
A Construction of Endo�nite ModulesClaus Michael RingelFakult�at f�ur Mathematik, Universit�at BielefeldP.O.Box 100 131, D{33 501 BielefeldGermanyLet k be a �eld, let � be a �nite dimensional k-algebra. Krause [K] hasconsidered �-modules which are obtained as direct limits of an increasingchain of �nite dimensional �-modules and which are similar to the Pr�ufergroups occurring in abelian group theory. He has shown that the Zieglerclosure of such a module X always contains an indecomposable endo�nitemodule of in�nite length, a socalled \generic" module. This is of importancesince the \generic" modules seem to parametrize the families of �nite lengthmodules, and families of �nite length modules are one of the main objects ofpresent concern [C]. An essential condition used by Krause is the existenceof a locally nilpotent endomorphism of X with kernel of �nite length. Inhis proof, Krause uses functor categories as well as model theoretical con-siderations. The aim of the present note is to present a direct approach(using only modules and their elements) in order to recover and strengthenhis result. The author is endebted to Krause for many stimulating remarks.Let ' be an endomorphism of the �-module X. Then ' induces an injectionof Ker't+1=Ker't into Ker't=Ker't�1, for t � 1: In case Ker' is �nitedimensional, it follows that the vector spaces Ker't=Ker't�1 have thesame dimension, for almost all t:Given a module M and any set I, we denote by M I the product ofcopies of M which are indexed by the elements of I, and M (I) denotesthe corresponding direct sum of these copies (the module M I may be con-structed as the set of functions I ! M , and M (I) is the submodule of allfunctions with �nite support).Theorem 1. Let X be an in�nite dimensional �-module, let ' be alocally nilpotent endomorphism of X with kernel of �nite length. Let I besome in�nite set. Then the product XI is the direct sum of a non-zeromodule P of �nite endolength and of copies of X.The endolength of P is bounded by the minimum of the dimension ofthe vector spaces Ker't=Ker't�1, with t � 1.



2 C. M. RingelNote that if X is a �-module and ' is a locally nilpotent endomorphismof X with kernel of �nite length, then X satis�es the descending chaincondition when considered as a k[']-module and thus also when consideredas a module over End�(X). As a consequence, X is �-algebraically compactand therefore X as well as all the powers XI can be written as direct sumsof modules with local endomorphism rings [JL, 8.1, 8.2]. Also, if we �xa direct decomposition of a �-algebraically compact module M = LiMiwhere the Mi are modules with local endomorphism rings, then Azumaya'sTheorem (which generalizes the Theorem of Krull-Remak-Schmidt) showsthat any indecomposable direct summand U is isomorphic to one of themodules Mi (note that any direct complement of U is also �-algebraicallycompact and therefore again a direct sum of indecomposables, thus U is oneof the direct summands of a decomposition of M into indecomposables).For any countably generated �-module M , let G(M) be the set of iso-morphism classes of those indecomposable direct summands of MN whichare in�nite dimensional and of �nite endolength (thus \generic" modules inthe terminology introduced in [C]).Note that G(M) may be empty: take any �nite dimensional moduleN and let M = N (N) be the direct sum of countably many copies of N .Then any product of copies of M is again a direct sum of copies of N , thusMN has no indecomposable direct summand which is in�nite dimensional.Let us stress that the examples of this kind satisfy the usual requirementsconsidered in this paper, provided N is non-zero: the module M is in�nitedimensional, and there is the shift endomorphism ' (sending the summandwith index i to that with index i � 1 and mapping the �rst one to zero);this is a locally nilpotent endomorphism of M and its kernel is N , thus of�nite length.Theorem 2. Let X be an in�nite dimensional �-module, and assume thatX has a locally nilpotent endomorphism ' with kernel of �nite length. Then:(a) Let I be any in�nite set. The isomorphism class of a module Ubelongs to G(X) if and only if U is indecomposable, isomorphic to a directsummand of XI , but not isomorphic to a direct summand of X.(b) If X has an indecomposable direct summand which is in�nite di-mensional, then G(X) is not empty.(c) The number of isomorphism classes in G(X) is bounded by the min-imum of the dimension of the various vector spaces Ker't=Ker't�1, witht � 1.(d) Let U be a �nitely generated submodule of X with '(U) � U: ThenG(X) = G(X=U).The last assertion has the following consequence:



Endo�nite modules 3Let X be an in�nite dimensional �-module, let ' be a locally nilpotent en-domorphism with kernel of �nite length. Then there exists an in�nite di-mensional �-module X 0, and a locally nilpotent endomorphism '0 of X 0with kernel of �nite length such that '0 is, in addition, surjective andG(X) = G(X 0):Namely, let U = Ker't with su�ciently large t. Then U is of �nite lengthand '(U) � U: Let X 0 = X=U , and let '0 be the endomorphism of X 0induced by '. Then '0 is locally nilpotent and has a kernel of �nite length.In addition, '0 will be surjective, for large t.1. Filtered modules. Let us start with a module M which is endowedwith a �ltration0 =M [0] �M [1] � � � � �M [t] � � � � � [t2NM [t] =M;using �nite dimensional submodules M [t] indexed by integers t � 0:Let I be any set. Let P = M I . We construct submodules of P asfollows: For t � 0; let P 0[t] = (M [t])I ; and let P 0 = St2N P 0[t]; thus thereare the inclusions:0 = P 0[0] � P 0[1] � � � � � P 0[t] � � � � � P 0 � P:(Whenever it is useful, we will write PM instead of P and P 0M instead of P 0;note however, that P 0M not only depends on M but on the given �ltration.)We claim that P 0 is a pure submodule of P and isomorphic to a directsum of copies of M: Since k is a �eld, the module kI is a free k-module.Thus there is an index set J and an isomorphism " : k(J) ! kI . Let us �xsuch an isomorphism ":Tensoring with M [t] (over k) we obtain an isomorphism1
 " : M [t]
 k(J) !M [t]
 kI ;for any t. The left hand side is M [t] 
 k(J) ' (M [t])(J): Since M [t] is a�nite dimensional k-space, the right hand side is just M [t]
 kI ' (M [t])I :Also, there is the following commutative diagramM [t� 1]
 k(J) 1
"����! M [t� 1]
 kI �����! (M [t� 1])I�
1??y �
1??y �I??yM [t]
 k(J) 1
"����! M [t]
 kI �����! (M [t])I



4 C. M. Ringelwhere � :M [t� 1]!M [t] is the inclusion map. Altogether, we see thatM 
 k(J) = [t2N �M [t]
 k(J)� ' [t2N(M [t])I = P 0:This shows that P 0 is the direct sum of copies of M .The direct sum decomposition of P 0 exhibited here is indexed by theset J . Let us consider a �nite subset J 0 of J and the subspace kJ 0 = k(J 0)of k(J). Clearly, there exists a co�nite subset I 0 of I such that kI0 is a directcomplement for "(k(J 0)) in kI . But this implies that also M I0 is a directcomplement for "(M (J 0)) in M I . In particular, we see that the submodules"(M (J 0)) are direct summands of P = M I . The set of submodules of theform "(M (J 0)) is �ltered and its direct limit is P 0. It follows that P 0 is apure submodule of P:Let us assume in addition that all the submodules M [t] are propersubmodules ofM and that I is an in�nite set. Then P 0 is a proper submoduleof P . For, we may assume that I contains N as a subset. If we consider anysubmodule M [t], there is t0 with M [t] a proper subset of M [t0]: Thus, thereexists a sequence 0 = t0 < t1 < t2 < : : : of non-negative integers with properinclusions M [ti�1] �M [ti] for i 2 N . Take an element zi 2M [ti] nM [ti�1],for i 2 N , and let zi = 0 for i 2 I n N ; then the element z = (zi)i 2 P willnot belong to any P 0[t]; thus not to P 0:2. Proof of Theorem 1. Now assume that X is an in�nite dimensional�-module, and that ' is a locally nilpotent endomorphism of X with kernelof �nite length. For t � 0, let X[t] be the kernel of 't: We have0 = X[0] � X[1] � � � � � X[t] � � � � � [t2NX[t] = X;the last equality comes from the fact that ' is locally nilpotent.This shows that we can apply all the considerations of section 1. LetI be an in�nite set, let P = XI . Let P 0[t] = (X[t])I ; and P 0 = St2N P 0[t]:Then P 0 is a proper submodule of P , it is a pure submodule and isomorphicto a direct sum of copies of X.Let nt be the dimension of X[t]=X[t�1]. As we have mentioned above,the map ' induces a monomorphism X[t + 1]=X[t] ! X[t]=X[t � 1], fort � 1; thus we see that n1 � n2 � : : : ; and there is some t0 such thatnt = n for all t � t0: Since X is in�nite dimensional, we must have properinclusions, thus n � 1:Next, we claim that P 0 is a direct summand of P . We have noted thatX is �-algebraically compact, therefore P 0 is algebraically compact. On



Endo�nite modules 5the other hand, P 0 is a pure submodule of P: This shows that P 0 is a directsummand of P , thus P ' P 0 � P=P 0:We are going to study P = P=P 0: Let x1t0 ; : : : ; xst0 ; : : : ; xnt0 be elementsof X[t0] whose residue classes in X[t0]=X[t0� 1] form a basis. For t > t0, wechoose inductively elements xst 2 X[t] such that 'xst = xs;t�1:We can add�nitely many elements xst 2 X[t] where t < t0, and 1 � s � nt, such thatwe obtain a basis of X with the property 'xst = xs;t�1 for all t � 2.For 1 � s � n; let Xs be the subspace of X generated by the elementsxs0t; with 1 � s0 � s and arbitrary t. Note that Xs is a k[']-submodule ofX, and we have the chain0 = X0 � X1 � � � � � Xs � � � � � Xn � X(of course, Xn is of �nite codimension in X).Also, let Ps = (Xs)I : Thus, there is the chain0 = P0 � P1 � � � � � Ps � � � � � Pn � P;and clearly we have Pn + P 0 = P:Let us consider now special endomorphisms of P . The elements of Pare of the form y = (yi)i with yi 2 X: Let E be a subset of End�(X).Let 
 : I ! I � E be a (set) map, the image of i under 
 will be denoted(
(i); 
i). Given such a map 
; we de�ne a corresponding endomorphism~
 : P ! P by (~
y)i = 
iy
(i);these endomorphisms of P will be said to be tiled, with coordinates in E.Of course, such an endomorphism ~
 is a �-endomorphism of P . We denoteby CE the k-subalgebra of End�(P ) generated by the tiled endomorphismswith coordinates in E.We are interested in C' = Cf'g. The subspaces Ps are C'-submodules.Also, P 0 is a C'-submodule.Lemma. Let y be an element of Ps which does not belong to Ps�1 + P 0.Then Ps � Ps�1 + P 0 + C'y:Proof: Let � be the k-subalgebra of End(X) generated by ': Given anelement x =Pbt=1 �stxst with �sb 6= 0, thenhxs1; : : : ; xsbi � �x:Given x; x0 2 X; such that x0 2 �x; let us �x some element '(x0; x) in �such that '(x0; x)(x) = x0:



6 C. M. RingelBy assumption, there is given an element y 2 Ps which does not belongto Ps�1 + P 0 = St (Ps�1 + P 0[t]) : We write y = y0 + y00, where y0 2 Ps�1and where all components y00j are linear combinations of the basis elementsxst with arbitrary t, say y00j = b(j)Xt=1 �(j)st xst;and we choose b(j) � 0 minimal. Thus, either b(j) = 0 or else �(b(j))s;b(j) 6= 0:Consider now some t 2 N : Since y does not belong to Ps�1 + P 0[t � 1],we see that there exists j(t) 2 I such that b(j(t)) � t: For t = 0; wechoose j(0) = j(1); thus j(t) is de�ned for all integers t � 0, and we haveb(j(t)) � t:Let z be an arbitrary element of Ps, say z = z0 + z00; where z0 2 Ps�1and where all components z00j are linear combinations of the basis elementsxst with arbitrary t. Thus z00i = c(i)Xt=1 �(i)st xst:Note that the number c(i) determines some index j(c(i)) 2 I so thatb(j(c(i))) � c(i); thus we know that z00i 2 �y00j(c(i)): In particular, the endo-morphism '(z00i ; y00j(c(i))) is de�ned and we have '(z00i ; y00j(c(i)))(y00j(c(i))) = z00i :We de�ne a set map 
 : I ! I � End(X) as follows: the image ofi shall have the �rst coordinate 
(i) = j(c(i)); the second one should be
i = '(z00i ; y00j(c(i))). We have(~
y00)i = 
iy
(i) = '(z00i ; y00j(c(i)))(y00j(c(i))) = z00i ;thus ~
y00 = z00: It follows that~
y � z = ~
y0 + ~
y00 � z0 � z00 = ~
y0 � z0belongs to Ps�1: This completes the proof of the lemma.Let P s = (Ps + P 0)=P 0; thus we obtain a chain of C'-submodules0 = P 0 � P 1 � : : : � Pn = P :Corollary. The C'-modules P s=P s�1 are simple.The corollary shows that P has length n as a C'-module, and C' is asubalgebra of End� P: Thus P has length at most n when considered as an



Endo�nite modules 7End� P -module: we see that P is of �nite endolength. This completes theproof of Theorem 1.3. The set G(X). First, let us consider possible indecomposable directsummands of X.Proposition 1. Let X be a �-module, let ' be a locally nilpotent endomor-phism of X with kernel of �nite length. Let W be an indecomposable directsummand of X which has �nite endolength. Then W is �nite dimensional.Proof: Let us assume that W is in�nite dimensional. Let E be its endo-morphism ring. Since the E-module W has �nite length, we can choose asimple E-submodule S of W . Let R denote the radical of E and note thatD = E=R is a division ring. Of course, S is annihilated by R, thus is aD-module (and the D-modules DS and DD are isomorphic). In particular,S is an in�nite dimensional k-space.We can write X = Y � Z where Y = W (J) is a direct sum of copiesof W and Z has no direct summand isomorphic to W . We write the en-domorphism ' of X in matrix form �'Y Y 'Y Z'ZY 'ZZ �, with homomorphismsindexed in the following way 'MN : N ! M . Let us denote the canonicalinclusion maps of the direct sum decomposition of Y by �j : W ! Y , thecorresponding projections by �j : Y !W: If one of the maps �i'Y Z'ZY �jwould not belong to the radical R of E, then this map would be invert-ible. But it factors through Z and Z has no direct summand of the formW . This shows that all the maps �i'Y Z'ZY �j belong to R and thereforevanish on S. As a consequence, 'Y Z'ZY vanishes on the subspace S(J) ofW (J) = Y: Of course, S(J) is also an End(Y )-submodule of Y . It followsthat the subspace S(J) of X is a '-submodule, and that the action of ' onS(J) is given by 'Y Y .Since S(J) is a '-submodule of X and ' is locally nilpotent, 'Y Yyields a locally nilpotent endomorphism of S(J): But the action of 'Y Yon S(J) is given by a large matrix with entries in D, and the kernel of thislinear transformation will be a Dop-subspace of D(J): Thus the kernel of therestriction 'Y Y of 'Y Y to S(J) is a direct sum of copies of S. Since 'Y Yhas non-zero kernel, it follows that this kernel contains a direct summandof the form S, thus is in�nite dimensional over k. As a consequence, thekernel of ' is in�nite dimensional, contrary to the assumption.Proposition 1 has the following consequence.Corollary. Let X be a �-module, let ' be a locally nilpotent endomorphismof X with kernel of �nite length. If the isomorphism class of a module Ybelongs to G(X), then Y is not isomorphic to a direct summand of X itself.



8 C. M. RingelAs we will see later, also the converse is true: the isomorphism class of anyindecomposable direct summand of XN which is not isomorphic to a directsummand of X belongs to G(X):Proof of Corollary: Let U be a module and assume that its isomorphismclass belongs to G(X). By de�nition, U is indecomposable and has �niteendolength. Thus Proposition 1 asserts that U cannot be isomorphic to adirect summand of X.For the proof of assertion (a) of Theorem 2, the following general result willbe useful:Proposition 2. Let M be a module of k-dimension c. Let I be any indexset and J a set of cardinality c. If N is a direct summand of M I and haslocal endomorphism ring, then N is isomorphic to a direct summand of MJ :Proof. Let y be a non-zero element of N . As an element of M I , we writey in the form y = (yi)i with coordinates yi 2 M . Choose a subset I 0 of Iof cardinality at most c such that the elements yi with i 2 I 0 generate thek-subspace ofM generated by all the elements yi with i 2 I; this is possiblesince the k-dimension of M is c. Every element yi can be written as �nitelinear combination yi = Xj2I(i)�ijyj ;where I(i) is a �nite subset of I 0: For i 2 I, we de�ne a �-homomorphism i : M I0 !M by i(z) = Xj2I(i)�ijzj ; where z = (zi)i2I0 :These maps combine to a �-homomorphism  : M I0 !M I ; with ( (x))i = i(x):Also, let � : M I !M I0 be the canonical projection, thus ��(zi)i2I� =(zi)i2I0 : The calculation i�(y) =  i�(yi)i2I0� = Xj2I(i)�ijyj = yishows that  �(y) = y: Let � : N !M I be the inclusion map and " : M I !N a projection map (so that "� = 1). Consider the composition 
 =" �� : N ! N . Since �(y) = y and  �(y) = y, we see that 
(y) = y:If we assume that 
 belongs to the radical R of the endomorphism ringof N , then 
 � 1 is invertible, therefore (
 � 1)(y) = 0 will imply thaty = 0; a contradiction. This shows that 
 does not belong to R, therefore
 is invertible (since the endomorphism ring of N is a local ring). As a



Endo�nite modules 9consequence, �� is a split monomorphism, and therefore N is isomorphicto a direct summand of M I0 , thus also of MJ :Now let us assume again that X is in�nite dimensional and has a locallynilpotent endomorphism ' with kernel of �nite length. Let I be any set.Let U be an indecomposable direct summand of XI and assume that U isnot isomorphic to a direct summand of X.There is a result of Auslander [A, Corollary 3.2] which asserts that forany index set I, an indecomposable direct summand of XI of �nite lengthis isomorphic to a direct summand of X. Thus, we see that U is in�nitedimensional.Since U is algebraically compact and indecomposable, it has a localendomorphism ring. Also note that X has countable k-dimension, thus wecan apply Proposition 2 in order to see that U is isomorphic to a directsummand of XN: Note that there is a direct decomposition XN ' P 0 � Pas given in Theorem 1, where P 0 is a direct sum of copies of X and P isof �nite endolength. Since we assume that U is not isomorphic to a directsummand of X, it follows that U is isomorphic to a direct summand of P :As we know, P is a module of �nite endolength, thus also U has �niteendolength [C, 4.5]. It follows that the isomorphism class of U belongs toG(X). This yields one implication of the assertion (a), the other one hasalready been veri�ed.A module M of �nite endolength e is always a direct sum of indecompos-able modules of �nite endolength: there are �nitely many pairwise non-isomorphic modules M1; : : : ;Mm which are indecomposable and of �niteendolength such that M is isomorphic to Lmi=1M (I(i))i , with suitable setsI(1); : : : ; I(m), and we have m � e (see [C, 4.5]). We apply this to the mod-ule M = P . Here, e � n; where n is the minimum of the dimension of thevector spaces Ker't=Ker't�1, with t � 1. We see that P =Lmi=1M (I(i))i ,with indecomposable modules Mi and suitable sets I(i), and m � n: Usingagain Azumaya's theorem, it follows that a module which is not isomorphicto a direct summand of X and whose isomorphism class belongs to G(X) isisomorphic to one of the modules Mi. This establishes (c).Let us state explicitly the following criterion which we have established:Proposition 3. Let X be an in�nite dimensional module, let ' be a locallynilpotent endomorphism with kernel of �nite length. Let XN = P1 � P2 bea direct decomposition where P1 is a direct sum of copies of X and P2 is of�nite endolength. Then the isomorphism classes in G(X) are precisely thoseof the indecomposable direct summands of P 2 which are in�nite dimensional.Proof: The decomposition XN = P1�P2 can di�er from the decompositionXN = P 0 � P given in Theorem 1 only in the following way: �nite dimen-



10 C. M. Ringelsional summands of the module P may have been shifted to P1. We knowthat X has no in�nite dimensional indecomposable direct summand of �-nite endolength, thus the sets of isomorphism classes of in�nite dimensionalindecomposable direct summands of P2 and of P are the same.Consider a direct summand Y of X. Let Y [t] = Y \ Ker't for t � 0: Wehave 0 = Y [0] � Y [1] � � � � � Y [t] � � � � � [t2NY [t] = Y;using again that ' is locally nilpotent. Thus, we can apply the considera-tions of section 1 also in this case: Let I be an in�nite set, let PY = Y I andP 0Y = St2N(Y [t])I : Then P 0Y is a pure submodule of PY and isomorphic to adirect sum of copies of Y . If Y is in�nite dimensional, then all the submod-ules Y [t] are proper submodules of Y , and then P 0Y is a proper submoduleof PY . Since Y is a direct summand of X, it is �-algebraically compact,thus P 0Y is algebraically compact and therefore P 0Y is a direct summand ofPY , thus PY ' P 0Y � PY , where PY = PY =P 0Y : Let X = Y �Z; where Z issome complement. Then PX = PY � PZ :Let us show that P 0X = P 0Y � P 0Z :On the one hand, we have Y [t] � Z[t] � X[t]. On the other hand, X =Y � Z = St2N Y [t] � Z[t], thus for any t, there exists t0 � t with X[t] �Y [t0]� Z[t0]: It follows thatY [t]I � Z[t]I � X[t]I � Y [t0]I � Z[t0]I ;and therefore P 0X = [t2NX[t]I = [t2N Y [t]I � Z[t]I = P 0Y � P 0Z :As a consequence, PX = PY � PZ :Let us now assume that X has an indecomposable direct summand Ywhich is in�nite dimensional, say X = Y � Z. As we have seen, PY isnon-zero. Since PX = PY � PZ ; we know that PY is a direct sum of in-decomposable modules which are endo�nite. Let U be an indecomposabledirect summand of PY . Note that U cannot be �nite dimensional, since oth-erwise it would be a �nite dimensional direct summand of Y I , and thereforeisomorphic to a direct summand of Y itself, using again Auslander's the-orem; but this is impossible. This shows that G(Y ) is non-empty. Since



Endo�nite modules 11the isomorphism classes in G(Y ) also belong to G(X); we see that G(X) isnon-empty. This establishes (b).Let U be a submodule of X of �nite length with '(U) � U: Then thereexists s 2 N such that U � X[s]: Let us show that PX may be identi�edwith PX=U :By de�nition, PX = PX=P 0X , with PX = XN and P 0X = St�0�'�t(0)�N:Similarly, PX=U = PX=U=P 0X=U , where PX=U = (X=U)N and P 0X=U =St�0�'�t(U)�N: We have the following inclusions'�t(0) � '�t(U) � '�(s+t)(U):and therefore �'�t(0)�N � �'�t(U)�N � �'�(s+t)(U)�N:As a consequence, P 0X = [t�0�'t(0)�N = [t�0�'t(U)�N:Of course, P 0X has the submodule UN, and we have[t�s�'t(0)=U�N = [t�0�'t(U)=U�N:The left hand side is canonically isomorphic to P 0X=UN, whereas the righthand side is just P 0X=U : It follows thatPX = PX=P 0X ' �PX=UN�=�P 0X=UN� ' PX=U=P 0X=U = PX=U :As we have seen above, the isomorphism classes in G(X) are those ofthe in�nite dimensional, indecomposable direct summands of PX . Similarly,the isomorphism classes in G(X=U) are those of the in�nite dimensional,indecomposable direct summands of PX=U . This establishes (d).Even in case X is indecomposable, the set G(X) may contain more thanone isomorphism class, as the following examples show.Example 1. In the paper [R], we have presented various in�nite dimen-sional indecomposable modules. The last example exhibited there is theone we are interested in: we deal with a contracting Z-word x which gives



12 C. M. Ringelrise to an indecomposable �-module C(x) = M(x), where � is a certainspecial biserial algebra. Observe that C(x) has a unique monogenic sub-module K of dimension 5, and note that the factor module C(x)=K can beembedded into C(x) with codimension 1. The composition of the projectionmap C(x) ! C(x)=K and the inclusion map C(x)=K ! C(x) is a locallynilpotent endomorphism ' of C(x) with kernel K. Note that C(x)=K is thedirect sum of two indecomposable modules Y1; Y2 with disjoint supports. Ifwe apply Theorem 1 to the module C(x), we obtain an endo�nite module Pwhich is the direct sum P = P 1 � P 2 of two non-zero modules P 1; P 2 suchthat Hom(P 1; P 2) = 0 = Hom(P 2; P 1) (the module P i is a direct sums ofcopies of the \generic" module having the same support as Yi).Example 2. Again, we want to exhibit an example of an indecomposablemodule X with a locally nilpotent endomorphism ' having a �nite lengthkernel, such that G(X) contains two isomorphism classes. But this time, 'will be in addition surjective. Let � be the factor algebra of the polynomialring k[T1; T2] modulo the ideal generated by T1T2; T 31 ; T 32 . We denote theresidue class of T1 by �; that of T2 by �: Note that � is a �ve dimensionalalgebra (with basis 1; �; �2; �; �2), and again it is a special biserial algebra.In order to deal with �-modules, we use notations as in [R].We start with the N-words x = ����1��1; and y = ����1��1; andform the Z-wordz = x�1y = � � � ���1���1����1���1� � ����1������1�� � � � ;thus z = � � � l�2l�1 � l0l1l2 � � � , where we have li = � if either i < 0 and i � 1(mod 3) or i � 0 and i 6� 1 (mod 3); otherwise li = ��1:Let X = M(z); this module is an in�nite dimensional k-space withbasis ei; i 2 Z; and the action of �; � on X is given by the following rules:If either i < 0 and i � 2 (mod 3) or else i > 0 and i 6� 2 (mod 3), then�(ei) = ei�1. If either i < 0 and i 6� 1 (mod 3) or else i � 0 and i � 1(mod 3), then �(ei) = ei+1.� � � e�6................................................................. ................e�5 ................................................................................. e�4................................................................. ................e�3................................................................. ................e�2 ................................................................................. e�1................................................................. ................e0 ................................................................................. e1................................................................. ................e2 ................................................................................. e3 ................................................................................. e4................................................................. ................e5 ................................................................................. e6 � � �
� � � � � � � � � � � � � � � � � �Let V be the submodule of X generated by the vectors e�1; e1 and e�3+e3.Then V is of the form Fw(k; 1), wherew = ���1���1�����1��:



Endo�nite modules 13It is obvious that X=V is isomorphic to X, thus there exists an epimorphism' : X ! X with kernel V . This is the endomorphism of X we are interestedin: it is locally nilpotent, the kernel is V , thus of �nite length, and it issurjectiv.On the other hand, consider the simple submoduleW with basis e0. Wehave '(W ) = 0 � W; thus G(X) = G(X=W ): The module X=W is the directsum of two indecomposable modules M�(��1�2)1�; and M�(��1�2)1�:It is easy to see that G(X=W ) consists of the isomorphism classes of themodules Fv(k(T ); T �); Fv0(k(T ); T �); where v = ��1�2 and v0 = ��1�2:We should add the following remark. As we have seen, the kernel X[1]of ' is V = Fw(k; 1). Since ' is surjective, all the factors of the �ltrationX[t] of X are of the form Fw(k; 1). There also exists the Pr�ufer module X 0with quasi-socle Fw(k; 1); it is an indecomposable module with a surjectivelocally nilpotent endomorphism and with kernel Fw(k; 1), however G(X 0)consists of a single isomorphism class, namely Fw(k(T ); T �):References[A] M. Auslander: Large modules over artin algebras. In: Algebra, Topol-ogy, and Category Theory. New York, San Francisco, London. 1976.1-17.[C] W. Crawley-Boevey: Modules of �nite length over their endomorphismrings. In: Representations of Algebras (ed. H. Tachikawa and S. Bren-ner). London Math. Soc. Lecture Note Series 168. Cambridge (1992),127{184.[K] H. Krause: Generic modules over artin algebras. SFB 343 Bielefeld.Preprint 95-121.[JL] C. U. Jensen, H. Lenzing: Model Theoretic Algebra. Gordon andBreach. New York (1989).[R] C. M. Ringel: Algebraically compact modules I. In: Abelian Groupsand Modules (ed. A. Facchini and C. Menini). Kluwer. Dordrecht(1995), 419-439.


