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Abstract 

Underwater gliders are a class of AUVs designed 

for high endurance over long distances, but their 

reduced velocity makes them more susceptible to 

ocean currents during deployment. Thus, feasible 

paths need to be generated through the ocean 

current field. This paper proposes a method for 

determining energy-optimal paths that account for 

the influence of ocean currents. The proposed 

technique is based on Rapidly-Exploring Random 

Trees (RRTs). Using real ocean current and 

bathymetry data, results produce comparable paths 

to grid based methods, and offer an improvement 

in terms of avoiding high-energy shallow regions. 

Future work will focus on heuristically biasing the 

RRT growth to further improve the generated 

paths, and implementation of the algorithms on a 

glider platform. 

1 Introduction 

Autonomous Underwater Vehicles (AUVs) have been 

used extensively in oceanography of late, to model ocean 

currents and tides, predict weather patterns and perform 

other marine research tasks. They provide a means by 

which to continuously measure ocean parameters such as 

temperature and salinity, as they can spend long periods 

of time underwater, and at significantly lower operating 

costs than manned research vessels [Blidberg, 2001]. 

Underwater gliders are a class of AUVs that are 

buoyancy-driven, reducing and expanding their volume to 

dive and climb through the ocean [Graver, 2005]. A pair 

of wings mounted on the body then converts this vertical 

motion into horizontal propulsion. As a product of this 

propulsion mechanism, their velocities are typically lower 

than for motor-driven vehicles (herein referred to as 

AUVs), reaching a maximum of around 0.5 m/s. Since 

drag is proportional to the square of velocity, gliders 

experience quadratically less drag, and can offer high 

endurance over long ranges.  They can achieve distances 

on the order of thousands of kilometres per deployment, 

and have considerably longer deployment periods than 

other AUVs, lasting weeks or months depending on the 

platform design.  

However, this velocity, while improving endurance 

and range, means that they can often be adversely 

affected by ocean currents. In a large area off the East 

coast of Australia used for this study, ocean currents 

average around 0.3 m/s and reach a maximum of 1.7 m/s 

[BlueLink, 2009]. Accordingly, glider trajectories need to 

account for these current magnitudes to ensure that the 

mission goals are realisable. 

Path planning for AUVs is an area that has been 

extensively explored [Carroll et al., 1992, Xu et al., 2007, 

Zhang et al., 2008]. However, gliders can be far more 

affected by ocean currents than an AUV. While the AUV 

can often overcome these currents if necessary, the glider 

may drift significantly from its planned trajectory. 

Accordingly, path planning for a glider is more critical 

than that for a regular AUV. While path planning for 

AUVs is typically aimed at minimising energy 

consumption, glider path planning is necessary just to 

ensure that the destination is accessible. Nevertheless, 

previously implemented AUV planning algorithms may 

be adaptable for a glider application. 

One past approach involves partitioning the ocean 

field into a non-uniform square grid and implementing the 

A* graph search algorithm to generate a path through the 

field [Carroll et al., 1992]. However, ocean currents are 

not directly considered in the path cost and are merely 

used as guidelines in the planning process. This grid A* 

application has since been extended to incorporate ocean 

currents, finding the minimum energy cost path for an 

AUV through the field [Garau et al., 2005]. While useful 

for an AUV, this energy optimisation does not necessarily 

extend well to a glider application, and a planning 

technique tailored to a glider would be ideal. Constraining 

the vehicle to move in an 8-connected grid also means 

that optimality is compromised in the graph discretisation 

alone, and a continuous technique is desirable. 

Continuous planning techniques have also been 

explored for both AUVs and gliders alike. Past work 

investigates optimal path planning in 3D for an 

underwater glider [Mahmoudian et al., 2007], but ocean 

currents are not considered, collapsing the optimal 

solution into a kinodynamic technique using Dubins 

curve segments. More recent work models ocean currents 

as 3D B-spline functions and produces near-optimal paths 

in terms of time and energy efficiency [Zhang et al., 

2008]. 

Another study which considers ocean currents in 

path planning applies a parallel swarm parameterisation 
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to optimise a non-linear cost surface [Witt & Dunbabin, 

2008]. The cost considers energy expenditure, obstacles, 

shallow water and time, and their planner is robust in 

handling variable vehicle thrust and time-variant currents.  

For this application however, some of these 

considerations can be neglected. The current fields 

change very slowly with time, and gliders vary their 

velocity less than AUVs – they are less equipped to use 

this as a degree of freedom [Graver, 2005]. Thus, it is a 

useful exercise to explore other options and develop a 

simpler solution fitted to the requirements of a glider. 

Rapidly-Exploring Random Trees, or RRTs, 

[LaValle, 1998] have been used to plan paths for non-

holonomic ground vehicles [LaValle & Kuffner, 2001], 

but this has yet to be applied to planning in ocean 

currents, or any such vector cost field. This randomised 

approach allows a non-uniform graph to be generated by 

means of the RRT, and heuristic biases can be applied to 

direct the RRT growth [Simmons & Urmson, 2003]. 

Interestingly, RRTs have been applied to AUV path 

planning [Tan et al., 2004] but in this work, ocean 

currents were not considered. Instead, the main advantage 

of RRTs was their ability to quickly explore high-

dimensional search spaces. However, this feature is of 

less value for an underwater glider – since longitudinal 

motion is largely devoted to executing the dive cycles 

required for propulsion, the main scope for path planning 

is in the 2D lateral plane.  

Nonetheless, RRTs may be used for path planning in 

the lateral plane. To the knowledge of the authors, RRTs 

have yet to be applied to planning in ocean currents. 

This paper looks to use RRTs to develop a path 

planning solution tailored to an underwater glider in the 

presence of ocean currents. These currents are often 

greater in magnitude than the glider velocity, and so the 

focus is on feasible paths, while striving for energy 

optimality. 

For the path planning implementation in this paper, 

a number of assumptions will be made: 

• Ocean current and bathymetry data is assumed to be 

constant over a glider mission. Since mission 

durations are far greater than computation time, paths 

can easily be regenerating during a mission to 

account for the dynamic ocean current field. 

• Distances between degrees of latitude and longitude 

are assumed to be fixed, such that the ocean surface 

is approximated by a 2D plane. This approach is 

sufficient for the purposes of gauging the 

effectiveness of different path planning techniques. 

• Dive depth is assumed to be half of the local ocean 

depth. This may not accurately reflect dive 

characteristics, but serves to demonstrate the 

effectiveness of the algorithm in avoiding shallow 

regions. 

The structure of the remainder of this paper is as 

follows. Section 2 outlines the ocean model and ocean 

current data. Section 3 outlines the A* search algorithm 

as applied to a uniform grid and the development of time 

and energy cost functions. Section 4 describes the use of 

Rapidly-Exploring Random Trees (RRTs) to generate 

non-uniform heuristically biased networks to replace the 

uniform grid. Section 5 discusses simulation results for 

the system and finally, Section 6 draws some preliminary 

conclusions and provides a detailed list of future work. 

2 Ocean model 

The ocean current data used in this investigation is 

obtained from BlueLink Ocean Forecasting Australia 

 
Figure 1: BlueLink Ocean current data overlaid on GEBCO bathymetry data encoded by colour, with red and blue representing shallowest 

and deepest regions respectively. Left: currents in Pacific Ocean off the coast of NSW, Right: inset (zoomed) 
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[BlueLink, 2009], a joint effort between the Bureau of 

Meteorology, the Royal Australian Navy and CSIRO. 

Due to the relatively slow temporal variation in the field, 

forecasting data is provided on a daily basis. 

The ocean current vectors �������  are provided as North 

/ East / Down vector components (�, �, 	) at each 

(�, 
, �) position in the ocean. Vertical ocean current 

components are generally more difficult to measure so 

datasets are more sparse and prone to error. However, 

these vertical components are generally negligible in 

comparison to lateral currents, so only the 2D lateral 

ocean surface current data is used here, with Northing and 

Easting components (�, �) at (�, 
).  

Global ocean data for a particular day is stored in a 

NetCDF data format, and is downloaded to MATLAB via 

a java frontend. The current simulation implementation 

utilises a historic dataset from December 2008, but the 

system can easily be extended to periodically update the 

ocean data available. To minimise transfer time, only the 

required region of the data is imported. 

Gridded bathymetry data is obtained from the 

British Oceanographic Data Centre [BODC, 2009]. Ocean 

depths are given in metres below sea level � for each 

(�, 
), and are provided in the same NetCDF format. 

2.1 Ocean environment 

The area of interest is the region of the Pacific Ocean off 

the coast of New South Wales. The currents in this region 

form the Southern end of the East Australian Current and 

the separation zone leads to a number of eddies off the 

coast near Sydney [Bluelink, 2009]. The regional ocean 

currents in the dataset used reach a maximum of around 

1.68 m/s and have a mean of 0.32 m/s. With a typical 

glider speed of around 0.25 m/s, short of the 0.5 m/s 

maximum, even the average ocean currents are stronger 

than the glider velocity. This planning scenario is quite 

demanding, and the need to consider ocean currents in 

path planning is apparent. 

3 A* Graph Search optimisation 

This section examines grid-based planning with an A* 

graph search optimisation and their applicability to 

planning for ocean currents. 

3.1 Uniform grid formulation 

The original A* path planning implementation [Hart 

et al., 1968] is generalised to a series of nodes ���� 

connected by line segments �����, where ����� connects 

nodes ���� and ����. In the case of a uniform square grid 

of size � ×  �, the nodes are represented as grid cells (�, �) 

for 0 ≤ � < � and 0 ≤ � < �. 

A path from a start cell � to a destination cell   is 

defined by a series of connected grid cells / nodes: 

 

Γ = ��, �#, … , �% , �%&#, … ,  �     (1) 

 

The nodes are assumed to be 8-connected, such that 

each grid cell is connected by an edge to each of its 8 

immediate grid neighbours – vertical, horizontal and 

diagonal.  

The next stage is to determine the cost and heuristic 

used to achieve optimal planning. The next section looks 

at a path cost and heuristic to determine time-optimal 

paths, and the following section extends this to achieve 

energy optimality. 

3.2 Time-based cost and heuristic 

If we represent our 2D underwater setting by this uniform 

discretisation, with grid spacing Δ�, we have an ocean 

current vector ������� and a possible glider velocity vector ������� 
at each grid node. ������� is fixed based on the downloaded 

ocean current data, and we have �( = 0.25 ,/� but can 

choose the direction of the glider velocity, .(. The net 

velocity is therefore given by  

 

�/0/�������� = ������� + �������     (2) 

 

where the net velocity has magnitude �232 and heading 

.232. 

From each cell, the heading .45 to each 

neighbouring cell occurs in increments of 45°. In order to 

move towards a neighbour cell then, the net velocity must 

be in the cell’s direction, giving .232 = .45. Separating 

the total velocity into x and y components: 

 

�232 cos .232 − �4 cos .4 = �( cos .(     (3) 

�232 sin .232 − �4 sin .4 = �( sin .(    (4) 

 

Summing the squares of (3) and (4) and simplifying, 

we have a quadratic expression for the unknown �232: 

 

 �232< − 2�4 cos(.4 − .232)  �232 + (�4< − �(<) = 0  (5) 

 

The solutions to this equation represent the vector 

configurations that yield the appropriate heading vector. 

Any negative or complex solutions are impossible and 

can be discarded. If two positive real solutions remain, we 

can simply choose the larger �232.  

 

    
 

Figure 2: Possible vector configurations: 2 positive real 

solutions (left), 1 solution (centre), no solutions (right). 
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If the traversal is possible, the time cost of that line 

segment can be determined using the edge distance: 

 

=4>?? = @ABCD&5D

(EFE
     (6) 

 

The original A* framework indicates that the node 

cost G(�) at �% is a sum of an accumulated path cost H(�) 

from � to �% and a heuristic cost estimate ℎ(�)  from �% 

to  . For any node �%, the path cost can be projected from 

its parent node �%J# as H(�%) = H(�%J#) + =4>?? . The 

heuristic ℎ(�) needs to be admissible for A* to find 

optimal paths, and for the original implementation, the 

Euclidean distance between the node and goal node was 

used. In this implementation, the time-based heuristic 

utilises the minimum distance between �% = (�%, �%) and 

 = (�K, �K) along an 8-connected grid, which can be 

expressed as: 

 

	� =ℎ = ,��(|�K − �%|, |�K − �%|) 

M��H=ℎ = ,N�(|�K − �%|, |�K − �%|)  
 O>PQ = Δ�R S√2 − 1V	� =ℎ + M��H=ℎW (7) 

 

The velocity is estimated using the global ocean 

current maximum, �O>PQ = �4XYZ + �(, and the time 

heuristic found by ℎ(�) = K[\]^
([\]^

. Since  O>PQ  and �O>PQ  

are both optimistic, the time heuristic is admissible. The 

8-connected distance is slightly less optimistic than the 

Euclidean distance, but is still admissible, meaning that 

the algorithm expands fewer nodes but still returns 

optimal results. 

3.3 Energy-based path cost and heuristic 

Realistically, energy consumption is a more critical factor 

than time optimality. If we consider energy optimality 

instead of time optimality,   the longevity of glider 

deployments may be considerably improved. Fortunately, 

low energy paths are typically close to time optimal paths, 

but account for regions that are demanding on energy 

consumption, such as coastal and reef areas. 

The primary source of energy consumption (60-

80%) on a glider mission is the actuation required to 

execute the longitudinal dive cycles through the ocean 

[Friedman, 2008]. Consequently, the energy consumption 

per dive cycle can be modelled as the sum of three major 

components: 

 

_̀ 3 = _a`3 + _C`3 + _b`3    (8) 

 

Here, _a`3 represents the ballast piston responsible for 

changing the vehicle’s buoyancy, _C`3denotes the 

moving mass actuation required to achieve pitch control, 

and _b`3 is the ‘hotel load’ which is a sum of energy 

consumption from other sources. 

For a fixed glide path angle c and dive depth �`3, 

the number of dive cycles in a fixed time = can be 

expressed as [Rao, 2009]: 

 

   �`3 = 2
2dF

= (e fgh i
<jdF

 =  (9) 

 

The dive depth, as mentioned earlier, is taken to be half of 

the local ocean depth. 

Thus, for a travel time between cells of =4>??, the 

corresponding energy cost can be expressed as: 

 

_4>?? = k_a`3 + _C`3 + _b`3l (e fgh i
<jdF

 =4>??   (10) 

As before, the path cost for any node �% is then projected 

from its parent node �%J# as H(�%) = H(�%J#) + _4>?? .  
When converting to an energy metric, we need to 

ensure that the heuristic ℎ(�) is still admissible. If the 

heuristic time cost is denoted ℎ2(�), the heuristic energy 

cost can be found using the global maximum depth to 

provide an optimistic estimate: 

 

ℎm(�) = k_a`3 + _C`3 + _b`3l (e fgh i
<jXYZ

ℎ2(�)  (11) 

3.4 Limitations 

As with previous grid-based implementations however, 

the resulting paths are only optimal over the grid 

discretisation, and limiting the vehicle motion to 8 

headings immediately reduces the solution space. This is 

even more severe in the face of ocean currents - if ������� is 

noticeably larger than �������, a situation may arise where 

none of the 8 directions are achievable. This erroneously 

suggests that the vehicle is trapped in the cell, whereas a 

path can always be found outside one of the eight 

directions by following �������. 

 
Figure 3: Erroneous ‘trapped’ scenario, where no vehicle 

heading can propel the vehicle in one of the 8 directions. 

To eliminate this problem, a smoother non-uniform 

graph can be generated in place of the square grid, as 

outlined in the following section. 

4 RRT Graph generation 

This section details the construction of Rapidly-

exploring Random Trees (RRTs) to construct the graph 

for search with A*. RRTs were first introduced as a 

randomised approach to kinodynamic planning which, 

unlike traditional kinodynamic techniques, also achieved 
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obstacle avoidance [LaValle and Kuffner, 2001]. 

Consider a vehicle with state space control law no&p =
G(no, q), starting at point (0,0) in the 2D plane. We begin 

by entering this first state np as a vertex in the tree. The 

tree is then expanded as follows. A random state nrstu is 

then selected based on a uniform distribution within the 

vehicle’s configuration space. The nearest neighbour to 

nrstu within the tree is found to be no, and we apply a 

control q which moves the state no towards nrstu over a 

fixed timestep v=. This process is then repeated to grow 

the tree. 

 
Figure 5: Voronoi diagram for RRT nodes during growth 

[LaValle and Kuffner, 2001] 

The benefit of this method is that it is innately 

biased towards exploration, and looks to fill the 

configuration space. Observing the Voronoi diagram for 

the tree nodes (Figure 5), the Voronoi regions 

corresponding to outermost states are larger, so a random 

state chosen from a uniform distribution is more likely to 

expand an outer state. With this inherent Voronoi bias, 

the tree rapidly explores the workspace. 

For this application, we are working with large 

distance scales on the order of tens and hundreds of 

kilometres, over which the non-holonomic constraints of 

the vehicle can safely be ignored. Given that planning is 

performed on the 2D plane, the vehicle can then be 

modelled as a point (�, 
) that can easily move in any 

direction. The control applied to move state no = (�% , 
%) 

towards nrstu = (�Qw5K , 
Qw5K) is then the fixed glider 

velocity �( = 0.25 ,/� over a fixed timestep v= in the 

direction .( = tanJ# k`^Yz{J`|
A^Yz{JA|

l pointing towards nrstu. 

The next state can then be found by summing the glider 

and ocean current velocities, as  

 

no&p = no + (������� + �������)Δ=    (12) 

4.1 Path planning with RRTs 

Having specified the nature of RRT growth, it is possible 

to create a network of possible solutions by generating 

RRTs bidirectionally, one from the start and one from the 

destination node. The latter is generated in reverse to 

simulate the actual glider motion, with no&p = no −
(������� + �������)Δ=. In other words, the forward tree simulates 

the glider moving from no to no&p, while the backward 

tree simulates the glider moving from no&p to no. This 

also simplifies the process of integrating the two trees, as 

outlined in the following paragraphs. 

A noticeable characteristic of the growth of the RRT 

is the lack of spatial uniformity. In the original case the 

tree explores the search space evenly, but in this 

application, the growth is heavily biased towards ocean 

currents. This is a product of the Voronoi bias – branches 

in the direction of the currents are propagated further, 

they are therefore the outermost points, and have larger 

Voronoi regions than branches travelling against the 

current. 

Following growth of both trees, states common to 

both are connected. States no and no
}  in the forward and 

backward trees are considered common if their Euclidean 

distance is within some threshold ~: 

B (�% − �%�)< + (
% − 
% �)< < ~   (13) 

 

Figure 4: Bidirectional RRT generation (left); pruned RRT network (centre), optimal path from A* graph search (right). The start and         

destination are denoted by ‘o’ and ‘x’ respectively. 
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These are then considered as connection points between 

the two trees. 

To simplify the graph, branches of nodes that do not 

lead to a connection point are ‘pruned’. This is achieved 

by searching for each node which has no adjoining 

‘daughter nodes’ (‘branch end’). The algorithm then 

removes nodes from the tree in reverse until it reaches a 

node with multiple connections (‘split branch’). By 

repeating this process for each ‘branch end’, the 

unconnected nodes are removed, and we are left with a 

network of nodes, each with a position and pointers to its 

connected nodes.  

This non-uniform network is then searched for an 

optimal path using the same A* approach as before. Since 

the trees are generated with propagation over fixed 

timestep Δ=, the time cost between successive nodes is 

constant at =4>?? = Δ=. However, the time heuristic has to 

be adjusted slightly because the previous heuristic is only 

admissible over an 8-connected grid. Instead, we now use 

the Euclidean distance given in Equation 12. 

 

 O>PQ = B(�K − �%)< + (
K − 
%)<   (14) 

The velocity estimate is the same as that for the grid case, 

and the time heuristic is again given by ℎ2(�) = K[\]^
([\]^

. 

The energy heuristic can then be found from Equation 11. 

4.2 Biasing RRT growth 

Improved results can be obtained by heuristically biasing 

the growth of the RRTs. 

The probability distribution for any RRT 

implementation is a critical aspect [Simmons & Urmson, 

2003], even for the uniform distribution of the original 

case. The growth of the tree needs to be extensive enough 

to ensure optimal solutions are not overlooked, but needs 

to be small enough to avoid expanding into unnecessary 

areas. This is largely satisfied by applying the adjusted 

Iterative k-Nearest RRT (IkRRT) algorithm [Simmons & 

Urmson, 2003] which weights the Voronoi regions of 

each node by some heuristic cost, and adjusts the RRT 

implementation to consider the k-nearest neighbours 

rather than a single neighbour. 

The cost of each node in the tree is denoted as the 

energy cost heuristic, the sum of Equations 10 and 11. 

When selecting an RRT node to expand, the algorithm 

finds the k-nearest neighbours to nrstu, sorts them by 

node cost, and iterates through each node starting with the 

lowest cost node. A node is selected probabilistically, 

such that low cost nodes are favoured over high cost 

nodes [Simmons & Urmson, 2003]. The comparative 

results with and without energy-based cost biasing are 

shown in Figure 6.  

As mentioned, the path is naturally biased towards 

following ocean currents. To ensure the path does attempt 

to reach the destination, a 20% destination bias is applied. 

In other words, every fifth nrstu on average is the 

destination node (for the forward tree) and the start node 

(for the backward tree). 

 

 

Figure 6: RRT growth without biasing (top) and IkRRT 

heuristic cost biasing (bottom) 

Rapid changes in path heading are undesirable as 

they create a fluctuating path which sacrifices time and 

energy efficiency. Over smaller distance scales, the 

vehicle model rectifies this, only allowing smooth turns to 

change heading. However, over long ranges, other 

methods need to be implemented to produce sufficiently 

smooth paths. In the current implementation, this is 

achieved by limiting the change in .( between successive 

nodes to ±20°. This value was selected because it 

sufficiently removed rapid fluctuations but did not 

excessively constrain the growth of the path. 

5 Results 

Results have been obtained with a fixed RRT size of 

10000 nodes over both trees. However, since RRTs are 

probabilistic, they are susceptible to variation over 

multiple runs. Preliminary results suggest a maximum 

variation of approximately 9% in energy cost over 5 

consecutive runs (Figure 8). This inconsistency will need 

to be considered in future work, but can be somewhat 

alleviated by finding the best RRT path over multiple 

runs of the algorithm. Given the long timescale of glider 

missions, computation time is not a driving factor, and the 

algorithm can easily be run multiple times to yield 

improved results. The results shown here are the best of 

five consecutive runs. 
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Figure 8: Path variation over multiple runs 

To evaluate the performance of the current 

algorithms, results are compared with those for a basic 

heading controller, where the vehicle heading is set to the 

destination at every point on the path. Results in Figure 7 

show that both the grid and RRT based methods are 

successful in producing feasible paths through the field. 

Over the three missions A, B and C, the energy 

consumption has been computed as the sum of Equation 

10 over all path nodes. The results are shown in Table 1. 

 

Mission Energy Cost (kJ) 

Heading 

controller 

RRT Grid 

A 289.1 263.7 267.8 

B N/A 417.5 432.9 

C N/A 475.5 431.7 

Table 1: Energy cost results 

Mission A represents a simple planning scenario for 

a short distance mission. In this case the destination is 

downstream from the start, and the direct method yields 

satisfactory results. However, since it does not consider 

path costs, its energy expenditure is greater than both 

RRT and grid paths. The RRT path yields a marginal 2% 

improvement over the grid-based path.  

Mission B is a more difficult mission as it spans 

over a larger range and has shallow regions close to the 

destination point. For this less simplistic planning 

scenario, a heading controller is no longer sufficient to 

reach the destination. Instead, the vehicle reaches a steady 

state position where its propulsion cannot overcome 

ocean currents. The drawbacks of the grid discretisation 

are also evident, as the grid path cannot avoid the 

adjacent shallow region due to lack of discretisation 

freedom. On the other hand, the RRT path travels around 

the shallow areas and offers a 6% energy improvement 

over the grid path. 

However, for a highly difficult mission against 

strong ocean currents (Mission C), the grid path 

consumes 9% less energy than the RRT path. This 

scenario reveals some potential downsides of the RRT 

approach. With RRTs, paths that are against the Voronoi 

bias (against ocean currents) are less likely to be found, 

and the final path can fluctuate unnecessarily due to its 

probabilistic nature. 

6 Conclusions and Future Work 

This paper discusses the application of Rapidly-Exploring 

Random Trees to underwater glider path planning in an 

ocean current field. Biasing the growth of these trees 

allows us to generate a network which provides smoother 

paths than typical grid partitioned methods. 

Early results suggest that RRTs have strong 

potential in underwater planning applications because of 

the Voronoi bias, which innately drives the trees in the 

direction of ocean currents. This can then be exploited to 

generate paths that make full use of the ocean current 

velocity advantage. A comparison between RRT and grid 

techniques indicates that both methods may be suitable 

for glider path planning in different mission scenarios. 

RRT methods can overcome the drawbacks in the grid 

discretisation and thereby avoid high energy shallow 

regions, while the grid based planner can handle highly 

difficult missions against strong ocean currents, where 

RRTs may struggle to find path solutions against the 

Voronoi bias. 

However, one point to note is that the grid paths are 

optimal, whereas the RRT paths could potentially be 

improved if the RRT growth is improved accordingly. 

Thus, future work will examine additional biasing 

methods by which improved RRT paths can be generated. 

 

 

Figure 7: Path results for mission scenarios A, B and C (left to right) 
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Additional future work will look at the following: 

• Real-time update of ocean current and bathymetry 

data as they become available. 

• Modelling ocean surface as a sphere rather than a 2D 

plane, to more accurately represent distances between 

latitude / longitude co-ordinates.  

• Extension of the algorithm to produce strong results 

in a non-deterministic environment. 

• Employing the algorithms on a glider deployment, in 

order to obtain empirical data. 

Nevertheless, this paper has successfully applied 

Rapidly-Exploring Random Trees to an underwater 

application and demonstrated numerically the potential of 

these techniques, providing a foundation for future 

research in the area. 
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