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This paper proposes a non-intrusive stochastic finite element method for slope reliability analysis considering
spatially variable shear strength parameters. The two-dimensional spatial variation in the shear strength param-
eters is modeled by cross-correlated non-Gaussian random fields, which are discretized by the Karhunen–Loève
expansion. The procedure for a non-intrusive stochastic finite element method is presented. Two illustrative
examples are investigated to demonstrate the capacity and validity of the proposed method. The proposed
non-intrusive stochastic finite element method does not require the user to modify existing deterministic finite
element codes, which provides a practical tool for analyzing slope reliability problems that require complex finite
element analysis. It can also produce satisfactory results for low failure risk corresponding tomost practical cases.
The non-intrusive stochastic finite element method can efficiently evaluate the slope reliability considering
spatially variable shear strength parameters, which is much more efficient than the Latin hypercube sampling
(LHS) method. Ignoring spatial variability of shear strength parameters will result in unconservative estimates
of the probability of slope failure if the coefficients of variation of the shear strength parameters exceed a critical
value or the factor of slope safety is relatively low. The critical coefficient of variation of shear strength parameters
increases with the factor of slope safety.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, the spatial variability of soil properties has received
considerable attention in slope stability analysis. Many investigators
have contributed to this subject (e.g., Griffiths and Fenton, 2004; Cho,
2007; Low et al., 2007; Srivastava and Sivakumar Babu, 2009; Cho,
2010; Srivastava et al., 2010; Griffiths et al., 2011; Wang et al., 2011;
Cho, 2012; Ji et al., 2012; Li et al., 2013c; Zhu and Zhang, 2013). For ex-
ample, Griffiths and Fenton (2004) studied the effect of spatial variabil-
ity of undrained shear strength on the probability of slope failure using
random finite element method. Cho (2007) investigated the effect of
spatially variable soil properties on the slope stability using direct
Monte Carlo simulations (MCS). Low et al. (2007) proposed a practical
EXCEL procedure to analyze slope reliability in the presence of spatially
varying shear strength parameters. Srivastava and Sivakumar Babu
(2009) quantified the spatial variability of soil parameters using field
test data and evaluated the reliability of a spatially varying cohesive–
frictional soil slope. Cho (2010) investigated the effect of spatial
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variability of shear strength parameters accounting for the correlation
between cohesion and friction angle on the slope reliability. Srivastava
et al. (2010) investigated the effect of spatial variability of permeability
parameter on steady state seepage flow and slope stability. Griffiths
et al. (2011) performed a probabilistic analysis to explore the influence
of spatial variation in the shear strength parameters on the reliability of
infinite slopes.Wang et al. (2011) developed a subset simulation-based
reliability approach for slope stability analysis considering spatially var-
iable undrained shear strength. Ji et al. (2012) adopted the First Order
Reliability Method (FORM) coupled with a deterministic slope stability
analysis to search the critical slip surface when the spatial variability in
the shear strength parameters is considered.

In the majority of these studies, the traditional limit equilibrium
method (LEM) is used to perform deterministic slope stability analyses.
Then, the LEM is combinedwith random field theory for slope reliability
analysis considering spatially variable soil properties. Thereafter, Monte
Carlo Simulation is used to evaluate the probability of slope failure. A
potential pitfall of the LEM is that some assumptions relating to the
shape or location of the critical failure mechanism have to be made.
Also, it does not account for the stress–strain behavior of the soil. Addi-
tionally, the spatial variability of soil properties cannot be considered
realistically with the LEM-based methods, unless the shape of the slip
surface is non-circular (Tabarroki et al., 2013). Fortunately, finite element
based methods provide solutions to overcome the aforementioned
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shortcomings underlying the traditional LEM (Farias and Naylor, 1998;
Griffiths and Fenton, 2004). As for the slope reliability evaluation, al-
though the direct MCS is simple and suitable for evaluating the probabil-
ity of slope failure in the presence of spatially variable shear strength
parameters, the time and resources required for theMCS could be prohib-
itive because a substantial number offinite elementmodel runs are need-
ed to obtain reliability results with a sufficient accuracy. The resultant
computational efforts aremost pronounced at relatively small probability
levels or when complex finite element analyses are needed for slope
stability analysis. Traditional stochastic finite element methods require
significant modification of existing deterministic numerical codes, and
becomenearly impossible formost engineerswith no access to the source
codes of commercial software packages (Ghanem and Spanos, 2003;
Stefanou, 2009). Therefore, it is necessary to explore more efficient
methods for slope reliability analysis, which considers spatially variable
shear strength parameters and requires complex finite element analysis
for determining the factor of safety.

The objective of this paper is to propose a non-intrusive stochastic
finite elementmethod for slope reliability analysis considering spatially
variable shear strength parameters. To achieve this goal, this article
is organized as follows. In Section 2, the two-dimensional (2-D) spatial
variation of the shear strength parameters is modeled by cross-
correlated non-Gaussian random fields, which are discretized by the
Karhunen–Loève (KL) expansion. In Section 3, the procedure of a non-
intrusive stochastic finite element method is presented. Two examples
of slope reliability analysis are investigated to demonstrate the capacity
and validity of the proposed method in Section 4.

2. Random field modeling of soil property

2.1. Spatial variability of soil property

A Gaussian random field is completely defined by its mean μ(x),
standard deviation σ(x), and autocorrelation function ρ(x1, x2). The
autocorrelation function is an important physical quantity for character-
izing the spatial correlation of soil properties (Vanmarcke, 2010). In this
study, a squared exponential 2-D autocorrelation function is adopted
with different autocorrelation distances in the horizontal and vertical
directions as follows:

ρ x1; y1ð Þ; x2; y2ð Þ½ � ¼ exp − x1−x2j j
lh

� �2
þ y1−y2j j

lv

� �2� �� �
ð1Þ

where (x1, y1) and (x2, y2) are the coordinates of two arbitrary points in
a 2-D space; and lh and lv are the autocorrelation distances in the hori-
zontal and vertical directions, respectively.

2.2. Karhunen–Loève (KL) expansion

Several methods such as the midpoint method (Der Kiureghian and
Ke, 1988), the local average subdivision (LAS) method (Vanmarcke,
2010), the shape function method (Liu et al., 1986) and the KL expan-
sion (Phoon et al., 2002) can be used to discretize the random field.
Since the KL expansion requires the minimum number of random
variables for a prescribed level of accuracy, it is employed to
discretize the 2-D anisotropic random fields of shear strength parame-
ters. To facilitate the understanding of the proposed non-intrusive sto-
chastic finite element method, the KL expansion is introduced briefly
in the following.

A random field H(x, θ) is a collection of random variables associated
with a continuous index x ∈ Ω p Rn, where Ω is an open set of Rn de-
scribing the system geometry and θ∈Θ is the coordinate in the outcome
space. Discretization of a random field using the KL expansion is based
on the spectral decomposition of its autocorrelation function ρ(x1, x2).
Generally, the autocorrelation function is bounded, symmetric and
positive definite. Hence, the discretization of a random field is defined
by the eigenvalue problem of the homogenous Fredholm integral equa-
tion as follows:

Z
Ω
ρ x1; x2ð Þ f i x2ð Þdx2 ¼ λi f i x1ð Þ ð2Þ

where x1 and x2 denote the coordinates of two points; fi(·) and λi are the
eigenfunctions and eigenvalues of the 1-D autocorrelation function
ρ(x1, x2), respectively. Then, the eigenmodes of the separable multi-
dimensional autocorrelation function are calculated by multiplying
with the eigenmodes obtained from Eq. (2) (e.g., Huang, 2001).

The eigenvalue problem of the Fredholm integral equation in Eq. (2)
is often solved numerically due to its complexity. The wavelet-Galerkin
technique is adopted herein to solve the above eigenvalue problem.
More details are given by Phoon et al. (2002). The series expansion of
a 2-D random field Hi(x, y) is expressed as

Hi x; yð Þ ¼ μ i þ
X∞
j¼1

σ i

ffiffiffiffiffi
λ j

q
f j x; yð Þξi; j; x; y∈Ω ð3Þ

where ξi,j is a set of orthogonal random coefficients (uncorrelated ran-
dom variables with zero mean and unit variance). The series expansion
in Eq. (3), referred to as the KL expansion, provides a second-moment
characterization in terms of uncorrelated random variables and deter-
ministic orthogonal functions. It is known to converge in the mean
square sense for any distribution of Hi(x, y) (e.g., Vořechovský, 2008).
For practical implementation, the series is approximated by a finite
number of terms in Eq. (3):

eHi x; yð Þ ¼ μ i þ
Xn
j¼1

σ i

ffiffiffiffiffi
λ j

q
f j x; yð Þξi; j; x; y∈Ω ð4Þ

where n is the number of KL expansion terms to be retained, which
highly depends on the desired accuracy and the autocorrelation func-
tion of the random field. Small values of the autocorrelation distances
will lead to a significant increase in the number of the eigenmodes, n.
Several studies (Huang, 2001; Laloy et al., 2013) took the ratio of the ex-
pected energy, ε, as a measure of the accuracy of the truncated series,
which is defined as

ε ¼
Z

Ω
E eHi x; yð Þ−μ i

� �2
dxdy=

Z
Ω
E Hi x; yð Þ−μ ið Þ

2
dxdy

¼
Xn
i¼1

λi=
X∞
i¼1

λi ð5Þ

where the eigenvalues λi are sorted in a descending order. A large ε al-
ways indicates a high accuracy of the truncated series.

2.3. Cross-correlated non-Gaussian random fields

In geotechnical engineering practice, very often more than one geo-
technical parameter needs to be modeled by random fields. Further-
more, the geotechnical engineering literature is replete with cross-
correlations between two geotechnical parameters. For example, the
two curve-fitting parameters underlying load–displacement curve of
piles are negatively correlated (Li et al., 2013b). The cohesion and fric-
tion angle, often used for slope reliability analysis, are considered to
be negatively correlated (e.g., Lumb, 1970; Wolff, 1985; Cho, 2010;
Tang et al., 2013). In this case, the cross-correlated random fields need
to be handled. Following Cho (2010), it is assumed that all fields simu-
lated over a regionΩ share an identical autocorrelation function overΩ,
and the cross-correlation structure between each pair of simulated
fields is simply defined by a cross-correlation coefficient. It can ensure
that the target random fields respect the correlation structure within
each field (Vořechovský, 2008). The rationale underlying these assump-
tions has been explained by Fenton and Griffiths (2003). Under these



Fig. 1. Flowchart of the non-intrusive stochastic finite element method.
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assumptions, the modal decomposition of the given autocorrelation
function is done only once. The same spectrumof eigenfunctions and ei-
genvalues can be used for the expansion of cross-correlated random
fields. It should be pointed out that the sets of random variables used
for the expansion of cross-correlated random fields are also cross-
correlated. In the following, the cross-correlated random fields between
cohesion c and friction angleϕ are presented to illustrate the simulation
procedures of cross-correlated random fields.

Denote the cross-correlation coefficientmatrix between c andϕ asRc,

ϕ = (ρc,ϕ)2 × 2. The samplematrix ξwith the dimension (n × NF) × Np is
generated first, where Np is the number of simulated samples, or the
number of deterministic slope stability model runs; NF is the number of
random fields. Each of the Np columns is one realization of an indepen-
dent standard normal sample vector, which is partitioned into NF

vectors each with the dimension n. For the discretization of cross-
correlated random fields involving two spatially variable c and ϕ, the
kth column of ξ, ξk = {ξck, ξϕk }, ξck = {ξc,1k ,ξc,2k , ⋯,ξc,nk}T, ξϕk = {ξϕ,1k ,
ξϕ,2k , ⋯,ξϕ,nk }T, can be performed using two sets of independent standard
normal probabilistic collocation points (e.g., Li and Zhang, 2007; Li
et al., 2013a) or Latin hypercube sampling points (Choi et al., 2004;
Vořechovský, 2008). A lower triangular matrix L with a dimension of
2 × 2 is obtained by the Cholesky decomposition of Rc,ϕ. Then, the cor-
related standard normal samplematrixχ is obtained. The kth columnof
χ, χk, is given by

χk ¼ χk
c ;χ

k
ϕ

h i
¼ ξk � LT ¼ ξkc ; ξ

k
c � ρc;ϕ þ ξkϕ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ρ2

c;ϕ

qh i
; k

¼ 1;2; ⋯;Np ð6Þ

where the matrix ξk with a dimension of n × 2 is rearranged from the
kth column of the sample matrix ξ. Taking the correlated standard nor-
mal sample vector χk as basis, the kth realization of each of the cross-
correlated Gaussian random fields of c and ϕ is expressed as

eHi
k;D ¼ μ i þ

Xn
j¼1

σ i

ffiffiffiffiffi
λ j

q
f j x; yð Þχk

i; j for i ¼ c;ϕð Þ: ð7Þ

Like the isoprobabilistic transformation of non-normal random vari-
ables (e.g., Li et al., 2011), the kth realization of approximate cross-
correlated non-Gaussian random fields can be obtained component-
to-component,

Hi
k;NG x; yð Þ ¼ G−1

i Φ eHi
k;D

x; yð Þ
h in o

for i ¼ c;ϕð Þ ð8Þ

where Gi
−1(·) is the inverse function of marginal cumulative distri-

bution of each component of non-Gaussian vector random field
HNG(x, y); and Φ(·) is the standard Gaussian distribution function. If the
shear strength parameters (c,ϕ) are considered to be lognormally distrib-
uted, the kth realization of approximate cross-correlated lognormal
random fields can be obtained by exponentiating that of the approximate
cross-correlated Gaussian random fields from Eq. (8) as below:

Hi
k;LN x; yð Þ ¼ exp μ ln i þ

Xn
j¼1

σ ln i

ffiffiffiffiffi
λ j

q
f j x; yð Þχk

i; j

0
@

1
A for i ¼ c;ϕð Þ ð9Þ

where μlni and σlni are the mean and standard deviation of Gaussian

random variable lni, respectively, μlni = ln μi − σln i
2 /2 and σ ln i

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 1þ σ i=μ ið Þ2	 
q

.

3. Procedure of a non-intrusive stochastic finite element method

A procedure of slope reliability analysis using a non-intrusive
stochastic finite element method is proposed in this section, as shown
in Fig. 1. This procedure consists of nine steps as follows:
(1) Identify the spatially varying variables and determine their sta-
tistics such as means, coefficients of variation (COVs), distribu-
tions and cross-correlation coefficients among the variables
associated with the slope reliability problem. Select an appropri-
ate autocorrelation function and estimate the autocorrelation
distances in the horizontal and vertical directions for a 2-D
random field model.

(2) Construct the finite element analysis (FEA) model for slope sta-
bility analysis with the mean values of input variables using
SIGMA/W and SLOPE/W (GEO-SLOPE International Ltd., 2010a,
b). Then, extract the coordinates (xo,i, yo,i) of the centroid of the
ith element, in which i = 1, 2,⋯, ne, ne is the number of finite
elements. Save the deterministic slope stability model file as an
input file named “FEM-FS.xml”. This file contains all the informa-
tion needed by SIGMA/W and SLOPE/W, which can also be
directly viewed via the text editor. Note that the factor of slope
safety is calculated using the finite element based method (Farias
and Naylor, 1998), which is implemented in SLOPE/W using the
stress field obtained from finite element analysis in SIGMA/W.

(3) Generate the independent standard normal sample matrix ξ of
dimension (n × NF) × Np using the probabilistic collocation points
or Latin hypercube sampling points. Then, transform the indepen-
dent standard normal sample matrix ξ into the correlated stan-
dard normal sample matrix χ using Eq. (6).
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(4) Simulate the cross-correlated non-Gaussian random fields of
spatially varying variables with the sample matrix χ and coordi-
nates (xo,i, yo,i) using the KL expansion in Section 2. Then, Np real-
izations of cross-correlated non-Gaussian random fields of
spatially varying shear strength values in the physical space are
obtained, which are assigned to each finite element of the consid-
ered slope, respectively.

(5) Replace the mean values of the corresponding uncertain input
parameters at the centroid of each finite element in the “FEM-
FS.xml” file generated in step (2) with each pair of spatially vary-
ing variables (i.e., c and ϕ) in each realization of random fields in
step (4). Then, Np different new “FEM-FS.xml” input files are
generated. In this manner, no programming effort is required to
modify the existing finite element code compared with the spec-
tral stochasticfinite elementmethod (Ghanemand Spanos, 2003).

(6) Run SIGMA/W and SLOPE/W with each new “FEM-FS.xml” input
file generated in step (5) to performdeterministic FEAof slope sta-
bility. Such a process can be executed automatically with the help
of Winbatch™. Winbatch™ is a Microsoft Windows scripting
language and possesses an optional compiler used to create self-
contained executables. This process will produce Np different fac-
tors of slope safety, FS = (FS1, FS2,…, FSNp), which can be directly
extracted from the corresponding result files named “FEM-FS.fac”.

(7) Replace the implicit function between the factor of slope safety, FS,
and the uncertain input parameters by a Hermite polynomial
chaos expansion (PCE) called meta-model when the FEA of slope
stability is involved (Isukapalli et al., 1998; Ghanem and Spanos,
2003). The PCEmethodology has beenwidely used in geotechnical
engineering (Li et al., 2011; Mollon et al., 2011; Al-Bittar and
Soubra, 2013).

FS ξð Þ ¼ a0Γ0 þ
XN
i1¼1

ai1Γ1 ξi1
� �

þ
XN
i1¼1

Xi1
i2¼1

ai1 i2
Γ2 ξi1 ; ξi2
� �

þ
XN
i1¼1

Xi1
i2¼1

Xi2
i3¼1

ai1 i2 i3
Γ3 ξi1 ; ξi2 ; ξi3
� �

þ � � � þ
XN
i1¼1

Xi1
i2¼1

Xi2
i3¼1

� � �
XiN−1

iN¼1

ai1 i2 ;���; iN
ΓN ξi1 ; ξi2 ; � � �; ξiN

� �
ð10Þ

where N is the total number of random variables, N = n × NF; a

¼ a0; ai1 ; � � �; ai1 i2 ;���; iN
� �

are the unknown coefficients to be evaluated; ξi

¼ ξi1 ; ξi2 ; � � �; ξiN
� �

is the vector of independent standard normal vari-

ables representing the uncertainties in the input parameters, which
corresponds to the random variables used to discretize the random fields

using the KL expansion in Eq. (3); andΓN ξi1 ; ξi2 ; � � �; ξiN
� �

are themultidi-

mensional Hermite polynomials of degree N. The reader is referred to
Ghanem and Spanos (2003) and Li et al. (2011) for details. Note that
the number of unknown coefficients in Eq. (10) is Nc, Nc = (N + p)!/
(N! × p!) for the pth order PCE.

(8) Determine the unknown coefficients in the Hermite PCE by
equating the factors of safety obtained from step (6) with the es-
timates from the series approximation in Eq. (10) at thematrix ξ
from step (3), then constructing and solving a system of linear
equations. The collocation method based on the linearly inde-
pendent principle (Li and Zhang, 2007) or the regression based
approach (Isukapalli et al., 1998) can be used for such purpose.
Then, the explicit function between FS and the uncertain input
parameters is obtained.

(9) Perform probabilistic analyses on the explicit performance func-
tion G(ξ) = FS(ξ) − 1. The probability of failure and the corre-
sponding reliability index can be estimated by using the MCS
with one million samples on the performance function with the
FS represented by a Hermite PCE. The first four statistical mo-
ments can also be directly evaluated using the PCE (Mollon
et al., 2011). It should be pointed out that the evaluation of the
performance function does not require deterministic FEA of slope
stability again, but only involve the evaluation of simple algebraic
expressions, which is much more computationally efficient.

4. Illustrative examples

4.1. Application to a saturated clay slope under undrained conditions
(ϕu = 0)

In the first example, an undrained clay slope studied by Griffiths and
Fenton (2004) and Cho (2010) is investigated. A typical finite element
model of the considered slope is shown in Fig. 2. The majority of the
elements are squares and the elements adjacent to the slope surface
are degenerated into triangles. The types of elements are 4-node quad-
rilateral elements and 3-node triangular elements. In Fig. 2, the finite
element mesh consists of 910 elements and 981 nodes. For illustrative
purposes, a conventional elastic and perfectly plastic model based on
the Mohr–Coulomb failure criterion is adopted to represent the
stress–strain behavior of the soil. The boundary conditions are rollers
on both lateral boundaries and full fixity at the base.

To avoid negative values, the undrained shear strength, cu, is consid-
ered as a log-normally distributed random field. Table 1 summarizes the
statistical properties of soil parameters for the considered slope. Note
that Young's modulus E, Poisson's ratio v, and unit weight γsat of the
soil are treated as deterministic quantities because their variations are
relatively low compared with cu (Duncan, 2000). Based on the mean
value of theundrained shear strength, theminimum factor of slope safe-
ty is obtained as 1.366 using the finite element based method based on
the search algorithm for the critical failure surface, which is implement-
ed in SIGMA/W and SLOPE/W. The corresponding critical failure surface
is plotted in Fig. 2, which is deep and passes through the foundation soil.
For comparison, the factor of safety using the limit equilibrium
method is also calculated for this slope model. The FS is 1.354 using
the Morgenstern–Price method, which is consistent with 1.356 using
Bishop's simplified method reported in Cho (2010). These results indi-
cate that the finite element based method adopted in this study evalu-
ates the slope stability problem effectively.

For computational efficiency, the KL expansion is employed to
discretize the 2-D log-normally distributed random field of cu. The accu-
racy of discretization of random field highly depends on the number of
eigenmodes, n. Generally, an increase in the number of eigenmodes in-
creases the accuracy. However, it also increases the computational ef-
fort. In practice, a compromise between accuracy and computational
cost is achieved by accepting some amount of error. The wavelet-
Galerkin technique is used herein to solve the eigenvalue problem un-
derlying the squared exponential autocorrelation function in Eq. (1).
Fig. 3 shows the decaying trends of the eigenvalues obtained by solving
the integral eigenvalue problem. Note that the eigenvalues decay dras-
tically with the number of KL terms. Moreover, the rate of decay in-
creases with increasing autocorrelation distance. For n = 10, the
ratios of the expected energy in Eq. (5) are 92.8%, 97.1% and 98.7% for
(lh = 20 m, lv = 2 m), (lh = 25 m, lv = 2.5 m) and (lh = 30 m,
lv = 3 m), respectively. When n increases from 10 to 15 associated
with (lh = 25 m, lv = 2.5 m), the ratio of the expected energy, ε, only
increases from 97.1% to 99.3%. The improvement in the ratio of the ex-
pected energy is less significant. However, the resulting computational
effort is increased significantly in comparison with that for n = 10. A
ratio of ε ≥ 95% is commonly taken as a criterion for determining the
number of eigenmodes n (Laloy et al., 2013). Taking the autocorrelation
distances of lh = 25 m and lv = 2.5 m as an example, which are typical
values reported in the literature (Phoon and Kulhawy, 1999; El-Ramly
et al., 2003), a value of n = 10 is adopted to achieve a compromise
between accuracy and efficiency in the following.
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The finite element size is an important parameter which can affect
the accuracy of reliability results when the spatial variability is consid-
ered. As suggested by Griffiths and Fenton (2004) and Ching and
Phoon (2013), the ratio of the element size to the scale of fluctuation
has to be sufficiently small to ensure that the variance function ap-
proaches 1.0. For the autocorrelation distances of lh = 25 m and
lv = 2.5 m, the ratio of the element size to the vertical scale of fluctua-
tion, Δzδv ¼ 0:5

2:5
ffiffiffi
π

p ¼ 0:11, is relatively small for a square finite element of
side length 0.5 m. It can be seen from Vanmarcke (1977) that the vari-
ance function Γu(Δz) approaches 1.0 when the spatial autocorrelation is
modeled by the squared exponential model. This also agrees with the
observation in Ching and Phoon (2013) that the element size has to
be smaller than 0.13δv to 0.17δv depending on the stress states and fail-
ure curve orientations when the squared exponential autocorrelation
function is adopted. Although a finermesh can produce better estimates
of factor of slope safety and probability of slope failure, the resulting
computational time increases dramatically. To strike balance between
accuracy and computational cost, the 4-node quadrilateral elements
and 3-node triangular elements with an element size of 0.5 m are
adopted in this study. Additionally, the finite element mesh should be
changed along with the autocorrelation distance.

To obtain the random field realizations of spatially variable cu, an
independent standard normal sample matrix ξ with dimensions of
10 × 66 is first generated for the 2nd order Hermite PCE using the prob-
abilistic collocation points (e.g., Li et al., 2011). This sample matrix,
ξ10 × 66, and coordinates (xo,i, yo,i), in which i = 1, 2,⋯, 910, are used to
simulate the lognormal random field of cu. Then, a parameter matrix
of spatially variable cu with dimensions of 910 × 66 in the physical
space is obtained from the KL expansion. These 910 values of cu in
each column of the parameter matrix are assigned to each finite ele-
ment according to the order of coordinates (xo,i, yo,i). By replacing the
mean values of cu for each finite element in the original “FEM-FS.xml”
file with these 910 values of cu, a new “FEM-FS.xml” input file is gener-
ated. Applying the similarmethod, 66 different new “FEM-FS.xml” input
files can be obtained. The deterministic FEA of slope stability is carried
out based on these 66 new “FEM-FS.xml” input files via SIGMA/W and
SLOPE/W. This process will produce 66 different factors of slope safety,
FS = (FS1, FS2,…, FS66), which are extracted from the corresponding re-
sult files named “FEM-FS.fac”, respectively. The explicit function be-
tween the factor of slope safety and independent standard normal
variables is constructed using the 2nd order Hermite PCE. A system of
Table 1
Statistical properties of soil parameters for an undrained clay slope.

Parameter Mean COV

Undrained shear strength cu (kPa) 23 0.3
Young's modulus E (MPa) 100 –

Poisson's ratio ν 0.3 –

Unit weight γsat (kN/m3) 20 –

Note: The symbol “–” denotes that the parameter is constant.
linear equations is constructed by equating the factors of safety obtain-
ed from the 66 runs of deterministic finite element slope stability anal-
ysis with the estimates from the series approximation in Eq. (10). The
unknown coefficients in the 2nd order Hermite PCE can be determined
using the collocation point method based on the linearly independent
principle (e.g., Li and Zhang, 2007; Li et al., 2013a). Finally, the probabil-
ity of slope failure is obtained as 11.8% using the direct MCS with 106

samples. Similarly, the probability of slope failure is obtained as
11.56% from the 3rd order Hermite PCE where the independent stan-
dard normal sample matrix ξ with dimensions of 10 × 286 is used.
Note that the direct MCS are carried out on the explicit performance
function represented by the Hermite PCE. The calculation of FS does
not involve finite elementmodel runs, but only the evaluation of simple
algebraic expressions, which is much more computationally efficient.

Table 2 shows the reliability results of an undrained clay slope for
autocorrelation distances of lh = 25 m, lv = 2.5 m using the proposed
non-intrusive stochastic finite element method. To validate the pro-
posedmethod, the results obtained from the LHSwith 1000 simulations
are also provided in Table 2. The coefficient of variation of the probabil-
ity of failure, pf, associatedwith the LHS,COVp f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−p fð Þ= 1000 � p fð Þp

(e.g., Zhang et al., 2013), is 8.9% and 6.8% for lh = 25 m, lv = 2.5 m
(pf = 11.2%) and lh = 1000 m, lv = 1000 m (pf = 17.6%), respective-
ly. They are smaller than the commonly used value 10% in the literature.
Thus, the results obtained from the LHS with 1000 simulations can be
taken as “exact” solutions for this example. The probabilities of failure
obtained from the 2nd and 3rd order PCEs are 11.8% and 11.56%, respec-
tively. The corresponding relative errors in the probability of failure are
5.4% and 3.2% in comparisonwith 11.2% obtained from the LHSmethod.
These results indicate that the proposedmethod can produce sufficient-
ly accurate probability of failure. Additionally, the numbers of finite ele-
ment model runs, Np, for the 2nd and 3rd order PCEs are 66 and 286
0 10 20 30 40 50
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Fig. 3. Eigenvalues of the autocorrelation function.



Table 2
Reliability results of an undrained clay slope for lh = 25 m and lv = 2.5 m.

Method μFS σFS δFS κFS pf (%) β

2nd order PCE (Np = 66) 1.272 0.243 0.457 3.520 11.80 1.185
3rd order PCE (Np = 286) 1.312 0.303 0.814 5.501 11.56 1.197
LHS (Np = 1000) 1.294 0.252 0.586 3.568 11.20 1.216

Table 3
Reliability results of an undrained clay slope for lh = 1000 m and lv = 1000 m.

Method μFS σFS δFS κFS pf (%) β

2nd order PCE (Np = 66) 1.372 0.411 0.834 3.933 18.52 0.896
3rd order PCE (Np = 286) 1.371 0.411 0.921 4.490 17.65 0.929
LHS (Np = 1000) 1.372 0.412 0.916 4.430 17.60 0.931
SRV 1.366 0.414 – – 17.95 0.917

Note: SRV denotes the single random variable approach.
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based on the rank of the informationmatrix, respectively, which are just
equal to the number of unknown coefficients in the Hermite PCE, Nc. In
contrast, the LHS needs 1000finite elementmodel runs to achieve a rea-
sonable accuracy. It is evident that the non-intrusive stochastic finite el-
ement method is much more efficient than the LHS method. The first
four statistical moments of the factor of safety are also listed in
Table 2. The computed skewness and kurtosis using the LHS with
1000 simulations are 0.586 and 3.568, respectively. These values are 0
and 3 for a normal distribution, which suggests that the factor of safety
of the undrained clay slope as a random variable does not follow a nor-
mal distribution.

Similarly, Table 3 shows the reliability results of an undrained clay
slope for autocorrelation distances of lh = 1000 m and lv = 1000 m.
The probabilities of failure obtained from the 2nd and 3rd order PCEs
are 18.52% and 17.65%, respectively. Taking 17.6% obtained from the
LHSwith 1000 simulations as the “exact” solution, the relative errors as-
sociated with the 2nd and 3rd order PCEs are 5.2% and 0.3%, respective-
ly. When the undrained shear strength is modeled by a single random
variable, the probability of slope failure is 17.95% using the approach
presented in Griffiths and Fenton (2004), which is almost identical to
that obtained from the randomfieldmodelwith the autocorrelation dis-
tances of lh = 1000 m and lv = 1000 m. Such result clearly indicates
that when only the probability of failure is of great interest, the random
field model with the autocorrelation distances of lh = 1000 m and
lv = 1000 m is almost equivalent to the single random variable
model. With regard to the computational efficiency, the numbers of fi-
nite element model runs for the 2nd and 3rd order PCEs are 66 and
286, respectively. The computational cost for the 2nd order PCE is only
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about one quarter of that for the 3rd order PCE. Hence, the non-
intrusive stochastic finite element method with a 2nd order PCE is
used in the subsequent analyses.

Fig. 4 summarizes the variations of the probability of slope failure
with the coefficient of variation of cu (COVcu) for various factors of slope
safety. The autocorrelation distances of lh = 1000 m and lv = 1000 m
represent the case of ignoring spatial variation in cu. It can be observed
that ignoring spatial variation will lead to unconservative estimate of
the probability of slope failure if FS is below 1.0. This result contradicts
with thefindings of other investigatorswhoused classical slope reliability
analysis tools (e.g., Cho, 2007; Cho, 2010; Griffiths et al., 2011). With the
increase of FS, there are crossover points between the curves associated
with (lh = 25 m, lv = 2.5 m) and (lh = 1000 m, lv = 1000 m), which
give a critical value of COVcu. When the COVcu exceeds the critical
value, ignoring spatial variation in cu will underestimate the probability
of slope failure. Suchfindings are consistentwith the observations report-
ed in Griffiths and Fenton (2004). Additionally, the critical value of COVcu
increases with increasing FS. An important observation highlighted in
Fig. 4 is that a FS = 1.3 for the considered slopewould lead to a probabil-
ity of failure as high as pf = 18% associated with COVcu = 0.3 and
(lh = 25 m, lv = 2.5 m). In geotechnical engineering practice, however,
slopes with a factor of safety as high as FS = 1.3 rarely fail. These results
further support the conclusions drawn by Duncan (2000). He stated that
“Computing both factor of safety and probability of failure is better than
computing either one alone. Although neither factor of safety nor proba-
bility of failure can be computedwith high precision, both have value and
each enhances the value of the other”.

Another interesting finding observed from Fig. 4 is that the probabil-
ity of slope failure associated with FS b 1 does always increases with
COVcu in comparison with FS N 1. This is because for a relatively small
FS, themean value of cu has amore significant influence on the probabil-
ity of slope failure compared with the COVcu. To further explain this
finding, Fig. 5 shows the probabilities of slope failure for various values
of COVcu and FS using the single random variable approach. The proba-
bilities of slope failure increase with COVcu for a relative high FS. When
FS is below 0.96, however, COVcu = 0.1 leads to higher probabilities of
slope failure than those associated with COVcu exceeding 0.1.
4.2. Application to a c–ϕ slope

In the second example, the stability of a c–ϕ slope studied by
Griffiths and Fenton (2004) is investigated again. Like the first example,
a typical finite element model of the considered c–ϕ slope is presented
in Fig. 6. The finite element mesh is identical to that in Fig. 2, which can
also lead to almost no variance reductionwhen the squared exponential
autocorrelation model with autocorrelation distances of lh = 25 m and
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using single random variable model.

Table 4
Statistical properties of soil parameters for a c–ϕ slope.

Parameter Mean COV

Cohesion c (kPa) 10 0.3
Friction angle ϕ (°) 20 0.2
Young's modulus E (MPa) 100 –

Poisson's ratio ν 0.3 –

Unit weight γ (kN/m3) 20 –
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lv = 2.5 m is adopted. Table 4 summarizes the statistical properties of
the soil parameters for the c–ϕ slope. The cohesion and friction angle
are modeled as cross-correlated lognormal random fields. Again,
Young'smodulus E, Poisson's ratio v and unit weightγ are treated as de-
terministic quantities. The critical failure surface obtained from the de-
terministic analysis passes the slope toe, which is significantly different
from that for the undrained clay slope in Fig. 2. Using themean values of
the cohesion and friction angle, the minimum factor of safety of the c–ϕ
slope is 1.780 from the finite element analysis incorporating an auto-
matic search algorithm. Also, the coordinates of the centroids of 910 fi-
nite elements are extracted and this deterministic slope stability model
file is saved as an input file named “FEM-FS.xml”.

Unlike the first example, 20 independent standard normal random
variables are needed to discretize cross-correlated lognormal random
fields of c and ϕ when a value of n = 10 is selected for each spatially
varying variable. The sample matrix, ξ, with dimensions of 20 × 462 is
first generated for the 2nd order Hermite PCE using the Latin hypercube
sampling points (Choi et al., 2004). The number of samples, 462, is used
because it is twice the number of coefficients, Nc, based on the regres-
sion based approach (Isukapalli et al., 1998). Then, the independent
standard normal sample matrix, ξ, is transformed into the correlated
standard normal sample matrix, χ, using Eq. (6) by the Cholesky de-
composition of Rc,ϕ. The sample matrix χ20 × 462 and coordinates (xo,i,
yo,i), in which i = 1, 2,⋯, 910, are used to simulate the 2-D cross-
correlated lognormal random fields of c and ϕ using Eqs. (6)–(9). Two
parameter matrices of spatially variable c and ϕ in which each has
dimensions of 910 × 462 in the physical space are obtained using the
KL expansion. These 910 pairs of values of c and ϕ in each column of
the parameter matrices are assigned to each finite element according
to the order of coordinates (xo,i, yo,i). Like the first example, 462 different
Distan

0 5 10

E
le

va
tio

n 
(m

)

0

2

4

6

8

10

Fig. 6. FEMmodel of the homogene
new “FEM-FS.xml” input files and the corresponding factors of slope
safety, FS = (FS1, FS2,…, FS462), can be obtained. Finally, the unknown
coefficients in the 2nd order Hermite PCE are determined using the re-
gression based approach. Similarly, the probability of slope failure can
also be obtained using direct MCS with 106 samples.

Table 5 shows the reliability results of a c–ϕ slope for autocorrelation
distances of lh = 25 m and lv = 2.5 m and ρc,ϕ = 0. The probabilities
of failure obtained from the 2nd order PCEs with 462 and 2500 runs of
finite element model are 6.26E-4 and 4.32E-4, respectively. This low
probability of failure is often required in most geotechnical structures
management demands and corresponds to thepractical cases. However,
for the same problem, the MCS requires more than one million runs of
finite element model to produce sufficiently accurate results when the
coefficient of variation of pf below 10% is satisfied. This is almost impos-
sible for complex slope reliability problems. In Table 5, the results
obtained from the 2nd order PCE are consistent with those obtained
from 3rd order PCE. Taking the reliability index for the 3rd order PCE
as the “exact” solution, the relative error in reliability index for the
2nd order PCE is below 5.0%, which indicates that the 2nd order PCE
has converged and canproduce satisfactory results based on the conver-
gence property of the PCE (Mollon et al., 2011; Li et al., 2013a). For com-
putational efficiency, the 2nd order PCE is also employed in the
following.

To account for the effect of cross-correlation between cohesion and
friction angle on the slope reliability, the cross-correlation coefficient
ρc,ϕ is needed. Several studies (Lumb, 1970; Wolff, 1985; Tang et al.,
2012) reported values of ρc,ϕ. The range of −0.5 ≤ ρc,ϕ ≤ 0.5 is used
in this study for illustration. Fig. 7 compares the probabilities of slope
failure for the random field approach with autocorrelation distances of
lh = 25 m and lv = 2.5 m and the random variable approach. The
cross-correlation between c and ϕ has a significant influence on the
probability of slope failure. For the autocorrelation distances of
lh = 25 m and lv = 2.5 m, the probability of failure changes several
orders of magnitude (i.e., increasing from 3.0E-06 to 4.97E-03) when
ρc,ϕ varies from−0.5 to 0.5. As expected, the probability of slope failure
decreases when the negative cross-correlation becomes stronger and
increases with positive cross-correlation coefficient. Therefore, the
probability of failure under the assumption of independence between
c and ϕmay be severely biased if the actual cross-correlation is positive
or negative. It can also be noted that the random variable approach
ce (m)

15 20 25 30

ous c–ϕ slope with FS = 1.780.



Table 5
Reliability results of a c–ϕ slope for lh = 25 m and lv = 2.5 m.

Method μFS σFS δFS κFS pf (%) β

2nd order PCE (Np = 462) 1.721 0.227 0.171 3.175 6.26E-4 3.227
2nd order PCE (Np = 2500) 1.721 0.228 0.243 3.185 4.32E-4 3.331
3rd order PCE (Np = 2500) 1.721 0.236 0.323 3.286 3.55E-4 3.386
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underestimates the probability of failure for large positive correlation
coefficient between cohesion and friction angle, which is consistent
with the observation in Griffiths et al. (2011).

5. Conclusions

A non-intrusive stochastic finite elementmethod has been proposed
for slope reliability analysis considering spatial variability of shear
strength parameters. The KL expansion is adopted to discretize the 2-
D cross-correlated non-Gaussian random fields of spatially variable
shear strength parameters. Two illustrative examples of slope reliability
analysis are investigated to demonstrate the capacity and validity of the
proposed method. Several conclusions are drawn from this study:

(1) The proposed method does not require the user to modify
existing deterministic finite element codes. Moreover, the deter-
ministic finite element analysis and the probabilistic analysis are
decoupled. The proposed method provides a practical tool for
reliability problems involving complex finite element analysis.

(2) The non-intrusive stochastic finite elementmethod can efficient-
ly evaluate the slope reliability in the presence of spatial variabil-
ity in shear strength parameters. It can reduce the number of
calls to the deterministic finite element model substantially and
is much more efficient than the LHS method. Additionally, this
method can yield satisfactory results for low failure risk corre-
sponding to most practical cases.

(3) Ignoring spatial variability of shear strength parameters will re-
sult in unconservative estimates of the probability of slope failure
if the coefficients of variation of shear strength parameters
exceed a critical value or the factor of slope safety is relatively
low. The critical coefficient of variation of shear strength param-
eters increases with increasing the factor of slope safety.

(4) The variation of probability of slope failure highly depends on
the factor of slope safety. The lower the value of factor of safety
(i.e., FS = 0.9 in the first example), the more likely it is that the
shear strength parameters with low variability will overestimate
the probability of slope failure, which is conservative for slope
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Fig. 7. Effect of cross-correlation between cohesion and friction angle on probability of
failure.
safety assessment.
(5) When the spatial autocorrelation of the shear strength parame-

ters is very weak, more KL expansion terms are needed to pro-
duce sufficiently accurate reliability results. In order to improve
the computational efficiency, other high efficient polynomial
chaos expansions such as the sparse polynomial chaos expansion
should be incorporated into the non-intrusive stochastic finite
element method.
Acknowledgments

This work was supported by the National Science Fund for Distin-
guished Young Scholars (Project No. 51225903), the National Basic
Research Program of China (973 Program) (Project No. 2011CB013506)
and the National Natural Science Foundation of China (Project No.
51329901).

References

Al-Bittar, T., Soubra, A.-H., 2013. Bearing capacity of strip footings on spatially random
soils using sparse polynomial chaos expansion. Int. J. Numer. Anal. Methods
Geomech. 37 (13), 2039–2060.

Ching, J., Phoon, K.K., 2013. Effect of element sizes in random field finite element simula-
tions of soil shear strength. Comput. Struct. 126, 120–134.

Cho, S.E., 2007. Effects of spatial variability of soil properties on slope stability. Eng. Geol.
92 (3–4), 97–109.

Cho, S.E., 2010. Probabilistic assessment of slope stability that considers the spatial variability
of soil properties. J. Geotech. Geoenviron. 136 (7), 975–984.

Cho, S.E., 2012. Probabilistic analysis of seepage that considers the spatial variability of
permeability for an embankment on soil foundation. Eng. Geol. 133–134, 30–39.

Choi, S.K., Canfield, R., Grandhi, R., Pettit, C., 2004. Polynomial chaos expansion with Latin
hypercube sampling for estimating response variability. AIAA J. 42 (6), 1191–1198.

Der Kiureghian, A., Ke, J.-B., 1988. The stochastic finite element method in structural reli-
ability. Probabilistic Eng. Mech. 3 (2), 83–91.

Duncan, J.M., 2000. Factors of safety and reliability in geotechnical engineering. J. Geotech.
Geoenviron. 126 (4), 307–316.

El-Ramly, H., Morgenstern, N.R., Cruden, D.M., 2003. Probabilistic stability analysis of a
tailings dyke on presheared clay-shale. Can. Geotech. J. 40 (1), 192–208.

Farias, M.M., Naylor, D.J., 1998. Safety analysis using finite elements. Comput. Geotech. 22
(2), 165–181.

Fenton, G.A., Griffiths, D.V., 2003. Bearing capacity prediction of spatially random c–φ
soils. Can. Geotech. J. 40 (1), 54–65.

GEO-SLOPE International Ltd., 2010a. Stress–Deformation Modeling with SIGMA/W 2007
Version: An Engineering Methodology [Computer Program]. GEO-SLOPE Internation-
al Ltd., Calgary, Alberta, Canada.

GEO-SLOPE International Ltd., 2010b. Stability ModelingWith SLOPE/W 2007 Version: An
Engineering Methodology [Computer Program]. GEO-SLOPE International Ltd., Calgary,
Alberta, Canada.

Ghanem, R.G., Spanos, P.D., 2003. Stochastic Finite Element: A Spectral Approach. Revised
version Dover Publication, Inc., Mineola, New York.

Griffiths, D.V., Fenton, G.A., 2004. Probabilistic slope stability analysis by finite elements.
J. Geotech. Geoenviron. 130 (5), 507–518.

Griffiths, D.V., Huang, J.S., Fenton, G.A., 2011. Probabilistic infinite slope analysis. Comput.
Geotech. 38 (4), 577–584.

Huang, S.P., 2001. Simulation of Random Processes Using Karhunen–Loeve Expansion.
(Ph.D. thesis) National University of Singapore, Singapore.

Isukapalli, S.S., Roy, A., Georgopoulos, P.G., 1998. Stochastic response surface methods for
uncertainty propagation: application to environmental and biological systems. Risk
Anal. 18 (3), 351–363.

Ji, J., Liao, H.J., Low, B.K., 2012. Modeling 2-D spatial variation in slope reliability analysis
using interpolated autocorrelations. Comput. Geotech. 40, 135–146.

Laloy, E., Rogiers, B., Vrugt, J.A., Mallants, D., Jacques, D., 2013. Efficient posterior explora-
tion of a high-dimensional groundwater model from two-stage MCMC simulation
and polynomial chaos expansion. Water Resour. Res. 49 (5), 2664–2682.

Li, H., Zhang, D., 2007. Probabilistic collocationmethod for flow in porousmedia: compar-
isons with other stochastic method. Water Resour. Res. 43 (W09409), 44–48.

Li, D.Q., Chen, Y.F., Lu, W.B., Zhou, C.B., 2011. Stochastic response surface method for
reliability analysis of rock slopes involving correlated non-normal variables. Comput.
Geotech. 38 (1), 58–68.

Li, D.Q., Jiang, S.H., Chen, Y.G., Zhou, C.B., 2013a. A comparative study of three collocation
point methods for odd order stochastic response surface method. Struct. Eng. Mech.
45 (5), 595–611.

Li, D.Q., Tang, X.S., Phoon, K.K., Chen, Y.F., Zhou, C.B., 2013b. Bivariate simulation using
copula and its application to probabilistic pile settlement analysis. Int. J. Numer.
Anal. Methods Geomech. 37 (6), 597–617.

Li, D.Q., Qi, X.H., Phoon, K.K., Zhang, L.M., Zhou, C.B., 2013c. Effect of spatially variable
shear strength parameters with linearly increasing mean trend on reliability of infi-
nite slopes. Struct. Saf.. http://dx.doi.org/10.1016/j.strusafe.2013.08.005.

Liu, W.K., Belytschko, T., Mani, A., 1986. Random field finite elements. Int. J. Numer.
Methods Eng. 23 (10), 1831–1845.

http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0005
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0005
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0005
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0010
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0010
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0015
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0015
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0020
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0020
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0025
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0025
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0030
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0030
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0035
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0035
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0040
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0040
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0045
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0045
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0050
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0050
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0055
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0055
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0060
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0060
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0060
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0065
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0065
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0065
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0070
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0070
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0075
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0075
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0080
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0080
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0215
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0215
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0085
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0085
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0085
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0090
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0090
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0095
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0095
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0095
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0115
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0115
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0100
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0100
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0100
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0105
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0105
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0105
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0110
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0110
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0110
http://dx.doi.org/10.1016/j.strusafe.2013.08.005
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0120
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0120


128 S.-H. Jiang et al. / Engineering Geology 168 (2014) 120–128
Low, B.K., Lacasse, S., Nadim, F., 2007. Slope reliability analysis accounting for spatial
variation. Georisk 1 (4), 177–189.

Lumb, P., 1970. Safety factors and the probability distribution of soil strength. Can.
Geotech. J. 7 (3), 225–242.

Mollon, G., Dias, D., Soubra, A.-H., 2011. Probabilistic analysis of pressurized tunnels
against face stability using collocation-based stochastic response surface method.
J. Geotech. Geoenviron. 137 (4), 385–397.

Phoon, K.K., Kulhawy, F.H., 1999. Characterization of geotechnical variability. Can.
Geotech. J. 36 (4), 612–624.

Phoon, K.K., Huang, S.P., Quek, S.T., 2002. Implementation of Karhunen–Loeve expansion for
simulation using a wavelet-Galerkin scheme. Probabilistic Eng. Mech. 17 (3), 293–303.

Srivastava, A., Sivakumar Babu, G.L., 2009. Effect of soil variability on the bearing capacity
of clay and in slope stability problems. Eng. Geol. 108 (1–2), 142–152.

Srivastava, A., Sivakumar Babu, G.L., Haldar, S., 2010. Influence of spatial variability of
permeability property on steady state seepage flow and slope stability analysis.
Eng. Geol. 110 (3–4), 93–101.

Stefanou, G., 2009. The stochastic finite element method: past, present and future.
Comput. Methods Appl. Mech. Eng. 198 (9–12), 1031–1051.

Tabarroki, M., Ahmad, F., Banaki, R., Jha, S., Ching, J., 2013. Determining the factors of safe-
ty of spatially variable slopes modeled by random fields. J. Geotech. Geoenviron. 139
(12), 2082–2095.
Tang, X.S., Li, D.Q., Chen, Y.F., Zhou, C.B., Zhang, L.M., 2012. Improved knowledge-based
clustered partitioning approach and its application to slope reliability analysis.
Comput. Geotech. 45, 34–43.

Tang, X.S., Li, D.Q., Rong, G., Phoon, K.K., Zhou, C.B., 2013. Impact of copula selection on
geotechnical reliability under incomplete probability information. Comput. Geotech.
49, 264–278.

Vanmarcke, E.H., 1977. Probabilistic modeling of soil profiles. J. Geotech. Eng. Div. 103
(11), 1227–1246.

Vanmarcke, E.H., 2010. Random Fields: Analysis and Synthesis. Revised and Expanded
New Edition. World Scientific Publishing, Beijing.

Vořechovský, M., 2008. Simulation of simply cross-correlated random fields by series
expansion methods. Struct. Saf. 30 (4), 337–363.

Wang, Y., Cao, Z.J., Au, S.K., 2011. Practical reliability analysis of slope stability by
advanced Monte Carlo simulations in a spreadsheet. Can. Geotech. J. 48 (1),
162–172.

Wolff, T.F., 1985. Analysis and Design of Embankment Dam Slopes: A Probabilistic Ap-
proach. (Ph. D. thesis) Purdue University, Lafayette, Ind, USA.

Zhang, J., Huang, H.W., Juang, C.H., Li, D.Q., 2013. Extension of Hassan and Wolff method
for system reliability analysis of soil slopes. Eng. Geol. 160, 81–88.

Zhu, H., Zhang, L.M., 2013. Characterizing geotechnical anisotropic spatial variations using
random field theory. Can. Geotech. J. 50 (7), 723–734.

http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0125
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0125
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0130
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0130
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0135
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0135
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0135
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0140
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0140
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0145
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0145
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0150
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0150
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0155
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0155
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0155
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0160
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0160
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0165
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0165
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0165
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0170
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0170
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0170
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0175
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0175
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0175
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0180
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0180
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0185
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0185
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0190
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0190
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0195
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0195
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0195
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0225
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0225
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0205
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0205
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0210
http://refhub.elsevier.com/S0013-7952(13)00324-4/rf0210

	Slope reliability analysis considering spatially variable shear strength parameters using a non-�intrusive stochastic finit...
	1. Introduction
	2. Random field modeling of soil property
	2.1. Spatial variability of soil property
	2.2. Karhunen–Loève (KL) expansion
	2.3. Cross-correlated non-Gaussian random fields

	3. Procedure of a non-intrusive stochastic finite element method
	4. Illustrative examples
	4.1. Application to a saturated clay slope under undrained conditions (ϕu=0)
	4.2. Application to a c–ϕ slope

	5. Conclusions
	Acknowledgments
	References


