorphism
of X with kernel of finite length, then X satisfies the descending chain
condition when considered as a k[p]-module and thus also when considered
as a module over Endj (X). As a consequence, X is Y-algebraically compact
and therefore X as well as all the powers X! can be written as direct sums
of modules with local endomorphism rings [JL, 8.1, 8.2]. Also, if we fix
a direct decomposition of a Y-algebraically compact module M = @, M;
where the M; are modules with local endomorphism rings, then Azumaya’s
Theorem (which generalizes the Theorem of Krull-Remak-Schmidt) shows
that any indecomposable direct summand U is isomorphic to one of the
modules M; (note that any direct complement of U is also Y-algebraically
compact and therefore again a direct sum of indecomposables, thus U is one
of the direct summands of a decomposition of M into indecomposables).

For any countably generated A-module M, let G(M) be the set of iso-
morphism classes of those indecomposable direct summands of MY which
are infinite dimensional and of finite endolength (thus “generic” modules in
the terminology introduced in [C]).

Note that G(M) may be empty: take any finite dimensional module
N and let M = N®™ be the direct sum of countably many copies of N.
Then any product of copies of M is again a direct sum of copies of N, thus
M™ has no indecomposable direct summand which is infinite dimensional.
Let us stress that the examples of this kind satisfy the usual requirements
considered in this paper, provided N is non-zero: the module M is infinite
dimensional, and there is the shift endomorphism ¢ (sending the summand
with index 7 to that with index 7 — 1 and mapping the first one to zero);
this is a locally nilpotent endomorphism of M and its kernel is N, thus of
finite length.

Theorem 2. Let X be an infinite dimensional A-module, and assume that
X has a locally nilpotent endomorphism ¢ with kernel of finite length. Then:

(a) Let I be any infinite set. The isomorphism class of a module U
belongs to G(X) if and only if U is indecomposable, isomorphic to a direct
summand of X, but not isomorphic to a direct summand of X.

(b) If X has an indecomposable direct summand which is infinite di-
mensional, then G(X) is not empty.

(c) The number of isomorphism classes in G(X) is bounded by the min-
imum of the dimension of the various vector spaces Ker ¢t/ Ker ot~ with
t>1.

(d) Let U be a finitely generated submodule of X with o(U) C U. Then
G(X) =6(X/U).

The last assertion has the following consequence:
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Let X be an infinite dimensional A-module, let ¢ be a locally nilpotent en-
domorphism with kernel of finite length. Then there exists an infinite di-
mensional A-module X', and a locally nilpotent endomorphism ¢ of X'
with kernel of finite length such that ¢’ is, in addition, surjective and

g(X) =g(X").

Namely, let U = Ker ¢! with sufficiently large . Then U is of finite length
and o(U) C U. Let X' = X/U, and let ¢’ be the endomorphism of X’
induced by . Then ¢’ is locally nilpotent and has a kernel of finite length.
In addition, ¢’ will be surjective, for large ¢.

1. Filtered modules. Let us start with a module M which is endowed
with a filtration

0=M[0]C M[]C---CM[]C---C | M[t]=M,

using finite dimensional submodules M|[t] indexed by integers ¢ > 0.
Let I be any set. Let P = M!. We construct submodules of P as

follows: For t > 0, let P'[t] = (M[t])’, and let P' = (J,c P'[t], thus there
are the inclusions:

0=PJ0]CP1]C---CPt]C---CP CP.
(Whenever it is useful, we will write Py instead of P and Pj, instead of P’;
note however, that Pj, not only depends on M but on the given filtration.)
We claim that P’ is a pure submodule of P and isomorphic to a direct
sum of copies of M. Since k is a field, the module k' is a free k-module.
Thus there is an index set J and an isomorphism e: k(/) — E!. Let us fix
such an isomorphism e¢.
Tensoring with M|[t] (over k) we obtain an isomorphism

1@e: M[t]®@ kYY) — M[t]® k',
for any ¢. The left hand side is M[t] ® k(/) ~ (M[t])))). Since M[t] is a

finite dimensional k-space, the right hand side is just M[t] ® k! ~ (M[t])!.
Also, there is the following commutative diagram

Mt—1@ kD 28 Mt — 1okl —>— (M[t—1])!

- 1] |

M @kD 1 Mok’ T (M)
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where ¢+ : M[t — 1] — M]t] is the inclusion map. Altogether, we see that

Mok = (M[t] ® k(J>) ~ | J )’ = P
teN teN

This shows that P’ is the direct sum of copies of M.

The direct sum decomposition of P’ exhibited here is indexed by the
set J. Let us consider a finite subset .J’ of .J and the subspace k7= k)
of k(7). Clearly, there exists a cofinite subset I’ of I such that & is a direct
complement, for e(k(’")) in k. But this implies that also M is a direct
complement for E(M(J’)) in M!. In particular, we see that the submodules
E(M(Jl)) are direct summands of P = MZ. The set of submodules of the
form e(M (7)) is filtered and its direct limit is P’. Tt follows that P’ is a
pure submodule of P.

Let us assume in addition that all the submodules M]|t] are proper
submodules of M and that I is an infinite set. Then P’ is a proper submodule
of P. For, we may assume that I contains N as a subset. If we consider any
submodule M[t], there is ¢’ with M[t] a proper subset of M[t']. Thus, there
exists a sequence 0 =ty < t; < t3 < ... of non-negative integers with proper
inclusions M[t;—1] C M|t;] for i € N. Take an element z; € M[t;]\ M[t;—1],
for i € N, and let z; = 0 for i € I \ N; then the element z = (z;); € P will
not belong to any P’[t], thus not to P’.

2. Proof of Theorem 1. Now assume that X is an infinite dimensional
A-module, and that ¢ is a locally nilpotent endomorphism of X with kernel
of finite length. For ¢ > 0, let X[t] be the kernel of ©'. We have

0=X[0]c X[1]c---CcX[t]c---c | JX[t]=X,

the last equality comes from the fact that ¢ is locally nilpotent.

This shows that we can apply all the considerations of section 1. Let
I be an infinite set, let P = X', Let P'[t] = (X[t])7, and P' = {J,en P'[1].
Then P’ is a proper submodule of P, it is a pure submodule and isomorphic
to a direct sum of copies of X.

Let ny be the dimension of X[t]/ X[t —1]. As we have mentioned above,
the map ¢ induces a monomorphism X[t + 1]/X[t] — X[t]/ X[t — 1], for
t > 1; thus we see that ny > ny > ..., and there is some #' such that
ny = n for all t > #'. Since X is infinite dimensional, we must have proper
inclusions, thus n > 1.

Next, we claim that P’ is a direct summand of P. We have noted that
X is Y-algebraically compact, therefore P’ is algebraically compact. On
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the other hand, P’ is a pure submodule of P. This shows that P’ is a direct
summand of P, thus P ~ P' @ P/P’.

We are going to study P = P/P’. Let &4, ..., Tstr, - - -, Tnp be elements
of X[t'] whose residue classes in X[t']/X[t' — 1] form a basis. For ¢ > t/, we
choose inductively elements x5 € X[t] such that prg = x5;1. We can add
finitely many elements xg; € X[t] where ¢ < ', and 1 < s < ny, such that
we obtain a basis of X with the property gz = x4, for all ¢ > 2.

For 1 < s < n, let X be the subspace of X generated by the elements
Tgg, with 1 < s’ < s and arbitrary ¢. Note that X is a k[¢]-submodule of
X, and we have the chain

0=XoCXyC---CX;C---CX,CX

(of course, X,, is of finite codimension in X).
Also, let P, = (X,)!. Thus, there is the chain

O=hchPCc---CcP,C---CP,CP,

and clearly we have
P,+ P =P.

Let us consider now special endomorphisms of P. The elements of P
are of the form y = (y;); with y; € X. Let E be a subset of Endj (X).
Let v: I — I x E be a (set) map, the image of ¢ under v will be denoted
(v(%),7i). Given such a map ~y, we define a corresponding endomorphism

¥: P — P by (7Y)i = YilYr(i);

these endomorphisms of P will be said to be tiled, with coordinates in E.
Of course, such an endomorphism 7 is a A-endomorphism of P. We denote
by Cg the k-subalgebra of Ends (P) generated by the tiled endomorphisms
with coordinates in F.

We are interested in C, = Cy,y. The subspaces Ps are Cy,-submodules.
Also, P’ is a C,-submodule.

Lemma. Let y be an element of Py which does not belong to Ps_1 + P'.
Then Py C Ps_y + P'+ Cy.
Proof: Let ® be the k-subalgebra of End(X) generated by ¢. Given an
element z = Z:‘,):l AstTs¢ with Agy # 0, then

(Ts1,...,xsp) C Pux.

Given z,z’ € X, such that ' € ®z, let us fix some element p(z’,x) in @
such that (2, z)(z) = «'.
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By assumption, there is given an element y € Ps which does not belong
to Psfl + P = Ut (R@*l + P,[t]) . We write Yy = y/ + y//7 where l/’ € Psfl
and where all components y;-’ are linear combinations of the basis elements

T with arbitrary ¢, say
b(4)

1/;, - Z Ag{g)xst:
t=1

and we choose b(j) > 0 minimal. Thus, either b(j) = 0 or else )\gbé{;; # 0.

Consider now some t € N. Since y does not belong to P, 1 + P'[t — 1],
we see that there exists j(tf) € I such that b(j(t)) > ¢t. For ¢ = 0, we
choose j(0) = j(1); thus j(¢) is defined for all integers ¢ > 0, and we have
b(j(t)) = t.

Let z be an arbitrary element of Py, say z = 2’ + 2/, where 2’ € P,_;
and where all components z.;-’ are linear combinations of the basis elements
rs with arbitrary ¢. Thus

e(i)
4 =3 i
t=1

Note that the number ¢(i) determines some index j(c(i)) € I so that
b(j(c(i))) = (i), thus we know that z;" € ®y7 ;). In particular, the endo-

c(t
"

morphism ¢ (2, y7 ;) is defined and we have (2", y7 .y (¥} o)) = %

We define a set map v: I — I x End(X) as follows: the image of
i shall have the first coordinate v(i) = j(c(7)), the second one should be

Vi = (2, Y o(iy))- We have

"

(Yy")i = ity = e(21, y;',(c(z‘)))(y;,(c(i))) = Zi
thus 4y” = 2". It follows that
~ - | ~ I !/ "o o~ !/
VW—z=0y vy 2 -2 =9y — 2

belongs to P; ;. This completes the proof of the lemma.
Let Ps = (Ps + P')/P’, thus we obtain a chain of Cy,-submodules

0=Py,cP,C...c P,=P.

Corollary. The C,-modules Fs/ﬁs_l are simple.

The corollary shows that ﬁ_has length n as a Cy,-module, and C, is a
subalgebra of End P. Thus P has length at most n when considered as an
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Enda P-module: we see that P is of finite endolength. This completes the
proof of Theorem 1.

3. The set G(X). First, let us consider possible indecomposable direct
summands of X.

Proposition 1. Let X be a A-module, let ¢ be a locally nilpotent endomor-
phism of X with kernel of finite length. Let W be an indecomposable direct
summand of X which has finite endolength. Then W 1is finite dimensional.

Proof: Let us assume that W is infinite dimensional. Let F be its endo-
morphism ring. Since the EF-module W has finite length, we can choose a
simple E-submodule S of W. Let R denote the radical of E and note that
D = E/R is a division ring. Of course, S is annihilated by R, thus is a
D-module (and the D-modules pS and pD are isomorphic). In particular,
S is an infinite dimensional k-space.

We can write X = Y @ Z where Y = W) is a direct sum of copies
of W and Z has no direct summand isomorphic to W. We write the en-
Yy Yyz

Yzy $Yzz
indexed in the following way opn: N — M. Let us denote the canonical

inclusion maps of the direct sum decomposition of Y by p;: W — Y, the
corresponding projections by m;: Y — W. If one of the maps m;0y z0zy p;
would not belong to the radical R of E, then this map would be invert-
ible. But it factors through Z and Z has no direct summand of the form
W. This shows that all the maps m;pyzpzyp; belong to R and therefore
vanish on S. As a consequence, gy zpzy vanishes on the subspace S of
W) =Y. Of course, S(/) is also an End(Y)-submodule of Y. It follows
that the subspace S(/) of X is a p-submodule, and that the action of ¢ on
S(1) is given by pyy.

Since S() is a @p-submodule of X and ¢ is locally nilpotent, ¢yy
yields a locally nilpotent endomorphism of S(/). But the action of ¢yy
on S is given by a large matrix with entries in D, and the kernel of this
linear transformation will be a D°P-subspace of D). Thus the kernel of the
restriction Gyy of gyy to S) is a direct sum of copies of S. Since By
has non-zero kernel, it follows that this kernel contains a direct summand
of the form S, thus is infinite dimensional over k. As a consequence, the
kernel of ¢ is infinite dimensional, contrary to the assumption.

domorphism ¢ of X in matrix form [ }, with homomorphisms

Proposition 1 has the following consequence.

Corollary. Let X be a A-module, let ¢ be a locally nilpotent endomorphism
of X with kernel of finite length. If the isomorphism class of a module Y
belongs to G(X), then Y is not isomorphic to a direct summand of X itself.
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As we will see later, also the converse is true: the isomorphism class of any
indecomposable direct summand of X" which is not isomorphic to a direct
summand of X belongs to G(X).

Proof of Corollary: Let U be a module and assume that its isomorphism
class belongs to G(X). By definition, U is indecomposable and has finite
endolength. Thus Proposition 1 asserts that U cannot be isomorphic to a
direct summand of X.

For the proof of assertion (a) of Theorem 2, the following general result will
be useful:

Proposition 2. Let M be a module of k-dimension c. Let I be any index
set and J a set of cardinality c. If N is a direct summand of M’ and has
local endomorphism ring, then N is isomorphic to a direct summand of M".

Proof. Let y be a non-zero element of N. As an element of MT, we write
y in the form y = (y;); with coordinates y; € M. Choose a subset I’ of T
of cardinality at most ¢ such that the elements y; with 7 € I’ generate the
k-subspace of M generated by all the elements y; with ¢ € I; this is possible
since the k-dimension of M is ¢. Every element y; can be written as finite
linear combination

Z XijYj,

JEIL(i)

where I(i) is a finite subset of I'. For ¢ € I, we define a A-homomorphism

E Q5 25, where 2z = (zi)iel’-
JEI(i)

These maps combine to a A- homomorphlqm v MT — M7, with (Y(z)); =
Yi(x). Also, let 7: MT — M be the canonical projection, thus 7 1(zi)icr) =
(zi)ier- The calculation

wﬂf(U) = w1 U? 1€I’ Z QY5 = Yi

JEI(

shows that ¢ (y) = y. Let u: N — M7 be the inclusion map and e: M1 —
N a projection map (so that ey = 1). Consider the composition v =
epmp: N — N. Since p(y) = y and ¢n(y) = y, we see that v(y) = v.
If we assume that v belongs to the radical R of the endomorphism ring
of N, then v — 1 is invertible, therefore (y — 1)(y) = 0 will imply that
y = 0, a contradiction. This shows that v does not belong to R, therefore
v is invertible (since the endomorphism ring of N is a local ring). As a
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consequence, 7 is a split monomorphism, and therefore N is isomorphic
. 1
to a direct summand of M! | thus also of M.

Now let us assume again that X is infinite dimensional and has a locally
nilpotent endomorphism ¢ with kernel of finite length. Let I be any set.
Let U be an indecomposable direct summand of X and assume that U is
not, isomorphic to a direct summand of X.

There is a result of Auslander [A, Corollary 3.2] which asserts that for
any index set I, an indecomposable direct summand of X’ of finite length
is isomorphic to a direct summand of X. Thus, we see that U is infinite
dimensional.

Since U is algebraically compact and indecomposable, it has a local
endomorphism ring. Also note that X has countable k-dimension, thus we
can apply Proposition 2 in order to see that U is isomorphic to a direct
summand of X". Note that there is a direct decomposition X" ~ P’ @ P
as given in Theorem 1, where P’ is a direct sum of copies of X and P is
of finite endolength. Since we assume that U is not isomorphic to a direct
summand of X, it follows that U is isomorphic to a direct summand of P.

As we know, P is a module of finite endolength, thus also U has finite
endolength [C, 4.5]. It follows that the isomorphism class of U belongs to
G(X). This yields one implication of the assertion (a), the other one has
already been verified.

A module M of finite endolength e is always a direct sum of indecompos-
able modules of finite endolength: there are finitely many pairwise non-
isomorphic modules My, ..., M,, which are indecomposable and of finite
endolength such that M is isomorphic to ;" Mz-(m’)), with suitable sets
I(1),...,I(m), and we have m < e (see [C, 4.5]). We apply this to the mod-

ule M = P. Here, e < n, where n is the minimum of the dimension of the
vector spaces Ker o'/ Ker o'~ 1, with ¢ > 1. We see that P = ;" , Mi(m')),
with indecomposable modules M; and suitable sets I(i), and m < n. Using
again Azumaya’s theorem, it follows that a module which is not isomorphic
to a direct summand of X and whose isomorphism class belongs to G(X) is
isomorphic to one of the modules M;. This establishes (c).

Let us state explicitly the following criterion which we have established:

Proposition 3. Let X be an infinite dimensional module, let ¢ be a locally
nilpotent endomorphism with kernel of finite length. Let X = P, @ Py be
a direct decomposition where Py is a direct sum of copies of X and Py is of
finite endolength. Then the isomorphism classes in G(X) are precisely those
of the indecomposable direct summands of Py which are infinite dimensional.

Proof: The (Eacomposition XN = P, @ P, can differ from the decomposition
XN = P"@ P given in Theorem 1 only in the following way: finite dimen-
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sional summands of the module P may have been shifted to P;. We know
that X has no infinite dimensional indecomposable direct summand of fi-
nite endolength, thus the sets of isomorphism classes of infinite dimensional
indecomposable direct summands of P and of P are the same.

Consider a direct summand Y of X. Let Y[t] = Y N Ker¢* for t > 0. We
have
0=Y[0]CY[]C---CY[C---C|JYH]=
teN

using again that ¢ is locally nilpotent. Thus, we can apply the considera-
tions of section 1 also in this case: Let I be an infinite set, let Py = Y and
Py = U;en(Y[t])T. Then Py, is a pure submodule of Py and isomorphic to a
direct sum of copies of Y. If Y is infinite dimensional, then all the submod-
ules Y[t] are proper submodules of Y, and then Py, is a proper submodule
of Py. Since Y is a direct summand of X, it is Y-algebraically compact,
thus Py, is algebraically compact and therefore Py, is a direct summand of
Py, thus Py ~ P}, @ Py, where Py = Py /P},. Let X =Y @& Z, where Z is
some complement. Then
Px = Py ¢ Py.

Let us show that
Py =Py @ Py,

On the one hand, we have Y[t] ® Z[t] C X[t]. On the other hand, X
Y& Z = U,en Y[t @ Z[t], thus for any ¢, there exists t' > t with X[t]
Y[t'| @ Z[t']. Tt follows that

Nl

vi' e 21 c X[ C Vi) © 21,
and therefore

Pe=Jxe =y =Py, © Py,
teN teN

As a consequence, Px = Py @ Py.

Let us now assume that X has an indecomposable direct summand Y
which is infinite dimensional, say X = Y @ Z. As we have seen, Py is
non-zero. Since Px = Py @ Py, we know that Py is a direct sum of in-
decomposable modules which are endofinite. Let U be an indecomposable
direct summand of Py . Note that U cannot be finite dimensional, since oth-
erwise it would be a finite dimensional direct summand of Y/, and therefore
isomorphic to a direct summand of Y itself, using again Auslander’s the-
orem; but this is impossible. This shows that G(Y') is non-empty. Since
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the isomorphism classes in G(Y) also belong to G(X), we see that G(X) is
non-empty. This establishes (b).

Let U be a submodule of X of finite length with ¢(U) C U. Then there
exists s € N such that U C X[s]. Let us show that Px may be identified
By definition, Px = Px /P, with Px = XM and Py = U,~, 9~ (0))".

Usso \gft(U))N. We have the following inclusions

9 1(0) S HU) S I,

and therefore

As a consequence,

Py =] e'0)" = | ')

t>0 t>0

Of course, P4 has the submodule UY, and we have

Ut 0)/0)" = 'w)/u)".

t>s t>0

The left hand side is canonically isomorphic to P4 /U, whereas the right

hand side is just P)’(/U. It follows that

Px = Px /Py ~ 'Px/U")/P%/U") ~ Px;u/Px,; = Pxju-

As we have seen above, the isomorphism classes in G(X) are those of
the infinite dimensional, indecomposable direct summands of Px. Similarly,
the isomorphism classes in G(X/U) are those of the infinite dimensional,
indecomposable direct summands of Py ;. This establishes (d).

Even in case X is indecomposable, the set G(X) may contain more than
one isomorphism class, as the following examples show.

Example 1. In the paper [R], we have presented various infinite dimen-
sional indecomposable modules. The last example exhibited there is the
one we are interested in: we deal with a contracting Z-word = which gives
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rise to an indecomposable A-module C'(z) = M (z), where A is a certain
special biserial algebra. Observe that C'(x) has a unique monogenic sub-
module K of dimension 5, and note that the factor module C'(z)/K can be
embedded into C'(x) with codimension 1. The composition of the projection
map C(x) — C(z)/K and the inclusion map C(z)/K — C(z) is a locally
nilpotent endomorphism ¢ of C'(x) with kernel K. Note that C(z)/K is the
direct sum of two indecomposable modules Y7, Y5 with disjoint supports. If
we apply Theorem 1 to the module C(z), we obtain an endofinite module P
which is the direct sum P = Py @ P, of two non-zero modules P, Py such
that Hom(P;, Py) = 0 = Hom(P3, P1) (the module P; is a direct sums of
copies of the “generic” module having the same support as Y;).

Example 2. Again, we want to exhibit an example of an indecomposable
module X with a locally nilpotent endomorphism ¢ having a finite length
kernel, such that G(X) contains two isomorphism classes. But this time, ¢
will be in addition surjective. Let A be the factor algebra of the polynomial
ring k[Ty, To] modulo the ideal generated by T1Ts, T3, Ts. We denote the
residue class of T7 by «, that of T5 by (. Note that A is a five dimensional
algebra (with basis 1, a, a2, 8, 3?), and again it is a special biserial algebra.
In order to deal with A-modules, we use notations as in [R].

We start with the N-words # = 18a=18)™, and y = laf~a)™, and
form the Z-word

= m_ly — ... |B—1aﬂ—1) \ﬂ—laﬂ—l) . ‘Ozﬂ_loz) |Ozﬂ_1()z) .

thus z = ---1 ol _1-lglils---, where we have [; = « if either : < 0 and s = 1
(mod 3) or i >0 and i Z 1 (mod 3); otherwise [; = 3 1.

Let X = M(z), this module is an infinite dimensional k-space with
basis e;,1 € Z, and the action of a, 3 on X is given by the following rules:
If either i < 0 and ¢ = 2 (mod 3) or else i > 0 and ¢ Z 2 (mod 3), then
afe;) = e; 1. If either i < 0 and ¢ Z 1 (mod 3) or else i > 0 and i = 1

(mod 3), then §(e;) = ejy1.

€_g €_4 €4 €6
NN v N
€_s5 €_3 €_1 e1 €3 €5
NSNS NS
€_9 €o €9
B o B B a B a B a a [«

Let V' be the submodule of X generated by the vectors e_1,e; and e_3+eg3.
Then V is of the form F,,(k, 1), where

w = |ﬁ_1aﬂ_1) ‘aﬂ_la).
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It is obvious that X /V is isomorphic to X, thus there exists an epimorphism
¢: X — X with kernel V. This is the endomorphism of X we are interested
in: it is locally nilpotent, the kernel is V', thus of finite length, and it is
surjectiv.

On the other hand, consider the simple submodule W with basis eg. We
have (W) =0 C W, thus G(X) = G(X/W). The module X/W is the direct
sum of two indecomposable modules M l(a=!3%)°°), and M /(87 1a?)>).
It is easy to see that G(X/W) consists of the isomorphism classes of the
modules F,(k(T),T"), Fy/(k(T),T-), where v = o 13? and v/ = 3 1a2.

We should add the following remark. As we have seen, the kernel X[1]
of pis V.= F,(k,1). Since ¢ is surjective, all the factors of the filtration
X|[t] of X are of the form F,,(k,1). There also exists the Priifer module X’
with quasi-socle Fy,(k,1); it is an indecomposable module with a surjective
locally nilpotent endomorphism and with kernel Fy,(k,1), however G(X')

3

consists of a single isomorphism class, namely F,,(k(T),T").
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