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Abstract—Background: Measurement is a technique that is widely-

used to quantify quality of process models. Evaluation of 

measurement results implies comparison against limit values, called 

thresholds. Determining thresholds is no trivial task and it requires 

the application of complex techniques. There are several techniques 

that have been published to date, proposing different approaches for 

threshold extraction. Two of the most prominent techniques are ROC 

curves and the Bender method. Although they come from different 

fields, both use logistic regression analysis as a discriminator 

function. Aim: For this reason, the main hypothesis is that thresholds 

obtained by both of those techniques are equally efficient in 

classifying the measurement results. Method: To check the 

hypothesis, we obtained thresholds for a group of empirically-

validated measures for business process models, by applying both 

techniques. Then we checked the accuracy of the results. Results: 

The results indicate that the hypothesis should be rejected. 

Conclusions: ROC curves obtained more accurate thresholds for 

measurement evaluation. 

Keywords- threshold, ROC curves, Bender method, Business 

Process models  

I.  INTRODUCTION  

Measurement activities provide a good means for obtaining 
important information and for helping us to plan and track 
improvement efforts, communicate goals and convey reasons 
for improvements [1]. Improving efficiency in any organization 
generally requires better process control. Since a process is a 
complex entity which describes a lifecycle, some authors have 
affirmed that processes should be improved starting at the 
design stage, because “more than half the errors that occur 
during process developments are requirements errors” [2] and 
those errors are easier to eliminate early on than they are in 
post-implementation stages [3]. 

Even though the measurement of process models is 
considered to be very useful in obtaining information on 
potential improvement directions [1], the evaluation of 
measurement is no trivial task. Evaluation of measurement 
results implies “having an alarm which occurs whenever the 
value of the specific measure exceeded some predetermined 
value” [4]. This value is called a threshold.  

Definition of thresholds requires a theory and practical base 
and it should meet certain requirements. It should fulfill the 
following conditions: it should not be based on expert opinion, 

but on measurement data, it should respect the statistical 
properties of the measure, such as measure scale and 
distribution and be resilient against outlier values, and finally, 
it ought to be repeatable, transparent and easy to carry out [5]. 
Some authors have worked on different techniques for 
threshold definition. However, a relevant number of authors 
used ROC curves [6-8] and the Bender method [9-13] for 
threshold determination. ROC curves is a technique from 
signal detection theory to select possible optimal models and to 
discard suboptimal ones independently of the cost context [14]. 
On the other hand, Bender [9] defined a method for 
quantitative risk assessment in epidemiological studies. Both 
methods follow a two-step approach: firstly, the estimation of 
the discriminator function and secondly, the determination of 
thresholds. The first step is the same for both methods: the 
discriminator function is based on the logistic regression; it 
should then be considered whether both techniques generate 
similar results or not. All this being so, we address the 
following research question in this paper: which threshold 
determination technique will obtain more accurate threshold 
values? To resolve this question, we have applied both 
techniques on previously-defined experimental data, in order to 
obtain a threshold for business process model measures. 
Threshold values are then validated using the recall and 
precision measures [15].  

The remainder of this paper proceeds as follows. Section II 
provides the background of this research work by introducing 
business process model measures and techniques for threshold 
extraction. In Section III, the threshold determination 
techniques chosen are described in detail and then, in Section 
IV, these are applied to extract thresholds for business process 
measures. In Section V, the effectiveness of both techniques is 
checked and results obtained are discussed, along with threats 
to validity. Section VI concludes the paper with a summary and 
an outlook on future research.  

II. BACKGROUND 

A. Business process model measures 

A systematic literature review concerning business process 
models was published in [16] and updated in [11]. In these 
documents, several measurement proposals for business 
process models were selected. These measures are about 
structural aspects of these models: for example, the control-
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flow complexity, or the number of elements of a specific 
design element. The most important aspect is that the measures 
should be supported by some kind of empirical validation, 
which makes them reliable and which facilitates the 
establishment of a more objective relationship between them 
and external quality characteristics. Some works about 
empirical validation of measures have been published in [11, 
17, 18]. Although external quality of models can be discussed 
from different perspectives, most authors investigate 
understandability, since process models are typically used as a 
communication vehicle between stakeholders. Using the model 
therefore signifies being able to understand the semantics 
represented and to then adapt those to the new business 
requirements [19]. 

In the context of this paper, therefore, we use empirically-
validated measures found in literature which have 
demonstrated their ability to predict the understandability of 
business process models. These measures are depicted in Table 
I. Although most of these measures can be applied on business 
process models independently of the notation, in this paper 
they are applied on models represented in BPMN [20]. 
Measurement results do not report significant benefits if they 
cannot be contrasted against limit values, however which is 
why thresholds have to be defined. The next section discusses 
techniques for threshold definition.  

TABLE I.  BUSINESS PROCESS MODEL MEASURES 

Mendling [11, 21] 

Nº nodes: number of activities and 

routing elements 

GM: sum of gateway pairs that do 

not match with each other 

Diameter: the length of the longest 

path from a start to an end node 

GH: different types of gateways that 

are used in the model 

Density: ratio of the total nº of arcs Sequentiality: degree to which the 

model is constructed out of pure 

sequences of tasks 

AGD: average of the nº of 

incoming and outgoing arcs of 

gateways 

Separability: nº of cut-vertex 

MGD: maximum the nº of 

incoming and outgoing arcs of 

gateways 

TS: max. nº of paths that may be 

concurrently activated 

CNC: ratio of the total nº of arcs to 

its total nº of nodes 

Cyclicity: nº of nodes in a cycle to 

the sum of all nodes 

Rolón [17] 

TNSF: Total nº of sequence flows NID: number of inclusive decisions 

TNE: total nº of events NPF: number of parallel forking 

TNG: total nº of gateways NP: number of pools 

NSFE: nº of sequence flows from 

events 

TNA: total number of activities 

NMF: number of message flows NCD: nº of complex decisions 

NSFG: number of sequence flows 

from gateways 

NEDDB: nº of exclusive gateways 

based on data 

CLP: connectivity level between 

participants 

NEDEB: nº of exclusive gateways 

based on events 

NDO: number of data objects  

Cardoso [18, 22] 

CFC: control-flow complexity  

 

B. Related works on threshold determination techniques 

Several proposals on threshold determination have been 
published to date. For example, Erni and Lewerentz [23] used 
mean and standard deviation to extract thresholds for software 

measures, specifically for class and method complexity, 
coupling and cohesion. French [24] also uses mean and 
standard deviation to extract thresholds for some software 
measures, but in addition using Checbyshev‟s inequality 
theorem. This technique requires data to follow a normal 
distribution, which is rarely applicable for model measure 
values, and it is sensitive to a large number of outliers. On the 
other hand, Benlarbi [25] defined thresholds for Chidamber 
and Kemerer measures using a linear regression analysis. There 
was no empirical evidence supporting that model, however. 
Rosenberg [26] extracted thresholds for object-oriented 
software measures in order to check the error-probability using 
histogram analysis, but there was no clear evidence of how 
these values are associated with error-probability. Other 
authors used techniques from the Artificial Intelligence field, 
for example Herbold et al. [27], who used a machine learning-
based method, but this only produced a binary classification. 
Yoon et al. [28] used a k-means cluster algorithm, but it 
required an input parameter that affects both the performance 
and the accuracy of the results.  

Several authors proposed different techniques for threshold 
determination, but a few of them agree on using ROC curves 
and the Bender method. For example, Shatnawi [10] used the 
Bender method for Chidamber and Kemerer measures. 
Likewise, Sanchez-Gonzalez et al. [11, 13], use the same 
method for business process model measures, in particular, for 
a group of structural complexity measures. Perez-Castillo et al. 
[12] also used the Bender method for measures related to 
business process mining. Others authors agree upon the use of 
ROC curves, including Shatnawi [6] and Catal et al. [8] works, 
in which ROC curves were used to obtain thresholds for 
software measures. Mendling et al. also use that technique to 
define thresholds for business process models [29]. Since both 
of these techniques are the two used most extensively in the 
literature; they are explained with more detail below.  

III. THRESHOLD DETERMINATION TECHNIQUES 

ROC curves and the Bender method involve a two-step 

approach. The first step is about estimating the discriminator 

function, and the second is the determination of thresholds. 

For both methods, the logistic regression is utilized to estimate 

a discriminator function. Logistic regression is a statistical 

model for estimating the probability of binary choices [30]. In 

this paper, the binary variable understandability can take the 

values of understandable/non-understandable. The idea of a 

logistic regression is that this probability can be represented 

by the odds. This is the ratio of considering the model as 

understandable, divided by the probability of considering it as 

non-understandable. The logistic regression estimates the odds 

based on the logit function, which is 

kikii xxpLogit   ...)( 11  (1), where α is called 

the intercept and β1, β2, β3 and so on, are called the regression 

coefficients of independent variables x1i, x2i, x3i respectively. 

In our case, we will consider k business process model 

measures as input variables and observations from i business 

process models.  

This part is common for both techniques: they require a 

logistic regression equation; in the case of the Bender method, 
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to obtain α and β, which are needed to perform the operations; 

for ROC curves, it indicates the relationship between input 

and dependent variables. That means that ROC curves 

evaluate the ability of the logistic model to distinguish 

between the two states: understandable/ non-understandable. 

Having described the step in common, then, we will go on to 

explain how the technique obtains threshold values.  

A. The Bender method 

The Bender method assumes that the risk of an event 

happening is constant below a specific value (i.e. the 

threshold) and increases according to a logistic equation. By 

defining acceptable levels for the absolute risk, the 

corresponding benchmark values of the risk factor can be 

calculated by means of nonlinear functions of the logistic 

regression coefficients. Generally, a benchmark value is a 

characteristic point of the dose-response curve at which the 

risk of an event rises very steeply. The difficulty is to define 

what is meant by “very steeply”. At first, a benchmark can be 

defined as the “Value of an Acceptable Risk Level” (VARL) 

defines as equation 2. 
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0
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1

p
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In Equation (2), p0 is the probability of an event occurring. 

This value is indicated by the engineer who is applying that 

method and it can vary from 0 to 1. For example, p0 = 0.6 

indicates that there is a probability of 0.6 the measures to be 

considered as appropriate. On the other hand, α and β are 

coefficients of a logistic regression equation, as was indicated 

in (1). The independent variable in the logistic regression 

model is the measure or measures of which we want to 

determine the thresholds. The dependent variable must be a 

binary variable.  

B. ROC curves 

Receiver Operating Characteristics (ROC) curves provide a 
pure index of accuracy by demonstrating the limits of a test‟s 
ability to discriminate between alternative states [14]. For the 
definition of a ROC curve, we need two variables: one binary 
and another that is continuous. Each point in the ROC curve 
represents a pair of sensitivity and 1-specificity. In this way, it 
represents the classification performance of any potential 
threshold. 

The test performance is assessed using the Area Under the 
ROC Curve (AUC). AUC is a widely-used measure of 
performance of classification [31]. Ranging between 0 and 1, it 
can be used to assess how good threshold values are at 
discriminating between groups. There are rules of thumb for 
assessing the discriminative power of measures based on AUC 
[30]. An AUC < 0.5 is considered no good, poor if AUC < 0.6, 
fair if AUC < 0.7, acceptable if AUC < 0.8, excellent if AUC < 
0.9 and outstanding if AUC <1. The standard error or p-value 
is estimated using a 95% confidence interval. The test checks if 
the AUC is significantly different from 0.5. For those measures 
that are found to be valid according to the AUC value, we can 
determine a threshold based on the ROC curve. We need a 
criterion to choose a threshold value for a measure (sensitivity, 

1-specificity pair) to balance benefits and costs. The purpose is 
to maximize both values, i.e. sensitivity and specificity, while 
at the same time [30] minimizing false-positive and false-
negative. As was indicated in [7], we assume sensitivity and 
specificity to be of equal importance. The best threshold can 
then be selected by finding the point on the curve that 
maximizes both sensibility and specificity. This is the point 
with the greatest distance from the 0.5 diagonal.  

IV. ANALYSIS OF THE EFFECTIVENESS OF THRESHOLD 

DETERMINATION TECHNIQUES 

After describing the threshold determination techniques in 

detail, these will be used to extract thresholds, and after that, 

those thresholds will be validated to detect which technique 

obtains the most accurate threshold values.  

A. Hypothesis 

The previous discussion gives us reason to assume that 

threshold determination techniques based on logistic 

regression equation obtain threshold values with similar 

accuracy in classifying models. The main hypothesis is: 

H0: Thresholds obtained by both techniques are equally 

efficient in classifying the measurement results 

To check this hypothesis, we calculate thresholds for a set of 

measures, which are able to predict understandability through 

the application of ROC curves and Bender method.  

B. Experimental settings 

To check the hypothesis we have used the experimental 
data obtained in two families of experiments. The first family 
of experiments was conducted by Rolón et al. [17] and 
included one experiment and two replicas (to see Figure 1). 
The experimental material was composed of 15 BPMN 
models which included a group of questions about the 
understandability of the model. We collected the efficiency of 
understandability tasks carried out by each subject in each 
model, which was calculated by dividing the number of correct 
answers by the time spent. Therefore, the dependent variable 
is the understandability and the independent variables the 
measures about structural properties of the model (number of 
nodes, control-flow complexity, etc.). 

 

Figure 1. Description of the first family of experiments  
 

The second family of experiments included one 
experiment and one replica (to see Figure 2). The 

1st Family of experiments

Understandability 
experiment

Replication 1 Replication 2

22 subjects (PhD
students and 

students on 4th 
course of 

Computer Science)

40 subjects
(students on 4th 

course of 
Computer Science)

9 subjects (PhD
students)

Threshold determination Threshold validation
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experimental material was composed of 10 BPMN models 
which included some understandability questions. As in the 
first family of experiments, the dependent variable was the 
understandability measured through the efficiency and the 
independent variables were the measures of structural 
properties of the models.  

 

Figure 2. Description of the 2nd family of experiments 

The mean (µ) and the standard deviation (σ) of the 
independent variables in the two families of experiments are 
summarized in Table II. Cells with a „-‟ indicate that the 
measure does not vary in that family of experiments.   

TABLE II.  MEAN AND STANDARD DEVIATION OF INDEPENDENT 

VARIABLES IN THE 1ST AND 2ND FAMILY OF EXPERIMENTS 

M 1st family of 

exp. 

2nd family 

of exp. 

M 1st family of 

exp. 

2nd family 

of exp. 

µ σ µ σ µ σ µ σ 
 NEDDB 2.55 1.66 8.5 1.02 TNSF 36.2 23.8 64 8.44 
 NEDEB 0.66 1.2 - - CFC 10.8 11.1 32.3 16.9 

NID 0.67 1.25 2.3 1.18 Nodes 43.6 23.4 - - 
NCD 0.73 1.24 - - Diam 12.2 5.01 13.6 5.91 
NPF 0.53 0.96 4.5 1.18 Densi 0.10 0.21 0.03 0.005 

NSFG 11.7 12.5 60.8 23.5 AGD 2.78 1.22 3.87 0.35 
NP 2.7 1.3 - - MGD 3.33 1.85 6.4 2.01 

NMF 7.13 5.86 - - GM 11.4 10.8 13.3 7.04 
NSFE 3.8 2.78 5.6 2.54 GH 0.28 0.37 0.76 0.28 
TNG 5.13 5.27 15.3 5.29  Sequent. 0.49 0.26 0.29 0.12 
CLP 2.21 1.6 - - Separ 0.38 0.23 0.46 0.19 
TNE 7.4 4.46 - - CNC 0.89 0.31 1.39 0.18 
TNA 21.9 13.4 28.7 23.5 TS 0.13 0.34 1.2 0.87 

In Figure 3 is included an excerpt of the experimental 
material, which was similar in both families of experiments.  

C. Thresholds calculation 

The obtained data were divided into two groups. One group 

was used to define the thresholds and the other to validate 

them. For the first family of experiments, the first experiment 

and the 2nd replication were used for threshold definition 

(because subjects have similar background) and in the second 

family of experiments, the experiment is used for threshold 

determination and the replication for validating them. 

Thresholds are calculated by applying ROC curves and the 

Bender method on the experimental data described previously. 

A prerequisite for calculating thresholds is that measure values 

must vary enough for the results obtained with the threshold 

determination techniques to be significant. This is the reason 

why some measures such as NEDEB or TNE and others were 

not used for threshold definition in the second family of 

experiments.  

 

Figure 3. An example of experimental material 

TABLE III.  THRESHOLDS FOR BUSINESS PROCESS MODEL MEASURES 

M 1st family of experiments 2nd family of experiments 

Bender 
ROC 

Bender 
ROC 

0.6 0.7 0.8 0.6 0.7 0.8 
 NEDDB 3.16 3.87 4.72 1.5 9.12 9.8 10.6 9.5 
 NEDEB 1.59 2.62 3.87 0.5 - - - - 

NID 1.36 2.17 3.15 0.5 2.91 3.55 4.34 3.5 
NCD 1.40 2.18 3.13 0.5 - - - - 
NPF 1.02 1.6 2.3 0.5 6.16 7.98 10.2 7.5 

NSFG 16.9 23.2 30.9 4.5 74,7 88.9 106 85.5 
NP 3.37 9.7 12.7 1.5 - - - - 

NMF 10 12.2 17.1 1 - - - - 
NSFE 6.17 8.74 11.8 2.5 2.39 - - 6.5 
TNG 7.20 9.71 12.7 3.5 18.1 21.1 24.8 20.5 
CLP 2.97 3.8 4.8 0.5 - - - - 
TNE 9.30 11.5 14.2 4 - - - - 
TNA 26.3 31.3 37.4 12 25.8 22.7 19.1 23.5 
TNSF 42.2 50.2 60.1 24.5 69.1 74.4 80.9 72.5 
CFC 15.5 21.1 27.9 6 40.3 49.5 60.7 47.5 

Nodes 50.6 58.1 67.2 41.5 - - - - 
Diam 10.8 7.92 5.17 8.5 7.16 0.36 - 9 
Densi 0.13 0.2 0.28 0.03 0.06 0.04 0.04 0.03 
AGD 2.38 1.82 1.13 1 4.08 4.28 4.53 4.17 
MGD 2.43 1.42 0.19 4.5 7.53 8.75 10.2 8.5 
GM 5.76 - - 7.5 17.1 21.1 26.1 19 
GH 0.08 - - 0.54 1.12 1.16 1.4 0.93 

 Sequent. 0.58 0.7 0.85 0.56 0.16 0.01 - - 
Separ 0.53 0.71 0.92 0.48 0.31 0.15 - 0.53 
CNC 0.65 0.37 0.03 1.06 1.5 1.61 1.75 1.57 
TS - - - 0.5 3.59 6.18 9.35 0.5 

Obtaining thresholds by the application of Bender method 
and ROC curves requires the definition of the input variables. 
As we mentioned, those techniques have two steps: the logistic 
regression analysis and the extraction of thresholds. The 
logistic regression analysis is common in both techniques; it 
requires a binary variable (dependent variable) and a 
continuous one (independent variable). Continuous variables 
are the measures. The binary variable requires the 

2nd family of experiments

Understandability 
experiment

Replication 1

29 subjects
(students on 4th 

course of 
Computer Science)

23 subjects
(students of the

Master of Information
Systems and Master

of Economics and 
Management 

Science)

Threshold determination Threshold validation

A. Answer the following questions about the
model:

STARTING TIME:    00:30:25
1. Is it possible to execute activity F without
previously executing activity D? YES/NO
2. Is it possible to complete the process without
executing activity E? YES/NO

FINISHING TIME:     00:36:15

B. What, in your opinion, is the complexity of
the business process model?

Fairly simple / A bit simple / Medium / Fairly 
complex / Very complex
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dichotomization of the dependent variable: in this case, the 
efficiency of understandability. In the family of experiments 
this variable is not binary, because it ranges between 0 and 1. 
However, it can be converted into a dichotomous one, 
signifying that it would be 1 when it was higher than the 
median and 0 when it was lower [32]. The median was also 
used for dichotomizing variables in [13]. As regards the second 
step in threshold determination, ROC curves do not require any 
configuration. The Bender method requires the definition of p0, 
however. That value is used to indicate the probability of 
considering the model as non-understandable. For example, if 
p0 is 0.9, the probability of considering the model non-
understandable is about 90%. Since there is no consensus about 
what value of p0 is the most suitable, we chose three possible 
options: p0 = 0.6, p0 = 0.7, and p0 = 0.8. We believe that a 
model with a 60%, 70% or 80% percentage of being deemed 
non-understandable should be submitted to the redesign 
process.  

Thresholds obtained in the first and second family of 
experiments for each measure are depicted in Table III. The 
symbol „-‟ signifies that the threshold for that measure could 
not be calculated, or that the threshold value is out of the 
variable domain.  

D. Thresholds validation 

In this section, we present findings from applying the 
threshold in experimental data for validity. We approached the 
validation of threshold from an information retrieval 
perspective. In this field, true and false positives, as well as 
true and false negatives, are used as the basis for calculating 
precision, and recall measures are employed for assessing the 
quality of a search results [15]. Precision is the ratio of true 
positives to the sum of true and false positives. In terms of 
understandability, this is the ratio of correctly-found non-
understandable models, based on a threshold value in relation 
to the sum of all error predictions. Recall is the ratio of true 
positives to the sum of true positives and false negatives. In 
other words, recall is the ratio of correctly-found non-
understandable models to the sum of all non-understandable 
models. 

 The next section compares results obtained for each 
technique.   

V. DISCUSSIONS 

In this section, we discuss the derived threshold for each 

technique, along with their validation, in order to check which 

technique obtained the most accurate threshold values.  

A. Bender method vs. ROC curves 

The results of precision and recall of threshold are set out in 
Table IV, Table V and Table VI. In Table IV and Table V there 
are some cells in gray, to highlight the most suitable values (the 
higher the values of recall or precision, the more suitable the 
result is). 

According to precision results of thresholds, 60% of the 
most accurate precision results were obtained by the Bender 
method in the first family of experiments and 42% in the 
second one. That means thresholds obtained by any technique 
can classify models with similar precision. As regards recall 

results, 68% of the most accurate results were obtained by 
ROC curves in the first family of experiments and 47% in the 
second one. That means that the classification of models by 
thresholds obtained with ROC curves is more comprehensive 
than with the Bender method.  

TABLE IV.  VALIDATION OF THE BENDER METHOD IN THE FIRST FAMILY 

OF EXPERIMENTS 

 Precision Recall F-measure 

0.6 0.7 0.8 0.6 0.7 0.8 0.6 0.7 0.8 

NEDDB 0.80 0.80 0.67 0.43 0.43 0.18 0.55 0.55 0.28 

NEDEB 0.81 0.88 0.77 0.32 0.23 0.10 0.45 0.36 0.17 

NID 0.78 0.83 0.67 0.31 0.22 0.09 0.44 0.34 0.15 

NCD 0.81 0.83 0.67 0.32 0.22 0.09 0.45 0.34 0.15 

NPF 0.78 0.78 0.67 0.31 0.31 0.09 0.44 0.44 0.15 

NSFG 0.43 0.44 0.45 0.41 0.31 0.22 0.41 0.36 0.29 

NP 0.41 0.49 0.49 0.45 0.11 0.11 0.42 0.17 0.17 

NMF 0.38 0.43 0.46 0.35 0.21 0.08 0.36 0.28 0.13 

NSFE 0.39 0.43 0.42 0.30 0.21 0.11 0.33 0.28 0.17 

TNG 0.42 0.41 0.41 0.27 0.20 0.20 0.32 0.26 0.26 

CLP 0.39 0.41 0.47 0.47 0.28 0.15 0.42 0.33 0.22 

TNE 0.45 0.45 0.46 0.34 0.34 0.11 0.38 0.38 0.17 

TNA 0.44 0.46 0.46 0.52 0.34 0.34 0.47 0.39 0.39 

TNSF 0.44 0.45 0.45 0.53 0.34 0.22 0.48 0.38 0.29 

CFC 0.44 0.44 0.46 0.42 0.42 0.22 0.42 0.42 0.29 

Nodes 0.44 0.44 0.48 0.43 0.43 0.25 0.43 0.43 0.32 

Diam 0.38 0.38 0.36 0.75 0.93 0.98 0.50 0.53 0.52 

Densi 0.36 0.35 0.34 0.93 0.94 0.99 0.51 0.51 0.50 

AGD 0.35 0.36 0.36 0.89 0.98 0.98 0.50 0.52 0.52 

MGD 0.35 0.36 0.36 0.89 0.98 0.98 0.50 0.52 0.52 

GM 0.38 - - 0.83 - - 0.52 - - 

GH 0.40 - - 0.55 - - 0.46 - - 

Seq 0.35 0.36 0.36 0.81 0.98 0.98 0.48 0.52 0.52 

Separ 0.35 0.34 0.34 0.86 0.99 0.99 0.49 0.50 0.50 

CNC 0.36 0.33 0.33 0.93 0.95 1 0.51 0.48 0.49 

TABLE V.  VALIDATION OF BENDER METHOD IN THE SECOND FAMILY OF 

EXPERIMENTS 

 Precision Recall F-measure 

0.6 0.7 0.8 0.6 0.7 0.8 0.6 0.7 0.8 

NEDDB 0.83 0.83 0 0.33 0.33 0 0.47 0.47 0 

NID 0.62 0.83 0 0.5 0.33 0 0.55 0.47 0 

NPF 0.64 0.83 0 0.38 0.33 0 0.47 0.47 0 

NSFG 0.64 0.83 0 0.38 0.33 0 0.47 0.47 0 

NSFE 0 - - 0 - - 0 - - 

TNG 0.64 0.83 0.83 0.38 0.33 0.16 0.47 0.47 0.46 

TNA 0.64 0.83 0 0.38 0.33 0 0.47 0.47 0 

TNSF 0.64 0.83 0 0.38 0.16 0 0.47 0.26 0 

CFC 0.64 0.83 0.83 0.38 0.33 0.16 0.47 0.47 0.26 

Diam 0.55 0 - 1 0 0 0.70 0 0 

Den 0.83 0 0 0.33 0 0 0.47 0 0 

AGD 0.64 0.83 0.83 0.38 0.33 0.16 0.47 0.47 0.46 

MGD 0.64 0.83 0.83 0.38 0.33 0.16 0.47 0.47 0.46 

GM 0.64 0.83 0.83 0.38 0.33 0.16 0.47 0.47 0.46 

GH 0.64 0.83 0.83 0.38 0.33 0.16 0.47 0.47 0.46 

Seq 0 0 - 0 0 - - - - 

Separ 0.56 0 - 0.45 0 - 0.49 0 - 

CNC 0.62 0.83 0 0.5 0.16 0 0.55 0.26 0 

TS 0 0 0 0 0 0 0 0 0 

Interpreting both measures in an isolated manner does not 
report as many advantages as when this is done with them in 
conjunction. A way to combine precision and recall is the 
harmonic mean, which is typically called F-measure. It ranges 
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between 0 and 1. This measure provides a single measurement 
for the relationship we are validating.  

TABLE VI.  VALIDATION OF ROC CURVES IN THE FIRST AND SECOND 

FAMILY OF EXPERIMENTS 

 Precision Recall F-measure 

1st 

f.exp 

2nd 

f.exp 

1st 

f.exp 

2nd 

f.exp 

1st 

f.exp 

2nd 

f.exp 

NEDDB 0.81 0.83 0.32 0.33 0.45 0.47 

NEDEB 0.78 - 0.41 - 0.53 - 

NID 0.78 0.83 0.41 0.33 0.53 0.47 

NCD 0.69 - 0.46 - 0.55 - 

NPF 0.75 0.83 0.28 0.33 0.40 0.47 

NSFG 0.38 0.83 0.76 0.33 0.50 0.47 

NP 0.37 - 0.95 - 0.53 - 

NMF 0.36 - 0.73  0.48 - 

NSFE 0.36 0.51 0.72 0.62 0.48 0.55 

TNG 0.4 0.58 0.5 0.73 0.44 0.64 

CLP 0.37 - 0.90 - 0.52 - 

TNE 0.37 - 0.89 - 0.52 - 

TNA 0.39 0.83 0.94 0.33 0.55 0.47 

TNSF 0.4 0.83 0.89 0.33 0.55 0.47 

CFC 0.4 0.58 0.71 0.73 0.51 0.64 

Nodes 0.41 - 0.84 - 0.55 - 

Diam 0.38 0.46 0.93 0.83 0.53 0.59 

Densi 0.4 0.83 0.89 0.33 0.55 0.47 

AGD 0.36 0.58 0.98 0.73 0.52 0.64 

MGD 0.42 0.58 0.19 0.73 0.26 0.64 

GM 0.39 0.58 0.71 0.73 0.50 0.64 

GH 0.43 0.58 0.5 0.73 0.46 0.64 

Seq 0.37 - 0.8 - 0.50 - 

Separ 0.36 0.58 0.85 0.82 0.50 0.67 

CNC 0.41 0.83 0.47 0.33 0.43 0.47 

TS - 0.56 - 0.56 - 0.56 

Moreover, we need a statistical technique to compare the 
results of precision and recall measures formally. Since we 
cannot assume that the sample follows a normal distribution, 
the comparison requires a non-parametric test. The test of 
Mann-Whitney [33] is used to check the heterogeneity of two 
ordinal samples, so it will indicate to us whether there is a 
significant difference between the two techniques, based on 
precision and recall measures. The result of this test is shown 
in Table VII. Precision, recall and the harmonic mean of them 
(F-measure) is displayed, and we have highlighted the 
significant results in grey.  

In Table VII, the test of Mann-Whitney reveals that the 

precision of both techniques is not significantly different (p-

value > 0.05); this means that in classifying models there is no 

prevalence between the precision of thresholds obtained by 

either of the techniques. On the other hand, there are 

significant differences between recall values of the two 

techniques; mainly for high values of p0 (p0 is the input value 

of the Bender method). Finally, the F-measure is significantly 

different for both techniques in most of the cases. In 

conclusion, then, the comparison of these techniques presented 

in this paper is valid, because the differences between them 

are meaningful.  

Since the Mann-Whitney test indicates that there are 

significant differences between recall and F-measure values, it 

interests us to know which of those techniques is the most 

suitable; in other words, to find out the technique that can 

extract thresholds with higher values of recall and F-measure. 

As it can be observed when comparing the values of the F-

measure of both techniques in the two families of experiments 

(Table IV, Table V and Table VI), more suitable values are 

obtained by ROC curves (68% in the first family and 52% in 

the second one), which indicates that ROC curves are a more 

suitable technique for threshold determination. This is 

illustrated in Figure 4 and Figure 5. Those figures show a 

comparison of the F-measure between the ROC curves and the 

Bender method for each family of experiments. Those charts 

reflect that the F-measure associated with ROC curves is 

higher in most of the cases. 

TABLE VII.  DIFFERENCES BETWEEN TECHNIQUES 

P0 F.Exp Measure U Mann-Whitney  p-value 

0,6 

1 

Precision 284 0.579 

Recall 215 0.065 

F-measure 153 0.002 

2 

Precision 0.89 0.049 

Recall 116 0.259 

F-measure 111 0.109 

0,7 

1 

Precision 208 0.23 

Recall 187 0.090 

F-measure 125 0.002 

2 

Precision 144 0.425 

Recall 59 0.000 

F-measure 103 0.036 

0,8 

1 

Precision 233 0.494 

Recall 167 0.032 

F-measure 86 0,000 

2 

Precision 96 0.056 

Recall 0 0.000 

F-measure 0 0.000 

B. Threats to validity 

With regards to the conclusion validity, the size of the 
sample data for performing the calculations is about 71subjects 
for the first family of experiments and 52 subjects for the 
second one. The number of measures used to obtain thresholds 
is 25, which is the number of comparisons between precision 
and recall values, and this is considered significant to allow us 
to obtain conclusion validity.  

Construct validity is about reflecting our ability to 
measure what we want to measure. The comparison of the 
techniques (which are the independent variables of the study) is 
done by the measures precision and recall (which are the 
dependent variables of the study). Those measures are 
commonly accepted in related works, so we considered that 
making a comparison between techniques based on precision 
and recall measures provides an objective comparison. 

Internal validity concerns whether the effect measured is 
due to changes caused by the researcher, or from some other 
unknown cause, in other words, if there is a causal relationship 
between treatment and outcome. To answer this question we 
have to highlight some points. First of all, we examine the 
threats to the experimental data used for threshold 
determination. In both families of experiments, all subjects had 
roughly the same knowledge about modeling, because all the 
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students were close to finishing their degree, or had recently 
finished it. 

 
Figure 4. Comparison of the F-measure between the two techniques in the first 

family of experiments 

Subject motivation effects are discarded, because all our 
subjects received extra marks, and fatigue effects were 
mitigated by conducting the experiments on different days. 
Since we consider that most of the typical threats to internal 
validity are not real threats for the experiments, we are 
confident that there are no major risks. More details about 
threats to validity in the experiments are described in [17]. On 
the other hand, there are threats related to the techniques used 
for threshold determination. The first is that logistic regression 
requires a binary variable, and dichotomization can imply a 
loss of information. This can result in the thresholds not being 
very accurate. Another point is that one particular curve may 
have a larger AUC (which is apparently better), even though 
the alternative may show superior performance over almost the 
entire range of values of the classifications threshold. This fact 
indicates that sometimes ROC curves can offer not very 
accurate thresholds. Moreover, application of the Bender 
method requires the subjective definition of p0 and that directly 
affects the accuracy of thresholds. Despite these limitations, we 
believe that the comparison between both of the techniques 

studied in this paper offers strong evidence for ROC curves 
being more accurate in threshold determination. 

 
Figure 5. Comparison of the F-measure between the two techniques in the 

second family of experiment 

 

In relation to external validity, some characteristics of the 

experiments could limit the applicability in reality. In our case 

the generalization of results to other studies means that ROC 

curves will always obtain more accuracy thresholds than the 

Bender method. This can depend on the p0 chosen: a p0 that is 

different for each measure obtains more accuracy results than 

the same p0 for all. For this reason, we selected three different 

values, in order to cover as many choices as possible. We 

believed that determining thresholds with a 60%, 70% or 80% 

chance of considering the model as non-understandable is 

sufficiently valid.  

VI. CONCLUSIONS AND FUTURE WORK 

In this paper, we analyzed two techniques for threshold 
determination, in order to demonstrate which of them obtain 
more accurate thresholds. The techniques are ROC curves and 
the Bender method, both of which use the logistic regression as 
a part of their calculations. For this reason, the hypothesis 
assumed that both techniques obtain similar threshold values, 
and to prove this, we extracted thresholds with them, using the 
experimental data of two families of experiments. For each 
threshold obtained, the precision and recall measure, and the 
harmonic mean of them were calculated.  

The differences between both techniques are checked 
through the application of a statistical test, the Mann-Whitney 
test. This test detected that there are significant differences 
between the F-measure values, and the charts revealed that the 
better results corresponded to ROC curves.  
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The main finding of this paper is that both techniques are 
able to obtain thresholds with similar precision (precision 
means that all the non-understandable models were classified 
using thresholds, although others which were considered 
understandable were also selected). However, only when the p0 

is higher than 0.6 are the differences of recall values between 
the techniques significant, and ROC curves are again the most 
suitable technique. The F-measure, however, considers both the 
precision and the recall to compute the score. We can thus 
conclude that ROC curves obtain more accurate thresholds in 
classification tasks than the Bender method.  

As future work, we propose the comparison of the threshold 
obtained by other techniques, in order to select the most 
effective one for threshold determination. Moreover, more 
empirical validation is needed to generalize the results shown 
in this paper.  
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