
1HIDDEN MARKOV MODELS AND LARGE-SCALE GENOMEANALYSISSean R. EddyDept. of Genetics, Washington University School of Medicine4566 Scott Ave., St. Louis MO 63110eddy@genetics.wustl.eduABSTRACTPFAM is a database of multiple alignments and hidden Markov models (HMMs) of common,conserved protein domains. PFAM HMMs complement BLAST analysis in the annotation of theC. elegans and human genome sequencing projects at Washington University and the SangerCentre. PFAM2, based on full, gapped multiple alignments of structural and/or functionalprotein domains, currently contains 527 models. PFAM/HMM analysis hits at least one domainin 24% of the predicted proteins in the C. elegans genome project. 8% of C. elegans proteinsare annotated as multidomain proteins by PFAM, with up to 5 di�erent kinds of recognizeddomains per protein and up to 44 total recognized domains per protein.INTRODUCTIONAutomated, large-scale prediction of the functions and structures of predicted protein sequencesis one of the most pressing problems faced by genome bioinformatics groups [1-3]. These com-putational predictions largely rely on database similarity searches; primarily, fast pairwise localalignment methods like BLAST [4] and FASTA [5]. In the Caenorhabditis elegans genomesequencing project at the Washington University Genome Sequencing Center and the SangerCentre [6-8], informative BLAST hits are obtained for about 45% of predicted nematode pro-teins. There is great interest in increasing the fraction of protein sequences for which we caninfer structural or functional properties accurately, automatically, and e�ciently.Especially in the higher eukaryotes, many proteins have evolved by extensive re-use andshu�ing of domains [9]; for example, �bronectin type III domains, or protein kinase catalyticdomains. This is both bad news and good news for genome-scale bioinformatics. The bad newsis that the sheer ratio of hits to common protein domains can overwhelm a sequence analyst,causing missed or erroneous predictions that simply result from confusion. A protein thatcontains one or more common protein domains may produce hundreds or thousands of BLASThits. The top BLAST hit may not correspond to a homologous gene, but rather to a homologousdomain in an otherwise non-homologous sequence. Furthermore, there may be so many stronghits to the conserved domain(s) that other weak but more informative BLAST hits are missed.Specialized BLAST post-processing programs have been developed to help with these problems[10-12]. The good news is two-fold. First, the number of common protein domain families isrelatively limited and tractable. Several estimates indicate that on the order of a thousandprotein domain families account for a signi�cant fraction of all proteins. Available protein



2 Hidden Markov Models and Large-Scale Genome Analysisfamily databases (\second generation" databases that organize the primary Swissprot, PIR, andGenPept databases into evolutionary families) now include Prosite [13], PRINTS [14], BLOCKS[15], Prodom [9], ProClass [16], and SBASE [17], as well as the PFAM database discussed in thispaper [18]. Second, when multiple sequence alignments, consensus patterns, and/or structuresare available for a protein family, potentially powerful alternative search and detection methodscan be utilized. These methods range in complexity from Prosite's motif patterns, to multiplealignment based \pro�le" methods [19-21] and structure based \inverse protein folding" methodssuch as threading or 3D/1D pro�les [22].HMM-PROFILESA pro�le is de�ned here as a linear model of the consensus primary structure of a sequence family,containing position-speci�c scores for amino acids and insertions/deletions at each pro�le posi-tion. The main di�erence between pro�le alignment and standard pairwise sequence alignmentmethods is that the pairwise methods use position-independent scores (e.g. a PAM or BLOSUMsubstitution matrix [23]), whereas a pro�le uses position-speci�c scores. Position-speci�c scoresallow one to model the fact that certain positions in a protein are crucial to its folding andfunction, whereas other residues do not matter as much.A pro�le is usually built from a multiple alignment of a family of related sequences.Pro�les can also be built from structural data (e.g. `3D-1D pro�les' [24]). For each consensusprimary structure position, twenty amino acid scores and two or more insertion/deletion scoringparameters are calculated. For example, if one is building a pro�le from a multiple alignment,most of the columns of the alignment correspond to the consensus primary structure positions.If a column appears to correspond to a strongly conserved cysteine, the assigned score for Cmay be strongly positive, and negative for the other 19 amino acids; if the column is apparentlyrandom and unconserved, all 20 scores may be close to zero. Ungapped pro�les (called `blocks'or `weight matrices') are also used in some approaches [25, 26]. The term \position-speci�cscoring matrix" (PSSM) introduced by the Heniko�s is synonymous with a pro�le [25].Position-speci�c scoring greatly increases the number of parameters which must bedetermined. A PAM or BLOSUM substitution matrix used by BLAST or FASTA contains190 scores, and is determined by counting amino acid pairs over a large database of di�erenttrusted pairwise alignments. A pro�le contains about 22N scores (20 residue scores and 2 gappenalties per position) where N is the consensus length of the family (generally in the 100-500range). These scores must be determined from a single multiple alignment (or one or a few 3Dstructures). Managing a model with thousands of poorly determined parameters is a challenge.Probabilistic modeling is a nice approach to complicated inference problems. A classof probabilistic models called hidden Markov models (HMMs) have been used extensively inthe speech recognition community for making speaker-independent linear pro�les of digitizedacoustic signatures of spoken words [27]. David Haussler's group at UC Santa Cruz introducedHMMs as a useful probabilistic modeling framework for biological sequence pro�les (Figure 1)[28]. The parameters of an HMM-pro�le are probabilities, not arbitrary scores. Bayesian and/ormaximum likelihood approaches are used to determine all the probability parameters of theHMM-pro�le. There is a recent review of HMM-pro�le methods [29].The technical details of HMM-pro�le methods are beyond the scope of this paper, butthe following general points are relevant. 1) HMM-pro�les are merely an improved formalization
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Figure 1: Top: A tiny example alignment of four sequences with three aligned \consensus" columns (uppercase amino acid codes), and one insertion relative to the consensus (lower case amino acid code). Bottom:A cartoon view of an HMM-pro�le built from the same alignment. An HMM is composed of three things:states, state transition probabilities, and symbol emission probabilities. HMM \states" (circles) each align to oneresidue (or no residue). Match states (labeled M) align to a particular residue with some \emission probability"(illustrated schematically above each state, with a black bar for each residue of size proportional to the probabilityof that residue). Emission probabilities are usually calculated from the observed counts of residues in thecorresponding column of the alignment. Delete (D) and insert (I) states allow for deletions and insertions relativeto the consensus; a product of state transition probabilities (arrows) de�nes the probability of any given path(alignment) through the HMM.) Though the terminology may seem obscure, the HMM-pro�le is quite close tothe standard formulation of sequence pro�les, but with probabilities replacing arbitrary scores. For example, thestate transition probability into an insert state (for a one-residue insertion) and then from the insert state backto itself (for each successive residue in an insertion) is a probabilistic version of the \gap-open" and \gap-extend"penalties commonly used in biological sequence alignment.
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Figure 2: Main programs in the HMMER software package.of the scoring scheme of previous pro�le methods. Essentially the same alignment algorithms areused. 2) The advantage of HMM-pro�les over previous pro�le methods is that the large numberof scoring parameters, including gap scores, may be automatically and consistently determined.3) Because the statistics are consistent across di�erent models and no manual tweaking ofparameters is needed (in theory), one can automatically apply hundreds of di�erent HMM-pro�les of common protein domains to a complete genome, while still being able to e�cientlyinterpret the results. HMM-pro�les are well suited to large scale analysis problems.HMMERHMMER is a freely available software package that implements HMM-pro�les for protein andnucleic acid sequence analysis. A owchart of the programs in the HMMER package is shownin Figure 2.The program hmmb (\HMM build") builds an HMM-pro�le from an existing multiplealignment. This is a quick process, usually taking one or two seconds. The resulting HMM-pro�le can be thought of as a compiled statistical representation of the multiple alignment.Options in hmmb allow the user to choose amongst di�erent sequence weighting options, dif-ferent probability parameter optimization strategies, and di�erent ways to contribute \prior"information about sequence alignments (via substitution matrices or Dirichlet priors [30]).The program hmma (\HMM align") aligns any number of sequences to an existing



Sean R. Eddy 5HMM-pro�le. This allows one to build an HMM-pro�le of a \seed" alignment of a small numberof carefully aligned representative sequences of a large sequence family, then use this HMM-pro�le to automatically create a high-quality alignment of the rest of the family. The numberof sequences that can be handled is e�ectively unlimited. To date, the largest HMM-managedalignments contain tens of thousands of sequences, starting from manageable \seeds" of tensof sequences. The seed alignment strategy is central to the maintenance of the PFAM HMMdatabase (see below).Four database search programs are in the package. The program hmms (\HMM search")looks for global alignments of the entire HMM to the entire query sequence. Because HMM-pro�les are usually models of domains rather than complete protein sequences, hmms is rarelyused. The program hmmsw (\HMM Smith/Waterman") is more useful for database searches. Itis an HMM version of the standard Smith/Waterman algorithm [31], allowing local alignmentsthat match any fragment of the HMM to any fragment of the query sequence. Unpublisheddynamic programming algorithms are used in two more powerful search programs. The programhmmls (\HMM local search") looks for one or more non-overlapping matches of the completeHMM to parts of the query sequence. The program hmmfs (\HMM fragment search") is similar,but looks for one or more non-overlapping matches of any fragment of the HMM to parts of thequery sequence. If complete domains are expected, hmmls is typically the most sensitive anduseful search program in the package; on the other hand, hmmfs can �nd fragmentary hits thathmmls cannot.The program hmmt (\HMM training") trains an HMM from initially unaligned se-quences, resulting in both a multiple alignment and a model. The algorithms used are oftheoretical interest and the alignments are sometimes superior to those produced by more con-ventional multiple alignment programs. However, in practice, we have found that CLUSTALW[32] produces superior alignments about two-thirds of the time.Other accessory programs in the package include hmme, which emits sequences con-sistent with a given HMM-pro�le (useful for simulation experiments or debugging); and hmm-convert, which converts HMMER format to other model formats. em hmm-convert can converta HMMER HMM into GCG Pro�le format (with some loss of information), which allows theuse of fast hardware implementations of GCG pro�le search (e.g. the Compugen Biocellerator).HMMER source code, executables for various UNIX platforms, and documentation areavailable at http://genome.wustl.edu/eddy/hmmer.html. Other freely available HMM-pro�leimplementations include SAM from the Haussler group at UC Santa Cruz(http://www.cse.ucsc.edu/research/compbio/sam.html), and PFTOOLS from Phillip Bucher(http://ulrec3.unil.ch:80/ftp-server/pftools/).THE PFAM DATABASEUsing pro�le methods, one can readily build a pro�le of one's favorite sequence family andsearch a genome or sequence database for more members of the family: a one pro�le, manysequences problem. Systematic genome analysis presents a more complicated problem. For eachnew sequence, we wish to use pro�le analysis to identify what known domains it contains: amany pro�les, one sequence problem. For the second problem, we need a large database ofpro�les of known domains. Shortly after the completion and release of the HMMER software, agroup of collaborators including myself, Erik Sonnhammer, and Richard Durbin began creating
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(complete; volatile)Figure 3: Flowchart of the construction of PFAM seed alignments, HMM-pro�les, and full alignments.an HMM-pro�le library that we could apply to C. elegans genome analysis.There are a number of `second generation' protein sequence databases which organizeproteins into families, consensus models, and multiple alignments. Premiere amongst these isprobably the PROSITE database developed by Amos Bairoch and collaborators [13]. PROSITEde�nes which known sequences belong to a particular family, gives careful and extensive docu-mentation of the family's structure and function, and gives a motif pattern (regular expression)that recognizes the family members. Other protein family databases include PRINTS, BLOCKS,PRODOM, and SBASE. None of these were entirely suited as the basis for the development ofa large HMM-pro�le database. We wanted comprehensive, manually curated, gapped multiplealignments of whole protein domains. The closest to our needs is the PRINTS database, whichprovides manually curated multiple alignments of representative members of each sequence fam-ily [14]; however, because the underlying search/alignment method of PRINTS is an ungapped`�ngerprint' method (akin to BLOCKS), the PRINTS database warns that the alignments haveonly been checked to be valid under the short regions that correspond to the ungapped �nger-prints. Though we decided that none of these databases were perfectly suited to our purposes,we took extensive advantage of them (especially PROSITE) in creating our own alignment andHMM-pro�le database, which we call PFAM (`Protein FAMilies') [18].There are three important �les for each protein family in PFAM. The seed alignment(.seed �le) is a multiple alignment of a representative subset of domain sequences. The HMM-pro�le (.HMM �le) is built from the seed alignment. The full alignment is generated automat-ically by searching Swissprot with the HMM-pro�le and using HMMER to automatically alignall the signi�cant hits into a new alignment. A rough owchart of PFAM model construction isshown in Figure 3.The de�nition of the family is usually taken from PROSITE, and less frequently fromthe literature or our own domain identi�cation research. Though we use independent structuraland biochemical data wherever possible, it is important to keep in mind that family de�nitions in



Sean R. Eddy 7PFAM and other databases is always subjective and operational, heavily dependent on the searchmethod being used. If a known structural family cannot be recognized by a single HMM-pro�le,we split the family into two or more PFAM families that can be adequately recognized. SomePROSITE families were split in this way, because even though they share a short PROSITEactive site motif, subfamilies have very di�erent sequence consensus and sometimes even di�erentstructural folds. On the other hand, PFAM contains some families which PROSITE does notmodel, because even though the sequences are clearly related, no positions are conserved enoughto make a discriminative PROSITE pattern (globins, for instance, which are now modeled inPROSITE by an HMM-pro�le developed by Bucher and collaborators.)The de�nition of the bounds of the domain to be modeled is subjective. Again, weuse 3D structural data if it is available. In some cases, for certain highly repetitive domains,intron position in eukaryotic genes is somewhat informative. Otherwise, domain de�nition isoperational, based on the recognizable limits of sequence similarity among a group of sequences.The seed multiple alignments are also subjective. We select a group of representativedomain sequences and use CLUSTALW and HMM training, followed by manual editing, toproduce the alignment. If an HMM built of the alignment fails to recognize one or more trustedmembers of the family, one or more new representative sequences is added, and the alignmentis revised.Thus, the process of generating a seed alignment is tedious and relies heavily on `expert'subjective input, though we are computer-assisted at each point. An important feature of PFAMis that the seed alignment is considered to be a stable, reasonably permanent resource. After theseed is generated and documented, HMM software takes over, and the rest of the database, inparticular the generation of the full alignments, is maintained fully automatically. This updatestrategy is a necessary feature if PFAM is to survive subsequent releases of the primary databasessuch as Swissprot. If all of PFAM had to be regenerated each time Swissprot is updated, it couldnot be maintained.The current release of PFAM is PFAM 2.0, containing 527 families. Some relevantstatistics about the database are given in Table 1. A detailed paper on the PFAM database wasrecently published [18]. Since we began the development of PFAM, at least two other pro�ledatabases have begun to be developed independently by other groups: the StrProf databasefrom the Kanehisa group [33], and a growing HMM-pro�le collection in PROSITE [13].PFAM WEB SITES AND ON-LINE SEARCHINGPFAM 2.0 is freely available via FTP and the Web. The U.S. home page ishttp://genome.wustl.edu/Pfam/. The U.K. home page is http://www.sanger.ac.uk/Pfam/.The Web pages are separately maintained and di�er slightly in surface functionality, but thesame database underlies them both. Both servers allow downloads of all or any one of the PFAMalignments and models, or browsing of the documentation for each family. The documentationis brief and relies heavily on links to PROSITE, PRINTS, and other Web resources for moredetail. Both servers allow on-line analysis. A Web user can cut and paste a query sequenceinto their browser and have it searched against one, a few, or all PFAM HMMs. The serverreturns the results in text form, tabular summary form, and in a Java applet that gives a colorcartoon of the domain structure of the query protein. The PFAM alignments are also viewable



8 Hidden Markov Models and Large-Scale Genome AnalysisTable 1Summary of protein families in PFAM 2.0Largest families: # seqs in seed # seqs in fullC2H2 zinc �ngers 165 1826Ig superfamily 65 1351Protein kinase catalytic domains 67 928EGF domains 74 854EF-hand domains 86 790globins 61 6997-TM receptors 64 597Sequence lengths in full alignments:mean: 200shortest: 9 N-term neurohypophysial hormoneslongest: 807 7-TM receptors, family 3Pairwise sequence identities in full alignments:mean: 41%highest: 89% Inuenza virus nucleoproteinlowest: 17% PH domainsNumber of sequences in full alignments:mean: 74most: 1826 C2H2 zinc �ngersleast: 11 N-term of laminins (domain VI)in a Java applet. An example of the search results from the U.S. server for the receptor tyrosinekinase Sevenless, from Drosophila melanogaster, is shown in Figure 4.A typical search with a 350 residue query takes about three minutes. HMM searchesare computationally intensive. The U.S. server uses a distributed processing system, writtenin Java, that parallelizes the load across a number of di�erent processors on the network atWashington University. As more processors are recruited, search speed on the PFAM server willincrease.GENOME ANALYSIS USING PFAMWe are currently integrating PFAM/HMM analysis with BLAST analysis in the bioinformaticsgroups at the Sanger Centre (Hinxton, U.K.) and the Washington University Genome SequencingCenter. The domain-based PFAM analysis simpli�es complicated BLAST outputs in somecases, especially in higher eukaryotic genomes, and HMM-pro�les are sometimes more sensitivethan BLAST at identifying informative similarities. PFAM/HMM analysis is also now used in`production mode' in other academic and industrial bioinformatics groups.PFAM/HMM analysis hits at least one domain in 24% of the predicted proteins in theC. elegans genome project. 8% of C. elegans proteins are annotated as multidomain proteinsby PFAM, with up to 5 di�erent kinds of recognized domains per protein, and up to 44 totalrecognized domains per protein.One interesting analysis that PFAM simpli�es is to rapidly classify the predicted proteins
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Figure 4: Screen dump of the results of submitting the Drosophila Sevenless protein sequence to the U.S.PFAM server. Top: tabular output of the positions and alignment scores of various �bronectin type III domainsand a protein kinase domain. Middle: A Java alignment viewer applet, showing here the PFAM seed alignmentfor �bronectin type III domains. Bottom: A Java applet showing a cartoon of the predicted domain structure ofSevenless.



10 Hidden Markov Models and Large-Scale Genome AnalysisTable 2Top ten protein families in C. elegans based on both PFAM 2.0 and BLAST analysis(protein counts based on analysis of 7299 predicted genes, 50% of the genome)G-protein coupled receptors 179Protein kinases 169Collagens 97C4-type zinc �nger proteins (nuclear hormone receptors) 54GTPase superfamily 52Homeobox transcription factors 45RNA recognition motif proteins 43EGF domain containing proteins 42short chain dehydrogenases (ADH-like) 34ankyrin domain containing proteins 34in a genome into families. A `top ten' list of protein families in C. elegans according to PFAManalysis and some subsequent manual work is shown in Table 2.CONCLUSIONS AND FUTURE PLANSPFAM is now maintained by a consortium of researchers. The database is being actively de-veloped and maintained for the use of the genome and EST bioinformatics groups that weare associated with. A number of collaborations with other databases and researchers havebeen initiated, as the project is too large for us to maintain by ourselves, and we welcomeother contributions. To contact the PFAM consortium, email pfam@genetics.wustl.edu orpfam@sanger.ac.uk.In addition to providing a resource for HMM-pro�le construction, the PFAM multiplealignment database is useful for other purposes. We are exploring its use for constructingnew substitution scoring matrices, for large-scale phylogenetic studies of gene duplication anddiversi�cation, and for tuning and testing the next release of the HMMER software.The next release of PFAM is anticipated in Fall 1997. It will be primarily a `bug�x'release that �xes minor problems we have found in PFAM 2.0.ACKNOWLEDGMENTSThe other members of the PFAM consortium are Erik Sonnhammer (NCBI, Bethesda, U.S.A.),Ewan Birney (Sanger Centre, Hinxton U.K.), Richard Durbin (Sanger Centre), and Alex Bate-man (MRC Laboratory of Molecular Biology, Cambridge, U.K.). I thank Robert Finn forproducing many of the seed alignments in PFAM 2, and Jose Aguilar for the development ofthe WashU PFAM server. A continuing collaboration with Graeme Mitchison (MRC-LMB,Cambridge), generously supported by NATO Collaborative Research Grant 961168, has beeninstrumental in the development of the theory behind HMMER. Work at WashU on HMMERand PFAM is supported by grant R01-HG01363 from the NIH National Institute for HumanGenome Research, and a gift from Eli Lilly & Co., for whom I also consult.
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