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Abstract

We propose a novel tracking algorithm that can work ro-

bustly in a challenging scenario such that several kinds of

appearance and motion changes of an object occur at the

same time. Our algorithm is based on a visual tracking de-

composition scheme for the efficient design of observation

and motion models as well as trackers. In our scheme, the

observation model is decomposed into multiple basic ob-

servation models that are constructed by sparse principal

component analysis (SPCA) of a set of feature templates.

Each basic observation model covers a specific appearance

of the object. The motion model is also represented by the

combination of multiple basic motion models, each of which

covers a different type of motion. Then the multiple ba-

sic trackers are designed by associating the basic observa-

tion models and the basic motion models, so that each spe-

cific tracker takes charge of a certain change in the object.

All basic trackers are then integrated into one compound

tracker through an interactive Markov Chain Monte Carlo

(IMCMC) framework in which the basic trackers commu-

nicate with one another interactively while run in parallel.

By exchanging information with others, each tracker fur-

ther improves its performance, which results in increasing

the whole performance of tracking. Experimental results

show that our method tracks the object accurately and re-

liably in realistic videos where the appearance and motion

are drastically changing over time.

1. Introduction

Object tracking is a well-known problem in computer

vision community. Recently, many researchers have ad-

dressed the problem in real-world scenarios rather than a

lab environment [13, 19]. In this scenario, it is a very chal-

lenging task to track an object since the scenario typically

includes severe appearance or motion changes of the object.

The appearance changes cover geometric and photometric

variations of an object such as occlusion, pose, or illumina-

tion changes [8, 17]. Severe motion changes usually occur

when a video has a low frame rate or when an object moves

(a) Pose variation (#72) (b) Abrupt motion (#76)

(c) Occlusion (#163) (d) Illumination change (#249)

Figure 1. Example of our tracking results in skating1(low frame

rate) seq. Our tracking algorithm successfully tracks a target even

though there are severe pose variations, abrupt motions, occlusion,

and illumination changes combinatorially.

abruptly [11, 14]. To deal with all these changes simulta-

neously, tracking methods need more complex observation

and motion model as well as an efficient tracking model. In

this paper, we address the problem of efficiently designing

complex models and making a proper tracking framework

for them. Based on these models, we propose a novel track-

ing algorithm that can track an object robustly whose ap-

pearance and motion are drastically changing as shown in

Fig.1.

The philosophy of our method is to utilize the basic dis-

tinctive components of the observation, motion, and track-

ing models to efficiently construct compound models. We

call the process of determining these basic models as Visual

Tracking Decomposition. In visual tracking decomposition,

one basic model means a basic appearance, a basic motion,

or a basic tracker for an object. To determine the basic ob-

servation models, SPCA [4] is first used to find the object

models that consist of a different combination of features of

an object, and then each object model is mapped to a ba-

sic observation model. Our compound observation model

is made up of multiple basic observation models, and it is

robust to combinatorial appearance changes since the basic

models explain most variations of the object’s appearances.

For the basic motion models, we assume two distinct types

of motions, smooth and abrupt motions, and they are mod-
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eled by different Gaussian perturbations. Similarly, a com-

pound tracker is constructed by employing its basic track-

ers. For this, we introduce IMCMC [3], which consists

of interactive multiple chains. In our tracking system, one

chain corresponds to one basic tracker. Although each basic

tracker is simple because it utilizes only one pair of observa-

tion and motion models among the various ones, by allow-

ing the exchange of information among basic trackers that

have different observation and motion models, our tracking

method fuses several models efficiently.

The first contribution of this paper is to address the com-

binatorial and realistic tracking problem and provide an ef-

ficient solution of this problem. We test our method us-

ing unconstrained videos obtained from broadcast networks

such as music concerts, sports events, or documentaries. In

these videos, our method shows more accurate and reliable

tracking results compared with state-of-the-art tracking al-

gorithms. The second contribution is the proposal of the vi-

sual tracking decomposition scheme. This scheme provides

an efficient strategy for designing multiple basic observa-

tion and motion models that well explain the previous and

current status of an object. With these models, our method

integrates multiple basic trackers into one robust compound

tracker while interactively improving the performance of all

basic trackers.

2. Related Works

Tracking methods for combinatorial problems: Ross et

al. [17] propose an adaptive tracking method that shows ro-

bustness to large changes in pose, scale, and illumination

by utilizing incremental principal component analysis. The

online multiple instance learning algorithm [1] success-

fully tracks an object in real time where lighting conditions

change and the object is occluded by others. Compared with

these two works, we address more challenging scenarios for

the tracking problem utilizing unstructured videos captured

from broadcast networks.

Tracking methods with feature fusion: Han et al. [6]

present a probabilistic sensor fusion technique. The method

shows robustness to severe occlusion, clutter, and sensor

failures. The method in [5] integrates multiple cues, edge,

and color in a probabilistic framework while the method

in [18] fuses multiple observation models with parallel and

cascaded evaluation. However, these methods do not con-

sider extreme motion changes of an object. Our method

explicitly tackles the severe motion changes as well as ap-

pearance changes with the visual tracking decomposition

scheme, and shows that it increases the tracking perfor-

mance in a realistic tracking scenario.

Sampling based tracking methods: By handling non-

Gaussianity and multi-modality, the particle filter [7] has

shown efficiency in conventional tracking problems. The

Markov Chain Monte Carlo method is well applied to multi-

object tracking problems while rigorously formulating the

entrance and exit of an object [9, 20]. As the number of

observation and motion models increases, however, these

methods need more samples as many times as the number

of models. Our method solves this problem by utilizing IM-

CMC, which requires a relatively small number of samples

by exchanging information between chains.

3. Bayesian Tracking Formulation

The goal of our method is to find the best configuration

of an object with a given observation. The configuration at

time t is represented as a three-dimensional vector, Xt =
{Xx

t , X
y
t , X

s
t }, where Xx

t , X
y
t and Xs

t indicate the x, y

position and scale of the object, respectively. Given the state

at time t, Xt and the observation up to time t, Y1:t, the

method estimates the posteriori probability p(Xt∣Y1:t) with

the following Bayesian formulation:

p(Xt∣Y1:t) ∝ p(Yt∣Xt)
∫

p(Xt∣Xt−1)p(Xt−1∣Y1:t−1)dXt−1,
(1)

where p(Yt∣Xt) denotes the observation model that mea-

sures how much the target object and observation at the pro-

posed state coincide, and p(Xt∣Xt−1) represents the mo-

tion model that proposes the next state Xt based on the pre-

vious state Xt−1. Then the aforementioned best configura-

tion of an object, X̂t can be obtained by the Maximum a

Posteriori (MAP) estimate over the N number of samples

at each time t.

X̂t = arg
X

(l)
t

max p(X
(l)
t ∣Y1:t) for l = 1, . . . , N, (2)

where X
(l)
t indicates the l-th sample of the state Xt.

Given a fixed number of samples, the accuracy of the

MAP estimate in (2) increases when the posteriori probabil-

ity p(Xt∣Y1:t) gives an accurate value. Our method obtains

the accurate value of the posteriori probability by sophisti-

cating the observation model p(Yt∣Xt) and motion model

p(Xt∣Xt−1) in (1). For this, we design the model as the

weighted linear combination of its basic components.

p(Yt∣Xt) =
r

∑

i=1

wi
tpi(Yt∣Xt),

r
∑

i=1

wi
t = 1, (3)

p(Xt∣Xt−1) =

s
∑

j=1

w
j
t pj(Xt∣Xt−1),

s
∑

j=1

w
j
t = 1, (4)

where r and s represent the number of basic components of

the observation and motion model, respectively, pi(Yt∣Xt)
denotes the i-th basic observation model, pj(Xt∣Xt−1) in-

dicates the j-th basic motion model, and wi
t is the weight-

ing variable at time t. The following sections will explain
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Figure 2. The process of observation model decomposition We

make the set St utilizing image templates up to time t for the u

number of different features. Then the SPCA method constructs

the object models M
i
t by selecting a certain subset of St. With

each object model, each basic observation model is defined by (8).

how to determine these basic models efficiently (section 4)

and estimate the weight of each model implicitly (section

5). Note that pi(Yt∣Xt)i=1,...,r in (3) form r different ba-

sic observation models. Similarly, pj(Xt∣Xt−1)j=1,...,s in

(4) build up s different basic motion models. For clarity,

we call p(Yt∣Xt) and p(Xt∣Xt−1) as the compound obser-

vation and the compound motion model, respectively, here-

after.

4. Model Decomposition

4.1. Basic Observation Models

In this paper, we employ the mixture of templates model

for object representation. For this, we define a set St, which

consists of different types of feature templates of an object

up to time t:

St = {fn
m∣m = 1, . . . , t, n = 1, . . . , u}, ∣St∣ = tu, (5)

where fn
m denotes the n-th type of the feature template at

time m and ∣St∣ indicates the total number of feature tem-

plates in St. In (5), different types of feature templates fn
m

are obtained by utilizing different types of feature extractors

Fn for the image patch I(X̂m) at each time:

fn
m =

Fn(I(X̂m))

∥Fn(I(X̂m))∥
,m = 1, . . . , t, n = 1, . . . , u, (6)

where I(X̂m) represents the image patch at time m de-

scribed by X̂m in (2) and Fn indicates the feature extractor

for obtaining the n-th type of the feature template.

Each basic observation model pi(Yt∣Xt) in (3) takes one

subset of St as its own object model M i
t at time t.

M i
t ⊂ St, i = 1, . . . , r. (7)

Then, it is determined by

pi(Yt∣Xt) = exp−�DD(Yt,M
i

t
), i = 1, . . . , r, (8)

where � denotes the weighting parameter 1, and Yt rep-

resents the u number of observations obtained by feature

extractors Fn, n = 1, . . . , u for the image patch described

by Xt. In (8), the DD function returns the diffusion dis-

tance between the observation Yt and the object model M i
t

at time t. We utilize diffusion distance as a dissimilarity

measure, since it is robust to deformation as well as quanti-

zation effects of the observation [15]. Because Yt and M i
t

consist of multiple observations and multiple templates, re-

spectively, DD(Yt,M
i
t ) is computed as the sum of dissim-

ilarity between each observation in Yt and each template

in M i
t . To complete the designing of pi(Yt∣Xt) in (8), the

remaining task is to obtain the r number of different subsets

M i
t , i = 1, . . . , r. This is efficiently done by the sparse prin-

cipal component analysis method in the next subsection.

4.1.1 Sparse Principal Component Analysis

There are three conditions for the object model M i
t to be

good in terms of tracking performance and efficiency. The

first condition is that M i
t has to cover most appearance

changes in an object over time. The second is that the for-

mation of it should be as compact as possible while preserv-

ing its good performance. The last condition is that relations

between M i
t , i = 1, . . . , r should be complementary. To

satisfy all of these conditions, our method adopts the SPCA

method to construct M i
t . Given a Gramian matrix At, the

original SPCA method [4] seeks out sparse principal com-

ponents c, which only have a limited number of nonzero

entries while capturing a maximum amount of variance:

maximize cTAtc− �∣c∣2

subject to ∥c∥2 = 1,
(9)

where ∣c∣ is the number of nonzero entries in c and � con-

trols the penalty on the nonzero entries of c. As the � value

increases, we have more sparse principal components c 2.

For our tracking problem, the Gramian matrix At at time t

is constructed as

At = aTa,

a =
(

f1
1 . . . f1

t . . . fu
1 . . . fu

t

)

,
(10)

where the size of At is ∣St∣ × ∣St∣ since the column size of

the matrix a is ∣St∣.
With the conventional convex optimization tools [4],

we can efficiently obtain the approximate solutions of (9).

1We set � to 5 in all of the experiments.
2We set � to 90 in all of the experiments.
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Among these components, we choose the r principal com-

ponents ci, i = 1, . . . , r according to the eigenvalue in de-

scending order. The chosen components compose each ob-

ject model M i
t in (7) as follows:

M i
t = {fn

m∣fn
m = a(x), ci(x) ∕= 0}. (11)

If the x-th element of ci has a nonzero value, M i
t includes

the template fn
m located at the x-th column of the matrix

a in (10). By doing this, each object model M i
t captures

the significant appearance changes in an object since each

model is constructed by each significant eigenvector. And

sparsity of the eigenvector gives compactness to the model

while making it have a small number of templates. Since

the eigenvectors have orthogonal property, the object mod-

els have complementary relationship with each other. Fig. 2

illustrates the whole process of observation model decom-

position.

4.2. Basic Motion Models

Each basic motion model pj(Xt∣Xt−1) in (4) describes

different types of motions made by a Gaussian perturbation

with a different variance.

pj(Xt∣Xt−1) = G(Xt−1, �
2
j ), j = 1, . . . , s, (12)

where G represents the Gaussian distribution with mean

Xt−1 and variance �2
j . We assume that the motion of an ob-

ject can be decomposed into two kinds of motions, smooth

and abrupt, and make two motion models, p1(Xt∣Xt−1)
and p2(Xt∣Xt−1). p1(Xt∣Xt−1) explains the smooth mo-

tion with a small �2
1 . This kind of the motion model further

simulates the seemingly good moves near the local minima

(exploitation). On the other hand, p2(Xt∣Xt−1) covers the

abrupt motion with a large �2
2 . In this case, the model fur-

ther simulates moves that have not been explored much (ex-

ploration). Our method makes full use of the exploitation

ability with the exploration ability by implicitly combining

two motion models in section 5.

4.3. Basic Tracker Models

Our compound tracker is composed of r × s number

of basic trackers T
j
i , i = 1, . . . , r, j = 1, . . . , s utilizing

all pairs of the observation models pi(Yt∣Xt)i=1,...,r and

motion models pj(Xt∣Xt−1)j=1,...,s as shown in Fig. 3.

Since we choose a few robust basic observation models us-

ing SPCA, the number of basic observation models is not

increased as many times as the size of the template set St in

(5). And the number of basic motion models is fixed to 2.

Therefore, our method typically maintains a small number

of basic trackers and shows good performance in terms of

scalability even on a large template set.

Each basic tracker constructs a Markov Chain modeled

by one pair of a basic observation and a basic motion model,

Interaction

S
a
m

p
lin

g

Interaction

Interaction
S
a
m

p
lin

g

S
a
m

p
lin

g

Tracker
1

1T Tracker
2

1T Tracker
s

rT

Basic observation models Basic motion models

)X|Y(p tt1 )X|Y(p tt1 )X|Y(p ttr

)X|X(p 1tt1  
)X|X(p 1tt2  

)X|X(p 1tts  

model 2 model 2 model smodel 1 model r model 1

Figure 3. The process of tracker decomposition Each pair of the

observation and motion model makes each basic tracker. There-

fore, the total number of trackers is r× s if there are r observation

and s motion models.

and produces samples of the state for the MAP estimate in

(2) via the Metropolis Hastings algorithm. The algorithm

consists of two main steps: the proposal step and the accep-

tance step. In the proposal step, a new state is proposed by

the proposal density function.

Qj(X
j
t

∗

;Xj
t ) = pj(X

j
t

∗

∣Xj
t ), (13)

where Qj denotes the proposal density function which uti-

lizes the j-th motion model in (12) and X
j
t

∗

represents the

new state proposed by Qj at time t.

Given the proposed state, the tracker T
j
i decides whether

the state is accepted or not with the acceptance ratio in the

acceptance step:


parallel = min

[

1,
pi(Yt∣X

j
t

∗

)Qj(X
j
t ;X

j
t

∗

)

pi(Yt∣X
j
t )Qj(X

j
t

∗

;Xj
t )

]

. (14)

These two steps iteratively go on until the number of itera-

tions reaches a predefined value.

5. Integration by Interactive Markov Chain

Monte Carlo

While the sampling process goes on, the basic trackers

communicate information about the good configuration of

an object to other basic trackers as shown in Fig. 3. Since

each basic tracker utilizes a different pair of the observa-

tion and motion model, exchanging information results in

fusing all of these models and estimating the weight wi
t in

(3) and w
j
t in (4) implicitly. To communicate with each

other, we introduce IMCMC [3] to our tracking problem.

Our method consists of two modes, parallel and interact-

ing. In the parallel mode, the method acts as the parallel

Metropolis Hastings algorithms explained in the previous

subsection. When the method is in the interacting mode,
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Algorithm 1 Visual Tracking Decomposition

Input: Xt−1 = (Xx
t−1,X

y
t−1,X

s
t−1), � = 1

Output: X̂t = (X̂x
t , X̂

y
t , X̂

s
t )

1: rand() returns a random number between 0 and 1.

2: for 1 to N
rs

do

3: if rand()< � then

4: for 1 to rs do

5: Accept the new state with the probability (15).

6: end for

7: else

8: for 1 to rs do

9: Propose the new state using (13).

10: Accept the new state with the probability (14).

11: end for

12: end if

13: Decrease the � value.

14: end for

15: Estimate the MAP state X̂t using (2).

16: Determine basic observation models using (8).

17: Determine basic motion models using (12).

the trackers communicate with the others and make leaps to

better states of an object. A basic tracker accepts the state

of tracker T
j
i as its own state with the following probability:


interacting =
pi(Yt∣X

j
t )

∑r

i=1

∑s

j=1 pi(Yt∣X
j
t )
, (15)

where pi(Yt∣X
j
t ) returns the likelihood score of the i-th ob-

servation model at the state obtained from the j-th motion

model. Our method operates in an interacting mode with

the probability �, which linearly decreases from 1.0 to 0.5

as the simulation goes on. Algorithm 1 illustrates the whole

process of our tracking method 3.

6. Experimental Results

6.1. Implementation Details

In the experiment, we utilized hue, saturation, intensity,

and edge template for the features. The hue template ex-

presses the chrominance characteristic of an object. The

intensity template represents the brightness status of the ob-

ject [16]. And the edge template gives a relatively consis-

tent information about the shape of the object even when

there are severe illumination changes [10]. With four dif-

ferent types of features, we made the set St in (5) using five

image patches obtained at the initial frame and four recent

frames where ∣St∣ is 20. The parameters of our method were

fixed for all of the experiments except the variance of the

3Although IMCMC does not satisfy detailed balance, it produces fair

samples from the target posterior in (1) and typically converges [3]. IM-

CMC needs no burn-in period for the MAP problem.

MC MS OAL MIL VTD VTDĨ VTDS̃

tiger1 27 93 65 15 13 35 54

david 49 88 4 23 7 24 70

face 19 45 19 27 7 8 8

shaking 97 241 95 38 5 7 68

soccer 47 97 151 41 21 22 96

animal 32 207 23 30 11 13 40

skating1 111 141 174 85 7 8 219

Table 1. Comparison of tracking results. The numbers indicate

average center location errors in pixels. These numbers were ob-

tained by running each algorithm 5 times and averaging the results.

first motion model, �1
4. In all the experiments, the number

of observation and motion model are set to 4 and 2, respec-

tively. So the total number of the basic trackers is 8. We

compared the proposed algorithm (VTD) with four different

tracking methods: standard MCMC (MC) based on [9][16];

Mean Shift (MS) [2] based on the implemented function

in OpenCV; On-line Appearance Learning (OAL) in [17];

and Multiple Instance Learning (MIL) in [1]. We used the

software of authors for testing OAL and MIL. Note that our

current implementation is not optimized, and it spends most

computational time to get a likelihood score by measuring

the diffusion distance in [15]. Thus, by properly optimizing

the process of measuring diffusion distance, we can greatly

enhance the speed although it takes 1 ∼ 5 seconds per frame

at the current state. The supplementary material contains

videos of tracking results.

6.2. Quantitative Evaluation

Performance of the tracking algorithms: Table 1 sum-

marizes the tracking results on seven different datasets 5. In

most sequences, our method (VTD) most accurately tracked

the targets even though there were severe occlusions, pose

variations, illumination changes, and abrupt motions. For

the sampling-based methods, which are MC, OAL, and

VTD, we used the same number of samples, 800, to track

an object. Given the fixed number of samples, our method

efficiently searched the solution space and found the best

local minimum state of an object. This is because our

method exchanged information about the good states be-

tween the basic trackers. MIL and OAL showed the second-

best performance on average although MIL does not track

scale. MIL is good since it was hardly affected by param-

4�1 is typically set to �x
1
= 2, �

y
1
= 1.414, and �s

1
= 0.0165 where

�x
1
, �

y
1
, and �s

1
denote the variance of the x,y translation and scale, re-

spectively. Variance of the second motion model �2 is set to �2 = 2�1.

Although the tracking result could be dependent on the variance of the

motion model, it is not so sensitive in practice.
5These datasets consist of three publicly available video sequences

(tiger1, david indoor, occluded face) in [1] or [17] and four made by us

(shaking, soccer, animal, skating1). We found the ground truth of our

datasets by manually drawing the bounding box of an object.
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eter settings. However, MIL failed when severe illumina-

tion changes drifted the tracker into a background. OAL

was robust to the illumination changes but weak to severe

occlusions and viewpoint changes. Our method overcame

these changes by designing the compound observation and

motion model, and the efficient tracker utilizing the visual

tracking decomposition scheme.

Performance of IMCMC: VTD had a better performance

than VTDĨ as shown in the table 1 where VTDĨ denotes

our method without interaction between trackers. The re-

sults show that the interaction process in VTD is important

to improve the tracking performance, especially in tiger1

seq. The sequence contains several kinds of appearance and

motion changes. In the VTD method, the proper tracker

among multiple ones covered these changes at each time

and propagated its state to the other trackers. This is why

VTD typically gave more accurate results than VTDĨ. Fig.

4(e) describes how frequently each tracker exchanges infor-

mation about the state in animal seq., which includes dras-

tically abrupt motions of the object. In this sequence, each

basic tracker actively interacted with the rest while helping

the other basic trackers to make leaps to a better state. Al-

though some basic trackers failed to track the object, our

method successfully found the proper state of the object as

shown in Fig. 4(a)-(d) where the red rectangle denotes the

tracking result of the failed basic tracker. The green rect-

angle indicates the leapt state of the failed tracker with the

help of other good basic trackers.

Performance of SPCA: VTDS̃ indicates our method with-

out sparse principal component analysis. We designed

VTDS̃ such that the different observation model employs

a different type of features. On the other hand, each obser-

vation model of VTD includes several types of feature tem-

plates obtained by SPCA. As shown in the table 1, the per-

formance of VTD was drastically improved as compared to

VTDS̃. This means that the observation models constructed

(a) #1 (b) #68 (c) #96 (d) #300

0 40 80 120 160 200 240 280 320

6

8

10

12

14

16

18

20
#96

C
ar

di
na

lit
y

Frame

 Model 1
 Model 2
 Model 3
 Model 4

#68

hue

edge

(e) Cardinality of 4 observation models

(f) Added

templates at #68

Figure 5. Adaptiveness of observation models in singer1 seq.

by SPCA are very useful in our tracking problem. Fig. 5(e)

shows how adaptively SPCA constructs object models at

each frame under severe illumination changes from frame

#60 to #170 in singer1 seq. The changes of cardinality in

each model indicate that SPCA transforms each model into

a different one to cover the specific appearance changes in

an object. At frame #68, to represent the illuminated object

in Fig 5(b), SPCA added hue and edge templates to Model

1 as shown in Fig. 5(e)(f), which are relatively robust to the

illumination changes [19]. Similarly, at frame #96, Model

4 is severely modified to deal with these changes. With help

of SPCA, VTD tracks the object accurately in spite of se-

vere illumination changes as illustrated in Fig. 5(a)-(d).

6.3. Qualitative Evaluation

Illumination change and pose variation: Fig. 6 presents

the tracking results in shaking and singer2 seq. While the

stage lighting condition is drastically changed, and the pose

of the object is severely varied due to head shaking or danc-

ing, our method successfully tracked the object as shown

in Fig. 6(a)(c). Since our observation models evolve them-

selves by online update, our method efficiently covered the

pose variations. Additionally, the method was robust to il-

lumination change because the observation models utilize

a mixture of templates. However, other methods failed to

track the object when these changes occur combinatorially

as illustrated in Fig. 6(b)(d).

Occlusion and pose variation: Fig. 7 demonstrates how

the proposed method outperforms the conventional tracking

algorithms when the target is severely occluded by other

objects. As shown in Fig. 7(a)(c), our method robustly

tracked the object in soccer and skating2 seq. The method

was robust to the occlusion because it constructed multiple

observation models. Each model kept a different history of

the object’s appearance over time, which includes the oc-
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#1 #60 #242 MC #242 OAL #242 MIL #60

(a) Tracking results of our method in shaking seq. (b) Comparison with other methods in shaking seq.

#1 #276 #324 MC #181 OAL #324 MIL #276

(c) Tracking results of our method in singer2 seq. (d) Comparison with other methods in singer2 seq.

Figure 6. Tracking results when there are severe illumination changes and pose variations.

#1 #143 #364 MC #143 OAL #143 MIL #364

(a) Tracking results of our method in soccer seq. (b) Comparison with other methods in soccer seq.

#1 #454 #552 MC #454 MIL #552 MS #558

(c) Tracking results of our method in skating2 seq. (d) Comparison with other methods in skating2 seq.

Figure 7. Tracking results when there are severe occlusions and pose variations.

cluded, non-occluded appearance, or mixture of them. And

it took charge of a different degree of occlusion. On the

other hand, other methods failed to track the object accu-

rately as depicted in Fig. 7(b)(d).

Background clutters: In Fig. 8, we tested football seq.

that includes severe background clutter, of which appear-

ance is similar to that of the target. In the case of other

tracking methods, a trajectory was hijacked by the other

football player wearing a similar helmet to the target when

two players collided with each other at frame #361 as illus-

trated in Fig. 8(b). Our method overcame this problem and

successfully tracked the target in Fig. 8(a).

Abrupt motion and illumination change: Fig. 9(a) illus-

trates our tracking results of tiger1 seq. While the sequence

contains abrupt motions as well as illumination changes,

our method did not miss the object in all frames. For more

tests, we made original videos of singer1 and skating1 to

have partially low frame rate. In converted videos, the po-

sition and scale of an object are drastically changed. At

the same time, severe illumination changes translate the

appearance of the object into different one. As shown in

Fig. 9(c)(e), our method covered these changes and reli-

ably tracked the object. However the other methods failed

to track the object as described in Fig. 9(b)(d)(f). Note that

WLMC [11] and OIF [12] are the most recent state-of-

the-art tracking methods that can cope with abrupt motions

and appearance changes, respectively. We used software of

authors for WLMC and OIF.

7. Conclusion

In this paper, we proposed an effective tracking algo-

rithm with the visual tracking decomposition scheme. The

algorithm efficiently addresses the tracking of an object

whose motion and appearance change drastically and com-

binatorially. The experimental results demonstrated that the

proposed method outperformed conventional tracking algo-

rithms in severe tracking environments. Since our decom-

position scheme is easy to extend by adding new features or

trackers, the tracking results could be improved further.
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#177 #158 #361 OAL #361 MIL #361 OIF #361

(a) Tracking results of our method in football seq. (b) Comparison with other methods in football seq.

Figure 8. Tracking results when there is severe background clutter.

#110 #285 #320 OAL #320 MIL #320 OIF #320

(a) Tracking results of our method in tiger1 seq. (b) Comparison with other methods in tiger1 seq.

#19 #26 #37 MC #26 MS #26 MIL #37

(c) Tracking results of our method in singer1(low frame rate) seq. (d) Comparison with other methods in singer1(low frame rate) seq.

#225 #235 #245 OAL #225 MIL #235 WLMC #245

(e) Tracking results of our method in skating1(low frame rate) seq. (f) Comparison with other methods in skating1(low frame rate) seq.

Figure 9. Tracking results when there are abrupt motions and severe illumination changes.
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