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Abstract—We proposeprobabilisticlocation to enhance the per- understand: a small amount of “mis-routing” in the localeare
formance of existing peer-to-peer location mechanisms in the case can lead to a large divergence from optimality, since theagt
where a replica for the queried data item exists close to the query path is short to begin with.

source. We introduce theattenuated Bloom filter a lossy dis-
tributed index. We describe how to use these data structures for Currently, such systems make only meager attempts to place

document location and how to maintain them despite document 'eplicas for network locality, and the sizes of the docursent
motion. We include a detailed performance study which indicates they locate are on the order of megabytes, so this poor perfor
that our algorithm performs as desired, both finding closer repli- mance in locating nearby replicas does not significantlgcff
cas and finding them faster than deterministic algorithms alone. overall document retrieval time. However, in the Ocean&tor
system [4], we intend store documents whose sizes are ak smal
as a few kilobytes and to go to great lengths to place those doc
uments near their query sources. In such a situation, nearby
location performance can be a large component of the overall

Today’s exponential growth in network bandwidth and stofetrieval time.
age capacity has inspired a whole new class of distributer-p  In this paper we presentgobabilisticlocation and routing
to-peer storage infrastructures. Systems such as Fafdjte plgorithm designed to enhance the performance of existng d
Freenet [2], Intermemory [3], OceanStore [4], CFS [5], angrministic wide-area location mechanisms. A probabdiat-
PAST [6] seek to capitalize on the rapid growth of resources g0rithmis one that may fail to discover a replica for a gived
provide inexpensive, highly-available storage withouttcal- Ument even when such replicas exist; for example, it might fin
ized servers. The designers of these systems propose tvachinearby” replicas with high probability, but fail if no regh is
high availability and long-term durability in the face ofdin nearby. Assuming that the probabilistic algorithm finddiczs
vidual component failures through replication and codimght quickly when itcanand fails quickly when itannot we can
niques. enhance the performance of the location and routing process
Although wide-scale replication has the potential to iasee through a hybrid approach: first try the probabilistic aigem,
ava"abmty and durabi”ty’ it introduces two importanhaj_ then follow with the deterministic algo”thm if needed.
lenges to system architects. First, if replicas may be place Our probabilistic location and routing algorithm is based o
anywhere in the system, how should ‘ezate them? Sec- attenuated Bloom filterand has the following properties:
ond, once we have located one or more replicas, how should It is decentralized.It requires no central point of control
we route queries to them? We can formulate the combination and is thus suitable for use in the peer-to-peer systems for
of these two operations as a sintgieation and routingproblem which it is intended.
that efficiently routes queries from a client to the closegtica « lItis locality aware If a query site lies close to a replica

I. INTRODUCTION

adhering to certain properties, such as the replica witlsitiost-
est network path to the client or the replica residing on daest

loaded server. In many cases, combining location and rgutin «

into a single, compound operation yields the greatest filiyib

for the queried document, our algorithm finds that replica
with high probability.

It follows a minimal search pathWith high probability,
our algorithm follows the shortest path between a query

to route queries quickly with minimal network overhead. The  site and the replica that satisfies the query.
importance of sucllocation-independent routintgchniques is  « It uses constant storage per servé&he amount of storage
well recognized in the community, and several proposalfsuc  used at each server in the system is small and constant in
as CAN [7], Chord [8], Pastry [9], and Tapestry [10] are cur-  the number of documents indexed.
rently under study. This later property allows each hop in the query path to pro-
These existing schemes share the characteristic that in ga@d without high-latency disk accesses, further enhgrtbie
worst case, a location and routing operation requi’eg N)  speed of operation. When used with a deterministic algotithm
sequential network messages to search a distributed systenattenuated Bloom filters allow us to achieve the “best of both
N servers. Some of these algorithms use substantially fewgsrids™: quickly finding nearby replicas when they existt ye
messages to perform their task in the common case. This-sc#ilading every document even when replicas are scarce.
bility is commendable, and it allows for the total query iogt  Figure 1 shows the potential of our technique. This graph
time to be close to optimakhen the replica is far from the jjjystrates thestretchof two possible algorithms: a real deter-
query source However, as the replica approaches the locatigfiinistic algorithm (solid line) and a hybrid combination atf
of the query source, the performance of the existing algot# tenuated Bloom filters with the same deterministic algonith
quickly diverges from optimality. This divergence is easy t(dotted line). In this contexstretchis a measure of the over-
Appears in INFOCOM 2002 head of location-independent roqting: it is the ratio ofuad:'t
S. Rhea and J. Kubiatowicz are with the University of Catifar Berkeley. time to route a query through the infrastructure versusdeell
Email: {srhea, kubitroh@cs.berkeley.edu network latency (on the underlying IP network) to the closes
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Fig. 2. A Bloom Filter. An array ofw bits that serve to summarize a set of

2l | objects. To check an object’s name against a Bloom filter sumrtreyame is
"""""""""" hashed withn different hash functions (here, = 3) and the bits corresponding
O(o,‘so) [30“ 60) [60,‘ 90) [90.‘120) [1201 150) [1501 180) to the result are checked in the filter. In this picture, thiresented set probably

Document Distance from Query Source (in 30 ms buckets) contains the name “Uncle John’s Band”, since bits 0, 3, ance7alitrue. It

definitely does not contain “Box of Rain”, however, sincedis false.
Fig. 1. The Big PictureStretch as a function of distance between query source
and replica. Stretchmeasures the overhead of combined routing and location
relative to ideal (network) latency—hence, lower is bett&t short distances, .
the routing stretch of the deterministic algorithm (soliodl) is greatly reduced A- Bloom Filters

when coupled with a probabilistic algorithm (dotted line). Bloom filters are an efficient, Iossy way of describing
sets [11]. A Bloom filter is a bit-vector of length with a fam-

. . . . . ily of independent hash functions, each of which maps from
replica. This graph will be further discussed later, buthhsic lements of the represented set to an integéd.im). To form

message is simple: attenuated Bloom filters reduce latetcy § o esentation of a set, each set element is hashed, and the
the short-distance case, effectively smoothing out thealve ;s i the vector associated with the hash functions’ tesare

response time. ) o ) . set. To determine whether the set represented by a Bloom filte
This paper makes the following contributions. First, we insontains a given element, that element is hashed and the- corr
troduceattenuated Bloom filterdata structures that reside a%ponding bits in the filter are examined. If any of the bits are
each node in the system. We presentfberyalgorithm, which st set, the represented set definitely does not containkthe o
routes queries from node to node in search of a replica, and }Bct. If all of the bits are set, the setay contain the object;
updatealgorithm, which propagates location information frompere is a non-zero probability that it does not, howeverisTh
filter to filter. Second, we couple attenuated Bloom filteréwi ¢ase s called false positive and the false positive rate of a
two different deterministic wide-area location algorithumVe Bloom filter is a well-defined, linear function of its widtHet

use a detailed performance simulation to explore the behavi,,mber of hash functions and the cardinality of the reprieskn
of this hybrid approach both on a random, static arrangefentgg; Figure 2 shows a sample Bloom filter.

replicas and on a dynamically changing allocation of reslic |t the cardinality of the represented set is a significant{ra
modeling traffic to Web caches. We show both that our proon, of the widthw, then the Bloom filter becomesverloaded
abilistic algorithm finds closer replicas and that it findsrnh e rate of false positives increases to the point that tres fi
faster than a deterministic algorithm alone. Furthermare, essentially useless. Several studies, such as [12], havered
show that the additional bandwidth required by the prolbil s phenomenon. In particular, the point at which approxi-
tic algorithm is reasonable. mately half of the bits are set is an optimal tradeoff between

The remainder of this paper is as follows. Section Il deiiter storage and accuracy; however, wider filters are asvay
scribes attenuated Bloom filters in detail. Section Il pres more accurate.

our simulation environment, and Section IV describes our ex
perimental results. Section VI describes related work. - Sec i
tion V postulates some future work, and Section VI conchudeB: Attenuated Bloom Filters
An attenuated Bloom filteof depthd is an array ofd nor-
mal Bloom filters. As mentioned earlier, we assume that each
1. ALGORITHM DESCRIPTION node in the system has a set of overlay neighbors partioigati
in the probabilistic location algorithm. In the context afro
In this section we present our probabilistic location algaalgorithm, we associate each neighbor link with an attezdiat
rithm. This algorithm works via an overlay network betweemloom filter. The first filter in the array summarizes docunsent
participating servers. Each server has a setighborschosen available from that neighbor (one hop along the link). Ttre
from the participating servers closest to it in networktate A Bloom filter is the merger of all Bloom filters for all of the nesl
server associates with each neighbor a probability of fipdira distance through any path starting with that neighbor link,
each document in the system through that neighbor. This aghere distance is in terms of hops in the overlay netwoRkg-
sociation is maintained in constant space using a datatsteuc ure 3 shows the attenuated Bloom filter that Netlevould as-
we call anattenuated Bloom filter The set of these probabil- sociate with NodeB in the given network. For example, both
ities forms a potential function over the servers in theayst “Uncle John's Band” and “Sugar Magnolia” are two hops away
location is a simple matter of climbing this function to av@@r from NodeA through NodeB, so the second level of filtdr 4 5
with the desired data item. contains true values at all bits in the union of those docugien
In the following, we briefly summarize Bloom filters. Wehash values (0, 2, 3, 5, 7).
Con.tmue by mtro_ducmgatt'enuated B.lo.om ﬁ.lterSdesc.:nbmg IThe astute reader might surmise that all links ending in a @aai node
their use for replica location, then finish with algorithm f pye the same attenuated filter associated with them. Thisasdr now, but
updating filters as replicas move. will change when we introduce selective updates in Sectidn |



Fag ; ﬁmpp'e search which is guided by the potential function represkhye
0 123456 738 (6.8 the attenuated Bloom filters.
" (1) é 2 11 8 fo(”lJ é . Since the purpose of the probabilistic algorithm is to invaro
wl1lollilolilol 1o latency in the case where nearby replicas exist, we viewdhis
e ter solution as overreaching, since the time required fiortihe

worst case is possibly slower than the deterministic atgorj
with less certain results. As a result, we do not allow baaiir
ing, and after! unsuccessful hops we immediately defer to the

Uncle sugar deterministic algorithm.
Jonns D )| e Finally, in situations wheré is large, a false positive may
©.3.7 = cause a query to return to a server it has already visited. For

o3 A 4 Bloom Filtersa 4 Bloom fifer of this reason, each query in the system contains a list of all of
1g. 5. ttenuate oom FiltersAn attenuate oom filter is an array : el Iaﬁmha{
Bloom filters, each of widthu. Component filters are labeled with théwvel the servers that it has visited so far, and servers neve

in the array (top filter is level 1). Each outgoing link (say,-A B) has an Juery to a server it has already visited. Since we do not allow

attenuated filter associated with {4 5). Level 1 summarizes replicas on thebacktracking, this list is at mogtelements long, so the cost of
neighbor at the end of the link. Level 2 summarizes replicasat@two-hops this optimization is small.

away along that link, etc. We assign a potential value to éaxabl (here%,
i, ...). Higher levels are thuattenuatedwith respect to lower levels. D. The Update Algorithm

For the query algorithm to be successful, the attenuated
Bloom filters at each node that direct queries must be kept up-
fo-date. Every time a new data item is added to a server, there
A% possibility that the Bloom filter representing the sedata
items it stores will change as well. If such a change occurs,
) .- _neighbors of the server will only find the new data item if the
\?V%T(]:hoiggt:i;t:]hee %cgsg%aeln\{algif (:?(;rt:el levels ?; thde ﬂ_lte hange is propagated to them in some manner. The way in

. ! . ple.An s, € doC- " \which this change is propagated is thgdate algorithm
ument “Uncle John’s Band” would map to the potential value The fundamental observation behind the update algorithm is

1/é+h1/8 : 3/8,\7\}nce it ishrezilghgblef_;thro:JghlNo&in tWOd that unless the Bloom filters are loaded to a degree such that
and three hops. We say that higher filter levelsattenuated .. are ng longer useful for location, an update to a single

with respect to earlier filter levels, hence the name “attded server in a system with filters of depth should eventually

Bloom filter”. We refer to filters with only one level awonat- change at least one bit in the filters of every server widin
tenuated hops of the update site. Ideally, this propagation is a singl
wave spreading from the source of the change outward. More-
C. The Query Algorithm over, updates due to Qiﬁerent data items.involve only a bmal
number of common bits. Thus there is little benefit to com-
As mentioned above, we associate an attenuated Bloom fluﬁﬁmg updatesy except to save on the network costs assdciat
with each outgoing neighbor link. To perform a location quer with sending many small messages instead of one large one.
the querying node examines the 1st level of each of its neigive therefore assume that all updates occur independertly, e
bors’ attenuated Bloom filters. If one of the filters matchiels, cept for the possibility that updates destined for the sagnees
likely that the desired data item is only one hop away, and thgay be grouped into the same network message.
query is forwarded to the matching neighbor closest to thie cu An update proceeds as follows. Every server in the system
rent node in network latency. If no filter matches, the quagyi stores both an attenuated Bloom filter for each outgoing link
node looks for a match in the 2nd level of every filter. As bee.g. F4 in Figure 3), and a copy of its neighbor’s view of the
fore, if a match is found, the query is forwarded to the matghi reverse direction. When a new document is stored, the server
neighbor of lowest latency. This time, however, it is notie  calculates the changed bits in its own filter and in each of the
mediate neighbor who is likely to possess the data item, it dfilters its neighbors maintain of it. It then sends these bits
of its neighbors. This next neighbor is determined as befye to each neighbor; this is a form dfff compressionOn receiv-
examining the attenuated Bloom filters of the current server ing such a message, each neighbor attenuates the bits ehe lev
A filter of depthd by definition stores information only aboutand computes the changes they will make in each of its own
serversd hops from the current server. For this reason, if aeighbors’ filters. These changes are then sent out as wed. O
query were to reach a servérhops from its source due to acan thus view an update as the set of changed bits propagating
false positive, there is no incentive to forward it furthdn outward from the source of the change.
other words, since the query reached the particular seme¢itt ~ One problem with this algorithm as currently specified i tha
did through error, any further information about which rfsar unless the overlay network is a tree rooted at the updatespur
servers might contain the desired data item may likely berinc the update will be propagated to some servers more than once,
rect as well. When such circumstances arise, there remain twasting network bandwidth and placing redundant infororati
possibilities for finding the data item. The probabilistiga& in the filters of the receiving node. For example, considegr Fi
rithm can simply give up and forward the request to the detarre 3. If a document were added to Nofle Node A would
ministic algorithm, or the query can be returned to the presi receive the corresponding update three times: first fiordi-
server in the query path to be sent on to the next best neighlyectly, then througtB, and again througt® via C. This redun-
In this way, the query algorithm comes to resemble a depsh-fidancy would place unnecessary load on the network. Moreover

To map from an attenuated Bloom filter to a potential valu
one queries each level for a document’s name. The levels
assigned geometrically decreasing potential values; éheev
of the potential function of a filter for a given document ig th



A. Deterministic Location and Routing Algorithms

We used two different deterministic algorithms to provide
our probabilistic algorithm with the greatest variety obfo-
petition”. The first ishome-node locatigran idealized archi-
tecture that resembles a combination of DNS [13] and opti-
mized directory-based cache coherence [14]. The second is
Tapestry [10], an actual distributed, wide-area locatiow a
routing infrastructure with interesting locality propies.

_ . o N 1) Home-Node Location OverviewOur first deterministic
Fig. 4. Tapestry Routing Mesfizach nodeis linked to other nodes weighbor — 5.rithm postulates that every document in the system has a
links, shown as solid arrows with labels. Labels denote which @giesolved . .
during link traversal. Here, nod2224 has an L1 link toBA72, resolving the home-node servethat keeps a set of pointers to every replica
first digit, an L2 link toFA44, resolving the second digit, etc. of the document. To route a query to a replica, a client semels t
query to its home node, which forwards the query to the raplic

it Id dlesslv ol inf i bout th docit closest to the client.
It would heedlessly place Information about the New docUMen vy ¢nose this architecture for two reasons. First, it is ¥ ver

in all thfee levels offy5. The I(_)wer levels of an <”menuatedsimple; as we will see in the next section, more realistihiarc
Bloom filter represent the combined documents of many moje

i . ) . ctures are far more complicated. Second, it is an idedlize
nodes .tha_n thg hlgher_-potentlal ones, so thls.r.edundanmy Ofform of directory service (such as DNS), but with oracleelev
formation is quite detrimental to the false positive rate. K '

; Lo : nowledge of the network topology. In contrast to existing,
We can thus imagine filtering updates to improve both t : : - o
bandwidth utilization and the load on lower filter levels. ighr}?onldeallzed protocols which route @(log n) randomly dis

filtering changes the information stored in the attenuateatdi tributed locations in the network to reach a document, thes |
. . ) . . liz Igorithm ni (1 hh nd provi r
thus altering the semantics of these filters slightly. As vk Wa ed algorithm uses onl9(1) such hops, and provides bette

show in Section IV, however, we can continue to use the query lica placement relative to the query source.
' ! q Of course, several aspects of this architecture are idmhliz

algorithm of Section II-C and achieve lower update bandividt . .
We describe two distinct update filtering algorithms; wd caYVe do not address the type of infrastructure that a clientsou

X i 2 utilize for finding the home-node server; we assume that some
the naive approach already described iloefiltering case. To . S .
. . . p. 2 .. _form of document-to-home-node mapping service is avalabl
filter, we tag all updates with an identifier consisting ofithe

. . . urther, since this is a “best-case architecture”, we doaiet
source node and a monotonically increasing sequence number

We then perform the following types of filtering: ress how the directory server keeps its information abeplt-r

- L o cas current, or how it is able to select the replica close#tdo
« destination filtering: Destination servers remember th uery source. The next section details a distributed dirgct
identifiers of every update they see for a short period, at'chnique that does not require these idealizations.

lowing th?m to ignore sub_seq_uer)t arrivals of an update 2) Tapestry Overview: The wide-area location and rout-
itrr:mrgtjrggti?:?rzetﬂtepdeggt?ﬁ;gﬁ’2l:leerimr?b%rref\iﬁ;rtss redundarip'g infrastructure of OceanStore is Tapestry [10], an IProve
SR 9 > ay network with a distributed, fault-tolerant architextuWith
* source f||ter!ng.0nce a Server receives a duplicate “pd’?‘ apestry, a query is routed from node to node until the locati
go:nto?ﬁfozr;’t]sipe;gtr;]ti)orrs,ét Sn%n?f a m_rehss?]g? tﬁgh?t rt1e|% “a replica is discovered, at which point the query proceeds
foorw;r dino newﬁ datsese;‘r(;]m tia(t:)gameesojrge or StOPE that replica. Tapestry differs from the home-node agzhit
9 up ) i ture in two distinct ways: (1) Tapestry distributes the dicgy
Both of th_ese techniques save net\_/vo_rk bandV\_/ldth._ The seco kup process in a document-specific way. This removes the
however, is some\_/vhat more soph|§t|cated, since it perfmm%eed for a separate document-to-home-node mapping. (2) Onc
form of topology discovery, squelching update messages@ef tphasiry has discovered the location of a replica, it fodsar
they are even sent. The additional information stored fars® 1,4 query to the replica closest to the point of discoveryea

and destination filtering is soft state and is periodicaligfied 2"t the replica closest to the original query source.s Thi

soAas tof‘?‘dﬁpt to changes in tr:]e ove(;lay r}_?twprk._ q optimizes one-way latency from the query to the replica, but
_As afinal point, we note that update filtering introduces ﬁway not optimize subsequent traffic from replica back to guer
bit of subtlety with respect to replica deletions. When aiczpl source

?eletlon c?uses bits at anytlgvel of ? Il_%ltoom filter t,? ‘;ﬁf‘“f;rl Tapestry begins with the assumption that every server and
rom oneé to zero, we must be careiul 1o propagate tis A€gq ..\ mant in the system can be named with a unique, location-
tion to all appropriate nodes. This may, in some cases, \isvol

. ) . . . . independent identifier, represented as a sequence of leexide
ignoring update filters that have been previous installeid- F P P d

16 in the A dix d ibes th lete algorith mal digits. We will refer tonode-IDsfor the node names and
ure 16 1nthe Appendix describes the complete aigorthm. globally unique identifier¢§GUIDs) for the documents. Among

other things, this means that every query has a unique desti-
IIl. EXPERIMENTAL SETUP nation GUID. Tapestry has two major componentsoating
To test the effectiveness and cost of our probabilistic -algmeshand adistributed directory service

rithm, we simulated it in conjunction with two different éet The Tapestryrouting meshis an overlay network between
ministic algorithms for location-independent routing. this participating nodes. Figure 4 shows a portion of this mesh.
section we describe the deterministic algorithms, thenutis Every Tapestry node is connected to other Tapestry nodes via
our simulation environment and experiments. The resultaiof neighbor linksof various levels. Level-1 edges from a given
simulation are provided in Section IV. node connect to the 15 nodes closest (in network latency) wit
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Fig. 5. Publication in Tapestry.To publish documen8734, server39AA  Fig. 6. Location in TapestryThree different location requests. For instance,
sends publication request towards the root, leaving a eoiotitself at each tolocate GUID8734, query sourcd 97E routes towards the root, checking for
hop. ServeB224 publishes its replica similarly. a pointer at each step. At nodé34, it encounters a pointer to serve834.

different values in the lowest digit of their addresses. dl& an object igoroportionalto the distance from that objéct
edges connect to the 15 closest nodes that match in the lowest
digit and have different second digittc.

Tapestry neighbor links provide a route from every node . Simulation Environment
every other node in the system: simply resolve the destinati - oy simulator models the physical network as a graph, each
node address one digit at a time, using a level-1 edge for t@&ge of which has two values associated withjigt and fnet.
first.digit, a Ievell-2 edge for the second, and.so foﬁh. Thigy send a message along an edge takes + s0net seconds,
routing scheme is based on the hashed-suffix routing strygreres is the size of the message in bytes. To send a message
ture presented by Plaxton, Rajaraman, and Richa [15]. Wh&f‘ong a path of more than one hop takég+ s34etS€CONds,
the_: Tapestry infrastructL_Jre includes algorithms _for binitrthis wherea/,otis the sum of thernet values for every edge along
nelghb_or gr_aph dynamlqally, we assume in t.hIS work that thge path, ang/,,is the largestnetvalue of any edge along the
graph is built at the beginning of our simulation and does nghh Wwe do not measure queuing effects or computation time
change. o , at servers.
_ To perform location-independent routing, Tapestry defm  jging this simulator, we constructed a physical network
istically maps each document GUID to a set of uniqaet ,0qy using theransit-stubmodel of GT-ITM [16]. This
nodes. In this paper we assume a single root node for eatfhology mimics the structure of large networks observed in
GUID. Thus every unique document and query for that docyzyre by dividing the graph into two classes of nodes, dalle
ment is associated with a single root node-ID. We use the royt, it nodes and stub nodes. An example transit-stub gsaph
ing mesh described above to reach the root from any other nQgg,wn in Figure 7. Transit nodes are grouped into highly con-
in the system; this routing process defines a unlqoation tree o (e transit domains, and off each transit node sevarl st
for every choice of root node. , . domains are connected. These stub domains are collections o

Storage servergublishthe fact that they are storing a replicagy,, nodes which are generally more lightly connected than t
by routing a message toward the root node, depositd@®- gges in the transit domains. In addition to this generadlay
tion pointersto the object at each hop. Figure 5 illustrates tWghare are several inter-stub domain edges in each graph. We
replicas with the same GUIDB{ 34) exported by server nodes g ,gment the GT-ITM model with bandwidth numbers as fol-
8224 and39AA. Location pointers are shown as dotted armowg,ys - All stub to stub edges are 100 MbJ/s, all stub to transit
back to servers. Note that both the root nat#34) and node gqges are 1.5 Mb/s, and all transit to transit edges are 48.Mb/
A734 have knowledge of both replicas. These values were chosen to model Fast Ethernet, T1, and T3
_As shown in Figure 6, queries route toward the root node Upannections, respectively. In our experiments, we focustoh
til they encounter a location pointer, then route to the 1eda 14 transijt domain bandwidth consumption, since thesedoter

replica. If multiple pointers are encountered, the quemy-prmain edges are the most bandwidth constrained in the system
ceeds to the closest replica. The figure shows three dlﬂfere(gnd in most real systems as well).

location paths. In the worst case, a location operationlir@g
routing all the way to the root. However, if the desired objec
close to the client, then the query path will intersect thielish-

Our simulations use transit-stub graphs with six transit do
mains of ten nodes each. Each transit node has seven stub do-
) . o - mains of an average of twelve nodes each, yielding a total of
ing path before reaching the root with high probability. &et, 5 150 nodes per graph. The transit domains are fully coenect
itis shown in [15] that the average distance traveled intiaga (4 each other, and each pair of nodes internal to a domain are

2Since the node-ID space is sparse, this cannot be a onesteaapping. Connected with probability 0.6. Each pair of stub nodes iwith

Suffice it to say that there is a way to map GUIDs to root node-ten with
dynamic insertion and removal; see [10]. 3Experiments show a small constant of proportionality; Seé [10



scales linearly with the number of documents indexed, our re
sults generalize in a straightforward manner. We allow fbr a
of the location directories to be updated, then arrangedohe
_____ participating node to request a different set of 12 docusient
randomly chosen from the full set. We observe the average lo-
cation latency versus the minimum possible latency given th
constraints of the network. After all of the location redises
are complete, we add one new data object to each participat-
ing node and observe the network bandwidth used in updating
——— Physical Links - = = Overlay Edges all of the Bloom filters in the system. Each of these experi-
Fi0 7. ATransit.Stub GrabfiThis tonol s the structure of | . ments is repeated using Bloom filters of several differerg¢si
ch?r.ks. obstarr?/rgzscil in #aturg.ipShO\;\?n %Fl)soooigyarr?L;]:/Igrslaintwgﬂ;min;zgi;ege and depths, using each of the two deterministic algorittané,

the number of interdomain edge crossings. Such overlays aliewopology Using different transit-stub graphs. ) ]
discovery properties of the source filtering algorithm to imiize interdomain To explore the advantages of attenuation, we fix the aver-

Transit

Stub
bS Domains

bandwidth consumption. See Section IV for details. age number of nodes reachable through the overlay (we firesen
results for 20 reachable nodes) while varying the depth ef th
Cumulative Interdomain Bandwidth vs. Filtering Scheme filters. Consequently, higher levels of attenuation implgvaer
ol : ‘ Frﬁgenra‘;ée&ﬁa;egj ] average out-degree in the overlay netwatk.(each node has
o ] Filter depth = 3~ fewer immediate neighbors). Moreover, in many our experi-
ispo S — 1 ments, we fix the total amount of local storage used by the in-
60| | dex; this quantity is the product of the filter width, depthda

number of immediate neighbors per node.

- For the dynamic experiments, we used the SURGE web traf-
0| R fic generator [17] to choose our file sizes and referencerstrea
This generator produces read requests with characterstit-

ilar to observed patterns of web traffic across multiplertke

We used it to produce a trace against 50,000 unique files, with
sizes ranging from 75 bytes to 8.69 MB, distributed accaydin
Fig. 8. Update Bandwidth vs. Update Algorithidpdate bandwidth includes to a hybrid of lognormal and pareto distributions (see [1f] f
Goneraiy uses gnificanty loss bandwidth than no i destnaton fi. MCre details). The average file size is around 21 kB.
?eerinnegr.aNyeitherfiltgring alggrithm effects filters ofdemhgeE, since a loop must Each node mamt,amS, an in-memory cache of the data items
exist for the algorithms to filter anything. Likewise, destiion filtering only it reads, managed in simple least-recently-used (LRU)rorde
helps on loops of three or larger, so it has no effect of filtdrdepth two. Each cache is 420 kB in size, allowing an average of 20 files
to be cached at one time. Additionally, each file in the trace i

. . . kept permanently on a simulated hard drive of exactly oneepnod
a stub domain are connected with probability 0.3. We used Glsgylting in each node storing 50 files on its drive, for altota

ITM to generate seven graphs given these parameters t®insy 7¢ files between the cache and the disk, to match the static
that our results were not dependent on the particularifié®p oyneriments. Data not found in cache is loaded off this drive

one graph. _ _ which is modeled as a delay afjis+ s34isk Seconds, where

On top of this physical network, we built Tapestry and proljs the sjze of the filepgisk = 10 milliseconds, andgj = 100
abilistic location overlay networks as follows. We chos@0D, nangseconds per byte. These parameters are similar to those
of the total nodes in the graph uniformly at random without r¢;pserved on modern drives.
placement and made them Tapestry servers. We then assignesk with the static experiments, the dynamic experiments are
node-IDs to these servers at random, and built the neighkqrformed over a range of Bloom filter sizes and depths and us-
graph as described in Section lll-A. In some experiments, Wy various different transit-stub graphs and server piaeets.
also attached prObabi”StiC location servers to these mes, During these tests, we observe the average time to find &wp“
using the construction algorithm described in Section ll: Fand the distance to that replica versus the network distemce

nally, in some experiments we further restrict the Bloom filthe closest replica. We also observe the total interdomeinlb
ter overlay network to have a minimal number of interdomaigidth consumed.

edges, while maintaining its average connectivity. Thea
of this restriction are described in Section IV. IV. RESULTS

In this section, we utilize the results of our experiments to
justify the claims made in the introduction: that the prabsb
tic algorithm finds replicas quickly when they are nearbwtth

In this work we document two groups of experiments, calleidfails quickly if they are not, and that this combinatioratks
the static and thedynamicexperiments, based on whether theo a net performance improvement. We first justify our choice
set of replicas in the system changes during the test. of update algorithm.

In the static experiments, we randomly place 70 unique files
on each of the nodes in the system which are participating/n The Probabilistic Update Algorithm
the location protocols. We chose this small number for sim- Figure 8 shows the bandwidth used by each of the three up-
ulation simplicity; since the optimal size of the Bloom fike date algorithms described in Section 11-D. The bandwidtimnu
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C. Experiment Descriptions
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Fig. 9. Bloom Query Failures vs. Index Sizss the width of the bloom filters
increases, the false positive rate drops quickly. Resigahe overlay network
to minimize the number of physical interdomain edge crossingseamore
false positives, but yields bandwidth advantages (see&it®). The restricted
overlay has no effect on the false positives of nonatteniidters.
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Fig. 10. Additional Cost Due to Failed Bloom QuerieEven when a prob-
abilistic query fails, the total location time is not much mdnart if the query
were handled by the deterministic algorithm alone. Here veetisat for filters
of depth 3, 86 percent of failed Bloom queries take only 2@eetlonger than
if they had been handled by the deterministic algorithm alone

Routing Stretch vs. Ideal Latency (Tapestry)
25 =

Home Node Alone—— Tapestry Alone
80 |r Nonattenuated-------- 4 Nonattenuated--------
| Filter depth = 2+ i Filter depth = 2~
70 ,i Filter depth = 3 1 20 ! Filter depth = 3

60
50 H
40

Routing Stretch
Routing Stretch

30
20}

0
(0, 30)

. . . .
[30, 60) [60,90)  [90,120) [120,150) [150, 180)
Document Distance from Query Source (in 30 ms buckets) Document Distance from Query Source (in 30 ms buckets)

(a) (b)
Fig. 11. Routing Stretch vs. Ideal Latencilthough there are few documents close to their query solrcé®e static experiments, the hybrid algorithm still
manages to find them sufficiently quickly that it achieves ddaer routing stretch than the deterministic algorithms alofihe Home Node algorithm is shown
in (a), and Tapestry is shown in (b). The error bars in thipgnepresent the Oth and 99th percentiles.
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bers shown are for total number of bytes sent across anyphysiTo determine whether the hybrid algorithm would adversely
cal interdomain link in the system as the result of adding oradfect queries for distant replicas, we graphed the number o
document to a single server's cacheAs described in Sec- hybrid queries which had to fall back on the deterministgoal

tion 11, we measured these numbers at the end of each statfhm. The result is shown in Figure 9. From this graph, we see
test, dividing by the total number of documents added to prthat a total index size of around 1.83 kilobytes is sufficient
duce an average cost per document. The graph clearly shdiwvst the number of such failing queries. Taking the numbkr o
significant bandwidth reductions for the more advanced-algdocuments per node times the average file size of the SURGE
rithms, so long as the attenuated Bloom filters being used a&races, we see that this index size is only 0.136 percenteof th
deep enough to take advantage of them. Destination filteriage of the data.

has no effect unless.there are loops of Iength.three or more ity further qualify the impact of failed Bloom queries, we
the update propagation graph, so no change is seen for de the cumulative distribution function of how much longe
one or two. Likewise, source filtering has no effect unlesseh 5 tailed Bloom query takes than one which had used Tapestry
are loops of length two or more, so no change is seen for degthm the beginning in Figure 10. This graph shows that even
one. The remainder of our experiments only use source filtgfen a probabilistic query fails, the total location timenist
ing, since it either matches or outperforms the less ad\nGgch more than if the query were handled by the deterministic
algorithms in every case. algorithm alone. For example, with filters of depth 3, 86 petc
of failed Bloom queries take only 20 percent longer thanédfth
had been handled by the deterministic algorithm alone. Thus
by using Bloom filters of a reasonable size, we incure only a
Our goal with the static experiments is to show first that thanited number of failed queries, and the failures that dousc
hybrid algorithm does not adversely affect the location isf d only minimally affect the total routing time.

tantreplicas, and second that it outperforms either défestit  Figyre 11 shows the average routing stretch of the hybrid al-
algorithm alone in locating nearby ones. gorithm as a function of the query source’s distance from the
queried document. In Figure 11 (a), the deterministic afgor
used is home node routing, as described in Section Ill-A1; i
Figure 11 (b), Tapestry is used. In both cases, the totaldfize

B. Static Experiments

4All error bars in our graphs represent the stability of thkiea shown with
respect to changes in the underlying physical and overlayarks, and unless
otherwise noted mark 95 percent confidence intervals.
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Fig. 12. Interdomain Bandwidth vs. Filter Depffhese two graphs show the amount of interdomain bandwidthucoad by the update algorithm as a function
of filter depth and overlay topology. In Figure (a), the oagrgraph is constructed greedily, and all depths use rouplelgame amount of bandwidth. In Figure
(b), the number of overlay edges crossing a physical interitoedge has been limited as much as possible while maintainegwirage neighbor reachability
per node. In this case, the topology discovery propertigb@attenuated bloom filters greatly reduce update bantwidt
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Fig. 13. Dynamic Routing Stretch vs. Algorithifihis graph shows the average Fig. 14. Dynamic Distance Stretch vs. Algorithifhis graph shows the ratio

routing stretch as a function of routing algorithm for thendynic simulations. of the distance between the query source and the replicahwirs actually

The hybrid algorithm far outperforms Tapestry alone for diefidepths. See located to the distance between the query source and clegdist available.

the text for further discussion. The hybrid algorithm finds replicas which are closer to thergusource on
average than Tapestry alone.

the Bloom filter index at each node is fixed at 0.136 percent _ )

of the data size, as suggested by the previous results. @neGn Dynamic Experiments

teresting aspect of these graphs is that the attenuated filte In contrast to the static experiments, the dynamic ones al-
providing comparable advantage to the nonattenuated aneslow for the existence of multiple replicas of every document
ing fewer immediate neighbors. subject to the constraints of the caching scheme described i

As described in the introduction, the closer the query seurSection Ill. Furthermore, the use of the SURGE traffic genera
lies to the queried document, the less optimally the detd@emi tor provides for substantial locality in the reference aine As
tic algorithms perform. The hybrid algorithm achieves adow a result of these two factors, it is often the case in theserexp
average stretch than either of the deterministic algorsthione iments that several replicas exist near any given querycsour
and reduces the variance of the stretch as well. Another-intgo the hybrid algorithm has a far greater opportunity to iower
esting feature of Figure 11 is that Tapestry achieves a feelo performance than in the static experiments, where each-docu
routing stretch than home node location, especially fortmea ment existed only on one node.
replicas. This effect is produced by the locality inherenttie Figure 13 shows the average routing stretch in the dynamic
Tapestry routing mesh. experiments as a function of routing algorithm. In genets,

A final datum from the static experiments is shown in Fighybrid algorithm far outperforms Tapestry alone, by as much
ure 12, which graphs update bandwidth as a function of filtes a factor of 2.1. Furthermore, Figure 14 shows the ratio of
depth. From Figure 12 (a) we see that in a greedily-congtdictthe distance between the query source and the replica which
overlay network, in which all nodes are connected to sonwas actually located to the distance between the query sourc
number of their closest neighbors, attenuation does not pand closest replica available. Once again, the hybrid dhgar
vide any bandwidth advantages. However, Figure 12 (b) shomstperforms Tapestry alone, again by as much as a factor of
that if the number of overlay edges which traverse each phys94. Not only does the hybrid algorithm find replicas in less
ical interdomain edge is limited, the topology discoverg-fe time than Tapestry, it also finds closer replicas.
tures of source filtering greatly reduce the bandwidth corel Our last graph, Figure 15, shows the total interdomain band-
on those physical edges. Since these edges can easily becardéh consumed during the entire dynamic test case, medsure
bottlenecks in real networks, we view this topology disagve as the total number of bytes that traverse all physical dtater
property as a real benefit of the attenuated filters. main edges in the network. As mentioned above, the hybrid al-



Cumulative Interdomain Bandwidth vs. Algorithm Both the Summal’y CaChe [12] and CaChe DigeStS [22] use
‘ ‘ ‘ Bloom filters to to summarize the contents of a set of cooper-

3 1 ating web caches. Both techniques are similar to our namatte
/\\ ] uated scheme, but use HTTP as their deterministic algorithm
} ) ; In contrast to both schemes, we assume documents are highly

mobile, requiring frequent update propagation; this fietey
motivates our concern for update efficiency. In contrastdimb
Summary Cache and our work, the Cache Digest scheme polls
for updates periodically rather than pushing them to neighb
as changes occur.

The Secure Discovery Service (SDS) [23] uses Bloom filters
to route queries to appropriagervicessuch as printers or scan-
Fig. 15. Dynamic Bandwidth Consumed vs. Algorithfine total interdomain ners; in that work, service attributes are arranged in awide

bandwidth used by the hybrid algorithm is comparable to tsatiby Tapestry ha Bloom filters at each node summarizing the attributebef t
alone; the bandwidth reduction resulting from the closeficas found by the

hybrid algorithm offsets the increased bandwidth usage@tipdate algorithm. Node’s children. Consequenth the accuracy of informaﬂ_e'
Furthermore, the bandwidth reduction gained by the topoltiggovery prop- creases as a search climbs toward the root of the service tree

erties of the attenuated algorithm can be clearly seen. leading to wasted search traffic through the root node. In con
trast, we use attenuated Bloom filters only for local-ara#-ro

gorithm finds replicas closer to the query source than Tapestd. falling back on a bandwidth-efficient protocol in thedei
alone. As shown in Figure 15, the resulting reduction in ban@'€a-

width from this higher location quality is sufficient to matie Our home node location protocol shares elements with exist-
additional bandwidth being used by the hybrid algorithm-duing directory services such as the Internet Domain Name Ser-
ing filter updates. Thus the improved performance of theidybrvice (DNS) [13] and Globe [24]. Like our algorithms, DNS
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algorithm does not imply a further cost in bandwidth. includes provisions for the caching of location informatio
throughout the network, but does so using a weak consistency
V. FUTURE WORK model that would not be desirable with objects moving at the

There are at least two ways in which this work could be inff€duently as we assume in this paper. The Globe system pro-
proved. First, in our simulations we construct the Bloonefilt Vides & hierarchical organization for replicas that migiavle

overlay graphs using global knowledge. It seems reasonaffi§ter updates of location information than DNS. The ttiep-

to believe that simple overlay graphs could be construated 'Pcation and routing protocol of the home node solution agso

a self-organizing manner; for instance, the Tapestry ayeis sembles optimizations used in cache-coherent multipsares

so constructed. However, as shown in Section IV-B, the barfCh as DASH [14]. _ _ o

width consumption of the attenuated Bloom filters can be dra- The problem of constructing a practical location indepen-

matically reduced by placing restrictions on the structfrthe ~dent routing infrastructure has been tackled in severéwifit

overlay with respect to the underlying physical network.eThProjects. Although we chose Tapestry [10] in Section III-A,

design of algorithms to adhere to such restrictions white- prseveral competing architectures include CAN [7], Chord [8]

ducing an overlay network in a self-organizing manner issthdPastry [9]. All of these architectures provide guaranteieder-

an important component of our future work. ministic routing from a client to a close replica. The exaet d
Second, since the caches in our system are managed in LRils of the proposals are not particularly relevant to {raper,

order, every read causes at least one new data item to be pRfger than that they can serve as realistic fall-back algors

lished in the deterministic algorithm and propagated ager fil for our probabilistic location techniques.

update in the probabilistic scheme. This caching policyi-obv

ously generates more update traffic than a more advanced one

such as LRUk [18] or n-chance forwarding [19] might. Since VIl. CONCLUSION

an update to a cache causes Tapestry to send @filyz N)

messages, whereas the probabilistic algorithm must sené so |n this paper we have presented a new, probabilistic rout-

amount of information to every server in its filters’ range: u ing algorithm designed to improve the location latency of ex

ing these more advanced algorithms should only improve thging deterministic approaches. The algorithm is based on

bandwidth consumption of the probabilistic algorithm te# new data structure we call an attenuated Bloom filter. Our al-

to Tapestry. Our current results are thus somewhat pesgimigjorithm finds nearby replicas quickly, and if no such reica

with respect to the bandwidth usage of our algorithm. exist, it fails quickly as well. Furthermore, we have shown
that our algorithm may be combined with a deterministic algo
VI. RELATED WORK rithm to improve average routing stretch for nearby docutsien

Bloom filters [11] have long been used as a lossy summamhere it matters the most. Finally, we have demonstrated tha
technique. To our knowledge, however, we are the first to comhen replicas are allowed to move in response to a request
bine them into a compound, topology-aware data structure. stream modeled after real-world access patterns, this t@mb

In [20], Bloom filters were used to improve the efficiency ofion improved average performance by as much as a factor of
distributed join operations by filtering elements withoaine 2.1. We are satisfied enough with our results that we are using
suming network bandwidth. In [21], Aoki used Bloom filters tahis probabilistic algorithm as part of the routing subsystof
guide searches through generalized search trees. OceanStore.
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