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Abstract—We proposeprobabilistic location to enhance the per-
formance of existing peer-to-peer location mechanisms in the case
where a replica for the queried data item exists close to the query
source. We introduce theattenuated Bloom filter, a lossy dis-
tributed index. We describe how to use these data structures for
document location and how to maintain them despite document
motion. We include a detailed performance study which indicates
that our algorithm performs as desired, both finding closer repli-
cas and finding them faster than deterministic algorithms alone.

I. I NTRODUCTION

Today’s exponential growth in network bandwidth and stor-
age capacity has inspired a whole new class of distributed, peer-
to-peer storage infrastructures. Systems such as Farsite [1],
Freenet [2], Intermemory [3], OceanStore [4], CFS [5], and
PAST [6] seek to capitalize on the rapid growth of resources to
provide inexpensive, highly-available storage without central-
ized servers. The designers of these systems propose to achieve
high availability and long-term durability in the face of indi-
vidual component failures through replication and coding tech-
niques.

Although wide-scale replication has the potential to increase
availability and durability, it introduces two important chal-
lenges to system architects. First, if replicas may be placed
anywhere in the system, how should welocate them? Sec-
ond, once we have located one or more replicas, how should
we route queries to them? We can formulate the combination
of these two operations as a singlelocation and routingproblem
that efficiently routes queries from a client to the closest replica
adhering to certain properties, such as the replica with theshort-
est network path to the client or the replica residing on the least
loaded server. In many cases, combining location and routing
into a single, compound operation yields the greatest flexibility
to route queries quickly with minimal network overhead. The
importance of suchlocation-independent routingtechniques is
well recognized in the community, and several proposals such
as CAN [7], Chord [8], Pastry [9], and Tapestry [10] are cur-
rently under study.

These existing schemes share the characteristic that in the
worst case, a location and routing operation requiresO(log N)
sequential network messages to search a distributed systemof
N servers. Some of these algorithms use substantially fewer
messages to perform their task in the common case. This scala-
bility is commendable, and it allows for the total query routing
time to be close to optimalwhen the replica is far from the
query source. However, as the replica approaches the location
of the query source, the performance of the existing algorithms
quickly diverges from optimality. This divergence is easy to
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understand: a small amount of “mis-routing” in the local area
can lead to a large divergence from optimality, since the optimal
path is short to begin with.

Currently, such systems make only meager attempts to place
replicas for network locality, and the sizes of the documents
they locate are on the order of megabytes, so this poor perfor-
mance in locating nearby replicas does not significantly affect
overall document retrieval time. However, in the OceanStore
system [4], we intend store documents whose sizes are as small
as a few kilobytes and to go to great lengths to place those doc-
uments near their query sources. In such a situation, nearby
location performance can be a large component of the overall
retrieval time.

In this paper we present aprobabilistic location and routing
algorithm designed to enhance the performance of existing de-
terministic wide-area location mechanisms. A probabilistic al-
gorithm is one that may fail to discover a replica for a given doc-
ument even when such replicas exist; for example, it might find
“nearby” replicas with high probability, but fail if no replica is
nearby. Assuming that the probabilistic algorithm finds replicas
quickly when itcan and fails quickly when itcannot, we can
enhance the performance of the location and routing process
through a hybrid approach: first try the probabilistic algorithm,
then follow with the deterministic algorithm if needed.

Our probabilistic location and routing algorithm is based on
attenuated Bloom filtersand has the following properties:

• It is decentralized.It requires no central point of control
and is thus suitable for use in the peer-to-peer systems for
which it is intended.

• It is locality aware. If a query site lies close to a replica
for the queried document, our algorithm finds that replica
with high probability.

• It follows a minimal search path. With high probability,
our algorithm follows the shortest path between a query
site and the replica that satisfies the query.

• It uses constant storage per server. The amount of storage
used at each server in the system is small and constant in
the number of documents indexed.

This later property allows each hop in the query path to pro-
ceed without high-latency disk accesses, further enhancing the
speed of operation. When used with a deterministic algorithm,
attenuated Bloom filters allow us to achieve the “best of both
worlds”: quickly finding nearby replicas when they exist, yet
finding every document even when replicas are scarce.

Figure 1 shows the potential of our technique. This graph
illustrates thestretchof two possible algorithms: a real deter-
ministic algorithm (solid line) and a hybrid combination ofat-
tenuated Bloom filters with the same deterministic algorithm
(dotted line). In this context,stretchis a measure of the over-
head of location-independent routing: it is the ratio of actual
time to route a query through the infrastructure versus the ideal
network latency (on the underlying IP network) to the closest
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Fig. 1. The Big Picture.Stretch as a function of distance between query source
and replica.Stretchmeasures the overhead of combined routing and location
relative to ideal (network) latency–hence, lower is better. At short distances,
the routing stretch of the deterministic algorithm (solid line) is greatly reduced
when coupled with a probabilistic algorithm (dotted line).

replica. This graph will be further discussed later, but thebasic
message is simple: attenuated Bloom filters reduce latency for
the short-distance case, effectively smoothing out the overall
response time.

This paper makes the following contributions. First, we in-
troduceattenuated Bloom filters, data structures that reside at
each node in the system. We present thequeryalgorithm, which
routes queries from node to node in search of a replica, and the
updatealgorithm, which propagates location information from
filter to filter. Second, we couple attenuated Bloom filters with
two different deterministic wide-area location algorithms. We
use a detailed performance simulation to explore the behavior
of this hybrid approach both on a random, static arrangementof
replicas and on a dynamically changing allocation of replicas
modeling traffic to Web caches. We show both that our prob-
abilistic algorithm finds closer replicas and that it finds them
faster than a deterministic algorithm alone. Furthermore,we
show that the additional bandwidth required by the probabilis-
tic algorithm is reasonable.

The remainder of this paper is as follows. Section II de-
scribes attenuated Bloom filters in detail. Section III presents
our simulation environment, and Section IV describes our ex-
perimental results. Section VI describes related work. Sec-
tion V postulates some future work, and Section VII concludes.

II. A LGORITHM DESCRIPTION

In this section we present our probabilistic location algo-
rithm. This algorithm works via an overlay network between
participating servers. Each server has a set ofneighbors, chosen
from the participating servers closest to it in network latency. A
server associates with each neighbor a probability of finding
each document in the system through that neighbor. This as-
sociation is maintained in constant space using a data structure
we call anattenuated Bloom filter. The set of these probabil-
ities forms a potential function over the servers in the system;
location is a simple matter of climbing this function to a server
with the desired data item.

In the following, we briefly summarize Bloom filters. We
continue by introducingattenuated Bloom filters, describing
their use for replica location, then finish with algorithms for
updating filters as replicas move.

1 01 1 0 0 0 1 0
0 1 2 3 4 5 6 7 8

(‘‘Uncle John’s Band’’) = {0, 3, 7}hash

(‘‘Box of Rain’’) = {1, 3, 8}hash

width (w)

Fig. 2. A Bloom Filter. An array ofw bits that serve to summarize a set of
objects. To check an object’s name against a Bloom filter summary, the name is
hashed withn different hash functions (here,n = 3) and the bits corresponding
to the result are checked in the filter. In this picture, the represented set probably
contains the name “Uncle John’s Band”, since bits 0, 3, and 7 are all true. It
definitely does not contain “Box of Rain”, however, since bit8 is false.

A. Bloom Filters

Bloom filters are an efficient, lossy way of describing
sets [11]. A Bloom filter is a bit-vector of lengthw with a fam-
ily of independent hash functions, each of which maps from
elements of the represented set to an integer in[0, w). To form
a representation of a set, each set element is hashed, and the
bits in the vector associated with the hash functions’ results are
set. To determine whether the set represented by a Bloom filter
contains a given element, that element is hashed and the corre-
sponding bits in the filter are examined. If any of the bits are
not set, the represented set definitely does not contain the ob-
ject. If all of the bits are set, the setmaycontain the object;
there is a non-zero probability that it does not, however. This
case is called afalse positive, and the false positive rate of a
Bloom filter is a well-defined, linear function of its width, the
number of hash functions and the cardinality of the represented
set. Figure 2 shows a sample Bloom filter.

If the cardinality of the represented set is a significant frac-
tion of the widthw, then the Bloom filter becomesoverloaded:
the rate of false positives increases to the point that the filter is
essentially useless. Several studies, such as [12], have explored
this phenomenon. In particular, the point at which approxi-
mately half of the bits are set is an optimal tradeoff between
filter storage and accuracy; however, wider filters are always
more accurate.

B. Attenuated Bloom Filters

An attenuated Bloom filterof depthd is an array ofd nor-
mal Bloom filters. As mentioned earlier, we assume that each
node in the system has a set of overlay neighbors participating
in the probabilistic location algorithm. In the context of our
algorithm, we associate each neighbor link with an attenuated
Bloom filter. The first filter in the array summarizes documents
available from that neighbor (one hop along the link). Theith
Bloom filter is the merger of all Bloom filters for all of the nodes
a distancei through any path starting with that neighbor link,
where distance is in terms of hops in the overlay network1. Fig-
ure 3 shows the attenuated Bloom filter that NodeA would as-
sociate with NodeB in the given network. For example, both
“Uncle John’s Band” and “Sugar Magnolia” are two hops away
from NodeA through NodeB, so the second level of filterFAB

contains true values at all bits in the union of those documents’
hash values (0, 2, 3, 5, 7).

1The astute reader might surmise that all links ending in a particular node
have the same attenuated filter associated with them. This is true for now, but
will change when we introduce selective updates in Section II-D.
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Fig. 3. Attenuated Bloom Filters.An attenuated Bloom filter is an array ofd
Bloom filters, each of widthw. Component filters are labeled with theirlevel
in the array (top filter is level 1). Each outgoing link (say, A→ B) has an
attenuated filter associated with it (FAB). Level 1 summarizes replicas on the
neighbor at the end of the link. Level 2 summarizes replicas that are two-hops
away along that link, etc. We assign a potential value to eachlevel (here1

2
,

1

4
, . . .). Higher levels are thusattenuatedwith respect to lower levels.

To map from an attenuated Bloom filter to a potential value,
one queries each level for a document’s name. The levels are
assigned geometrically decreasing potential values; the value
of the potential function of a filter for a given document is the
sum of all of the potential values for the levels of the filter
which contain the document. For example, inFAB , the doc-
ument “Uncle John’s Band” would map to the potential value
1/4 + 1/8 = 3/8, since it is reachable through NodeB in two
and three hops. We say that higher filter levels areattenuated
with respect to earlier filter levels, hence the name “attenuated
Bloom filter”. We refer to filters with only one level asnonat-
tenuated.

C. The Query Algorithm

As mentioned above, we associate an attenuated Bloom filter
with each outgoing neighbor link. To perform a location query,
the querying node examines the 1st level of each of its neigh-
bors’ attenuated Bloom filters. If one of the filters matches,it is
likely that the desired data item is only one hop away, and the
query is forwarded to the matching neighbor closest to the cur-
rent node in network latency. If no filter matches, the querying
node looks for a match in the 2nd level of every filter. As be-
fore, if a match is found, the query is forwarded to the matching
neighbor of lowest latency. This time, however, it is not theim-
mediate neighbor who is likely to possess the data item, but one
of its neighbors. This next neighbor is determined as before, by
examining the attenuated Bloom filters of the current server.

A filter of depthd by definition stores information only about
serversd hops from the current server. For this reason, if a
query were to reach a serverd hops from its source due to a
false positive, there is no incentive to forward it further.In
other words, since the query reached the particular server that it
did through error, any further information about which nearby
servers might contain the desired data item may likely be incor-
rect as well. When such circumstances arise, there remain two
possibilities for finding the data item. The probabilistic algo-
rithm can simply give up and forward the request to the deter-
ministic algorithm, or the query can be returned to the previous
server in the query path to be sent on to the next best neighbor.
In this way, the query algorithm comes to resemble a depth-first

search which is guided by the potential function represented by
the attenuated Bloom filters.

Since the purpose of the probabilistic algorithm is to improve
latency in the case where nearby replicas exist, we view thislat-
ter solution as overreaching, since the time required for itin the
worst case is possibly slower than the deterministic algorithm,
with less certain results. As a result, we do not allow backtrack-
ing, and afterd unsuccessful hops we immediately defer to the
deterministic algorithm.

Finally, in situations whered is large, a false positive may
cause a query to return to a server it has already visited. For
this reason, each query in the system contains a list of all of
the servers that it has visited so far, and servers never forward a
query to a server it has already visited. Since we do not allow
backtracking, this list is at mostd elements long, so the cost of
this optimization is small.

D. The Update Algorithm

For the query algorithm to be successful, the attenuated
Bloom filters at each node that direct queries must be kept up-
to-date. Every time a new data item is added to a server, there
is a possibility that the Bloom filter representing the set ofdata
items it stores will change as well. If such a change occurs,
neighbors of the server will only find the new data item if the
change is propagated to them in some manner. The way in
which this change is propagated is theupdate algorithm.

The fundamental observation behind the update algorithm is
that unless the Bloom filters are loaded to a degree such that
they are no longer useful for location, an update to a single
server in a system with filters of depthd should eventually
change at least one bit in the filters of every server withind
hops of the update site. Ideally, this propagation is a single
wave spreading from the source of the change outward. More-
over, updates due to different data items involve only a small
number of common bits. Thus there is little benefit to com-
bining updates, except to save on the network costs associated
with sending many small messages instead of one large one.
We therefore assume that all updates occur independently, ex-
cept for the possibility that updates destined for the same server
may be grouped into the same network message.

An update proceeds as follows. Every server in the system
stores both an attenuated Bloom filter for each outgoing link
(e.g.FAB in Figure 3), and a copy of its neighbor’s view of the
reverse direction. When a new document is stored, the server
calculates the changed bits in its own filter and in each of the
filters its neighbors maintain of it. It then sends these bitsout
to each neighbor; this is a form ofdiff compression. On receiv-
ing such a message, each neighbor attenuates the bits one level
and computes the changes they will make in each of its own
neighbors’ filters. These changes are then sent out as well. One
can thus view an update as the set of changed bits propagating
outward from the source of the change.

One problem with this algorithm as currently specified is that
unless the overlay network is a tree rooted at the update source,
the update will be propagated to some servers more than once,
wasting network bandwidth and placing redundant information
in the filters of the receiving node. For example, consider Fig-
ure 3. If a document were added to NodeD, NodeA would
receive the corresponding update three times: first fromD di-
rectly, then throughB, and again throughB via C. This redun-
dancy would place unnecessary load on the network. Moreover,
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it would needlessly place information about the new document
in all three levels ofFAB . The lower levels of an attenuated
Bloom filter represent the combined documents of many more
nodes than the higher-potential ones, so this redundancy ofin-
formation is quite detrimental to the false positive rate.

We can thus imagine filtering updates to improve both the
bandwidth utilization and the load on lower filter levels. This
filtering changes the information stored in the attenuated filters,
thus altering the semantics of these filters slightly. As we will
show in Section IV, however, we can continue to use the query
algorithm of Section II-C and achieve lower update bandwidth.

We describe two distinct update filtering algorithms; we call
the naive approach already described theno filtering case. To
filter, we tag all updates with an identifier consisting of their
source node and a monotonically increasing sequence number.
We then perform the following types of filtering:

• destination filtering: Destination servers remember the
identifiers of every update they see for a short period, al-
lowing them to ignore subsequent arrivals of an update
through different paths. This filtering prevents redundant
information in the destination’s neighbor filters.

• source filtering:Once a server receives a duplicate update
from one of its neighbors, it sends a message to that neigh-
bor to inform it of this redundancy. The neighbor stops
forwarding new updates from that same source.

Both of these techniques save network bandwidth. The second,
however, is somewhat more sophisticated, since it performsa
form of topology discovery, squelching update messages before
they are even sent. The additional information stored for source
and destination filtering is soft state and is periodically flushed
so as to adapt to changes in the overlay network.

As a final point, we note that update filtering introduces a
bit of subtlety with respect to replica deletions. When a replica
deletion causes bits at any level of a Bloom filter to transform
from one to zero, we must be careful to propagate this dele-
tion to all appropriate nodes. This may, in some cases, involve
ignoring update filters that have been previous installed. Fig-
ure 16 in the Appendix describes the complete algorithm.

III. EXPERIMENTAL SETUP

To test the effectiveness and cost of our probabilistic algo-
rithm, we simulated it in conjunction with two different deter-
ministic algorithms for location-independent routing. Inthis
section we describe the deterministic algorithms, then discuss
our simulation environment and experiments. The results ofour
simulation are provided in Section IV.

A. Deterministic Location and Routing Algorithms

We used two different deterministic algorithms to provide
our probabilistic algorithm with the greatest variety of “com-
petition”. The first ishome-node location, an idealized archi-
tecture that resembles a combination of DNS [13] and opti-
mized directory-based cache coherence [14]. The second is
Tapestry [10], an actual distributed, wide-area location and
routing infrastructure with interesting locality properties.

1) Home-Node Location Overview:Our first deterministic
algorithm postulates that every document in the system has a
home-node serverthat keeps a set of pointers to every replica
of the document. To route a query to a replica, a client sends the
query to its home node, which forwards the query to the replica
closest to the client.

We chose this architecture for two reasons. First, it is a very
simple; as we will see in the next section, more realistic archi-
tectures are far more complicated. Second, it is an idealized
form of directory service (such as DNS), but with oracle-level
knowledge of the network topology. In contrast to existing,
nonidealized protocols which route toO(log n) randomly dis-
tributed locations in the network to reach a document, this ide-
alized algorithm uses onlyO(1) such hops, and provides better
replica placement relative to the query source.

Of course, several aspects of this architecture are idealized.
We do not address the type of infrastructure that a client would
utilize for finding the home-node server; we assume that some
form of document-to-home-node mapping service is available.
Further, since this is a “best-case architecture”, we do notad-
dress how the directory server keeps its information about repli-
cas current, or how it is able to select the replica closest tothe
query source. The next section details a distributed directory
technique that does not require these idealizations.

2) Tapestry Overview: The wide-area location and rout-
ing infrastructure of OceanStore is Tapestry [10], an IP over-
lay network with a distributed, fault-tolerant architecture. With
Tapestry, a query is routed from node to node until the location
of a replica is discovered, at which point the query proceeds
to that replica. Tapestry differs from the home-node architec-
ture in two distinct ways: (1) Tapestry distributes the directory
lookup process in a document-specific way. This removes the
need for a separate document-to-home-node mapping. (2) Once
Tapestry has discovered the location of a replica, it forwards
the query to the replica closest to the point of discovery, rather
than to the replica closest to the original query source. This
optimizes one-way latency from the query to the replica, but
may not optimize subsequent traffic from replica back to query
source.

Tapestry begins with the assumption that every server and
document in the system can be named with a unique, location-
independent identifier, represented as a sequence of hexideci-
mal digits. We will refer tonode-IDsfor the node names and
globally unique identifiers(GUIDs) for the documents. Among
other things, this means that every query has a unique desti-
nation GUID. Tapestry has two major components: arouting
meshand adistributed directory service.

The Tapestryrouting meshis an overlay network between
participating nodes. Figure 4 shows a portion of this mesh.
Every Tapestry node is connected to other Tapestry nodes via
neighbor linksof various levels. Level-1 edges from a given
node connect to the 15 nodes closest (in network latency) with
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different values in the lowest digit of their addresses. Level-2
edges connect to the 15 closest nodes that match in the lowest
digit and have different second digits,etc.

Tapestry neighbor links provide a route from every node to
every other node in the system: simply resolve the destination
node address one digit at a time, using a level-1 edge for the
first digit, a level-2 edge for the second, and so forth. This
routing scheme is based on the hashed-suffix routing struc-
ture presented by Plaxton, Rajaraman, and Richa [15]. While
the Tapestry infrastructure includes algorithms for building this
neighbor graph dynamically, we assume in this work that the
graph is built at the beginning of our simulation and does not
change.

To perform location-independent routing, Tapestry determin-
istically maps each document GUID to a set of uniqueroot
nodes2. In this paper we assume a single root node for each
GUID. Thus every unique document and query for that docu-
ment is associated with a single root node-ID. We use the rout-
ing mesh described above to reach the root from any other node
in the system; this routing process defines a uniquelocation tree
for every choice of root node.

Storage serverspublishthe fact that they are storing a replica
by routing a message toward the root node, depositingloca-
tion pointersto the object at each hop. Figure 5 illustrates two
replicas with the same GUID (8734) exported by server nodes
8224 and39AA. Location pointers are shown as dotted arrows
back to servers. Note that both the root note (7734) and node
A734 have knowledge of both replicas.

As shown in Figure 6, queries route toward the root node un-
til they encounter a location pointer, then route to the located
replica. If multiple pointers are encountered, the query pro-
ceeds to the closest replica. The figure shows three different
location paths. In the worst case, a location operation involves
routing all the way to the root. However, if the desired object is
close to the client, then the query path will intersect the publish-
ing path before reaching the root with high probability. In fact,
it is shown in [15] that the average distance traveled in locating

2Since the node-ID space is sparse, this cannot be a one-to-one mapping.
Suffice it to say that there is a way to map GUIDs to root node-IDs, even with
dynamic insertion and removal; see [10].
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an object isproportionalto the distance from that object3.

B. Simulation Environment

Our simulator models the physical network as a graph, each
edge of which has two values associated with it,αnet andβnet.
To send a message along an edge takesαnet + sβnet seconds,
wheres is the size of the message in bytes. To send a message
along a path of more than one hop takesα′

net+ sβ′

net seconds,
whereα′

net is the sum of theαnet values for every edge along
the path, andβ′

net is the largestβnetvalue of any edge along the
path. We do not measure queuing effects or computation time
at servers.

Using this simulator, we constructed a physical network
topology using thetransit-stubmodel of GT-ITM [16]. This
topology mimics the structure of large networks observed in
nature by dividing the graph into two classes of nodes, called
transit nodes and stub nodes. An example transit-stub graphis
shown in Figure 7. Transit nodes are grouped into highly con-
nected transit domains, and off each transit node several stub
domains are connected. These stub domains are collections of
stub nodes which are generally more lightly connected than the
nodes in the transit domains. In addition to this general layout,
there are several inter-stub domain edges in each graph. We
augment the GT-ITM model with bandwidth numbers as fol-
lows. All stub to stub edges are 100 Mb/s, all stub to transit
edges are 1.5 Mb/s, and all transit to transit edges are 45 Mb/s.
These values were chosen to model Fast Ethernet, T1, and T3
connections, respectively. In our experiments, we focus onstub
to transit domain bandwidth consumption, since these interdo-
main edges are the most bandwidth constrained in the system
(and in most real systems as well).

Our simulations use transit-stub graphs with six transit do-
mains of ten nodes each. Each transit node has seven stub do-
mains of an average of twelve nodes each, yielding a total of
5,100 nodes per graph. The transit domains are fully connected
to each other, and each pair of nodes internal to a domain are
connected with probability 0.6. Each pair of stub nodes within

3Experiments show a small constant of proportionality; See [10].
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a stub domain are connected with probability 0.3. We used GT-
ITM to generate seven graphs given these parameters to insure
that our results were not dependent on the particularities of any
one graph.

On top of this physical network, we built Tapestry and prob-
abilistic location overlay networks as follows. We chose 1,000
of the total nodes in the graph uniformly at random without re-
placement and made them Tapestry servers. We then assigned
node-IDs to these servers at random, and built the neighbor
graph as described in Section III-A. In some experiments, we
also attached probabilistic location servers to these samenodes,
using the construction algorithm described in Section II. Fi-
nally, in some experiments we further restrict the Bloom fil-
ter overlay network to have a minimal number of interdomain
edges, while maintaining its average connectivity. The effects
of this restriction are described in Section IV.

C. Experiment Descriptions

In this work we document two groups of experiments, called
the static and thedynamicexperiments, based on whether the
set of replicas in the system changes during the test.

In the static experiments, we randomly place 70 unique files
on each of the nodes in the system which are participating in
the location protocols. We chose this small number for sim-
ulation simplicity; since the optimal size of the Bloom filters

scales linearly with the number of documents indexed, our re-
sults generalize in a straightforward manner. We allow for all
of the location directories to be updated, then arrange for each
participating node to request a different set of 12 documents,
randomly chosen from the full set. We observe the average lo-
cation latency versus the minimum possible latency given the
constraints of the network. After all of the location requests
are complete, we add one new data object to each participat-
ing node and observe the network bandwidth used in updating
all of the Bloom filters in the system. Each of these experi-
ments is repeated using Bloom filters of several different sizes
and depths, using each of the two deterministic algorithms,and
using different transit-stub graphs.

To explore the advantages of attenuation, we fix the aver-
age number of nodes reachable through the overlay (we present
results for 20 reachable nodes) while varying the depth of the
filters. Consequently, higher levels of attenuation imply alower
average out-degree in the overlay network (i.e. each node has
fewer immediate neighbors). Moreover, in many our experi-
ments, we fix the total amount of local storage used by the in-
dex; this quantity is the product of the filter width, depth, and
number of immediate neighbors per node.

For the dynamic experiments, we used the SURGE web traf-
fic generator [17] to choose our file sizes and reference stream.
This generator produces read requests with characteristics sim-
ilar to observed patterns of web traffic across multiple clients.
We used it to produce a trace against 50,000 unique files, with
sizes ranging from 75 bytes to 8.69 MB, distributed according
to a hybrid of lognormal and pareto distributions (see [17] for
more details). The average file size is around 21 kB.

Each node maintains an in-memory cache of the data items
it reads, managed in simple least-recently-used (LRU) order.
Each cache is 420 kB in size, allowing an average of 20 files
to be cached at one time. Additionally, each file in the trace is
kept permanently on a simulated hard drive of exactly one node,
resulting in each node storing 50 files on its drive, for a total
of 70 files between the cache and the disk, to match the static
experiments. Data not found in cache is loaded off this drive,
which is modeled as a delay ofαdisk+ sβdiskseconds, wheres
is the size of the file,αdisk = 10 milliseconds, andβdisk = 100
nanoseconds per byte. These parameters are similar to those
observed on modern drives.

As with the static experiments, the dynamic experiments are
performed over a range of Bloom filter sizes and depths and us-
ing various different transit-stub graphs and server placements.
During these tests, we observe the average time to find a replica
and the distance to that replica versus the network distanceto
the closest replica. We also observe the total interdomain band-
width consumed.

IV. RESULTS

In this section, we utilize the results of our experiments to
justify the claims made in the introduction: that the probabilis-
tic algorithm finds replicas quickly when they are nearby, that
it fails quickly if they are not, and that this combination leads
to a net performance improvement. We first justify our choice
of update algorithm.

A. The Probabilistic Update Algorithm

Figure 8 shows the bandwidth used by each of the three up-
date algorithms described in Section II-D. The bandwidth num-
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Fig. 11. Routing Stretch vs. Ideal Latency.Although there are few documents close to their query sourcesin the static experiments, the hybrid algorithm still
manages to find them sufficiently quickly that it achieves a farlower routing stretch than the deterministic algorithms alone. The Home Node algorithm is shown
in (a), and Tapestry is shown in (b). The error bars in this graph represent the 0th and 99th percentiles.

bers shown are for total number of bytes sent across any physi-
cal interdomain link in the system as the result of adding one
document to a single server’s cache.4 As described in Sec-
tion III, we measured these numbers at the end of each static
test, dividing by the total number of documents added to pro-
duce an average cost per document. The graph clearly shows
significant bandwidth reductions for the more advanced algo-
rithms, so long as the attenuated Bloom filters being used are
deep enough to take advantage of them. Destination filtering
has no effect unless there are loops of length three or more in
the update propagation graph, so no change is seen for depths
one or two. Likewise, source filtering has no effect unless there
are loops of length two or more, so no change is seen for depth
one. The remainder of our experiments only use source filter-
ing, since it either matches or outperforms the less advanced
algorithms in every case.

B. Static Experiments

Our goal with the static experiments is to show first that the
hybrid algorithm does not adversely affect the location of dis-
tant replicas, and second that it outperforms either deterministic
algorithm alone in locating nearby ones.

4All error bars in our graphs represent the stability of the values shown with
respect to changes in the underlying physical and overlay networks, and unless
otherwise noted mark 95 percent confidence intervals.

To determine whether the hybrid algorithm would adversely
affect queries for distant replicas, we graphed the number of
hybrid queries which had to fall back on the deterministic algo-
rithm. The result is shown in Figure 9. From this graph, we see
that a total index size of around 1.83 kilobytes is sufficientto
limit the number of such failing queries. Taking the number of
documents per node times the average file size of the SURGE
traces, we see that this index size is only 0.136 percent of the
size of the data.

To further qualify the impact of failed Bloom queries, we
show the cumulative distribution function of how much longer
a failed Bloom query takes than one which had used Tapestry
from the beginning in Figure 10. This graph shows that even
when a probabilistic query fails, the total location time isnot
much more than if the query were handled by the deterministic
algorithm alone. For example, with filters of depth 3, 86 percent
of failed Bloom queries take only 20 percent longer than if they
had been handled by the deterministic algorithm alone. Thus
by using Bloom filters of a reasonable size, we incure only a
limited number of failed queries, and the failures that do occur
only minimally affect the total routing time.

Figure 11 shows the average routing stretch of the hybrid al-
gorithm as a function of the query source’s distance from the
queried document. In Figure 11 (a), the deterministic algorithm
used is home node routing, as described in Section III-A.1; in
Figure 11 (b), Tapestry is used. In both cases, the total sizeof
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Fig. 12. Interdomain Bandwidth vs. Filter DepthThese two graphs show the amount of interdomain bandwidth consumed by the update algorithm as a function
of filter depth and overlay topology. In Figure (a), the overlay graph is constructed greedily, and all depths use roughlythe same amount of bandwidth. In Figure
(b), the number of overlay edges crossing a physical interdomain edge has been limited as much as possible while maintaining the average neighbor reachability
per node. In this case, the topology discovery properties ofthe attenuated bloom filters greatly reduce update bandwidth.
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Fig. 13. Dynamic Routing Stretch vs. Algorithm.This graph shows the average
routing stretch as a function of routing algorithm for the dynamic simulations.
The hybrid algorithm far outperforms Tapestry alone for all filter depths. See
the text for further discussion.

the Bloom filter index at each node is fixed at 0.136 percent
of the data size, as suggested by the previous results. One in-
teresting aspect of these graphs is that the attenuated filters are
providing comparable advantage to the nonattenuated ones us-
ing fewer immediate neighbors.

As described in the introduction, the closer the query source
lies to the queried document, the less optimally the determinis-
tic algorithms perform. The hybrid algorithm achieves a lower
average stretch than either of the deterministic algorithms alone
and reduces the variance of the stretch as well. Another inter-
esting feature of Figure 11 is that Tapestry achieves a far lower
routing stretch than home node location, especially for nearby
replicas. This effect is produced by the locality inherent in the
Tapestry routing mesh.

A final datum from the static experiments is shown in Fig-
ure 12, which graphs update bandwidth as a function of filter
depth. From Figure 12 (a) we see that in a greedily-constructed
overlay network, in which all nodes are connected to some
number of their closest neighbors, attenuation does not pro-
vide any bandwidth advantages. However, Figure 12 (b) shows
that if the number of overlay edges which traverse each phys-
ical interdomain edge is limited, the topology discovery fea-
tures of source filtering greatly reduce the bandwidth consumed
on those physical edges. Since these edges can easily become
bottlenecks in real networks, we view this topology discovery
property as a real benefit of the attenuated filters.
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Fig. 14. Dynamic Distance Stretch vs. Algorithm.This graph shows the ratio
of the distance between the query source and the replica which was actually
located to the distance between the query source and closestreplica available.
The hybrid algorithm finds replicas which are closer to the query source on
average than Tapestry alone.

C. Dynamic Experiments

In contrast to the static experiments, the dynamic ones al-
low for the existence of multiple replicas of every document,
subject to the constraints of the caching scheme described in
Section III. Furthermore, the use of the SURGE traffic genera-
tor provides for substantial locality in the reference stream. As
a result of these two factors, it is often the case in these exper-
iments that several replicas exist near any given query source,
so the hybrid algorithm has a far greater opportunity to improve
performance than in the static experiments, where each docu-
ment existed only on one node.

Figure 13 shows the average routing stretch in the dynamic
experiments as a function of routing algorithm. In general,the
hybrid algorithm far outperforms Tapestry alone, by as much
as a factor of 2.1. Furthermore, Figure 14 shows the ratio of
the distance between the query source and the replica which
was actually located to the distance between the query source
and closest replica available. Once again, the hybrid algorithm
outperforms Tapestry alone, again by as much as a factor of
1.94. Not only does the hybrid algorithm find replicas in less
time than Tapestry, it also finds closer replicas.

Our last graph, Figure 15, shows the total interdomain band-
width consumed during the entire dynamic test case, measured
as the total number of bytes that traverse all physical interdo-
main edges in the network. As mentioned above, the hybrid al-
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Fig. 15. Dynamic Bandwidth Consumed vs. Algorithm.The total interdomain
bandwidth used by the hybrid algorithm is comparable to that used by Tapestry
alone; the bandwidth reduction resulting from the closer replicas found by the
hybrid algorithm offsets the increased bandwidth usage of the update algorithm.
Furthermore, the bandwidth reduction gained by the topologydiscovery prop-
erties of the attenuated algorithm can be clearly seen.

gorithm finds replicas closer to the query source than Tapestry
alone. As shown in Figure 15, the resulting reduction in band-
width from this higher location quality is sufficient to maskthe
additional bandwidth being used by the hybrid algorithm dur-
ing filter updates. Thus the improved performance of the hybrid
algorithm does not imply a further cost in bandwidth.

V. FUTURE WORK

There are at least two ways in which this work could be im-
proved. First, in our simulations we construct the Bloom filter
overlay graphs using global knowledge. It seems reasonable
to believe that simple overlay graphs could be constructed in
a self-organizing manner; for instance, the Tapestry overlay is
so constructed. However, as shown in Section IV-B, the band-
width consumption of the attenuated Bloom filters can be dra-
matically reduced by placing restrictions on the structureof the
overlay with respect to the underlying physical network. The
design of algorithms to adhere to such restrictions while pro-
ducing an overlay network in a self-organizing manner is thus
an important component of our future work.

Second, since the caches in our system are managed in LRU
order, every read causes at least one new data item to be pub-
lished in the deterministic algorithm and propagated as a filter
update in the probabilistic scheme. This caching policy obvi-
ously generates more update traffic than a more advanced one
such as LRU-k [18] or n-chance forwarding [19] might. Since
an update to a cache causes Tapestry to send onlyO(log N)
messages, whereas the probabilistic algorithm must send some
amount of information to every server in its filters’ range, us-
ing these more advanced algorithms should only improve the
bandwidth consumption of the probabilistic algorithm relative
to Tapestry. Our current results are thus somewhat pessimistic
with respect to the bandwidth usage of our algorithm.

VI. RELATED WORK

Bloom filters [11] have long been used as a lossy summary
technique. To our knowledge, however, we are the first to com-
bine them into a compound, topology-aware data structure.

In [20], Bloom filters were used to improve the efficiency of
distributed join operations by filtering elements without con-
suming network bandwidth. In [21], Aoki used Bloom filters to
guide searches through generalized search trees.

Both the Summary Cache [12] and Cache Digests [22] use
Bloom filters to to summarize the contents of a set of cooper-
ating web caches. Both techniques are similar to our nonatten-
uated scheme, but use HTTP as their deterministic algorithm.
In contrast to both schemes, we assume documents are highly
mobile, requiring frequent update propagation; this frequency
motivates our concern for update efficiency. In contrast to both
Summary Cache and our work, the Cache Digest scheme polls
for updates periodically rather than pushing them to neighbors
as changes occur.

The Secure Discovery Service (SDS) [23] uses Bloom filters
to route queries to appropriateservices, such as printers or scan-
ners; in that work, service attributes are arranged in a treewith
the Bloom filters at each node summarizing the attributes of the
node’s children. Consequently, the accuracy of information de-
creases as a search climbs toward the root of the service tree,
leading to wasted search traffic through the root node. In con-
trast, we use attenuated Bloom filters only for local-area rout-
ing, falling back on a bandwidth-efficient protocol in the wide
area.

Our home node location protocol shares elements with exist-
ing directory services such as the Internet Domain Name Ser-
vice (DNS) [13] and Globe [24]. Like our algorithms, DNS
includes provisions for the caching of location information
throughout the network, but does so using a weak consistency
model that would not be desirable with objects moving at the
frequently as we assume in this paper. The Globe system pro-
vides a hierarchical organization for replicas that might provide
faster updates of location information than DNS. The three-hop
location and routing protocol of the home node solution alsore-
sembles optimizations used in cache-coherent multiprocessors
such as DASH [14].

The problem of constructing a practical location indepen-
dent routing infrastructure has been tackled in several different
projects. Although we chose Tapestry [10] in Section III-A,
several competing architectures include CAN [7], Chord [8],
Pastry [9]. All of these architectures provide guaranteed,deter-
ministic routing from a client to a close replica. The exact de-
tails of the proposals are not particularly relevant to thispaper,
other than that they can serve as realistic fall-back algorithms
for our probabilistic location techniques.

VII. CONCLUSION

In this paper we have presented a new, probabilistic rout-
ing algorithm designed to improve the location latency of ex-
isting deterministic approaches. The algorithm is based ona
new data structure we call an attenuated Bloom filter. Our al-
gorithm finds nearby replicas quickly, and if no such replicas
exist, it fails quickly as well. Furthermore, we have shown
that our algorithm may be combined with a deterministic algo-
rithm to improve average routing stretch for nearby documents,
where it matters the most. Finally, we have demonstrated that
when replicas are allowed to move in response to a request
stream modeled after real-world access patterns, this combina-
tion improved average performance by as much as a factor of
2.1. We are satisfied enough with our results that we are using
this probabilistic algorithm as part of the routing subsystem of
OceanStore.
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PROCESSUPDATE (n, U, s)
1 F ← NEIGHBORFILTER (n)
2 foreach (r, c, v) ∈ U do Frc ← v endfor
3 foreach n′ ∈ N \ n do
4 L← LASTUPDATEFILTER (n′)
5 U ′ ← ∅
6 foreach (r, c, v) ∈ U do
7 r′ ← r + 1
8 if v = 0 ∧ Lr′c = 1 then
9 γ ← true
10 foreach n′′ ∈ N \ n′ do
11 F ′ ← NEIGHBORFILTER (n′′)
12 if F ′

r′c
= 1 then γ ← falseendif

13 endfor
14 if γ then
15 Lr′c ← 0
16 U ′ ← U ′ ∪ {(r′, c, 0)}
17 endif
18 elsif v = 1 ∧ Lr′c = 0 then
19 if ¬ IGNORINGSOURCE(n′, s) then
20 Lr′c ← 1
21 U ′ ← U ′ ∪ {(r′, c, 1)}
22 endif
23 endif
24 endfor
25 if U ′ 6= ∅ then SENDUPDATE (n′, U ′, s) endif
30 endfor
Fig. 16. Pseudo-code forPROCESSUPDATE. See text for description.

APPENDIX

This section presents the pseudo-code for the source filtering
update algorithm. Its arguments are a neighbor number (n), an
update (U ), and the source of that update (s), where an update
is a set of triples,(r, c, v), representing the intention to change
the value in the neighbor’s Bloom filter at rowr and columnc
to valuev. Lines 1–2 of the procedure look up the filter for the
neighbor who sent the update (F ) and apply the given changes.
Then, for each other neighbor (n′), we look up our image of the
last record they have of our documents (lines 3–4). This is an
attenuated filter,L, identical in contents to theF they would
look up for us if we sent them an update. For every cleared bit
in the update, we check to see if this neighbor’s filter holds aset
bit. If so, we can only clear it if no other neighbor has the given
bit set (lines 10–13). If we make a change, we include it in the
outgoing update (lines 14–17). Next, if the incoming updatehas
a bit set which is not set in the filter forn′, and that neighbor
is not ignoring this source, we change its filter and append the
change to the outgoing update (lines 18–23). Finally, if we have
changed anything for this neighbor, we send it the update we’ve
constructed.
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