
A Minimum Interference Routing Algorithm
Gustavo B. Figueiredo and Nelson L. S. da Fonseca

State University of Campinas
Brazil

Email:
�
gustavo, nfonseca � @ic.unicamp.br

José A. Suruagy Monteiro
Salvador University

Brazil
Email: suruagy@unifacs.br

Abstract— Minimum Interference Routing is instrumental to
MPLS Traffic Engineering under realistic assumptions of un-
known traffic demand. This work presents a new algorithm for
minimum interference routing, called Light Minimum Interfer-
ence Routing (LMIR). This algorithm introduces a new approach
for critical link identification that reduces the computational
complexity. Results, derived via simulation, show that LMIR is
precise and has indeed a low computational complexity.

I. INTRODUCTION

The ability to dynamically create Label Switched Paths
(LSPs) at low operational costs makes MultiProtocol Label
Switching (MPLS) a fundamental tool for traffic engineering.
Route selection, dimensioning and traffic partitioning among
LSPs are the major challenges for MPLS based traffic engi-
neering.

The selection of paths which satisfy multiple independent
QoS requirements is an NP-complete problem. Therefore, the
solution of QoS based routing problems involves the adoption
of heuristics to find feasible paths in real time.

Path selection for a given source-destination (SD) pair traffic
may follow different criteria. Minimum interference routing
algorithms have attempted to reduce blocking probabilities by
finding edges which minimizes the maximum flow reduction
between other SD pairs.

The central idea behind these algorithms is that the larger
the available maximum flow is, the smaller is the blocking
probability of requests for an SD pair. Therefore, minimum
interference routing algorithms try to route a bandwidth re-
quest into paths which minimizes the maximum flow reduction
between others SD pairs [1]. This is an NP-hard problem, and
heuristics have been proposed to deal with this problem.

This paper presents a new heuristic, called Light Minimum
Interference Routing (LMIR), which tries to optimize resource
utilization with low computational complexity. As others ex-
isting minimum interference routing algorithms, LMIR is an
on-line algorithm which do not make any assumption about the
network traffic. Its major advantage in comparison to previous
approaches is the low computational complexity which leads
to greater scalability.

The rest of this paper is structured as follows. Section II
introduces LMIR and analyze its asymptotical complexity.
Section III presents numerical examples. Finally, conclusions
are presented in Section IV.

II. THE LIGHT MINIMUM INTERFERENCE ROUTING

ALGORITHM

Existing minimum interference routing algorithm are based
on max-flow type of solution. The most common maxflow
computation method is Ford-Fulkerson’s [2], and its mostly
known implementation, Edmonds-Karp algorithm, uses a
breadth search to find the augmenting paths. Its complexity
is �������
	���
 . For networks such as the Internet, the aver-
age degree is around 3.5 [3], i.e., the number of edges is
significantly larger than the number of vertices, which makes
Edmonds-Karp’s algorithm perform near the worst case (dense
graphs).

The fastest maxflow algorithm is Goldberg’s algorithm [4]
with complexity ������������� ������� 	�� ���
���	�� ��!#"$��� ��% 	&
�� ��!#"$��'(
)

for networks with * �+* vertices, * 	,* edges with capacities in
the interval [1,U] [4]. Even though Goldberg’s algorithm leads
to a significant reduction in computational complexity, other
approaches that avoid the use of maxflow can be used to
reduce even more the complexity of minimum interference
algorithms.

In this section, a new minimum interference routing al-
gorithm, called Light Minimum Interference Routing (LMIR),
that does not involve the execution of maxflow algorithms, is
presented.

LMIR assumes the existence of signaling protocols (e.g.,
RSVP-TE or CR-LDP) responsible for the updating of the
information about residual bandwidth, -�� .�
 , and topology
changes. LMIR attempts to find the / paths with the lowest
capacities among all SD pairs in order to determine the critical
edges. LMIR neither assumes any knowledge about future
requests nor any statistical traffic profile.

LMIR seeks the paths which minimize the interference of
SD pairs, generating a balanced utilization of resources. Upon
receiving a request for 021 bandwidth units for a SD pair ��3 ��4
 ,5�6 ��3 �)47� 0218
 , LMIR finds the / critical paths containing at
least / critical edges for the other SD pairs. Note that a given
lowest capacity path may contain more than one critical edge.
This search for critical edges is performed by finding the /
paths with the lowest capacities, since the path flow is limited
by the minimum capacity edge.

After finding / paths with the lowest capacities, weights,
computed according to Equation (1), are assigned to all of
their edges. In this way, weights inversely proportional to

the residual capacities are assigned to the critical path edges.
Lastly, Dijkstra’s algorithm using 1�� .�
 as weights is executed
for selecting non-critical edges or edges with low criticality.
The LMIR algorithm is presented in Algorithm 1.

Algorithm 1 LMIR
INPUT
A residual graph ��� ��� � 	&
 and 5�6 ��3 �)47� 0218
 , a request for
021 bandwidth units between pair ��3 ��4
 .
OUTPUT
A path (route) connecting 3 to 4 with 021 bandwidth units.
LMIR

1: Find the paths with the / lowest capacities � ��3�� ��4 �
��	� .
2: Compute the weights according to equation (1) for all the

edges belonging to the paths found.
3: Eliminate all the edges with residual capacities less than

021 .
4: Run Dijkstra’s algorithm using 1&��.�
 as the weights.
5: Create an LSP connecting 3 to 4 and update the edge

capacities.

Edge weights are computed as

1�� .�

� �
��
���� ���������

� ��
 � � � � ��
� ��� �!
 � -�� .�
 � ."� 	 (1)

where -���.�
 is link . residual capacity,
� �#
 � � � � �� is the flow

of a least capacity path between 3�� and 4 � and � ��� �$
 is the
capacity of the edge ��� �!
 .

The first step of LMIR is the search for the paths with the
lowest capacities (where � is the set of SD pairs). This is done
by a variation of Dijkstra’s algorithm, called “LowestCapaci-
ties” (Algorithm 2).

Algorithm 2 LowestCapacities

1: for all (� * �,*) do
2: %'&)(���4 6 & �(�+*
3: ,
&)(�.-'/)0
4: D[s], di[s] = 0.0
5: 132 3
6: while �41�
 do
7: �	26587:9 5�;<� 9 = 6�> �41�

8: for all �	?@%	A
& � (do
9: B	�.= 6�> & � ��� �!
 � %C& � (�(

10: if & ��B+DE%'&)(
GF � ��BH�I�J%C& �(
GK � 4 6 & � (D 4 6 &)(
)
 (
then

11: %'&)(�HB
12: 4 6 &)(� 4 6 & � (ML.N
13: ,
&)(�O�
14: 132P1RQ

In LowestCapacities, represents any network vertex, % is
a vector which contains the minimum capacity found in any
path from 3 to . Vector , contains ’s predecessor vertex and

vector 4 6 stores the distance from 3 to in number of edges.
1 represents the list of vertices which adjacencies were not
yet visited. Function extract min(Q) returns the element �C�S1
for which value %C& � (is the lowest one and ?@%	A
&)(represents
the adjacency list of vertex .

The complexity analysis of LMIR is as follows. Step 6 of
the LowestCapacities algorithm is executed * �+* times, since
all vertices are visited. Step 8 is also executed * � * times
resulting in ����� �
 complexity. Moreover, extract min(Q) has
complexity ��� 	�
 in the worst case, when the queue of vertices
with adjacencies not yet visited is implemented as a linked
list. Therefore, LMIR complexity is ����� �TL 	&
	� ����� �

[2]. Since each pair executes this algorithm / times, the
complexity of identifying critical edges is ��� / � � �
 = ����� �
 .
The other minimum interference algorithms, evaluated in this
paper, have ��������� ��� �2�)�#� 	�� ���
��$	 �7��!#"$��� ��% 	&
��7��!#"$��'(
)

complexity in the critical edges identification step.

In order to show that the complexity of LowestCapacities
is lower than the complexity of Goldberg et al.’s, which is the
fastest maxflow algorithm known, the complexity analysis of
these algorithms are derived for dense and sparse graphs.

For dense graphs it is assumed that * 	,*)� * �,* � . Therefore,
Goldberg’s algorithm has complexity

���)��� �����
 � � � � � !�"7��� � % � �
 � ��!#"$��'(
)

while LowestCapacities has complexity ����� �
 . Assuming
that the term � !�"7��� ��% � �
 has omitted other terms; since the
complexity cannot be zero, and ��!#" ��� � % ���
 � ��!#"$��'(
VU N , it
follows that

Goldberg’s maxflow � ����� ����� ��� � � �XW �)�
 , and

���XW �)� U � �

� LowestCapacities.

Hence, � � � ����� W �)�
 Y LowestCapacities �
��� Goldberg’s maxflow
[Z

For sparse graphs it is assumed that * 	,*�� * �+* . In this case,
1 can be implemented as a heap [2]. Therefore,

LowestCapacities � ����� � � !�" �&
 �
since step extract min(Q) has complexity ������!#" ��
 . Besides,
assuming that � !�"$���&� % 	&
 � � !�"$� '(
\U N , taking the first two
factors of ������������� �2��� � 	�� ���
���	 ��� !�" ��� � % 	&
���� !�"7��'�

 , it can
be shown that

Goldberg’s maxflow � � � ��� � � , and

LowestCapacities � ����� � � !�" �&
^]
Therefore, discarding factor � in both algorithms and taking

the � !�"
LowestCapacities � � !�"7����!#" �&
 , and

Goldberg’s maxflow � ��!#" � � ��� � N�%`_ � � !�" �
]
Hence, � !�"$� � !�"7���&

a� ��� N�%`_ � ��!#" ��
bY LowestCapacities �
��� Goldberg’s maxflow
$Z

These results show that for both dense and sparse graphs,
the critical edges detection in LMIR is less expensive than in
the algorithms that use maxflow.

The proper choice of / is of paramount importance for
the achievement of good performance, as will be explained
in the next section. This happens because when the algorithm
searches for the / least capacity paths for a given source-
destination pair, it tries to find out the critical edges, which
in the best case correspond to the minimal cut edges. So, an
inadequate value of / can lead to a large number of rejections.
Although it is not possible to establish an optimum value,
Theorem 1 establishes an upper bound for / .

Theorem 1: Let / ����
 be an upper bound to / , � ��� �!

the capacity of the edge ��� �!
 , � ���)� � � the flow of the least
capacity path between � and , � ����� � �� � � the maxflow between �
and in � , we have:

/ ���

� 4 ���
 � if � ����� � � � ��	��
 ���)� � ���
�G� � � � ��� � 6
 (2)

or

/ ����

� 4 �
 � if � ���)� � � � �����
 � � � � ���
�
� � � � � 6 �$
 (3)

or

/ ���
b� � � ����� � �� ���)� � ���] (4)

Proof: See appendix.

Note that to compute / ���
 it is necessary to execute a
max-flow algorithm once whereas for the other non-interfering
algorithms a max-flow algorithm should be computed at every
request.

Based on numerous simulation experiments pursued for the
evaluation of LMIR, it was observed that the best performance
and precision are obtained when / = / ���
 for / D�� and
/ is in the interval & � ���
 for / ����
���� .

III. NUMERICAL EXAMPLES

Simulation experiments were carried out to verify the preci-
sion and performance of LMIR. Experiments with small and
large networks were pursued. Small networks were used to
compare to previously published results for both the Minimum
Interference Routing Algorithm, MIRA [1] and the algorithm
presented in [5], WSC. The network topology as well as SD
pairs are shown in Figure 1. SD pairs are the only network
input and output traffic. Lighter links have capacity of 1200
bandwidth units, whilst the darker ones have 4800 bandwidth
units capacity, representing OC-12 and OC-48 rates, respec-
tively.

Links are bi-directional, i.e., they represent two links with
the same capacity in opposite directions. Requests were ran-
domly generated using the uniform distribution in the interval
& N����`(.

Two other algorithms that do not take interference into
account were also investigated so that the benefits of the
non-interfering approach can be highlighted. The Minimum

2

5 12

13

14

3

6

7

10

11

111

 15

9

8

2

3

9

10

6

15

14

5 12

13

1

4

11

7

S4

S2 D4

D5
D3

S1

D1

S3

D2

S5

Fig. 1. Topology used in the simulations.

Hop Algorithm (MHA) is an implementation of Dijkstra’s
algorithm while the Widest Shortest Path Algorithm (WSP)
finds the maximum capacity path in the network. If there is
more than one path with the same capacity, WSP returns the
path with the least number of edges.

It is assumed that LSPs have long lives, i.e., once accepted
its resources are kept until the end of the experiments. 8,000
requests were randomly generated among the five SD pairs
shown before.

Figure 2 shows the reduction of total available bandwidth as
the number of accepted requests. It can be seen that minimum
interfering routing algorithms produce the lowest reduction
rate for the total flow. WSP and MHA produce steeply reduc-
tions since they use critical edges indiscriminately, causing
the reduction of the maxflow of several SD pairs, which
demonstrates the importance of the minimum interference
approach. In this example, LMIR produces a flow reduction
rate smaller than the reduction produced by WSC and it is
equal to the one produced by MIRA up to 3,000 requests. From
this point on, LMIR has decreased slightly more accentuated
than both of them until 5,000 requests. After that, the behavior
of all the algorithms are about the same, almost linear.

0

5000

10000

15000

20000

25000

0 1000 2000 3000 4000 5000 6000 7000 8000

T
O

T
A

L
A

V
A

IL
A

B
LE

 B
A

N
D

W
ID

T
H

 B
E

T
W

E
E

N
 A

LL
 S

-D
 P

A
IR

S

NUMBER OF REQUESTS

LMIR
MIRA
WSC
WSP
MHA

Fig. 2. Total bandwidth among all network source-destination pairs.

Figure 3 shows the number of requests rejected as a function
of the total number of requests which arrived to the network.
MHA is the algorithm that rejects the highest number of
requests. MHA always chooses the shortest path, saturating

TABLE I

PARAMETERS USED IN GRAPHS RANDOM GENERATION.

� ���
Type � � � � ��� �	��

�

1 30 Dense 0.4 0.4 141 222 13
2 30 Sparse 0.2 0.2 141 118 7
3 40 Dense 0.4 0.4 141 354 13
4 40 Sparse 0.2 0.2 141 170 3
5 50 Dense 0.4 0.4 141 544 15
6 50 Sparse 0.2 0.2 141 302 5

rapidly the edges that belong to this path. WSP starts rejecting
connections around 5,000 requests. However, because it does
not take into consideration edge criticality, it can choose
paths that have critical edges from various pairs causing their
saturation. LMIR and MIRA produce the lowest number of
rejected requests.

0

500

1000

1500

2000

2500

3000

0 1000 2000 3000 4000 5000 6000 7000 8000

N
U

M
B

E
R

 O
F

 R
E

Q
U

E
S

T
S

 R
E

JE
C

T
E

D

NUMBER OF REQUESTS

LMIR
MIRA
WSC
WSP
MHA

Fig. 3. Number of requests rejected.

The time spent running LMIR is 2.2 second lower than the
time to run WSC and MIRA for / � N and is the same for
/ � � . WSP and MHA have execution times smaller than the
non-interfering algorithms. However, they cause an excessive
number of rejections. The evaluation of the execution time of
non-interfering algorithm as well the choice of the / value
are presented next.

Large networks with 30, 40, and 50 vertices were also used
in the experiments. Both sparse and dense networks were
investigated. The topology of these networks were randomly
created using Waxman’s method [3], [6] and the parameters
used are summarized in Table I, where � ����� N are model
parameters.

Bidirectional edge capacities, the number of requests and
the bandwidth per request were generated as in the previous
example. 30,000 requests were randomly generated among the
five source-destination pairs.

Results for networks with 50 nodes (Table I) are presented
here. Results for the other networks are omitted due to space
limitation and they imply in similar conclusions.

The 50 vertices dense networks have 544 edges which
implies in a large number of paths. In order to obtain an

overload scenario, all edges were assigned capacities of 1,200
bandwidth units.

It can be seen in Figure 4 that the behavior of WSC, MIRA,
and LMIR are quite similar up to 20,000 requests. Only after
this point MIRA achieves a slightly smaller reduction in the
maximum flow as compared to WSC and LMIR algorithms.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0 5000 10000 15000 20000 25000 30000

T
O

T
A

L
A

V
A

IL
A

B
LE

 B
A

N
D

W
ID

T
H

NUMBER OF REQUESTS

MIRA
WSC
LMIR

Fig. 4. Total available bandwidth (50 vertices dense networks).

Figure 5 presents the total number of rejections. Note
that the first request rejected by LMIR occurs only after
17,500 requests, while the first reject request by WSC and
by MIRA occur around 16,000 requests. MIRA and WSC
reject a larger number of requests than LMIR in the interval
& N�� ��������� _ � �������`(. However, after that, the three algorithms
behaves alike and at the end of the experiment they present a
very close number of rejected connections.

Figure 6 illustrates the fact that the quality of LMIR depends
on the choice of / . As can be seen the best performance was
achieved for / ��� (/ � & � � ��().

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 5000 10000 15000 20000 25000 30000

N
U

M
B

E
R

 O
F

 R
E

Q
U

E
S

T
S

 R
E

JE
C

T
E

D

NUMBER OF REQUESTS

MIRA
WSC
LMIR

Fig. 5. Number of rejected requests (50 vertices dense networks).

The decrease in the available bandwidth was analyzed for
all pairs and no interference was observed.

Figure 7 shows the reduction of the maximum flow in sparse
networks with 50 vertices. It can be clearly seen a smaller
reduction in the maximum flow achieved by LMIR with re-
spect to WSC and MIRA. After 4,000 requests approximately,
WSC presents a larger reduction than MIRA and LMIR, which

 7190

 7200

 7210

 7220

 7230

 7240

 7250

 7260

 7270

 4 6 8 10 12 14 16 18 20

N
U

M
B

E
R

 O
F

 R
E

Q
U

E
S

T
S

 R
E

JE
C

T
E

D

VALUE OF K

Losses

"perdas"

Fig. 6. Number of losses as a function of � (50 vertices dense networks).

behave in a similar way up to 6,000 requests. At this point one
can see a slower reduction in the available bandwidth, part of
LMIR up to 14,000 requests when the maximum flow becomes
null.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 5000 10000 15000 20000 25000 30000

T
O

T
A

L
A

V
A

IL
A

B
LE

 B
A

N
D

W
ID

T
H

NUMBER OF REQUESTS

MIRA
WSC
LMIR

Fig. 7. Total available bandwidth (50 vertices sparse networks).

Figure 8 shows the number of requests rejected by WSC,
MIRA and LMIR algorithms. It can be seen that the first
requests are rejected right after 5,000 requests. The algorithms
exhibit a very close behavior in the interval & � ��������� N�� ��������(.
LMIR in this experiment rejects a smaller number of requests
(approximately 19,500). The second best algorithm in this
experiment was MIRA with 20,000 rejected requests, followed
by WSC with a little less than 20,500 rejections.

The decrease in the available bandwidth for all SD pairs
was recorded and again no interfering was observed.

Table II presents the algorithms execution times for the
networks used in the experiments. The values were obtained
using Linux’s time command, in Intel Celeron machines with a
1.2 GHz clock, and 256 MB of RAM. In the table, results are
presented results for LMIR for / between 5 and 10. After that,
the execution time difference between LMIR and the others
becomes greater than 40 seconds. It can be seen that / should
be chosen in the interval & � ���
 .

 0

 5000

 10000

 15000

 20000

 25000

 0 5000 10000 15000 20000 25000 30000

N
U

M
B

E
R

 O
F

 R
E

Q
U

E
S

T
S

 R
E

JE
C

T
E

D

NUMBER OF REQUESTS

MIRA
WSC
LMIR

Fig. 8. Number of rejected requests (50 vertices sparse networks).

 19400

 19450

 19500

 19550

 19600

 19650

 19700

 19750

 4 6 8 10 12 14 16 18 20

N
U

M
B

E
R

 O
F

 R
E

Q
U

E
S

T
S

 R
E

JE
C

T
E

D

VALUE OF K

Losses

"perdas"

Fig. 9. Number of losses as a function of � (50 vertices sparse networks).

IV. CONCLUSIONS

In this paper, a new minimum interference routing algorithm
which does not use maxflow for critical edges detection was
presented. Modifications in Dijkstra’s algorithm were pursued
in order to find the paths with lowest capacities. After finding
/ critical edges, weights are assigned to the edges and an
algorithm to find the shortest path is applied.

Results obtained via simulation point out that the LMIR
produces similar outcomes for dense large networks than
WSC and MIRA and slightly better performance for sparse
networks.

TABLE II

EXECUTION TIMES FOR 30,000 REQUESTS

50 (D) 50 (S) 40 (D) 40 (S) 30 (D) 30 (S)
MIRA 3m24.97s 2m50.48s 2m25.53s 2m52.19s 12m2.37s 2m54.30s
WSC 3m20.41s 2m52.49s 2m27.35s 2m52.87s 2m5.84s 2m34.61s
K=5 2m5.70s 2m23.50s 2m8.19s 1m49.87s 2m0.36s 2m19.61s
K=6 2m23.48s 2m31.34s 2m19.67s 2m13.73s 2m3.73s 2m31.44s
K=7 2m27.64s 2m43.83s 2m36.94s 2m21.71s 2m9.45s 2m34.12s
K=8 2m30.27s 2m47.92s 2m39.94s 2m54.20s 2m16.37s 2m52.71s
K=9 3m4.96s 2m53.27s 3m0.13s 3m3.33s 2m26.43s 3m6.29s
K=10 3m28.76s 3m2.53s 3m3.19s 3m18.70s 2m37.87s 3m18.67s

ACKNOWLEDGMENT

This work was partially sponsored by CNPq.

REFERENCES

[1] M. S. Kodialam and T. V. Lakshman, “Minimum Interference Routing
with Applications to MPLS Traffic Engineering,” in INFOCOM (2), 2000,
pp. 884–893.

[2] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to
Algorithms. MIT Press and McGraw Hill, 1990.

[3] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee, “How to model an
internetwork,” in IEEE Infocom, vol. 2. San Francisco, CA: IEEE, March
1996, pp. 594–602.

[4] A. V. G. e Satish Rao, “Beyond the flow decomposition barrier,” in J.
ACM 45 (5), 1998, pp. 783–797.

[5] X. S. B. Wang and C. Chen, “A New Bandwidth Guaranteed Routing
Algorithm for MPLS Traffic Engineering,” in Proceedings of IEEE
International Conference on Communications, 2002, pp. 1001–1005.

[6] B. M. Waxman, “Routing of multipoint connections,” IEEE Journal on
Selected Areas in Communications, vol. 6, no. 9, pp. 1617–1622, 1988.

[7] D. B. West, Introduction to Graph Theory, P. Hall, Ed. Prentice Hall,
1996.

APPENDIX

Definition [7] 1: Let � � ��� � 	&
 be a graph and let
� ����
 and 	 ����
 be its vertex and edge sets, respectively. A
disconnecting set is a set

��� 	 � ��
 such that ��� � has more
than one component. A graph is said to be � -edge-connected
if every disconnecting set has at least � edges. The edge-
connectivity, � ��� ��
 , is the minimum size of a disconnecting
set.

Theorem 2: Let � ��� �$
 be the number of � �! -internally
disjoint paths (or just disjoint paths) then

� ��� �$
 � = 6�> � 4 ���
 �)4 �
2� �
where 4 ���
 and 4 �
 are the degrees of � and , respectively.

Proof: (Outline) Let � and �I� be two internally disjoint
paths between � and . Now, suppose by contradiction that,
� ��� �$
 U ����� � 4 ���
 ��4 �
 � . If ����� �!
 U ��� � � 4 ���
 �)4 �
2� ,
at least one edge incident to � or to was counted in two
internally disjoint paths, � and � � . Thus, if � and �X� have an
edge in common, they aren’t internally disjoint, contradicting
the hypothesis.

Theorem (Menger-1927) 3: Let � and be two vertices
of a graph � and ��� �!
 %� 	 � ��
 . Then, �
	�� �
� � � ��

+�
� ��� �
� ��� �$
)
 .

Proof: See [7].
Although Menger’s Theorem suggests an upper bound for

/ , critical edges may not be identified when the number of
disjoint paths is lower than the number of critical edges. Few
changes may be done in � in order to use this theorem. Given
a graph � with - integer capacities, we form a graph � �
splitting each edge of capacity 7 into 7 edges with the same
endpoints and capacity 1 unit of flow.

Thus, a new theorem relating maximum flow and Menger’s
theorem (Theorem 3) is presented:

Theorem 4:

����� �
�� � �	� � � ��� �^;�� ��� ���
 ��� � � � �
^]
Where �����I�
 is the number of internally disjoint paths be-
tween � and , � �	� is the maxflow between � and , �^;�� �
� ���

represents the capacity of a cut (S,T) such that �3��� and
 � � , and � ��� ��
 is the minimum size of a disconnecting set
of � .

Proof: See [7].
Theorem 5: Let

� ���)� � �� be a flow of a least capacity path
between � and in � , thus > � � ���)� � �� �������� �

� ����� � �� � .
Proof: In �I� each edge has capacity of 1 unit of flow.

Thus, in order to send > units of flow, we have to use > distinct
paths. Furthermore, the capacity of a path in � is limited by
the flow of the least capacity edge in that path. Since � � is built
from � , using a - capacity edge in � is equivalent to using -
edges with the same endpoints in �X� . Thus the equality holds.

Theorem 6: Let / ����
 be an upper bound to / ,
� ���)� � �� be

a flow of a least capacity path between � and in � , � ����� � �� � �
be the flow of the least capacity path between � and in � ,
and � ���)� � �� � � be the maxflow between � and in � , we have:

/ ����
b� 4 ���
 � if � ���)� � � � �����
 ���)� � ���
�G� � � � ��� � 6
 (5)

or

/ ����

� 4 �
 � if � ���)� � � � �����
 � � � � ���
�G� � � � � 6 �!
 (6)

or

/ ���
b� � � ���)� � �� ���)� � � � (7)

Proof:
Case 1: � ���)� � � � ��	��
 ���)� � ���
�G� � � � ��� � 6
]

The Max-flow Min-cut theorem [7] implies that the maxi-
mum network flow is bounded by the minimum capacity of a
source/sink cut. So, if� ���)� � � � ������ ���)� � ���
�G� � � � ��� � 6

the maximum network flow is bounded by the capacities of
the edges incident to � .

Case 2: � ���)� � � � ������ � � � � ���
�G� � � � � 6 �$

Using a reasoning analogous to case 1.
Case 3:
Let > � � ���)� � �� � � � ��� ����� � �� � �

it is known that all paths have capacity 1 in � � . Therefore,

> � � ���)� � �� � � � > � � ���)� � �� � � �� ��� �

� ���)� � �� �

making � and / ���
 such that � � / ����
 � > we have that

> ��� ���)� � �� � � � / ���
 �
�� ��� �

� ���)� � �� �] (8)

However, using Theorem 5 in Equation 8 the following holds

/ ���
 � � ���)� � �� � � � � ����� � �� � �] (9)

Since in � both � ���)� � �� � � and � ���)� � �� � � are known, we can define
/ ���
 as

/ ���
b� � � ����� � �� ���)� � ���]

