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ABSTRACT

PFAM is a database of multiple alignments and hidden Markov models (HMMs) of common,
conserved protein domains. PFAM HMMs complement BLAST analysis in the annotation of the
C. elegans and human genome sequencing projects at Washington University and the Sanger
Centre. PFAMZ2, based on full, gapped multiple alignments of structural and/or functional
protein domains, currently contains 527 models. PFAM /HMM analysis hits at least one domain
in 24% of the predicted proteins in the C. elegans genome project. 8% of C. elegans proteins
are annotated as multidomain proteins by PFAM, with up to 5 different kinds of recognized
domains per protein and up to 44 total recognized domains per protein.

INTRODUCTION

Automated, large-scale prediction of the functions and structures of predicted protein sequences
is one of the most pressing problems faced by genome bioinformatics groups [1-3]. These com-
putational predictions largely rely on database similarity searches; primarily, fast pairwise local
alignment methods like BLAST [4] and FASTA [5]. In the Caenorhabditis elegans genome
sequencing project at the Washington University Genome Sequencing Center and the Sanger
Centre [6-8], informative BLAST hits are obtained for about 45% of predicted nematode pro-
teins. There is great interest in increasing the fraction of protein sequences for which we can
infer structural or functional properties accurately, automatically, and efficiently.

Especially in the higher eukaryotes, many proteins have evolved by extensive re-use and
shuffling of domains [9]; for example, fibronectin type III domains, or protein kinase catalytic
domains. This is both bad news and good news for genome-scale bioinformatics. The bad news
is that the sheer ratio of hits to common protein domains can overwhelm a sequence analyst,
causing missed or erroneous predictions that simply result from confusion. A protein that
contains one or more common protein domains may produce hundreds or thousands of BLAST
hits. The top BLAST hit may not correspond to a homologous gene, but rather to a homologous
domain in an otherwise non-homologous sequence. Furthermore, there may be so many strong
hits to the conserved domain(s) that other weak but more informative BLAST hits are missed.
Specialized BLAST post-processing programs have been developed to help with these problems
[10-12].

The good news is two-fold. First, the number of common protein domain families is
relatively limited and tractable. Several estimates indicate that on the order of a thousand
protein domain families account for a significant fraction of all proteins. Available protein



2 Hidden Markov Models and Large-Scale Genome Analysis

family databases (“second generation” databases that organize the primary Swissprot, PIR, and
GenPept databases into evolutionary families) now include Prosite [13], PRINTS [14], BLOCKS
[15], Prodom [9], ProClass [16], and SBASE [17], as well as the PFAM database discussed in this
paper [18]. Second, when multiple sequence alignments, consensus patterns, and/or structures
are available for a protein family, potentially powerful alternative search and detection methods
can be utilized. These methods range in complexity from Prosite’s motif patterns, to multiple
alignment based “profile” methods [19-21] and structure based “inverse protein folding” methods
such as threading or 3D/1D profiles [22].

HMM-PROFILES

A profile is defined here as a linear model of the consensus primary structure of a sequence family,
containing position-specific scores for amino acids and insertions/deletions at each profile posi-
tion. The main difference between profile alignment and standard pairwise sequence alignment
methods is that the pairwise methods use position-independent scores (e.g. a PAM or BLOSUM
substitution matrix [23]), whereas a profile uses position-specific scores. Position-specific scores
allow one to model the fact that certain positions in a protein are crucial to its folding and
function, whereas other residues do not matter as much.

A profile is usually built from a multiple alignment of a family of related sequences.
Profiles can also be built from structural data (e.g. ‘3D-1D profiles’ [24]). For each consensus
primary structure position, twenty amino acid scores and two or more insertion/deletion scoring
parameters are calculated. For example, if one is building a profile from a multiple alignment,
most of the columns of the alignment correspond to the consensus primary structure positions.
If a column appears to correspond to a strongly conserved cysteine, the assigned score for C
may be strongly positive, and negative for the other 19 amino acids; if the column is apparently
random and unconserved, all 20 scores may be close to zero. Ungapped profiles (called ‘blocks’
or ‘weight matrices’) are also used in some approaches [25, 26]. The term “position-specific
scoring matrix” (PSSM) introduced by the Henikoffs is synonymous with a profile [25].

Position-specific scoring greatly increases the number of parameters which must be
determined. A PAM or BLOSUM substitution matrix used by BLAST or FASTA contains
190 scores, and is determined by counting amino acid pairs over a large database of different
trusted pairwise alignments. A profile contains about 22N scores (20 residue scores and 2 gap
penalties per position) where N is the consensus length of the family (generally in the 100-500
range). These scores must be determined from a single multiple alignment (or one or a few 3D
structures). Managing a model with thousands of poorly determined parameters is a challenge.

Probabilistic modeling is a nice approach to complicated inference problems. A class
of probabilistic models called hidden Markov models (HMMs) have been used extensively in
the speech recognition community for making speaker-independent linear profiles of digitized
acoustic signatures of spoken words [27]. David Haussler’s group at UC Santa Cruz introduced
HMMs as a useful probabilistic modeling framework for biological sequence profiles (Figure 1)
[28]. The parameters of an HMM-profile are probabilities, not arbitrary scores. Bayesian and/or
maximum likelihood approaches are used to determine all the probability parameters of the
HMM-profile. There is a recent review of HMM-profile methods [29].

The technical details of HMM-profile methods are beyond the scope of this paper, but
the following general points are relevant. 1) HMM-profiles are merely an improved formalization



Sean R. Eddy 3

gl AF -V
. _ o2 AF -V
Multiple sequence alignment: 3 AY dV
segd G F -V

A A

c C

b D

E E

5 F

G G

H Hl

HMM-profile: ‘E IE

X 1

N N

> P

9 8

s S

7 v

w v

.

"v
®
\ N
\-‘v
®
w
‘:-“v
®
o

..
;

)
)
Y
.
g <S<—HOTVOTVZIr A" IOTMOUO>
<_--""
- ~
)
,
Ny
Nk
.
I
SR N
N
!
Lo
l,'
NRE
.
AN

.
N

Figure 1: Top: A tiny example alignment of four sequences with three aligned “consensus” columns (upper
case amino acid codes), and one insertion relative to the consensus (lower case amino acid code). Bottom:
A cartoon view of an HMM-profile built from the same alignment. An HMM is composed of three things:
states, state transition probabilities, and symbol emission probabilities. HMM “states” (circles) each align to one
residue (or no residue). Match states (labeled M) align to a particular residue with some “emission probability”
(illustrated schematically above each state, with a black bar for each residue of size proportional to the probability
of that residue). Emission probabilities are usually calculated from the observed counts of residues in the
corresponding column of the alignment. Delete (D) and insert (I) states allow for deletions and insertions relative
to the consensus; a product of state transition probabilities (arrows) defines the probability of any given path
(alignment) through the HMM.) Though the terminology may seem obscure, the HMM-profile is quite close to
the standard formulation of sequence profiles, but with probabilities replacing arbitrary scores. For example, the
state transition probability into an insert state (for a one-residue insertion) and then from the insert state back
to itself (for each successive residue in an insertion) is a probabilistic version of the “gap-open” and “gap-extend”
penalties commonly used in biological sequence alignment.
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Figure 2: Main programs in the HMMER software package.

of the scoring scheme of previous profile methods. Essentially the same alignment algorithms are
used. 2) The advantage of HMM-profiles over previous profile methods is that the large number
of scoring parameters, including gap scores, may be automatically and consistently determined.
3) Because the statistics are consistent across different models and no manual tweaking of
parameters is needed (in theory), one can automatically apply hundreds of different HMM-
profiles of common protein domains to a complete genome, while still being able to efficiently
interpret the results. HMM-profiles are well suited to large scale analysis problems.

HMMER

HMMER is a freely available software package that implements HMM-profiles for protein and
nucleic acid sequence analysis. A flowchart of the programs in the HMMER package is shown
in Figure 2.

The program hmmb (“HMM build”) builds an HMM-profile from an existing multiple
alignment. This is a quick process, usually taking one or two seconds. The resulting HMM-
profile can be thought of as a compiled statistical representation of the multiple alignment.
Options in hmmb allow the user to choose amongst different sequence weighting options, dif-
ferent probability parameter optimization strategies, and different ways to contribute “prior”
information about sequence alignments (via substitution matrices or Dirichlet priors [30]).

The program hmma (“HMM align”) aligns any number of sequences to an existing
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HMM-profile. This allows one to build an HMM-profile of a “seed” alignment of a small number
of carefully aligned representative sequences of a large sequence family, then use this HMM-
profile to automatically create a high-quality alignment of the rest of the family. The number
of sequences that can be handled is effectively unlimited. To date, the largest HMM-managed
alignments contain tens of thousands of sequences, starting from manageable “seeds” of tens
of sequences. The seed alignment strategy is central to the maintenance of the PFAM HMM
database (see below).

Four database search programs are in the package. The program hmms (“HMM search”)
looks for global alignments of the entire HMM to the entire query sequence. Because HMM-
profiles are usually models of domains rather than complete protein sequences, hmms is rarely
used. The program hmmsw (“HMM Smith/Waterman”) is more useful for database searches. It
is an HMM version of the standard Smith/Waterman algorithm [31], allowing local alignments
that match any fragment of the HMM to any fragment of the query sequence. Unpublished
dynamic programming algorithms are used in two more powerful search programs. The program
hmmls (“HMM local search”) looks for one or more non-overlapping matches of the complete
HMM to parts of the query sequence. The program hmmjfs (“HMM fragment search”) is similar,
but looks for one or more non-overlapping matches of any fragment of the HMM to parts of the
query sequence. If complete domains are expected, hmmls is typically the most sensitive and
useful search program in the package; on the other hand, hmmfs can find fragmentary hits that
hmmls cannot.

The program hmmt (“HMM training”) trains an HMM from initially unaligned se-
quences, resulting in both a multiple alignment and a model. The algorithms used are of
theoretical interest and the alignments are sometimes superior to those produced by more con-
ventional multiple alignment programs. However, in practice, we have found that CLUSTALW
[32] produces superior alignments about two-thirds of the time.

Other accessory programs in the package include hmme, which emits sequences con-
sistent with a given HMM-profile (useful for simulation experiments or debugging); and hmm-
convert, which converts HMMER format to other model formats. em hmm-convert can convert
a HMMER HMM into GCG Profile format (with some loss of information), which allows the
use of fast hardware implementations of GCG profile search (e.g. the Compugen Biocellerator).

HMMER source code, executables for various UNIX platforms, and documentation are
available at http://genome.wustl.edu/eddy/hmmer.html. Other freely available HMM-profile
implementations include SAM from the Haussler group at UC Santa Cruz
(http://www.cse.ucsc.edu/research/compbio/sam.html), and PEFTOOLS from Phillip Bucher
(http://ulrec3.unil.ch:80/ftp-server/pftools/).

THE PFAM DATABASE

Using profile methods, one can readily build a profile of one’s favorite sequence family and
search a genome or sequence database for more members of the family: a one profile, many
sequences problem. Systematic genome analysis presents a more complicated problem. For each
new sequence, we wish to use profile analysis to identify what known domains it contains: a
many profiles, one sequence problem. For the second problem, we need a large database of
profiles of known domains. Shortly after the completion and release of the HMMER software, a
group of collaborators including myself, Erik Sonnhammer, and Richard Durbin began creating
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Figure 3: Flowchart of the construction of PFAM seed alignments, HMM-profiles, and full alignments.

an HMM-profile library that we could apply to C. elegans genome analysis.

There are a number of ‘second generation’ protein sequence databases which organize
proteins into families, consensus models, and multiple alignments. Premiere amongst these is
probably the PROSITE database developed by Amos Bairoch and collaborators [13]. PROSITE
defines which known sequences belong to a particular family, gives careful and extensive docu-
mentation of the family’s structure and function, and gives a motif pattern (regular expression)
that recognizes the family members. Other protein family databases include PRINTS, BLOCKS,
PRODOM, and SBASE. None of these were entirely suited as the basis for the development of
a large HMM-profile database. We wanted comprehensive, manually curated, gapped multiple
alignments of whole protein domains. The closest to our needs is the PRINTS database, which
provides manually curated multiple alignments of representative members of each sequence fam-
ily [14]; however, because the underlying search/alignment method of PRINTS is an ungapped
“fingerprint’ method (akin to BLOCKS), the PRINTS database warns that the alignments have
only been checked to be valid under the short regions that correspond to the ungapped finger-
prints. Though we decided that none of these databases were perfectly suited to our purposes,
we took extensive advantage of them (especially PROSITE) in creating our own alignment and
HMM-profile database, which we call PFAM (‘Protein FAMilies’) [18].

There are three important files for each protein family in PFAM. The seed alignment
(.seed file) is a multiple alignment of a representative subset of domain sequences. The HMM-
profile (HMM file) is built from the seed alignment. The full alignment is generated automat-
ically by searching Swissprot with the HMM-profile and using HMMER to automatically align
all the significant hits into a new alignment. A rough flowchart of PFAM model construction is
shown in Figure 3.

The definition of the family is usually taken from PROSITE, and less frequently from
the literature or our own domain identification research. Though we use independent structural
and biochemical data wherever possible, it is important to keep in mind that family definitions in
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PFAM and other databases is always subjective and operational, heavily dependent on the search
method being used. If a known structural family cannot be recognized by a single HMM-profile,
we split the family into two or more PFAM families that can be adequately recognized. Some
PROSITE families were split in this way, because even though they share a short PROSITE
active site motif, subfamilies have very different sequence consensus and sometimes even different
structural folds. On the other hand, PFAM contains some families which PROSITE does not
model, because even though the sequences are clearly related, no positions are conserved enough
to make a discriminative PROSITE pattern (globins, for instance, which are now modeled in
PROSITE by an HMM-profile developed by Bucher and collaborators.)

The definition of the bounds of the domain to be modeled is subjective. Again, we
use 3D structural data if it is available. In some cases, for certain highly repetitive domains,
intron position in eukaryotic genes is somewhat informative. Otherwise, domain definition is
operational, based on the recognizable limits of sequence similarity among a group of sequences.

The seed multiple alignments are also subjective. We select a group of representative
domain sequences and use CLUSTALW and HMM training, followed by manual editing, to
produce the alignment. If an HMM built of the alignment fails to recognize one or more trusted
members of the family, one or more new representative sequences is added, and the alignment
is revised.

Thus, the process of generating a seed alignment is tedious and relies heavily on ‘expert’
subjective input, though we are computer-assisted at each point. An important feature of PFAM
is that the seed alignment is considered to be a stable, reasonably permanent resource. After the
seed is generated and documented, HMM software takes over, and the rest of the database, in
particular the generation of the full alignments, is maintained fully automatically. This update
strategy is a necessary feature if PFAM is to survive subsequent releases of the primary databases
such as Swissprot. If all of PFAM had to be regenerated each time Swissprot is updated, it could
not be maintained.

The current release of PFAM is PFAM 2.0, containing 527 families. Some relevant
statistics about the database are given in Table 1. A detailed paper on the PFAM database was
recently published [18]. Since we began the development of PFAM, at least two other profile
databases have begun to be developed independently by other groups: the StrProf database
from the Kanehisa group [33], and a growing HMM-profile collection in PROSITE [13].

PFAM WEB SITES AND ON-LINE SEARCHING

PFAM 2.0 is freely available via FTP and the Web. The U.S. home page is
http://genome.wustl.edu/Pfam/. The U.K. home page is http://www.sanger.ac.uk/Pfam/.
The Web pages are separately maintained and differ slightly in surface functionality, but the
same database underlies them both. Both servers allow downloads of all or any one of the PFAM
alignments and models, or browsing of the documentation for each family. The documentation
is brief and relies heavily on links to PROSITE, PRINTS, and other Web resources for more
detail.

Both servers allow on-line analysis. A Web user can cut and paste a query sequence
into their browser and have it searched against one, a few, or all PFAM HMMs. The server
returns the results in text form, tabular summary form, and in a Java applet that gives a color
cartoon of the domain structure of the query protein. The PFAM alignments are also viewable
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Table 1

Summary of protein families in PFAM 2.0
Largest families: # seqs in seed  # seqs in full
C2H2 zinc fingers 165 1826
Ig superfamily 65 1351
Protein kinase catalytic domains 67 928
EGF domains 74 854
EF-hand domains 86 790
globins 61 699
7-TM receptors 64 597
Sequence lengths in full alignments:
mean: 200
shortest: 9 N-term neurohypophysial hormones
longest;: 807 7-TM receptors, family 3
Pairwise sequence identities in full alignments:
mean: 41%
highest: 89% Influenza virus nucleoprotein
lowest;: 17% PH domains
Number of sequences in full alignments:
mean: 74
most: 1826 C2H2 zinc fingers
least: 11 N-term of laminins (domain VI)

in a Java applet. An example of the search results from the U.S. server for the receptor tyrosine
kinase Sevenless, from Drosophila melanogaster, is shown in Figure 4.

A typical search with a 350 residue query takes about three minutes. HMM searches
are computationally intensive. The U.S. server uses a distributed processing system, written
in Java, that parallelizes the load across a number of different processors on the network at
Washington University. As more processors are recruited, search speed on the PFAM server will
increase.

GENOME ANALYSIS USING PFAM

We are currently integrating PFAM/HMM analysis with BLAST analysis in the bioinformatics
groups at the Sanger Centre (Hinxton, U.K.) and the Washington University Genome Sequencing
Center. The domain-based PFAM analysis simplifies complicated BLAST outputs in some
cases, especially in higher eukaryotic genomes, and HMM-profiles are sometimes more sensitive
than BLAST at identifying informative similarities. PFAM/HMM analysis is also now used in
‘production mode’ in other academic and industrial bioinformatics groups.

PFAM/HMM analysis hits at least one domain in 24% of the predicted proteins in the
C. elegans genome project. 8% of C. elegans proteins are annotated as multidomain proteins
by PFAM, with up to 5 different kinds of recognized domains per protein, and up to 44 total
recognized domains per protein.

One interesting analysis that PFAM simplifies is to rapidly classify the predicted proteins
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Figure 4: Screen dump of the results of submitting the Drosophila Sevenless protein sequence to the U.S.
PFAM server. Top: tabular output of the positions and alignment scores of various fibronectin type IIT domains
and a protein kinase domain. Middle: A Java alignment viewer applet, showing here the PFAM seed alignment
for fibronectin type IIT domains. Bottom: A Java applet showing a cartoon of the predicted domain structure of

Sevenless.
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Table 2
Top ten protein families in C. elegans based on both PFAM 2.0 and BLAST analysis
(protein counts based on analysis of 7299 predicted genes, 50% of the genome)

G-protein coupled receptors 179
Protein kinases 169
Collagens 97
C4-type zinc finger proteins (nuclear hormone receptors) 54
GTPase superfamily 52
Homeobox transcription factors 45
RNA recognition motif proteins 43
EGF domain containing proteins 42
short chain dehydrogenases (ADH-like) 34
ankyrin domain containing proteins 34

in a genome into families. A ‘top ten’ list of protein families in C. elegans according to PFAM
analysis and some subsequent manual work is shown in Table 2.

CONCLUSIONS AND FUTURE PLANS

PFAM is now maintained by a consortium of researchers. The database is being actively de-
veloped and maintained for the use of the genome and EST bioinformatics groups that we
are associated with. A number of collaborations with other databases and researchers have
been initiated, as the project is too large for us to maintain by ourselves, and we welcome
other contributions. To contact the PFAM consortium, email pfam@genetics.wustl.edu or
pfam@sanger.ac.uk.

In addition to providing a resource for HMM-profile construction, the PFAM multiple
alignment database is useful for other purposes. We are exploring its use for constructing
new substitution scoring matrices, for large-scale phylogenetic studies of gene duplication and
diversification, and for tuning and testing the next release of the HMMER software.

The next release of PFAM is anticipated in Fall 1997. It will be primarily a ‘bugfix’
release that fixes minor problems we have found in PFAM 2.0.
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