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Abstract

Non-stationary acoustic features provide essential cues for many auditory tasks

including sound localization, auditory stream analysis, and speech recognition.

These features can be best characterized relative to a precise point in time such as

the onset of a sound or the beginning of a harmonic periodicity. Extracting these

types of features is a difficult problem. Part of the difficulty is that with standard

block-based signal analysis methods the representation is sensitive to the arbitrary

alignment of the blocks with respect to the signal. Convolutional techniques such

as shift-invariant transformations can reduce this sensitivity, but these do not yield

a code that is efficient, i.e. one that forms a non-redundant representation of the

underlying structure. Here, we develop a non-block based method for signal rep-

resentation that is both time-relative and efficient. Signals are represented using

a linear superposition of time-shiftable kernel functions each with an associated

magnitude and temporal position. Signal decomposition in this method is a non-

linear process that consists of optimizing the kernel function scaling coefficients

and temporal positions to form an efficient, shift-invariant representation. We

demonstrate the properties of this representation for the purpose of characterizing

structure in various types of non-stationary acoustic signals. The computational

problem investigated here has direct relevance to the neural coding at the auditory

nerve and the more general issue of how to encode complex, time-varying signals

with a population of spiking neurons.
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1 Introduction
Non-stationary and time-relative acoustic structures such as transients, timing relations

among acoustic events, and harmonic periodicities provide essential cues for many

types of auditory processing. In sound localization, human subjects can reliably detect

interaural time differences as small as 10µs, which corresponds to a binaural sound

source shift of about 1 degree (Blauert, 1997). In comparison, the sampling interval

for an audio CD sampled at 44.1 kHz is 22.7 microseconds. Auditory grouping cues,

such as common onset and offset, harmonic co-modulation, and sound source location,

all rely on accurate representation of timing and periodicity (Slaney and Lyon, 1993).

Time-relative structure is also crucial for the recognition of consonants and many types

of transient, non-stationary sounds. Neurophysiological research in the auditory brain-

stem of mammals has found cells capable of conveying precise phase information up to

4 kHz or of tracking the quickly varying envelope of a high-frequency sound (Oertel,

1999). The importance of these acoustic cues has long been recognized, but extracting

them from natural signals still poses many challenges because the problem is funda-

mentally ill-posed. In natural acoustic environments, with multiple sound sources and

background noises, acoustic events are not directly observable and must be inferred

using numerous ambiguous cues.

Another reason for the difficulty in obtaining these cues is that most approaches

to signal representation are block-based, i.e. the signal is processed piecewise in a

series of discrete blocks. Transients and non-stationary periodicities in the signal can be

temporally smeared across blocks. Large changes in the representation of an acoustic

event can occur depending on the arbitrary alignment of the processing blocks with

events in the signal. Signal analysis techniques such as windowing or the choice of the

transform can reduce these effects, but it would be preferable if the representation was

insensitive to signal shifts.
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Shift-invariance alone, however, is not a sufficient constraint on designing a gen-

eral sound processing algorithm. Another important constraint is coding efficiency or,

equivalently, the ability of the representation to capture underlying structure in the sig-

nal. A desirable code should reduce the information rate from the raw signal so that

the underlying structures are more directly observable. Signal processing algorithms

can be viewed as a method for progressively reducing the information rate until one

is left with only the information of interest. We can make a distinction between the

observableinformation rate, i.e. the rate of the observable variables and theintrinsic

information rate, or the rate of the underlying structure of interest. In speech, the ob-

servable information rate of the waveform samples is about 50,000 bits per second, but

the intrinsic rate of the underlying words is only around 200 bits per second (Rabiner

and Levinson, 1981). Information reduction can be achieved either by selecting only

the desired information (and discarding everything else) or by removing redundancy,

e.g., the temporal correlations between samples. This reduces the observable informa-

tion rate while preserving the intrinsic information.

In this paper, we investigate algorithms for fitting an efficient, shift-invariant rep-

resentation to natural sound signals. The outline of the paper is as follows. The

next section describes the motivations behind this approach and illustrates some of the

shortcomings of current methods. After defining the model for signal representation,

we present different algorithms for signal decomposition and contrast their complex-

ity. Next we illustrate the properties of the representation on various types of speech

sounds. We then present a measure of coding efficiency and compare these algorithms

to traditional methods for signal representation. Finally, we discuss the relevance of

the computational issues discussed here to spike coding and signal representation at the

auditory nerve.
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2 Representing Non-stationary Acoustic Structure
Encoding the acoustic signal is the first step in any algorithm for performing an audi-

tory task. There are numerous approaches to this problem which differ in both their

computational complexity and in what aspects of signal structure are extracted. Ulti-

mately, the choice about what the representation encodes depends on the tasks that need

to be performed. In the ideal case, the encoding process extracts only that information

which is necessary to perform the task and suppresses noise or unrelated information.

A “generalist” approach, like that taken by most mammalian auditory systems, requires

a representation which is efficient for a wide range of signals. As natural sounds con-

tain both relatively stationary harmonic structure (e.g. animal vocalizations) as well as

non-stationary transient structure (e.g. crunching leaves and twigs), this generalist ap-

proach requires a code capable of efficiently representing these disparate sound classes

(Lewicki, 2002a). Here we seek an auditory representation that is useful for a variety

of different tasks.

2.1 Block-based Representations

Most approaches to signal representation are block-based in which signal processing

takes place on a series of overlapping, discrete blocks. This not only obscures transients

and periodicities in the signal, but can also have the effect that, for non-stationary sig-

nals, small time shifts can produce large changes in the representation, depending on

whether and where a particular acoustic event falls within the block. Figure 1 illustrates

the sensitivity of block-based representation with small shifts in speech signals. The up-

per panel shows a short speech waveform sectioned into blocks using two sequences of

Hamming windows (solid and dashed curves). Each window spans approximately 30

msecs (512 samples) and successive blocks (A1, A2, etc) are shifted by 10 msecs. The
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Figure 1: Block-based representations are sensitive to temporal shifts. The top panel

shows a speech wave form with two sets of overlaid Hamming windows, A1-3 (con-

tinuous lines above waveform) and B1-3 (dashed lines below waveform). In the three

lower panels, the power spectrum (jagged) and LPC spectrum (smooth) of hamming

windows offset by< 5 ms are overlaid (A, continuous; B, dashed). In either of these,

small shifts (e.g., from A2 to B2) can lead to large changes in the representation.

‘B’ blocks blocks offset from the ‘A’ blocks by an amount indicated by the dot-dash

vertical lines (∼ 5 msecs), representing the arbitrary the alignment of the signal has

with respect to the two block sequences. The lower panel shows spectral representa-

tions for the three corresponding blocks (solid for the ‘A’ blocks, dashed for the ‘B’

blocks). The jagged, upper curves show the power spectra for each windowed wave-

form. The smooth lower curves (offset by -20 dB) show the spectrum of the optimal

filter derived by linear predictive coding.

The sound used in figure 1 is /et/ in the context of the word “Vietnamese”. The three
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block sequence contains an abrupt, transient signal feature, a relatively high-frequency,

and high-amplitude /t/ sound occurring at about the 38th msec. The widows preceding

the /t/, A1 and B1, contain only the /ee/ vowel waveform. The spectra of these windows

nearly overlap, although differences resulting from the slow change in the vowel can

be seen. The spectra for windows A2 and B2 show a dramatic difference in the range

of 3-5 kHz. This results entirely from the arbitrary alignment of each window and the

/t/. Because window B2 contains a significant portion of the /t/ waveform it shows

a pronounced increase in powering the higher range. The spectra for the following

windows, A3 and B3, are again nearly overlapping as the /t/ is well represented in both

windows. Notice that the increase in the power for window B2 is not as great as that for

final windows. This implies that the alignment of the B sequence will cause a temporal

smearing of the constant onset, spreading the energy of the 2 msec transient over a

10 msec window. Discrimination of the phonemes, such as /ba/ and /pa/, are based

on differences as small as of 5-10 msecs in voice onset time (Liberman et al., 1958).

The temporal smearing illustrated in figure 1 could create an ambiguity in the onset of

voicing and lead to an alteration in the phoneme perception of a listener.

2.2 Convolutional Representations

One way to minimize the shift sensitivity problem is to increase the block rate. This

reduces the variability of the observed spectra but results in a veryinefficientcode, be-

cause there are then several, slowly-changing representations of the same underlying

acoustic event(s). In the limit, increasing the block rate simply produces a filterbank

in which windowed sinusoids are convolved with the signal. Although this yields a

representation that is invariant to shifts, a major drawback is that a filterbank does not

reduce the information rate because the dimensionality of the each output is identical to
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Figure 2: A continuous filterbank produces a shift-invariant representation but does not

reduce the information rate. An input signal (A) is convolved with a filterbank (B). The

output of the convolution (C) has increased the dimensionality of the input signal.

the input; furthermore, there is one output for each filter. This problem is illustrated in

figure 2. The speech waveform in the top row of 2A (the /et/ in “Vietnamese” and iden-

tical to that used in figure 1) is convolved with each of the three (time domain) filters

shown in the right column (2B). The filters are Gabor functions with peak resonance

frequencies at the first and second formants (360 and 2750 Hz) and 4000 Hz. The filter

outputs (2C) show that the formant energy is roughly constant throughout the sound,

while energy in the /t/ is relatively localized. Clearly, it would be preferable to have

an efficient representation that was insensitive to signal shift, preserving transients and

harmonic shifts, but encoded structure in an event-based fashion.

3 A Sparse, Shiftable Kernel Representation
Here we employ a sparse, shiftable kernel method of signal representation (Lewicki

and Sejnowski, 1999; Lewicki, 2002b). In this model, the signalx(t) is encoded with

a set of kernel functions,φ1 . . .φM, that can be positioned arbitrarily and independently
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in time. The mathematical form of the representation with additive noise is

x(t) =
M

∑
m=1

nm

∑
i=1

sm
i φm(t − τm

i )+ ε(t) , (1)

whereτm
i andsm

i are the temporal position and coefficient of theith instance of kernel

φm, respectively. The notationnm indicates the number of instances ofφm, which need

not be the same across kernels. In addition, the kernels are not restricted in form or

length.

A more general way to express equation 1 is to assume that the kernel functions

exist at all time points during the signal, and let the non-zero coefficients determine the

positions of the kernel functions. In this case, the model can be expressed in convolu-

tional form

x(t) = ∑
m

∫
sm(τ)φm(t − τ)dτ+ ε(t) (2)

wheresm(τ) is the coefficient at timeτ for φm. By using a sparse coefficient signal

sm(t) composed only of delta functions, equation 2 reduces to equation 1. A similar

approach assuming only sparse coefficients has been used for coding of natural movies

(Olshausen, 2002).

The key theoretical abstraction of the model is that the signal is decomposed in

terms of discrete acoustic events, represented by the kernel functions, each of which

has a precise amplitude and temporal position. Here we assume the kernels are gam-

matone functions (gamma-modulated sinusoids) whose center frequency and width are

set according to an ERB filterbank cochlear model using Slaney’s auditory toolbox for

Matlab (Slaney, 1998). Except where noted, we used a set of 64 kernel functions for

the results below. The use of gammatone functions is well motivated by both biology

and natural sound statistics (Lewicki, 2002a). In principle, we could also adapt the set

of kernel functions to maximize the efficiency of the code.

Figure 3 illustrates the generative model. A signal is represented in terms of a sparse
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Figure 3: An illustration of generative model and its spikegram representation. The

signal (A) is represented in the spikegram (B) as a set of ovals whose size and intensity

indicate the amplitude of the spike. The position of the oval indicates the kernel center

frequency (CF, y-axis) and timing (x-axis). The gammatone functions corresponding

to the spikes (represented by each oval) are overlayed in gray.

set of discrete temporal events, aspike code. For example, the waveform in panel 3A

consists of three aperiodic “chirps”, each composed of discrete acoustic events with

differing amplitudes but identical relative temporal alignments. This signal can be rep-

resented by nine spikes, each with a precise time and amplitude. We can plot this rep-

resentation in terms of aspikegram, panel 3B, where the nine spikes are shown as ovals

of varying size, intensity and position. Each oval indicates the temporal and spectral

position (center of mass and center frequency, respectively) of one gammatone kernel

function, with oval size and intensity indicating the amplitude of the kernel coefficient.

Representing a kernel’s temporal position based on its center of mass causes them all

to align precisely given a delta function as input. We adopt this convention to help

illustrate the temporal precision of the spike code.
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3.1 Encoding Algorithms
Equation 1 specifies the generative form of the model, but does not provide an encoding

algorithm, i.e. how to compute the optimal values ofτm
i and sm

i for a given signal.

The computational objective is to minimize the errorε(t) while maximizing coding

efficiency. As is the case with most coding algorithms, there is a trade off between the

error of the representation and the computational complexity of the algorithm. For the

results here, we used three different encoding algorithms to select values forτm
i and

sm
i . These show a clear tradeoff between complexity and accuracy, but we can gain

some flexibility along these dimensions by hybridizing, using the simpler algorithms to

initialize the most complex.

3.1.1 Filter-Threshold

One approach to efficient audio coding has been to use filterbanks based on the human

cochlea (Baumgarte, 2002; Lyon, 1982; Shamma, 1985; Gitza, 1988; Patterson et al.,

1988). Thefilter-thresholdalgorithm is a computationally simple approximation of

cochlear processing. This is a causal approach, and it begins by convolving the signal

with the full set of kernel functions from the gammatone ERB filterbank. (Note that for

all of the algorithms described here the kernels are restricted to have unit norm). The

encoded coefficients and times,sm
i andτm

i , are chosen based on the values and posi-

tions of all convolution peaks that exceed a preset threshold. This greatly reduces the

size of the observable information rate compared to the convolutional representation,

but some degree of (threshold-dependant) temporal and spectral redundancy remains.

Filterbanks with more than 16 gammatones kernel functions are highly over-complete,

but the filter-threshold algorithm does not take the correlations between kernel func-

tions into account during coding. As a result, it tends to be a poor estimate of the signal

given our linear superposition model. We compensate for this to some degree by adding

a single parameter to scale the coefficients. Despite its shortcomings under our model,
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filter-threshold is relatively fast and resilient to noise due to its inherent redundancy.

These could be desirable properties depending on the task the system must perform.

3.1.2 Matching Pursuit

An obvious improvement on filter-threshold would be to explicitly account for the cor-

relations between kernels, iteratively regressing the signal onto the kernels. This is a

non-causal approach, but our goal here is to determine the optimal signal representa-

tion. One well studied formalization of this approach is thematching pursuitalgorithm

(Mallat and Zhang, 1993). We employ it here to produce a more efficient estimate of

theτm
i andsm

i values for a given signal.

Our goal is to decompose the signal,x(t), over a set of kernels selected from the

gammatone filterbank so as to best capture the structure of the signal. matching pur-

suit’s approach to this problem is to iteratively approximate the input signal with suc-

cessive orthogonal projections onto some basis (in this case the unit-normed gamma-

tone kernels.) The signal can be decomposed into

x(t) =< x(t)φm > φm+Rx(t), (3)

where< x(t)φm > is the inner product between the signal and the kernel and is equiva-

lent tosm in equation 1. The final term in equation 3,Rx(t), is the residual signal after

approximatingx(t) in the direction ofφm. The projection with the largest inner product

will minimize the power ofRx(t), thereby capturing the most structure possiblegiven a

single kernel.

Equation 2 can be rewritten more generally as

Rn
x(t) =< Rn

x(t)φm > φm+Rn+1
x (t), (4)

with R0
x(t) = x(t) at the start of the algorithm. With each iteration the current residual
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is projected onto the gammatones. A single kernel is selected such that

φm = argmax
m

< Rn
x(t)φm > (5)

This best fitting projection is subtracted out, and its coefficient and time are recorded.

This projection and subtraction leaves< Rn
x(t)φm> φm orthogonal to the residual signal,

Rn+1
x (t). It is relatively straight forward to see that each projection is orthogonal to all

previous and future projections (Mallat and Zhang, 1993). As a result, matching pursuit

codes are a composed of mutually orthogonal signal structures.

Assuming the kernels span the signal space, the power of the residual,Rn
x(t), is

guaranteed to decrease on each iteration of the algorithm (Mallat and Zhang, 1993;

Goodwin and Vetterli, 1999), and so, in the limit, matching pursuit codes will have ar-

bitrarily small error. For most practical purposes, however, some halting criteria should

be defined. The simplest is a lower bound on the inner product between the signal and

the kernels. We can also track the signal-to-noise ratio of the code over time and stop at

a desired fidelity, or halt when some number of spikes has been recorded. Other, more

sophisticated criteria are also possible.

We reduce some of the computational overhead of the algorithm by defining local

neighborhoods amongst the kernels via cross-correlation. If the maximal inner product

between two kernels across all time shifts was greater than some valueθ then they were

included in each other’s neighborhood. Typically,θ was set to 0.001 (all kernels were

normalized to have anL2-norm of 1.) These neighborhoods are used for reconvolution

with the residual signal (i.e., if the last spike involved kernelφn, then a new residual was

calculated only for the neighborhood aroundn.) This can introduce very low magnitude

distortion in the code, but the computational cost is significantly reduced as most of the

kernels in the filterbank are orthogonal to one another at all time shifts.
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3.1.3 MAP Optimization

A probabilistic method for inferring spike amplitudes and times was described in (Lewicki

and Sejnowski, 1999; Lewicki, 2002b). This approach makes no heuristic assumptions

about where spikes should occur, for example selecting convolution maxima as in the

previous two algorithms. Instead, the problem is recast in a Bayesian probabilistic

framework in which we attempt to maximize the a posteriori distribution of coefficients.

To describe this approach we will begin by expressing the model in matrix form

using a discrete sampling of the continuous time series:

x = As+ ε. (6)

The rows of the basis matrix,A, contain each gammatone kernel replicated at each

sample position making the basis highly overcomplete.

The optimal set ofτm
i and sm

i for a signal is found by maximizing the posterior

distribution of coefficients given the signal and the gammatones

ŝ= argmax
s

P(s|x,A) = argmax
s

P(x|A,s)P(s). (7)

We make two assumptions in modeling the distributions in 7. First, the noise,ε, is

Gaussian and so that the data likelihood,P(x|A,s), is also Gaussian. Second, the prior,

P(s), a function of the spike times and amplitudes, is very sparse. Given these assump-

tions the gradient of 7 is given by

∂
∂ s

log P(s|A,x) ∝ AT(x−As)+z(s) (8)

wherez(s) = (log P(s))′. P(s) was assumed to follow a Laplacian, but other distribu-

tions are possible. The assumption of sparseness of the kernel coefficients means that

optimizing 7 essentially selects out the minimal set of gammatones that best account

for the structure of the sound signal for a given noise level.
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Although optimally efficient codes are possible in theory, in practice only the briefest

sounds can be encoded in this manner. For example, using 64 kernels to encode a signal

sampled at 44.1 kHz requires∼ 2.8 million coefficients to be optimized per second of

signal. We can reduce most of the computational overhead, however, by using filter-

threshold or matching pursuit to initialize the MAP optimization. Instead of optimizing

over the entire parameter space, these hybrid algorithms search for optimal amplitude

values,s, over a set of spike timesτ selected by one of the two approximative algo-

rithms. The departure from optimality is a function of the number and “quality” of the

spike times selected by the initializing algorithm. In the results that follow, these hybrid

algorithms are evaluated along side the other algorithms as approximations of the true

optimally efficient code.

4 Spikecode Signal Representation
The sparse, shiftable kernel representation and a set of decomposition algorithms have

now been formalized. To evaluate the model, we will present both examples of the

codes it generates and an objective comparison between those and other codes. The

following section contains specific examples of spike codes to illustrate its qualities as

a method for signal representation and some benefits of time-relative coding.

4.1 Comparison of Encoding Algorithms

There are five possible encoding algorithms described in the previous section: filter-

threshold, matching pursuit, MAP optimization, optimized filter-threshold and opti-

mized matching pursuit. Figure 4 shows the spike code for a short section of speech

(three glottal pulses from the vowel /a/ sampled at 16 kHz) using four of these dif-

ferent encoding algorithms. Even at time scales of 480-800 samples, the optimization
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problem is prohibitive and an example is not presented here. These spikegrams are

formatted identically to figure 3 with ovals representing the time, center frequency and

magnitude of a spike; only the kernel function overlays are removed. For each, we

measure the quality of its representations in terms of signal-to-noise (SNR). To com-

pute this, a reconstruction of the input is generated from the code and a residual error

is computed between the original and reconstruction. The SNR in decibels (dB) is then

SNR= 10log10(Po/Pe) wherePo is the power of the original andPe is the power of the

residual error.

The spikegram in panel A of figure 4 is generated using filter-threshold. A high

degree of redundancy in both time and frequency is quite evident in the correlated

waves of spikes that code each glottal pulse. This redundancy may serve to enhance

structural similarity between sound events (e.g., the glottal pulses) and increase the

representation’s resistance to noise, but it lacks a succinct description of the temporal

and spectral characteristics of the sound. Filter-threshold encodes the sound to 18 dB

SNR (using the scaling parameter mentioned earlier.) Perceptually, the input sound is

noticeably distorted in the reconstruction, though the speech content is quite clear.

Optimizing the filter-threshold code has a dramatic effect on the quality of the en-

coding, pushing the SNR to 90.1 dB, well beyond the point where the original and re-

constructed signals are perceptually discriminable. Given that the original .wav file had

16 bits of precision and assuming coding noise on the order of 1 bit, the estimated SNR

of the original signal is about 90 dB. In the example shown in panel 4B, we assumed

a very low level of noise in the model. This results in the majority of spike amplitudes

being shifted up or down but few pushed to zero; all of the available information is used

to encode the signal accurately. Although few spikes are pruned given an assumption

of very low noise, the distribution of spike amplitudes becomes does become sparser as

a result of optimization. As progressively high noise levels are assumed, the resulting
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Figure 4: Spikegrams were created from an input signal (top) using each of the four

algorithms: (A) filter-threshold encoded to 18.7 dB SNR (see text), (B) optimized filter-

threshold encoded to 90.1 dB SNR, (C) matching pursuit encoded to 30.4 dB SNR, and

(D) optimized matching pursuit encoded to 33.0 dB SNR.

codes become increasingly sparse, sacrificing SNR in order to prune spikes.

Panel 4C shows an example of the spike code produced by matching pursuit. It

is obviously vastly less redundant than the filter-threshold code in panel 4A. There is

relatively little obvious structure within the representation of each glottal pulse imply-

ing that primarily independent events are being represented; however, the similarity

between pulses is evident. Despite the much more compact representation, the signal is

encoded to 30.4 dB SNR with only very subtle distortions perceivable.

The code generated by a matching pursuit-MAP optimization hybrid (4D) is nearly

identical to that produced by matching pursuit alone. It is likely for a 30 dB SNR



18 Coding time-relative structure with spikes E Smith and M S Lewicki

code that the optimization simply corrects some of the error introduced by our use of

kernel neighborhoods when computing residuals on each iteration. One possible reason

for the limited effect of optimizing is that matching pursuit codes represent a deep

local minimum in the parameter space and the gradient method fails to find a global

optimum. Another factor concerns the nature of signal decomposition using matching

pursuit. This will be discussed further in a later section.

4.2 Convergence of fidelity

When encoding a signal with matching pursuit, MAP optimization or any hybrid, the

SNR of the code increases monotonically with the number of spikes (this is not neces-

sarily true of filter-threshold.) For the optimized codes, the amount of noise assumed in

the model defines the tradeoff between sparseness and accuracy. Because these codes

are globally optimal, their specific form (the precise location of spikes) many be al-

tered given different noise levels. For matching pursuit the tradeoff is much clearer:

lowering the threshold for accepting a spike (or otherwise varying the halting criterion)

simply adds additional spikes which code further residual structure. Figure 5 shows the

effect of varying the number of spikes in a matching pursuit code. The input signal is

a segment of speech (the word ’can’ sampled at 16 kHz.) The spikegram in panel 5A

reflects a very high threshold producing only 92 actual spikes (∼ 400 spikes/sec) and a

relatively poor representation (10 dB SNR). Above the spikegram is the residual signal

from the final iteration of the algorithm. It is apparent that a great deal of structure

remains to be coded, although the onset of the consonant, /k/, and the periodicity of

the /a/ and /n/ are already revealed. Perceptually, the sound is strongly distorted from

the original, but the speech content is quite clear. The subsequent panels 5B-D show

spikegrams and residuals for signals encoded to 20 dB (1600 spikes/sec), 30 dB (3100
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Figure 5: As the spike rate (spikes/sec) increases, the fidelity of the representation

increases. The spikegrams above show the improvement of an optimized matching

pursuit code with increasing spike rate: (A) 10 dB SNR at 400 spikes/sec, (B) 20 dB

SNR at 1600 spikes/sec, (C) 30 dB SNR at 3100 spikes/sec, and (D) 40 dB SNR at

5500 spikes/sec. The residual error is plotted above each spikegram.

spikes/sec) and 40 dB SNR (5500 spikes/sec). By 30 dB, panel 5C, the distribution of

residual amplitudes is not significantly different than a Gaussian (based on Lilliefors

statistical test to reject Gaussian assumption, p-value> 0.2.)

4.3 Effect of kernel number

Another parameter to be selected for any encoding algorithm is the number of kernel

functions. Relatively few gammatones are needed to form a complete basis (i.e., a basis

that spans the frequency space of the sounds used), but increasing the number allows
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greater spectral precision. Figure 6 shows the effect of using matching pursuit with

8, 16, 32 or 64 kernel functions (6A-D, respectively.) To be certain that the four sets

spanned the frequency space, they were generated independently using Slaney’s Matlab

toolbox (Slaney, 1998). In each case the signal is encoded to∼ 40 dB SNR, but the

form of the code changes drastically. With relatively few gammatones (6A, 6B) the

code lacks both spectral and temporal precision. The time-relative coding is largely

lost and the representation becomes nearly convolutional. Using 32 or 64 kernels more

clearly segments the acoustic events and begins to show invariant signal structure. Very

similar findings were made testing MAP optimization and the hybrid algorithms. In

contrast, increasing the number of kernels with filter-threshold only shows enhanced

spectral precision as spike times are selected independently on one another.

4.4 Comparison to Spectrograms

Having described some of the details of the spike code, we now look more broadly

at its representation. A comparison of a spectrogram and spikegram illustrates many

properties of the model. In figure 7, the upper plot shows the waveform of “pizzerias”

spoken by an adult female and sampled at 16 kHz. The spikegram and spectrogram

of this signal are shown in the middle and lower plots, respectively. The spikegram

was constructed using an optimized filter-threshold spike code with 128 ERB-spaced

gammatone kernels. Both show the formant and harmonic structure of the vowels (e.g.,

320-700 msec). Both also reveal the broad spectral and temporal characteristics of the

signal, such as the diffuse energy of the /s/ from 700-800 msec. However, while the

spectrogram is composed of 10 msec shifted windows (as illustrated in figure 1), the

spikegram possesses precise timing information to the sampling rate of the original

signal and retains phase information. This allows it to reveal fine-grained synchronous
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Figure 6: The number of kernel functions affects both the spectral resolution and the

temporal sparseness of the spike codes. The input signal (top) was encoded using

matching pursuit with 8, 16, 32 or 64 kernel functions (A-D, respectively). The to-

tal number of spikes in each is (A) 12011, (B) 1167, (C) 497 and (D) 479.

activity across bands. It also possesses a nonlinear frequency axis based on the cochlea.

This axis emphasizes the range important to human hearing and is used in many audi-

tory models and speech “front-ends”.

4.5 Sparse representation of transients

Though the “pizzerias” example demonstrates the large scale features of the spike code,

the fine structure is more clearly revealed in a shorter speech segment. The waveform

and spikegram of first half of the word “wealth” appear in figure 8. Here we can see

the time-relative coding of non-stationary structure. 100 msec into the word (about
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Figure 7: Three representations of the spoken word “pizzerias”: (A) a time-varying

waveform, (B) a spikegram, or (C) a spectrogram. They are presented on the same time

scale (indicated at the bottom.) Note that the spikegram and spectrogram use different

frequency axes.

45 msec from the start of the spikegram), the period between glottal pulses begins to

elongate. The spike code maintains a consistent representation of the individual pulses

during this period, despite the time dilation. Although there is some slight variability in

the representation of each pulse (appropriately reflecting the changes in the underlying

signal), the spikes essentially align with the peak of each glottal pulse. Figure 8 also

shows the efficiency of the code in representing harmonic structures. The spikegram

shown can reconstruct the original signal to 30 db SNR but it requires only a small
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Figure 8: A spikegram shows time-relative coding in the syllable /el/.

number of spikes per pulse. Perceptually, the code contains only very subtle distortions

of the original signal. Although the two are distinguishable, it is difficult to judge

whether the original or reconstructed sound is the “true” signal. This demonstrates the

efficiency of the spikegram with respect to non-stationary harmonic structures.

One of the particularly desirable properties of the model is the efficient coding of

transients, where precise temporal coding is most important. Distinguishing consonants

in continuous speech, for example, requires the detection of rapid, broadband transients.

Figure 9 presents an example of a transient, /t/ sound from the word “Vietnamese”. The

input signal in panel 9A consists of an extended vowel with an embedded transient.

The entire signal was encoded using matching pursuit then optimized. The small set of

spikes corresponding to the transient /t/ sound is easily distinguishable from the other

spikes. We were able to segment them by hand from the rest of the representation. In

panel 9B, a spike code of only four events (magnified in inset) is sufficient to encode

the transient (9A, Reconstruction), leaving only the vowel component (9A, Residual).

These two events are precise in time to within 0.06 msecs (the sampling rate of the

signal.) In a spectrogram (9C), the same transient is smeared over a 10 msec of time

and a large region of frequency space. Note that the time scale (x-axis) is the same
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Figure 9: Efficient representation of a speech consonant. An input signal (A, input) is

represented as both a spikegram (B) and spectrogram (C). We can reconstruct the signal

based only on the four spikes shown in the inset (B) to segment the /t/ sound from the

vowel (A, reconstruction and residual).

in panels 9A, 9B, and 9C. Although this particular consonant is unusually short in

duration, this example still illustrates the precise timing and localization achievable

with a spike code.

5 Coding Efficiency
The previous section shows that spike coding allows time-relative representation of

sound structure, but it is not yet demonstrated that this produces an efficient repre-

sentation of the signal. A complete evaluation of the spike code model requires some

objective measure by which to compare between the various algorithms and to compare
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the model against other representational techniques. Shannon’s rate-distortion theory

offers an objective measure of coding efficiency which is widely used in signal coding

research (Shannon, 1948). The idea is to vary therate of a code (typically in terms

of bits/second) while measuring the effect that has on some measuredistortion, such

as mean squared error. For the comparisons between spike coding algorithms we can

start simply, varying the rate in terms of spikes/second and measuring the fidelity of the

code (the inverse of distortion) in terms of dB SNR. We will then address the issue of

quantifying coding efficiency more precisely in terms of bits.

5.1 Coding efficiency in terms of spikes

The within model comparison of encoding algorithms will focus on filter-threshold,

matching pursuit, and the hybrids, allowing four different algorithm combinations. To

generate a measure of coding efficiency each algorithm was used to encode a large

corpus of short (50-200 msec) segments of speech (Garofolo et al., 1990), music and

other “natural” sounds (e.g., birdsong, music and environmental sounds) at various

spike rates. All of the stimuli were in .wav format, sampled at 16 kHz and band-limited

to 80-6000 Hz. The leading and trailing portions of the stimuli were multiplied by

half-Hanning windows to prevent edge artifacts.

The left panel in figure 10 shows a simplified rate-fidelity curve for each algorithm

across the entire database. The x-axis indicates the spike rate on a log scale. The

y-axis indicates the fidelity in terms of the mean signal-to-noise ratio. The compu-

tationally simple filter-threshold produces a highly redundant, relatively low-fidelity

code (< 11 dB SNR 10,000 spikes/second.) Its decomposition over-represents large

amplitude components of signals while devoting relatively few spikes to lower ampli-

tude components which may represent distinct sound structure. At large spike rates
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Figure 10: Spike coding efficiency curves. Plotted on the left is the increase in fidelity

with increasing spike rate for the four spike code algorithms. Plotted on the right is

the increase in fidelity with increasing spike rate for matching pursuit using different

numbers of gammatones in the filterbank (8, 16, 32, 64, 128, 256).

(> 50,000 spikes/second) a mean reconstruction fidelity of∼ 20 dB SNR is possible.

Codes produced by matching pursuit have much greater fidelity at all rates than

those from filter-threshold. By decomposing signals into sets of orthogonal compo-

nents, it eliminates all spectral and temporal redundancies in its representation. At low

spike rates, where the code tends to represent non-overlapping signal structures, match-

ing pursuit appears to generate a near optimal code. However, at higher rates the fidelity

of the greedy algorithm tends to reach a ceiling, with a mean SNR of<60dB.

Although the filter-threshold produces a relatively inefficient code, MAP optimiza-

tion of its spike amplitudes can result in an extremely high fidelity representation. To

achieve this, the filter-threshold must generate a set of spike times sufficient to span the

signal space. There are two factors responsible for the increased efficiency of optimized

codes. First, the gradient-descent optimization eliminates redundant spikes by driving
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spike amplitudes to zero in accordance with the sparse prior. Second, in minimizing

the expected error the optimization makes use of correlations between kernels, subtly

adjusting spike amplitudes rather than eliminating them. The relative contribution of

each factor is largely dependent on the amount of noise,ε(t), assumed in the model.

Low noise models preserve spikes and rely on precise signal fitting; high noise models

eliminate most spikes (pushing their amplitudes to zero.)

While optimization of the filter-threshold codes greatly increases their efficiency,

further optimization of matching pursuit spike amplitudes leads to relatively small in-

creases in efficiency at lower bit rates. Equation 4 shows that the algorithm decomposes

signals into orthogonal components. As such, increases in efficiency cannot result from

redundancy reduction thorough spike elimination. Instead, spike amplitudes are ad-

justed to make use of correlations between kernels. Utilizing these correlations can

prevent the ceilings in coding efficiency found in the “raw” matching pursuit codes at

higher spike rates.

The right panel in figure 10 plots the rate-fidelity curves for matching pursuit us-

ing different numbers of gammatones. ERB filterbanks of 8, 16, 32, 64, 128 and 256

gammatones were produced using Slaney’s Matlab toolbox (Slaney, 1998). Generat-

ing each filterbank separately rather than using subsets of some fixed large filterbank

allows each component filter’s bandwidth to vary and better tile the frequency space.

The sound ensemble (the same used in the between algorithms comparison) was en-

coded with each kernel set while varying the spike rate. The resulting curves show a

clear relation between coding efficiency and filterbank size. The progression of low-

est to highest curves on the plot exactly follows the number of kernel functions used.

Although efficiency increases monotonically with the number of size of the filterbank

(i.e., number of kernels), the relative gain beyond 64 is extremely small. Additionally,

as shown by example earlier (figure 6), codes produced by 32 or fewer kernels lack a
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sparse temporal structure in addition to their relatively course spectral representation.

Figure 10 shows that matching pursuit is highly efficient at low spike rates but is

surpassed by the hybrid optimized filter-threshold beyond∼ 25dB SNR. The reason for

this inefficiency at high rates is that matching pursuit often fails to accurately describe

true signal structure (Gribonval et al., 1994; Goodwin and Vetterli, 1999). Because

each component of its code is constrained to be orthogonal (by equation 4); see also

Mallat and Zhang, 1993) it cannot capture independent signal structure which closely

overlaps in time-frequency space. To test matching pursuit’s ability to separate overlap-

ping signal structure, a test signal was created by summing pairs of gammatone kernels

separated systematically in time (first third of the signal) and in frequency (latter two-

thirds of the signal.) The spikegrams in figure 11 shows the potential for time-frequency

separability using both matching pursuit and MAP optimization. The ideal sparse rep-

resentation would consist of pairs of spikes at each of the signal “events” except in the

two instances where the kernels perfectly overlap. The MAP optimization algorithm

generates just such an encoding (top panel). Looking closely at the representation of

one pair of clicks separated 20 msec (top panel, inset) it is clear that two independent

events have been coded (allowing perfect reconstruction.)

In contrast, matching pursuit cannot separate kernels that closely overlap in time

and frequency (bottom panel, around 400 and 3600 msec.) matching pursuit’s repre-

sentation of the same 20 msec separated click pair (bottom panel, inset) is clearly very

different than the optimal. On the first iteration of the algorithm it selects a kernel

that is lower frequency than the gammatones used to make the signal and centers it

between them in time. This means that the representation underestimates the frequency

and describes an event when where none actually took place. To compensate for this

inaccuracy, a large number of additional, low-amplitude kernels are selected on sub-

sequent iterations. With 6 spikes it still only produces a 17 dB SNR representation.
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Figure 11: Spikegrams for a signal made of overlapping gammatones. (Top) MAP

optimization finds the underlying structure. An example from one pair of clicks (cir-

cled) is shown in the inset. The thick gray curve shows the signal, two∼ 2.8 kHz

gammatones separated by 20 msec. The thin dark lines are the kernels found by MAP

optimization. (Bottom) Matching pursuit cannot separate kernels that closely overlap in

time-frequency. Given the same two clicks, it generates a single high amplitude event

centered between the chips and numerous low amplitude.

None-the-less, the first spike is the single best choice to reduce the residual power. As

such matching pursuit is extremely efficient at low rates. The signal structure initially

encoded is typically well separated in time. For example, figure 5 showed that the ini-

tial encoding involve structure that was largely well separated in time and frequency.

Tracking the decomposition spike by spike, the kernel that satisfies equation 5 on each

iteration tend to occur once at each glottal pulse, capturing the largest amount of signal

structure possible with a single spike, before returning to encode residual local structure
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around the same time point. This efficient, low-rate representation can also be gener-

ated by MAP optimization by assuming an appropriate degree of noise in the model, but

this parameter can be difficult to determine a priori and the algorithm is much slower.

5.2 Coding Efficiency in Terms of Bits

The sparse, shiftable kernel model and a set of algorithms for spike coding have been

described in some detail. We now want to quantify the coding efficiency in bits so

as to objectively evaluate the model and compare it quantitatively to other signal rep-

resentations. Rate-fidelity again provides a useful objective measure for comparison.

Computing the rate-fidelity curves begins with the associated pairs of coefficients and

time values,{sm
i ,τm

i }, which are initially stored as double precision variables. Storing

the original time values referenced to the start of the signal is costly because their range

can be arbitrarily large and the distribution of time points is essentially uniform. Stor-

ing only the time since the last spike,δτm
i , greatly restricts the range and produces a

variable that approximately follows a gamma distribution.

Rate-fidelity curves are generated by varying the precision of the code,{sm
i ,δτm

i },

and computing the resulting fidelity through reconstruction. A uniform quantizer is

used to vary the precision of the code between 1 and 16 bits. At all levels of precision,

the bin widths for quantization are selected so that equal numbers of values fell in each

bin. All sm
i or δτm

i that fall within a bin are recoded to have the same value. We use

the mean of the unquantized values that fell within the bin.sm
i andδτm

i are quantized

independently. We found thatδτm
i for gammatones with low center frequencies required

much less precision than for higher frequency gammatones. Accordingly, temporal

precision for the kernel functions was normalized with respect to its wavelength so that

the same error during quantization would produce the same relative displacement in the
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with respect to a kernel’s wavelength.

Treating the quantized values as samples from a random variable, we estimate a

code’s entropy (bits/coefficient) from histograms of the values. Rate is then the product

of the estimated entropy of the quantized variables and the number of coefficients per

second for a given signal. At each level of precision the signal is reconstructed based on

the quantized values, and an SNR for the code is computed. This process was repeated

across a set of signal and the results were averaged to produce rate-fidelity curves.

Matching pursuit was used to generate the estimate the{sm
i ,δτm

i } pairs for these rate-

fidelity curves.

Coding efficiency can be measured is nearly identical fashion for other signal repre-

sentation. In addition to spike codes, rate-fidelity curves were generated for four other

signal representation methods using the same set of sounds. The two most common

methods for signal processing are Fourier and wavelet transform. Fourier coefficients

were obtained for each signal via Fast Fourier Transform. The real and imaginary

parts were quantized independently, and the rate was based on the estimated entropy

of the quantized coefficients. Reconstruction was simply an inverse Fourier transform

on the quantized coefficients. Similarly, coding efficiency using 8th−order Daubechies

wavelets was estimated using Matlab’s discrete wavelet transform and inverse wavelet

transform functions. As a baseline for comparison, rate-fidelity curves were produced

for the waveform of time-varying amplitude values. The fidelity was determined by

quantizing the amplitude values and computing the SNR directly from the resulting

signal. Two different methods were used to determine the rate. In the “compressed”

case, the rate was based on the estimated entropy of the quantized values, just as above.

In the ”raw” case, the cost of each coefficient was equal to the quantization level rather

than the estimated entropy.

Figure 12 shows the rate-fidelity curves calculated for two classes of sounds: speech
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(from the TIMIT database (Garofolo et al., 1990)) and music (a wide variety of instru-

mental pieces collected from the internet.) Compressed, Fourier, wavelet and spike rep-

resentations are all far more efficient than the raw signal over the range of rate-fidelity

parameters we analyzed. At rates below 40 Kbps, spike codes produce the most effi-

cient representations of both speech and music. For example, between 10 and 20 Kbps

the fidelity of the spike representation of speech is approximately twice that of either

Fourier of wavelet transformations. At higher bit rates (above 60 Kbps) the Fourier

and wavelet representations produce much higher rate-fidelity curves than either spike

codes or compressed signals. At high rates (off the scale shown) the wavelet representa-

tion is most efficient followed by Fourier. In figure 10, the filter-threshold hybrid code

also exceeded the matching pursuit-generated code, in this case beyond 25dB SNR.

This offers some evidence that optimized spike codes might exceed the efficiency of

Fourier and Wavelets throughout the range of perceptually discriminable fidelities.

6 Discussion
We have presented a theoretically-motivated model for sound coding in which the com-

putational goal is to form an efficient, time-relative representation of the time-varying

amplitude signal. Signals are represented by decomposing them into a minimal number

of gammatone acoustic events, each with an associated time and amplitude. We have

shown that this yields efficient representations of transient signals, allowing highly pre-

cise representations of sound onset. We have also shown that over a large range of

fidelities, this representation is more efficient than Fourier of Wavelet representations.

The research presented here adds to the literature on efficient sound representation

in several ways. It expands on the original spike coding model (Lewicki and Sejnowski,

1999; Lewicki, 2002b) by presenting a new encoding algorithm, objectively measuring

efficiency of spike codes and comparing them against Fourier and Wavelets, and pro-
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Figure 12: rate-fidelity curves for the raw (uncompressed) time-varying signals, com-

pressed signals, Fourier transform, discrete wavelet transform and spike coding using

matching pursuit for speech (left) and music (right).

viding a detailed analysis of the representation with specific examples of its strengths

and weaknesses. This work also addresses a number of issues relating to matching

pursuit. (Goodwin and Vetterli, 1999) proposed using damped sinusoids with matching

pursuit to avoid problems arising from using symmetric wavelets to represent sound.

We demonstrated the potential of using a physiologically derived set of gammatones

kernels for sound representation rather than abstract sinusoids. The success of this

approach lends support to the idea that these functions are adapted to the statistics of

natural sounds (Lewicki, 2002a). Additionally, we presented an analysis of the relation-

ship between matching pursuit codes and those derived via MAP optimization. Finally,

we were used rate-distortion to compare matching pursuit against other approximative

spike coding algorithms.

Another view of these results is that we have shown a method for achieving sig-
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nificantly greater coding efficiency using what is in effect an overcomplete basis. A

motivating goal for so-called overcomplete representations or atomic decompositions

with overcomplete dictionaries (Mallat and Zhang, 1993; Chen et al., 1996; Goodwin

and Vetterli, 1999; Lewicki and Sejnowski, 2000) is to draw from a rich vocabulary

of signal descriptors to find compact signal representations. The method we have de-

scribed here can be viewed in these terms, because the kernel functionsφm(t) can be

arbitrarily numerous in their center frequencies and can be placed at arbitrary points

in time (Lewicki and Sejnowski, 1999; Lewicki, 2002b). In previous studies, it has

been difficult to show that the sparse representations made possible with overcomplete

representations could actually yield demonstrably more efficient codes. The general

problem is that the added cost of coding an overcomplete set of coefficients often out-

weighs any gain achieved in representation sparseness (Lewicki and Olshausen, 1999;

Lewicki and Sejnowski, 2000). The advantage offered by the approach here is that it

is not necessary for the code to describe each implicit coefficient (i.e. at every sample

position). Instead, it is sufficient to describe the time intervalsbetweenthe spikes. This

yielded a much more efficient code for two reasons. The first is that the use of gam-

matones is well-matched to the underlying structure of speech and music. The second

is that the matching pursuit algorithm achieves highly sparse representations. This is

crucial, because optimization with filter-threshold yields a highly-redundant code that

does not show increased coding efficiency. It is possible that improvements in either the

kernel functions or the encoding algorithms could yield spike codes with even greater

efficiencies, and thus provide improved methods for representing the underlying signal

structure.

We will address a few assumptions made in our model. The first is that we have as-

sumed an explicit generative model and assessed performance by computing the fidelity

of the reconstructed signal. It is possible, for example, that the simple filter-threshold
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algorithm does achieve a high-fidelity encoding of the signal, but we do not know how

to reconstruct it. It was our motivation, however, to develop efficient codes which can

reveal the intrinsic information of a signal. Our assumption of a linear superposition

of kernel functions is a simple means of evaluating the degree of redundancy in the

representation.

Another assumption concerns our choice of distortion measure for evaluating cod-

ing efficiency. The reported signal-to-noise values are based on the sum-squared error

between the original signal and the reconstruction. It is well known that this measure

of distortion does not agree closely with human perception. For example, Gaussian

white noise signals would tend to appear very dissimilar using this measure, yet they

all sound the same to a listener. Although a perceptual distortion measure will offer

greater insight into the relationship between the algorithms described here and human

perception, the sum-squared error is adequate to show their relative coding efficiency

as general signal representations.

Beyond the questions of general signal processing, we are particularly interested in

the use of spike coding algorithms as models of neural auditory processing. The analog

amplitude values in the model can also be interpreted as representing a local population

of auditory nerve spikes. As a theoretic model of auditory coding this posits that the

purpose of the (binary) spikes at the auditory nerve is to encode as accurately as pos-

sible the temporal position and amplitude of underlying acoustic features, which are

compactly described by gammatones. Analog spikes are a useful theoretical abstrac-

tion, and it is simple to convert these individual spikes into a population of probabilis-

tically firing, binary units that can carry the same information. Some possible neural

network architectures along these lines are described in (Lewicki, 2002b).

One potential concern for describing the cochlear processing with the model pre-

sented here is that this model lacks the explicit representation of the nonlinearities found



36 Coding time-relative structure with spikes E Smith and M S Lewicki

in detailed cochlear models. Our goal, however, was to construct a coding algorithm

motivated by higher-level principles. We have not yet investigated whether any cochlear

non-linearities can be interpreted in terms of the assumed computational objective. For

example, matching pursuit and gradient optimization can be viewed as means of se-

lecting out a subset of the spikes that removes inter-spike redundancy and yields an

efficient representation. This could offer a novel theoretical interpretation of two-tone

inhibition.

The addition of nonlinearities may still not help describe the intrinsic coding pro-

cesses of the system. For example, the model by Yang and colleagues is spike-based

and contains numerous biophysically motivated nonlinearities (Yang et al., 1992), but

the fidelity of their reconstructions falls in the same range as filter-threshold and in

much lower than that of matching pursuit or the hybrids. They reported SNR rang-

ing from 11 to 25 dB, depending on the extent of processing. This underscores the

complexity of the signal encoding problem solved by the peripheral auditory system.

We have sought to develop an algorithm which extracts the intrinsic information

in a signal from the stream of observable information. As was stated earlier, infor-

mation reduction can be achieved either by selecting only the desired information or

by removing redundancy. The choice of kernel functions biases our model to “select”

certain types of signal structure over others. Our choice of a gammatone filterbank,

a highly efficient basis for natural sounds, biases the model to select the underlying

structures of natural sounds. The algorithms for generating spike codes take the later

approach of redundancy reduction. Reducing the temporal correlations shows promise

for yielding better methods to extract intrinsic structure from raw acoustic signals.
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