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Abstract

Location-aware applications take into account from where the users are accessing and thereby can offer novel func-

tionalities in the Internet. This paper focuses on improving the accuracy of a geographic location service that relies on

delay measurements to locate Internet hosts. Host locations are inferred by comparing delay patterns of geographically

distributed landmarks, which are hosts with a known geographic location, with the delay pattern of the target host to be

located. We deal with two problems that influence the accuracy of the resulting location estimation: (i) the placement of

the landmarks and the probe machines that perform the delay measurements; and (ii) how to best measure the similarity

between the delay patterns of the landmarks and the one observed for the target host. For the landmark placement

problem, we propose a demographic approach to improve the representativeness of each landmark with respect to

the hosts to be located. Given a limited number of landmarks, results show that a demographic placement provides

closer landmarks and more accurate location estimations for most hosts. Concerning the placement of probe machines,

we show that they have to be sparsely placed to avoid gathering redundant data. Furthermore, we define and evaluate

three similarity models. Experiments show that other similarity models outperform the commonly adopted Euclidean

distance, resulting then in a more accurate geographic location of Internet hosts.
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1. Introduction

Knowing the geographic location of an Internet

host from an identification of that host, such as a

name or IP address, enables a whole new class of
location-aware applications. These applications

take into account where the users are accessing

from. Examples of novel location-aware applica-

tions are: local advertising on web pages, auto-

matic selection of a language to first display the

content, accounting the incoming users based on

their positions, restricted content delivery follow-

ing regional policies, and authorization of transac-
tions only when performed from pre-established

locations. In the current Internet, however, there

is no direct relationship between host identification

and the host physical location. The novel location-

aware applications then require the deployment of

a geographic location service for Internet hosts.

A DNS-based approach to provide a geo-

graphic location service of Internet hosts is pro-
posed in RFC 1876 [1]. Nevertheless, the

adoption of the DNS-based approach is restricted

since it requires changes in the DNS records and

administrators have no motivation to register

new location records. Tools such as IP2LL [2]

and NetGeo [3] query Whois databases in order

to obtain the location information recorded there-

in and then infer the geographic location of a host.
However, if a large and geographically dispersed

block of IP addresses is allocated to a single entity,

the Whois databases may contain just a single en-

try for the entire block.

Padmanabhan and Subramanian [4] investigate

three important techniques to infer the geographic

location of an Internet host. The first technique in-

fers the location of a host based on the DNS name
of the host or another nearby node obtained using

traceroute. For example, the name bcr1-so-

2-0-0.Paris.cw.net indicates a router lo-

cated in Paris, France. This technique is the base

for GeoTrack [4], VisualRoute [5], and GTrace

[6]. The creation and management of parsing rules

is, however, a challenging task as there is no stand-

ard to follow. As the position of the last recogniz-
able router in the path toward the host to be

located is used to estimate the position of such a

host, a lack of accuracy is also expected. The sec-
ond technique splits the IP address space into clus-

ters such that all hosts with an IP address within a

cluster are likely to be co-located. An example of

such a technique is GeoCluster [4]. Nevertheless,

this technique is based on information that may
be inaccurate because the databases rely on data

provided by users, which may be unreliable to pro-

vide correct location information. The third tech-

nique is based on delay measurements and the

exploitation of a possible correlation between geo-

graphic distance and network delay. Such a tech-

nique is the base for GeoPing [4]. The location

estimation of a host is based on the assumption
that hosts with similar network delays to some

fixed probe machines tend to be located near each

other. Given a set of landmarks with a well-known

geographic location, the location estimation for a

target host to be located is the location of the land-

mark presenting the most similar delay pattern to

the one observed for the target host.

In this paper, we focus on improving the accu-
racy of the geographic location estimation of Inter-

net hosts inferred from delay measurements.

Hence, we investigate the correlation between geo-

graphic distance and network delay. This correla-

tion is weak to moderate if considered worldwide,

whereas we show it is stronger in regions with

richer connectivity. We use the term rich, or poor,

connectivity to represent the variety of connectivity
and transit options found in a certain region at

both router and autonomous system levels. An

environment with rich connectivity is expected to

be able to find more geographically straightfor-

ward paths from source to destination. Moreover,

we identify two key points that influence the accu-

racy of the Internet host location from delay meas-

urements. The accuracy basically depends on the
placement of landmarks and probe machines as

well as on how efficiently the similarity between de-

lay patterns is evaluated. Therefore, we aim at

improving the accuracy of the host location estima-

tion by: (i) strategically placing landmarks and

probe machines [7]; and (ii) selecting models to best

measure the similarity between the delay pattern of

each landmark and the one of the target host [8].
Landmarks are expected to reflect where most

users and hosts are. The number and position of

the landmarks are key points for the accuracy of
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the location estimation and for the impact on net-

work load due to measurements. The problem of

finding the best location to place Internet re-

sources, to reduce both the traffic load on net-

works and the delay perceived by end users, was
addressed by Krishnan et al. [9] for caches, Qiu

et al. [10], Radoslavov et al. [11], Cronin et al.

[12], and Bassali et al. [13] for mirrors. We use,

in this paper, similar concepts to find the best

placement of landmarks and probe machines to

provide accurate geographic location estimations

for the majority of Internet hosts. We propose

and evaluate a demographic placement approach
that considers the geographic distribution of users,

and consequently of hosts to be located, to place

landmarks and probe machines. Results show that

the demographic placement provides a relatively

small number of landmarks able to represent a

large portion of users (hosts) within a limited cov-

erage distance. Adopting fewer landmarks to lo-

cate a host implies in a lower amount of
measurement traffic. We also verify that for a lim-

ited number of landmarks, the demographic place-

ment improves the representativeness of each

landmark. This improvement results in closer

landmarks and more accurate location estimations

for the most part of hosts to be located. We also

apply our demographic approach to place the

probe machines. Probe machines are placed on
sites likely to have enough network infrastructure

to make their deployment feasible and in a fashion

to avoid gathering redundant measurement data.

Another key issue concerning the location esti-

mation accuracy is the evaluation of how similar

a landmark and the target host delay patterns

are. Measuring the similarity between different

items is fundamental for accuracy of recommender
systems [14] and pattern analysis [15]. In our case,

a similarity model compares the delay patterns and

determines the landmark with the most similar de-

lay pattern with respect to the one of the target

host. Hence, we investigate different similarity

models and evaluate their accuracy for the meas-

urement-based geographic location of an Internet

host. Padmanabhan and Subramanian [4] adopt
the Euclidean distance as a way to assess the sim-

ilarity of the observed delay patterns. One of our

similarity models considers the previously adopted
Euclidean distance and we use this distance as a

reference for evaluation. As is further detailed in

Section 5.2, Euclidean distance tends to be less ro-

bust to violations of the triangle inequality that are

present in some parts of the Internet [16–18]. Re-
sults show that the city-block distance outper-

forms the Euclidean distance, thus providing

more accurate location estimations of the target

host.

This paper is organized as follows. A formaliza-

tion of the host location inference based on delay

measurements is introduced in Section 2. In Sec-

tion 3, we study the correlation between geo-
graphic distance and network delay. Section 4

presents and evaluates the demographic placement

proposition. Section 5 defines and compares the

similarity models we evaluate. In Section 6, we

present our conclusions.
2. Inferring host geographic locations from delay
measurements

GeoPing [4] infers a host geographic location

from delay measurements. In general, a moderate

correlation between distance and delay prevents

the capture of such a relationship under a mathe-

matical model. Therefore, GeoPing adopts an

empirical approach based on the observation that
hosts sharing similar delays to other fixed hosts

tend to be near each other geographically.

We formalize the problem of inferring a host

location from delay measurements as follows.

Consider a set L ¼ fL1; L2; . . . ; LKg of K land-

marks. Landmarks are reference hosts with a

well-known geographic location. Consider a set

P ¼ fP 1; P 2; . . . ; PNg of N probe machines. Fig. 1
illustrates the steps in inferring a host location

from delay measurements, which are detailed

along this section. Dotted lines represent the meas-

urements taken by the probe machines while the

solid lines indicate information exchange. The

probe machines periodically determine the net-

work delay, which is actually the minimum delay

of several measurements, to each landmark (Fig.
1(a)). Therefore, each probe machine Px, 1 6

x 6 N, keeps a delay vector dx = (d1x,d2x, . . .,dKx),

where dix is the delay between the probe machine



Fig. 1. Inferring a host location from delay measurements.
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Px and the landmark Li 2L. Suppose one wants
to determine the location of a given target host

T. A location server that knows the landmark set

L and the probe machine set P is then contacted.

The location server asks the N probe machines to
measure the delay to host T (Fig. 1(b)). Each

probe machine Px, 1 6 x 6 N, returns a delay vec-

tor d0x ¼ ðd1x; d2x; . . . ; dKx; dTxÞ, i.e., the delay vector
dx plus the just measured delay to host T (Fig.

1(c)). After receiving the delay vectors from the

N probe machines, the location server is able to

construct the delay matrix D with dimensions

(K + 1) · N:

D ¼

d11 d12 . . . d1N
d21 d22 . . . d2N

..

. ..
. . .

. ..
.

dK1 dK2 . . . dKN

dT1 dT2 . . . dTN

2
66666664

3
77777775

ð1Þ

The delay vectors gathered by the demanding

location server from the probe machines corre-

spond to the columns of the delay matrix D. The
location server then compares the lines of the delay

matrix D to estimate the location of host T. To

infer the location of host T, the landmark L pre-

senting the most similar delay pattern with

respect to the delay pattern of host T is deter-

mined. The corresponding location of the land-

mark L is the location estimation of host T (Fig.

1(d)). The delay matrix D combined with the
knowledge of the location of the landmarks of

the setL compose a delay map recording the rela-

tionship between network delay and geographic

location.

The placement problem we deal with involves

the number of needed landmarks and where to
place such landmarks and probe machines. We

are thus interested in where to place a finite

number of landmarks to maximize the representa-

tiveness of each placed landmark. Fewer land-

marks imply a lower amount of measurement
traffic injected in the network. Note that probe

machines may perform the measurements toward

the set of landmarks in a unsynchronized way,

avoiding a scalability problem of measuring dis-

tances to all hosts at the same time. Furthermore,

the initiative of performing measurements is kept

at the probe machines to allow the use of oblivious

hosts as landmarks. The amount of measurements
may be evaluated as follows. Let D denote the time
interval adopted by the probe machines to period-

ically gather the delay from the landmarks of the

set L. The total number of measurements M to

estimate the location of h hosts in a time interval

s is

Mðh; sÞ ¼ 2N s
D

l m
K þ h

	 

: ð2Þ

It should be noted that each measurement may

consist of one to several delay samples, but only

the minimum value is considered to not take into

account delays due to network congestion. In the

case we send p ping packets to estimate the min-

imum RTT between a probe machine and a land-

mark, the amount of measurement traffic injected

in the network is actually given by pM.
3. Correlation between geographic distance and

network delay

In order to study the correlation between geo-

graphic distance and network delay, we adopt

two datasets:
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• LibWeb—delay measurements performed from

the LIP6 laboratory located in Paris, France,

to 135 target hosts with well-known locations

all over the world in June 2002. The set of target

hosts is mainly composed of university sites
extracted from library web (LibWeb) servers

around the world [19]. The geographic distribu-

tion of the target hosts is as follows: 56 in North

America, 44 in Western Europe, 11 in Asia,

seven in Eastern Europe, 7 in Latin America,

4 in the Middle East, 3 in Africa, and 3 in Ocea-

nia. From the 135 original target hosts, 109

hosts have answered the ping requests. The
considered delay is the minimum of several

measurements to not take into account delays

due to congestion in intermediate routers.

• RIPE—data collected from the Test Traffic

Measurements (TTM) project of the RIPE net-

work [20]. The dataset we consider is composed

by the 2.5 percentile of the delay observed from

each RIPE host to each other host in the set
during a period of 10 weeks from early Decem-

ber 2002 until February 2003. All 55 hosts on

the RIPE network are equipped with a GPS

card, thus allowing their exact geographic posi-

tion to be known. The hosts in the RIPE net-

work are geographically distributed as follows:

42 in Western Europe, 5 in the US, 3 in Eastern

Europe, 2 in the Middle East, 2 in Oceania, and
1 in Asia.

The geographic locations of the hosts compos-

ing both the LibWeb and the RIPE datasets are

well known. Given the latitude and the longitude

of two points, the geographic distance between

them is derived using Vincenty�s formulae [21].

3.1. Experimental results for the LibWeb dataset

Fig. 2 presents the scatter plot of the geographic

distance and the minimum delay between our

probe machine and each target host for the Lib-

Web dataset. A weak correlation is observed be-

tween geographic distance and network delay

worldwide, resulting in a coefficient of correlation
R = 0.2971. Some points are significantly away

from the others. For about the same geographic

distance, the observed delay may be greater by
one order of magnitude. For example, points 1–3

correspond to hosts located in Algeria, Turkey,

and Iran, respectively. The ping packets from

Paris to Algeria (point 1), for instance, actually

make their way through routers located in New

York. Geographic properties of Internet routing

are studied in further detail in [22]. Routes toward
some locations take directions far from the

straightforward physical direction. Spring et al.

[23] show that interconnection policies between

ISPs directly contribute to end-to-end paths being

significantly longer than necessary. This inconven-

ience is strongly reinforced by the poor connectiv-

ity in certain regions.

Poor connectivity weakens the correlation be-
tween geographic distance and network delay.
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From the set of 109 answering hosts, the 80 hosts

located in North America and Western Europe

have been identified. These regions have the richest

connectivity linking their hosts [24–26]. Fig. 3

shows the correlation between geographic distance
and network delay considering only the hosts lo-

cated in North America and Western Europe.

The regions that have a richer connectivity have

a much stronger correlation between geographic

distance and network delay. Even if there are a

few isolated points away from the other points,

two main clusters are observed in Fig. 3. These

clusters correspond to hosts located in Western
Europe and North America. Excluding the points

that clearly remain out of the pack for both clus-

ters (one outlier for the Western Europe cluster

and two outliers for the North America cluster) re-

sults in the following coefficients of correlation:

R = 0.7283 for the Western Europe cluster and

R = 0.8534 for the North America cluster. These

outliers result from hosts in regions that are likely
to have poorer connectivity than the average of

each group. For example, the outliers in North

America are located in Hawaii and Alaska in con-

trast to the remaining hosts in this region that are

located in the continental U.S. and Canada.

3.2. Experimental results for the RIPE dataset

In contrast with the LibWeb dataset used in the

experiment of Section 3.1, where one probe ma-

chine gathers delay measurements from 135 land-

marks, the RIPE dataset gives us the possibility

of considering multiple measurement points. As

we have the measured delay from each single host

to any other host in the RIPE network, any host in

the set may be viewed as a probe machine, as a
landmark, or both. It should be noted that RIPE

hosts measure the one-way delay between them.

This is possible because the RIPE hosts are

equipped with GPS cards, allowing them to be en-

ough synchronized. As a consequence, the delays

observed between each pair of RIPE hosts are

asymmetric, presumably due to asymmetries in

routing and in concurrent traffic load. Therefore,
we consider individually the viewpoint of each

host toward the other hosts in the set. The correla-

tion between geographic distance and network de-
lay within the whole RIPE dataset is shown in Fig.

4. For the whole RIPE dataset, there is a moderate

correlation between distance and delay

(R = 0.6272). Nevertheless, we have observed that

one single host in the RIPE network significantly

contributes to weaken such a correlation. Fig. 5

presents the correlation for the RIPE dataset with-
out the outlier host. A significantly stronger corre-

lation between distance and delay (R = 0.8983) is

observed disregarding the outlier host. Performing

a traceroute toward this outlier host, one sin-

gle link on the path strongly contributes to in-

crease the end-to-end delay. In accordance with

the experiments presented in Section 3.1, we ob-

serve once more that a richer connectivity
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strengths the correlation between geographic dis-

tance and network delay.

3.3. Considerations on the host location from delay

measurements

From our study we observe a weak to moderate

correlation between geographic distance and net-

work delay worldwide. Similar results are pre-

sented in [27]. Nevertheless, we observe a much

stronger correlation on regions with richer connec-

tivity, indicating that the correlation becomes

stronger as connectivity becomes richer. Further-
more, within regions with richer connectivity, we

observe that hosts located in nearby areas present

similar delays to fixed measurement points. There-

fore, we verify the assumption that hosts with sim-

ilar network delays to some fixed probe machines

tend to be located near each other. Recent findings

[24,25] indicate a strong correlation between pop-

ulation and router density in economically devel-
oped countries. Moreover, most users, and

consequently most hosts to be located, are likely

to be in regions presenting richer connectivity,

whereby a stronger correlation between distance

and delay holds.

Two main aspects contribute to the robustness

of the host inference from delay measurements

against factors that may weaken the correlation
between distance and delay. First, delay is meas-

ured from multiple geographically distributed

probe machines rather than from one single loca-

tion. Second, the minimum delay, among several

delay samples, is considered rather than an indi-

vidual delay sample.
Table 1

Top 10 urban agglomerations worldwide

Rank Urban agglomeration Country Total population

1 Tokyo Japan 34,900,000

2 New York USA 21,600,000

3 Seoul South Korea 21,150,000

4 Mexico City Mexico 20,750,000

5 São Paulo Brazil 20,250,000

6 Bombay India 18,150,000

7 Osaka Japan 18,000,000

8 Delhi India 17,150,000

9 Los Angeles USA 16,800,000

10 Jakarta Indonesia 15,850,000
4. Demographic placement of landmarks and probe

machines

A landmark is a reference to be used as location

estimation of a certain quantity of hosts supposed

to be nearly located. As a landmark is a reference

for the geographic position of a set of nearby

hosts, it should ideally represent the position of
as many hosts as possible. Areas with high host

density with a co-located landmark provide loca-

tion estimations that reflect more accurately the
positions of a large number of hosts. Therefore,

landmarks are expected to indicate where most

users (and hosts) are. A strong correlation between

population and router density is found in econom-

ically developed countries and in urban areas char-
acterized by population density peaks [24,25].

Most users, and consequently most hosts to be lo-

cated, are likely to be in regions with rich connec-

tivity. We propose a demographic placement

approach to address the issue of placing land-

marks and probe machines. In this approach, we

place landmarks and probe machines according

to the user (host) population distribution.
The main urban agglomerations spread world-

wide are considered since they offer the highest

concentration of users (hosts to be located). We

consider all urban agglomerations with more than

one million inhabitants [28], totalizing 407 loca-

tions. For illustration, Table 1 shows the top 10

urban agglomerations worldwide. It is known that

the Internet infrastructure varies dramatically
across different regions throughout the world.

Therefore, we weight the populations of the differ-

ent agglomerations with the number of Internet

users in the country the agglomeration belongs

to over the total population of the country. In

applying such a weight, we estimate the main user

agglomerations worldwide to be covered by the

demographic placement. Table 2 presents the top
10 user agglomerations worldwide out of the total

407 considered agglomerations. Data on estima-

tions of the Internet users and total population

of each country are available in [29]. Denoting

the set of user agglomerations asA, the landmark



Table 2

Top 10 user agglomerations worldwide

Rank User agglomeration Country User population

1 New York USA 11,496,837

2 Los Angeles USA 8,941,984

3 Tokyo Japan 7,449,579

4 Seoul South Korea 6,755,013

5 Chicago USA 5,003,253

6 Washington USA 4,178,248

7 London UK 3,868,029

8 San Francisco USA 3,858,892

9 Osaka Japan 3,842,190

10 Philadelphia USA 3,353,244
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placement problem can now be formally defined.

The setA represents the 407 user agglomerations,

totalizing 173,696,253 estimated users [28,29]. The

cumulative user distribution overA is presented in
Fig. 6a. The mean distance between each pair of

elements inA is 8167km. The cumulative distribu-

tion of such a distance is shown in Fig. 6b. The

landmark placement problem is to find a set of

landmarks L 	A with K landmarks subject to

an optimization condition f ðLÞ. The possible
locations of landmarks are limited to the locations

of the agglomerations (L 	A). From the view-
point of the optimization condition f ðLÞ, the
solution to the placement problem under this

restriction may be inferior to a solution that allows

landmarks to be placed anywhere, i.e. not neces-

sarily on the locations of the agglomerations.

Allowing landmarks to be placed anywhere might

provide geographically closer sites to place land-

marks with respect to the fixed set of agglomera-
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Fig. 6. Cumulative user and distance distributions over the se
tions A. The resulting locations, however, might
include sites with no network infrastructure such

as rural areas, forests, oceans, and alike. Limiting

the placement of landmarks to the locations of the

agglomerations is thus justified as it is suitable to
place landmarks where is likely to exist a previous

network infrastructure. Furthermore, agglomera-

tions with a high level of network infrastructure

provide a large set of hosts able to be used as

landmarks.

Eligible landmarks are any host able to echo

ping messages and known to be located within

the indicated agglomerations, thus resulting in a
potentially large number of eligible landmarks in

large user agglomerations. Such landmarks may

even be unsuspecting participants in the proce-

dure. As a consequence, for each considered urban

agglomeration, a set of oblivious hosts may be se-

lected to constitute a pool of eligible landmarks.

As probe machines need to use one landmark from

a certain urban agglomeration, such probe ma-
chines pick one of the eligible landmarks located

in the urban agglomeration. The association be-

tween a geographic location and the pool of eligi-

ble landmarks located therein may be carried out

using DNS, performing load balancing among

co-located landmarks. Each pool of landmarks

might be named new-york.netland-

mark.info, london.netlandmark.info,
and so forth rather than adding IP addresses into

the code of probe machines, thus enhancing

robustness against individual landmark failures.

We consider two complementary approaches to

determine the placement of the set of landmarksL
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Table 3

Adopted notation for placing landmarks and probe machines

gij geographic distance between agglomerations i and j

hi number of users at agglomeration i

G geographic coverage distance

W maximum distance from any agglomeration to the nearest landmark

M minimum distance between any pair of placed probe machines

aij
1 if agglomeration i can cover demands at agglomeration j
0 if not

�

Xi
1 if there is a landmark on agglomeration i
0 if not

�

Zi
1 if agglomeration i is covered
0 if not

�

Yij
1 if agglomeration i is assigned to a landmark at site j
0 if not

�

Qi
1 if there is a probe machine on agglomeration i
0 if not

�
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of size K taking into account the concentration of

users in A. Such approaches have been used to
determine the placement of different kinds of facil-

ities like fire stations, hospitals, or police depart-
ments [30]. In the first approach, given the

maximum distance from an agglomeration to a

landmark, we want to determine the minimum

number of landmarks needed to cover all agglom-

erations. If the condition of covering all agglomer-

ations is relaxed, a smaller number of landmarks

may cover a large portion of the considered space

of users as the user distribution is unequal
throughout the agglomerations. Thus, given the

maximum distance between an agglomeration

and a landmark, we want to know how many land-

marks are needed to cover at least a certain por-

tion of the considered users, if not all. This

model is known as the maximum covering location

model [31]. In the second approach, after fixing the

number of landmarks (K) to be located, we mini-
mize the maximum distance from any agglomera-

tion to its nearest landmark. This problem is

known as the K-center problem [31].

The placement of probe machines is also inves-

tigated. We apply the demographic approach to

place probe machines on sites with enough net-

work infrastructure to make their deployment fea-

sible and in a fashion to avoid gathering
redundant measurement data. Table 3 presents

the adopted notation to model the problem of

placing landmarks and probe machines.
4.1. Maximum covering location model

The maximum covering location model is ob-

tained when the number of covered hosts to be lo-
cated is maximized, considering a limited number

of landmarks and a fixed coverage distance of each

landmark. A landmark covering a certain region is

a location estimation for the hosts within that re-

gion. The demographic placement of landmarks

takes into account the concentration of users with-

in the agglomerations. Using the notation from

Table 3, the maximum covering location model is
expressed by the objective function

f1ðLÞ ¼ max
X
i

hiZi ð3Þ

with the following constraints:

Zi 6

X
j

aijX j 8i; ð4Þ

X
j

X j 6 K; ð5Þ

X j ¼ 0; 1 8j; ð6Þ

Zi ¼ 0; 1 8i: ð7Þ

The constraint (4) states that users at the agglom-

eration i are covered if at least one site that covers

agglomeration i is selected to host a landmark. The
constraint (5) stipulates that we locate no more
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than K landmarks. The constraints (6) and (7) are

the constraints of integrality for the decision vari-

ables X and Z.

We adopt a standard greedy approach [31] to

obtain the maximum coverage with time complex-
ity OðjAj2KÞ. After placing the first landmark to
cover the most uncovered demand, the algorithm

greedily looks for the best location for the next

landmark until K landmarks are placed.

Fig. 7 shows the percentage of covered users

achieved for three policies of landmark placement

and coverage distances of 10 and 500km. The used

policies were: random placement, geographic
placement, and demographic placement. Under

random placement, the landmarks are randomly

selected, disregarding both the concentration of

users and the proximity between agglomerations.
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Fig. 7. Covered users in demographic, geographic, and random

placement. (a) G = 10km and (b) G = 500km.
Geographic placement disregards the user concen-

tration (hi = 1, "i) within the candidate agglomer-

ations to locate landmarks. The number of

agglomerations within the range given by the cov-

erage distance G around an agglomeration deter-
mines the weight of the agglomeration. Among

agglomerations with equal weight, the elected

agglomeration to locate the landmark is randomly

chosen. Error bars in the results from the random

and geographic placement represent the 99%

confidence interval. The demographic placement

of landmarks significantly improves the represent-

ativeness of the chosen landmarks in terms of
hosts to be eventually located when compared with

the random and the geographic placement policies.

The proposed methodology provides not only

the number of needed landmarks to cover a certain

percentage of users, but also the specific geo-

graphic locations of such landmarks. The geo-

graphic distribution of the landmarks indicated

by the demographic placement approach is visual-
ized using the GeoPlot tool [32]. Fig. 8 illustrates

the demographic placement of 50 landmarks to

cover almost 90% of the considered number of

users for a coverage distance of 250km. In Fig.

8, landmarks are concentrated in three main re-

gions: USA, Western Europe, and Japan. Such re-

sults are consistent with recent findings [24,25] that

show a high density of Internet infrastructure on
such regions. The high density of placed land-

marks on these three regions reflects the concen-

tration of users therein. There are some areas of

relatively high user concentration elsewhere, as in

Brazil and Australia. Results indicate where to

place landmarks to improve the representativeness

of each landmark given the constraints on the

accuracy and the number of landmarks to be
placed.

4.2. K-center problem

We now tackle the problem of minimizing the

maximum distance between an agglomeration

and the nearest landmark while considering a fixed

number of landmarks. One can notice that even if
an agglomeration i is within the coverage distance

of a landmark j (aij = 1), it may be assigned to an-

other closer landmark k (Yij = 0 and Yik = 1).



Fig. 8. Placement of 50 landmarks for a coverage distance of 250km.
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Therefore, aij P Yij because there is no reason to

assign an agglomeration to a landmark other than

the closest one. This minimization problem is

known as the K-center problem [31] and may be
formulated using the notation defined in Table 3

by the objective function

f2ðLÞ ¼ minW ; ð8Þ
and it is subject to the following constraints:X
j

X j ¼ K; ð9Þ

Y ij 6 X j 8i; j; ð10Þ

W P
X
j

gijY ij 8i; ð11Þ

X j ¼ 0; 1 8j; ð12Þ

Y ij ¼ 0; 1 8i; j: ð13Þ
The constraint (9) stipulates that K landmarks are

to be located. The constraint (10) states that

agglomeration i can only be covered by site j if site

j has a landmark. The constraint (11) defines the
lower bound on the maximum distance, which is

being minimized. In other words, the maximum

distance (W) must be greater or equal than the dis-

tance between any agglomeration i and the land-

mark j to which the agglomeration i is assigned.

The constraint (12) is the integrality constraint

on the decision variable X. The constraint (13) re-

quires the agglomeration i to be assigned to only
one landmark j.
In the demographic approach, in order to con-

sider the concentration of users in each agglomer-

ation, constraint (11) should be replaced by

W P hi
P

jgijY ij; 8i. Otherwise, the minimization
problem leads to a geographic placement of land-

marks. One solution to the problem is to enumer-

ate each possible subset of size K out of the jAj
candidate locations and then verify which one pro-

vides the minimum value ofW. Nevertheless, even

for moderate values of jAj and K such an enumer-

ation is not realistic, as the K-center problem is

known to be NP-Complete [33]. An alternative
binary search algorithm [31] to approximately

solve the K-center problem may be outlined as

follows:

1: Gmax maxi,j{gij}

2: GL 0; GH Gmax
3: while (GH5 GL) do

4: G b(GH+GL)/2c
5: Compute the smallest set of land-

marks LðGÞ that covers the entire set of
agglomerations A for a coverage distance

of G.

6: if ðjLðGÞj 6 KÞ then
7: GH G

8: else

9: GL G + 1
10: end if

11: end while

12: GL is the solution to the objective function

and LðGLÞ provides the locations of the K

landmarks for the solution.
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Using the binary search approach, we are

able to solve the K-center problem with time

complexity OðjAjK2 logGmaxÞ. This approach

defines a lower bound GL and an upper bound

GH on the maximum distance between an agglom-
eration and the nearest landmark. The approach

then successively narrows the range between such

bounds until they converge into the smallest

coverage distance that allows a set of K landmarks

to cover all agglomerations. Such a coverage

distance is the smallest maximum distance be-

tween an agglomeration and the nearest landmark

for K placed landmarks, thus being the approxi-
mate solution of the objective function (8). The

set of K landmarks that covers all agglomerations

for such a coverage distance is the solution to the

K-center problem. The binary search algorithm

considers unweighted distances, resulting in a

geographic placement of landmarks. In the

demographic strategy, to consider demand-

weighted distances, step 1 in the binary search
algorithm should state Gmax [maxi,j{gij}]

[maxi{hi}]. Furthermore, in computing the small-

est set of landmarks that covers the entire set of

agglomerations (step 5 in the binary search algo-

rithm), an agglomeration j is able to cover an

agglomeration i if gijhi 6 G.

We compare the results from the random, geo-

graphic, and demographic placement policies in
Fig. 9. The geographic placement performs the

best, providing the lowest maximum geographic

distances between agglomerations and the nearest

landmark. The demographic approach provides

higher maximum and average distances, but such

results mask the concentration of users within

the agglomerations. Adding more landmarks

may even keep the maximum distance observed
under the demographic placement policy un-

changed. A remote agglomeration with low user

concentration may be kept far from the nearest

landmark as additional landmarks are used to de-

crease the distance between more user-populated

agglomerations to the nearest landmark. One ob-

serves such a situation in Fig. 9 between 50 and

150 placed landmarks as the maximum distance
keeps leveled off. In spite of that, as shown in

Fig. 9, the average distance to the nearest land-

mark keeps decreasing in this same range as the
density of landmarks in denser user areas

increases.

The demographic placement considers the user

concentrations within the different agglomera-

tions. As a consequence, the demographic place-
ment pushes the worst-case distances toward the

farthest and least user concentrated agglomera-

tions. High user concentrated agglomerations are

assigned to closer landmarks and the agglomera-

tions with the highest user concentrations host

the landmarks. These results are presented in

Fig. 10 using 50 and 100 placed landmarks. The

demographic strategy provides smaller distances
between the agglomerations and their nearest

landmark for the most part of users at the expense

of leaving farther landmarks for the remote and

least user concentrated agglomerations.
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Fig. 11 illustrates the difference in adopting

either unweighted (geographic placement) or

weighted (demographic placement) distances to

be minimized in the K-center problem. Fig. 11 pre-
sents the placement of 50 landmarks considering

the geographic placement, thus disregarding the

concentration of users. Such a disregard of the

concentration of users leads to a more uniform

geographic distribution of the 50 landmarks

worldwide and to a lower maximum unweighted

or purely geographic distance W between any

agglomeration and its nearest landmark. In the
other hand, Fig. 11 presents the placement of 50

landmarks considering weighted distances under

the demographic placement. The maximum (un-

weighted or purely geographic) distance W be-

tween an agglomeration and the nearest

landmark is higher, but the worst cases are pushed
to remote agglomerations with the lowest concen-

trations of users. The result is a dense placement of

landmarks in the regions presenting the highest

concentrations of users like the USA, Western

Europe, and Japan.

4.3. Placement of probe machines

In this subsection, we address the issue of where

to place the probe machines. Probe machines

measure the delay to a target host and regularly

gather the delays to landmarks. Probe machines

that are near each other may share common paths
to some remote landmarks or target hosts, thus

providing redundant information to the location

estimation decision. Therefore, our first goal is to

make a geographically sparse distribution of probe

machines to avoid shared paths. This sparse place-

ment of probe machines avoids a possible correla-

tion between the delay patterns gathered from the

landmarks. In order to make the deployment of
probe machines feasible, they are placed on

agglomerations with better network infrastructure.

The second goal is thus to maximize the number of

users on the agglomerations selected to host probe

machines. We adopt the number of users (hosts) as

a means to reflect the level of network infrastruc-

ture on a given agglomeration.

The problem of placing probe machines is to
find a setP 	A with N probe machines that max-

imizes the minimum weighted distance between

any pair of placed probe machines. We adopt the

weighted distance between agglomerations to con-

sider the user concentration at each agglomeration

and thus place probe machines on agglomerations

that have better network infrastructure. Using the

notation defined in Table 3, the problem of placing
probe machines is given by the objective function

f3ðPÞ ¼ maxM ð14Þ
and is subject to the following constraints:X
i

Qi ¼ N ; ð15Þ

M 6 hi
X
j

gijQj; if Qi ¼ 1; 8i; ð16Þ

Qi ¼ 0; 1 8i: ð17Þ



Fig. 11. K-center solution for placing 50 landmarks. (a) Geographic placement (disregards the concentration of users) and (b)

demographic placement (considers the concentration of users).
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The constraint (15) states that N probe machines

are to be located. The constraint (16) defines the

upper bound on the minimum distance between

two placed probe machines, which is being maxi-

mized. The minimum weighted distance M must

be lesser or equal than the distance between any

pair of probe machines i and j. This constraint

makes no sense if Qi = 0 (no probe machine at
agglomeration i) as M is the weighted distance be-

tween a pair of probe machines i and j. The con-

straint (17) is the integrality constraint on the

decision variable Q.

We propose a greedy approach to solve the

problem of placing probe machines with time com-

plexity OðjAj2NÞ. This greedy approach is as

follows:

1: A0  A
2: P A 2A with maxi{hi}

3: while ðjPj < NÞ do
4: Find A 2A0 that maximizes

D ¼
P

idistðA; P iÞ, 8P i 2 P
5: P P [ A
6: A0  A0 � A
7: end while

8: P is the set of N probe machines

The set of probe machines is initialized with the

agglomeration that presents the highest user con-

centration. Afterwards the algorithm greedily
places a new probe machine to maximize the

weighted distance between the new probe machine

and the previously placed probe machines until N

probe machines are placed. The first placed probe

machine influences the provided solution. Never-

theless, the decision to place the first probe ma-

chine on the agglomeration with the highest user

concentration is consistent with the argument of
placing probe machines where there exists enough

network infrastructure.

We compare the results provided to the prob-

lem of placing probe machines by the demo-

graphic, geographic, and random placements in

Fig. 12. Under the geographic placement, to con-
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Fig. 12. Placing probe machines. (a) Distance between probe

machines and (b) users co-located with probe machines.
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sider unweighted distances, the constraint (16) is

replaced by M 6
P

jgijQj, if Qi = 1, for all i. In

Fig. 12a, we compare the average distance ob-

served between all pairs of the N placed probe ma-

chines for the three placement policies. The

geographic placement performs the best in sparsely
distributing the probe machines as it presents the

largest average distances. Nevertheless, such re-

sults place probe machines on remote user agglom-

erations that do not necessarily have a good

network infrastructure since the geographic place-

ment disregards user concentration throughout the

agglomerations.

Fig. 12b shows that the demographic placement
locates the probe machines on agglomerations

with high density of users, which is our adopted

criterion to measure the level of network infra-
structure. The demographic placement largely out-

performs the geographic and random placements.

In the demographic placement, probe machines

are placed on agglomerations that have a sufficient

network infrastructure to make the deployment of
probe machines feasible. Meanwhile, the demo-

graphic placement is still able to provide a rela-

tively sparse distribution of probe machines to

avoid the shared paths toward landmarks and

hosts to be located as shown in Fig. 12a.
5. Measuring the similarity between delay patterns

In this section, we investigate how to best meas-

ure the similarity between the delay pattern of each

landmark and the one observed for the target host.

The delay patterns result from the partial view-

points gathered by the distributed probe machines.

The landmark that presents the most similar delay

pattern with respect to the one of the target host
provides the location estimation of that host.

Measuring the similarity of the concerned delay

patterns is thus a key point for the accuracy of

the host location from delay measurements.

5.1. Similarity models

We define the similarity function Sðx; yÞ :
RN ! ½0; 1� to measure the degree of similarity be-
tween two delay patterns x and y where N is the

number of adopted probe machines. We adopt

such a function to evaluate the degree of similarity

between the delay patterns gathered by the probe

machines from each landmark and from the target

host to be located. In this subsection, we investi-

gate the adoption of three known similarity mod-
els [34]: Cosine-based, correlation-based, and

distance-based. Each similarity model provides

its own manner of implementing the similarity

function Sðx; yÞ. The resulting similarity level be-
tween the delay patterns falls in the interval

0 6 Sðx; yÞ 6 1. The closer the similarity level is
to 1, more similar the delay patterns are.

5.1.1. Cosine-based similarity

In the first similarity model, the two delay

patterns are thought of as two vectors in a
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N-dimensional delay space. The similarity between

them is measured by computing the cosine of the

angle h between these two vectors. The cosine-
based similarity between the delay patterns x and

y, denoted by Scosðx; yÞ, is then given by

Scosðx; yÞ ¼ cos h ¼
x � y
kxkkyk ; ð18Þ

where ‘‘Æ’’ denotes the dot-product of the two vec-
tors and kxk is the Euclidean size of vector x 2 RN ,

i.e. kxk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1x
2
i

q
. It should be noted that the co-

sine of the angle h is already in the range of [0,1]
because the delay patterns x and y are both posi-

tive vectors.
5.1.2. Correlation-based similarity

In this model, similarity is measured by com-

puting the coefficient of correlation between the
two delay patterns x and y. The coefficient of cor-

relation is defined as

corrðx; yÞ ¼ covðx; yÞ
rxry

; ð19Þ

where cov(x,y) denotes the covariance between de-

lay patterns x and y, and rx is the standard devia-
tion of x. The correlation-based similarity,

denoted by Scorðx; yÞ, is scaled to the interval
[0,1] and given by

Scorðx; yÞ ¼
corrðx; yÞ þ 1

2
� ð20Þ
5.1.3. Distance-based similarity

We represent the distance u(x,y) between two

delay patterns x and y by

uðx; yÞ ¼ Lp ¼
XN
i¼1
jxi � yij

p

" #1=p
; p > 0: ð21Þ

The distance function u(x,y) belongs to the Lp

family of functions. When p = 1, we have the Man-

hattan or city-block distance. In contrast, for
p = 2, we have the Euclidean distance. Further-

more, 0 < p < 1 results in a non-metric distance

function adequate to be used if distances do not

satisfy the triangle inequality [35]. Shepard [36] ar-

gues in favor of an exponential decay function for

a distance-based similarity model. A flexible dis-
tance-based similarity model, denoted by

Sdisðx; yÞ, which includes the exponential decay
function is given by

Sdisðx; yÞ ¼ e�ðuðx;yÞ=bÞ
a

; b > 1; a > 0; ð22Þ
where b is a scaling factor defined as

b ¼ max
i;j

1;
1

2

P
i
xi

kxk þ

P
j
yj

kyk

0
@

1
A

0
@

1
A� ð23Þ

Since Sdisðx; yÞ should decrease as u(x,y) in-

creases, then a > 0. The same kind of function is
explored for measuring similarity in different con-

texts like pattern analysis and similarity theory

[15,35,37].
5.2. Experimental results for the similarity models

In this subsection, we analyze the performance
of the different similarity models to provide a loca-

tion estimation of a target host to be located. We

adopt the RIPE dataset to evaluate the three sim-

ilarity models. The RIPE hosts are equipped with

GPS cards, allowing us to know their accurate

geographic location. This allows us to compare

the estimated locations with the real ones and, as

a consequence, derive our performance results.
The hosts in the RIPE dataset are considered the

target host to be located one at a time. The

remaining hosts in the set are then used as probe

machines and landmarks to perform the location

estimation of the target host. We repeat this proce-

dure to evaluate the resulting location estimation

of each host in the dataset.

5.2.1. Ranking landmarks

As we know the geographic position of each

host in the RIPE dataset due to the GPS cards,

we are able to determine the ideal landmark to

be chosen by the similarity models being evalu-

ated. The ideal landmark is the geographically

closest landmark to the target host. We analyze

the performance of the similarity models by rank-
ing the ideal landmark for each target host. Each

model provides a list of landmarks in descending

order of similarity presented by their delay pat-

terns with respect to the delay pattern of the target
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host. We then observe the rank of the ideal land-

mark on the ordered list resulting from each eval-
uated similarity model. This rank is obtained for

each host in the RIPE dataset being considered

as a target at a time. Fig. 13 presents the average

rank of the ideal landmark for each similarity

model.

The best performance in ranking the landmarks

is obtained by the distance-based similarity model

when p = 1, equivalent to the city-block distance.
The city-block distance also has the lowest sensi-

tivity to the considered values of a since it presents
a similar performance independent of the value of

this parameter. Moreover, the city-block distance

outperforms the Euclidean distance previously

adopted in [4] as well as the cosine-based and cor-

relation-based similarity models. Furthermore, the

previously adopted Euclidean distance performs
similarly to the correlation-based similarity model.

For data following a standard normal distribution,

i.e. zero mean and unit variance, the correlation is

indeed a linear transformation of the squared

Euclidean distance. This relationship is given by

corrðx; yÞ ¼ 1� L22ðx; yÞ=2N , where L2(x,y) is the

Euclidean distance between x and y. Even if in

our experiments the delay patterns x and y clearly
do not follow the standard normal distribution,

our findings indicate a certain level of correlation

between the correlation-based and the distance-

based (with Euclidean distance) similarity models.

We note that the distance-based similarity mod-

el is more sensitive to the variation of the distance
parameter p for larger values of a. The adopted
values of p and a exert a great influence on the per-
formance of the distance-based similarity model.

The results obtained by the correlation-based

and cosine-based similarity models are even com-
prised within the performance range of the dis-

tance-based model. For a = 0.1, relatively good
performances are achieved by the distance-based

model with non-metric distances (0 < p < 1). Some

experiments show that the triangle inequality does

not hold over all parts of the Internet [16–18].

These experiments indicate that the adoption of

non-metric distances may be more adequate than
metric distances on specific parts of the Internet.

Euclidean distance as well as higher order dis-

tances tend to be less robust to violations of the

triangle inequality that are present in some parts

of the Internet.

The cumulative probability of ranking the ideal

landmark for different similarity models is de-

picted in Fig. 14. We compare the distance-based
similarity model (presented in the form Sdis–p–a)
for city-block and Euclidean distances with the

correlation-based and cosine-based similarity

models. As the Euclidean distance has been previ-

ously adopted, we use it as a performance refer-

ence for comparison. We observe that the

distance-based similarity model with city-block

distances outperforms the remaining ones. The
correlation-based similarity model provides an
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equivalent performance to the distance-based sim-

ilarity model with Euclidean distance.

5.2.2. Distance accuracy

We now evaluate the distance accuracy of the
location estimation of each considered similarity

model. The location estimation corresponds to

the location of the landmark chosen by each simi-

larity model, i.e. the first ranked landmark in the

resulting ordered list of each similarity model.

Therefore, we evaluate the performance of the dif-

ferent similarity models by comparing the error

distance from the selected landmark and the target
host to be located.

Fig. 15 presents the average distance between

the target host and the elected closest landmark.

Such results are the average of each RIPE host

being considered a target host one at a time. The

remaining hosts are then used as landmarks and

probe machines. As in the ranking landmarks eval-

uation, the best performance is achieved by the
distance-based similarity model for the city-block

distance (p = 1) and a = 1. Nevertheless, the insen-
sitivity to a is not the same for the distance accu-
racy as in the evaluation of ranking the ideal

landmark. The correlation-based similarity model

presents a similar performance to the non-metric

distances with a = 0.1, outperforming the dis-

tance-based similarity model with the reference
Euclidean distance.

The cumulative probability of the distance be-

tween the target host and the selected closest land-
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location estimation.
mark is shown in Fig. 16. Again, we compare the

correlation-based and the cosine-based similarity

models with the distance-based similarity model

for city-block and Euclidean distances. The

‘‘Upper Bound’’ is the best possible performance

for the RIPE dataset. This upper bound consists
of the distances from the target hosts to their

respective ideal landmarks. The city-block distance

(Sdis–1–1) outperforms the remaining models, pre-

senting the closest performance to the upper

bound.

It should be noted that the RIPE dataset is rel-

atively small. Using one host as the target host re-

sults in 54 landmarks to choose from to infer a
location estimation. Even if the elected landmark

is the geographically closest landmark to the target

host, not necessarily it is nearby that target host.

For example, the RIPE host in Tokyo is the only

one in Asia and its ideal landmark is located in

Finland, 7819km away. As a consequence of the

limited number of elements in the RIPE dataset,

the average distance from the ideal landmarks to
their respective target hosts is 405km. This dis-

tance is the best average distance the similarity

models can reach for the RIPE dataset.
6. Conclusion

This paper focuses on a geographic location
service of Internet hosts based on a technique that

infers host locations using delay measurements

from geographically distributed landmarks. We
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aim at improving the accuracy of the geographic

location estimation of the target host to be located.

The contributions of this paper are based on

three key points. First, we study the correlation be-

tween geographic distance and network delay.
Poor connectivity weakens such a correlation.

We observe for two different datasets that the cor-

relation between distance and delay becomes

stronger as connectivity becomes richer. Thereaf-

ter, we identify two key issues that influence the

accuracy of the resulting geographic location esti-

mation of a target host: the placement of land-

marks and probe machines, and the similarity
model that compares the observed delay patterns.

Thereby we address the problem of strategically

placing landmarks and probe machines to improve

the accuracy of the geographic location estima-

tion. We propose and evaluate a demographic

placement approach that considers the geographic

distribution of users (hosts) to place landmarks

and probe machines. Results show that the pro-
posed demographic placement allows a relatively

small number of landmarks to represent a large

portion of users within a limited coverage distance.

Fewer landmarks also imply a lower amount of

measurement traffic in the network. These land-

marks are placed on areas of high user density,

thus providing closer landmarks and more accu-

rate location estimations for most hosts to be lo-
cated. Probe machines are placed on locations

that have enough network infrastructure and spar-

sely distributed to avoid gathering redundant data.

Furthermore, in order to address the second key

issue on accuracy, we investigate three different

similarity models and how accurate they are for

Internet host location from delay measurements.

This investigation is carried out using experimental
data from the RIPE measurement infrastructure.

The similarity models select the landmark that

provides the location estimation of the target host

to be located, thus being a key component for

accuracy. Despite such a fact, Euclidean distance

was the only similarity model that has been previ-

ously adopted. Our findings show that the dis-

tance-based similarity model with a = 1 and city-
block distance outperforms in accuracy the

remaining similarity models. This result includes

the Euclidean distance that has been used as a ref-
erence for comparison. Therefore, strategically

placing the landmarks and probe machines as well

as using a more adequate similarity model contrib-

ute to improve the accuracy of the measurement-

based geographic location of Internet hosts.
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