
Existence of Solutions to Systems of
Underdetermined Equations and Spherical

Designs

Xiaojun Chen1 Robert S. Womersley2

Abstract. This paper is concerned with proving the existence of solutions to an

underdetermined system of equations, and the application to existence of spherical

t-designs with (t+1)2 points on the unit sphere S2 in R3. We show that the construc-

tion of spherical designs is equivalent to solution of underdetermined equations. A

new verification method for underdetermined equations is derived using the Brouwer

fixed point theorem. Application of the method provides spherical t-designs which

are close to extremal (maximum determinant) points and have the optimal order

O(t2) for the number of points. An error bound for the computed spherical designs

is provided.
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1 Introduction

Let c : Rn → Rm be a continuously differentiable function with m < n. Suppose that

x̂ is an approximate solution of the underdetermined system of nonlinear equations

c(x) = 0 (1.1)

and the Jacobian c0(x) of c at x̂ has full row rank. We are interested in the existence

of a solution of (1.1) in a neighbourhood of x̂.

Underdetermined systems of equations arise in constrained optimization prob-

lems, continuation methods for underdetermined equations, etc [3, 12, 14, 22]. This

paper gives a verification method for solutions of underdetermined equations (1.1).
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The main difficulty in proving the existence of solutions of underdetermined system

of equations is that the Jacobian c0(x) is an m × n matrix with m < n. Let c0(x̂)+

be the Moore-Penrose pseudoinverse of c0(x̂). A popular method for verifying the

existence of solutions of nonlinear equations is to use a Krawczyk-type interval op-

erator [2]. Replacing the inverse by an Moore-Penrose pseudoinverse, we can get a

Krawczyk-type interval operator

K(X) = x̂− c0(x̂)+c(x̂) + (I − c0(x̂)+C 0(X))(X − x̂), (1.2)

where X is an interval in Rn defined by

X = [x̂− h, x̂+ h], h ∈ Rn, h ≥ 0

and C 0(X) is an interval arithmetic evaluation satisfying

c0(x) ∈ C 0(X), for x ∈ X.

It can be shown [2] that there is a solution of (1.1) in X if

K(X) ⊆ X, (1.3)

and c0(x̂) has full row rank. However, the enclosure (1.3) rarely holds due to the

equality [8]

kI − c0(x̂)+c0(x̂)k2 = min{1, n−m},

and the fact that

K(X) ⊆ X ⇒ kI − c0(x̂)+c0(x)k∞ ≤ 1 for all x ∈ X.

In section 2 we present a new verification method for underdetermined systems of

equations (1.1) which does not need the generalized inverse c0(x̂)+.

A cubature (numerical integration) rule for the unit sphere S2 = {y ∈ R3 :

kyk2 = 1} is a set of N points y` ∈ S2 and weights w` for ` = 1, . . . , N such thatZ
S2

f(y)dy ≈
NX
`=1

w`f(y`).

Let Pt ≡ Pt(S2) be the linear space of restrictions of polynomials of degree ≤ t in 3
variables to S2. The dimension of the space Pt is dt := (t+ 1)2. Spherical t-designs,
introduced in [5], are sets of N points {y1, y2, . . . , yN} ⊂ S2 such that the equally
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weighted (w` = |S2|/N = 4π/N , ` = 1, . . . , N) cubature rule is exact for all spherical

polynomials of degree at most t, that isZ
S2

p(y)dy =
4π

N

NX
`=1

p(y`) ∀p ∈ Pt.

For t ≥ 1, the existence of a spherical t-design was proved in [19]. Commonly the
interest is in the smallest number N∗t of points required to give a spherical t-design.

Lower bounds on N∗t given in [5] are

N∗t ≥
(t+ 1)(t+ 3)

4
if t is odd

N∗t ≥
(t+ 2)2

4
if t is even.

A spherical t-design which achieves the lower bounds is called a tight spherical t-

design. However for t ≥ 2, it is known that tight spherical t-designs do not exist

[5]. Hardin and Sloane [7] have extensively investigated spherical designs on S2

and suggested a sequences of putative spherical t-design with 1
2
t2 + o(t2) points. A

7-design with 24 points was first found by McLaren in 1963 [13]. Korevaar and

Meyers [10] consider the construction for spherical t-designs with O(t3) points on S2.

An approach for the numerical calculation of spherical designs using multiobjective

optimization is studied by Maier [11], and computational proof of the existence of

spherical designs using interval methods [9] is investigated by Hardin and Sloane [7].

Extremal (or maximum determinant) points [20] are sets of (t+1)2 points on S2

which maximize the determinant of a basis matrix for an arbitrary basis of Pt. Sloan
and Womersley [20, 21] showed that extremal systems have very nice geometrical

properties as the points are well separated and the computed interpolatory cubature

weights are positive (w` > |S2|/(2N) for ` = 1, . . . , N for degrees up to t = 150).

Also the condition number of the basis matrix grows slowly, giving confidence in the

calculated cubature weights. Proving the positivity of the cubature weights for all

degrees t for the extremal points is still an open question. Other systems of points,

such as minimum energy points, often have basis matrices with such high condition

numbers that no confidence can be placed in the calculated cubature weights.

Equal weight cubature rules, or spherical designs, are simpler to implement and

there is no question about the positivity of the weights. There are many different

characterizations of spherical t-designs [6]. However these can be very ill-conditioned.

Extremal points provide excellent starting points for numerically finding solutions to

an underdetermined, but highly nonlinear, system of equations which characterize
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spherical t-designs with (t + 1)2 points. Application of the verification method to

the system of equations then proves the existence of spherical t-designs which are

close to the calculated points and have the optimal order O(t2) for the number of

points. Moreover spherical designs with (t+1)2 points which also have a basis matrix

with a determinant close to the maximum are simultaneously good for cubature and

interpolation. Computed spherical t-designs with (t + 1)2 points for degrees up to

t = 50 are available from http://www.maths.unsw.edu.au/~rsw/Sphere.

The focus here is not on finding a spherical t-design with the minimal number

of points, but rather proving the existence of spherical t-designs with (t+ 1)2 points

close to an extremal system. Once existence of a spherical design with (t+1)2 points

is established one can then look for extremal spherical designs, that is systems of

(t + 1)2 points which maximize the determinant of a basis matrix subject to the

constraints that they are spherical t-designs.

In section 3 we reformulate the calculation of a spherical t-design with (t + 1)2

points as an underdetermined system of nonlinear equations (1.1) withm = (t+1)2−1
equations and n = 2(t + 1)2 − 3 variables. We show that a sufficient and necessary
condition for the existence of solutions to the system of equations is existence of a

spherical t-design with (t+1)2 points. In section 4, we apply the verification method

to find new spherical t-designs. The computed spherical designs Ŷ = {ŷ1, . . . , ŷdt}
are compared with the extremal (maximum determinant) points, and error bounds

of Ŷ to exact spherical designs are given

For a given m × n matrix A, let AI be the submatrix of A whose entries lie in
the columns of A indexed by I. For a given vector x ∈ Rn, let xI be the subvector
of x whose entries of x indexed by I.

2 A verification method

Let x̂ be a computed solution of (1.1). Let B be an index set {k1, k2, . . . , km} such
that c0B(x̂) ∈ Rm×m is nonsingular. Define the function H : Rn → Rn by

HB(x) = xB − c0B(x̂)−1c(x) (2.1)

HN (x) = xN − α(xN − x̂N ), (2.2)

where N = {1, 2, . . . , n}/B and α ∈ (0, 1) is a constant. Obviously, if x∗ ∈ Rn is a
fixed point of H, that is, H(x∗) = x∗, then we have c(x∗) = 0 with x∗N = x̂N . Choose

two nonnegative numbers r1 and r2 and define the convex set

X = { x ∈ Rn : kxB − x̂Bk ≤ r1, kxN − x̂Nk ≤ r2} .
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Theorem 2.1 Suppose that c : Rn → Rm is continuously differentiable, c0 has full

row rank at x̂ and

kc0B(x)− c0B(x̂)k ≤ Kkx− x̂k, for x ∈ X. (2.3)

(1) There is a solution of (1.1) in X if

kc0B(x̂)−1c(x̂)k+ kc0B(x̂)−1k
µ
1

2
K(r1 + r2)r1 +max

x∈X
kc0N (x)kr2

¶
≤ r1. (2.4)

(2) There is no solution of (1.1) in X if

kc0B(x̂)−1c(x̂)k− kc0B(x̂)−1k
µ
1

2
K(r1 + r2)r1 +max

x∈X
kc0N (x)kr2

¶
> r1. (2.5)

Proof. (1) By the continuity of c0(x) and the mean value theorem, we find

HB(x) = x̂B − c0B(x̂)−1c(x̂) + xB − x̂B − c0B(x̂)−1(c(x)− c(x̂))

= x̂B − c0B(x̂)−1c(x̂) + xB − x̂B − c0B(x̂)−1

Z 1

0

c0(x+ t(x̂− x))(x− x̂)dt

= x̂B − c0B(x̂)−1c(x̂) + xB − x̂B − c0B(x̂)−1

Z 1

0

c0B(x+ t(x̂− x))(xB − x̂B)dt

−c0B(x̂)−1

Z 1

0

c0N (x+ t(x̂− x))(xN − x̂N )dt

= x̂B − c0B(x̂)−1[c(x̂) +

Z 1

0

(c0B(x̂)− c0B(x+ t(x̂− x)))(xB − x̂B)dt

+

Z 1

0

c0N (x+ t(x̂− x))(xN − x̂N )dt].

Therefore, for any x ∈ X , we have

kHB(x)− x̂Bk

≤ kc0B(x̂)−1c(x̂)k+ kc0B(x̂)−1k
Z 1

0

kc0B(x̂)− c0B(x+ t(x̂− x))kkxB − x̂Bkdt

+kc0B(x̂)−1k
Z 1

0

kc0N (x+ t(x̂− x))kkxN − x̂Nkdt

≤ kc0B(x̂)−1c(x̂)k+ kc0B(x̂)−1k
µZ 1

0

(1− t)Kkx̂− xkr1dt+

Z 1

0

max
x∈X

kc0N (x)kr2dt

¶
≤ kc0B(x̂)−1c(x̂)k+ kc0B(x̂)−1k(1

2
K(r1 + r2)r1 +max

x∈X
kc0N (x)kr2).

Here we uses the facts that x+ t(x̂− x) ∈ X , kxB − x̂Bk ≤ r1 and kxN − x̂Nk ≤ r2

for all x ∈ X and t ∈ [0, 1]
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This implies that if (2.4) holds, then for any x ∈ X, we have

kHB(x)− x̂Bk ≤ r1.

Moreover, by the definition of H , we always have

kHN (x)− x̂Nk = (1− α)kxN − x̂Nk ≤ r2.

Therefore, (2.4) implies that H maps X into itself, that is,

H(x) ∈ X, for any x ∈ X. (2.6)

Using Brouwer’s fixed point theorem, (2.6) implies that there is a fixed point x∗ of

H in X. From the definition of H, x∗ is a solution of (1.1).

(2) Assume that (2.5) holds and there is a solution x∗ in X. Following the proof

for part (1), we have

r1 ≥ kx∗B − x̂Bk
= kHB(x

∗)− x̂Bk

≥ kc0B(x̂)−1c(x̂)k− kc0B(x̂)−1k
Z 1

0

kc0B(x̂)− c0B(x∗ + t(x̂− x∗))kkxB − x̂Bkdt

−kc0B(x̂)−1k
Z 1

0

kc0N (x∗ + t(x̂− x∗))kkxN − x̂Nkdt

≥ kc0B(x̂)−1c(x̂)k− kc0B(x̂)−1k(1
2
K(r1 + r2)r1 +max

x∈X
kc0N (x)kr2) > r1.

This is a contradiction, which completes the proof.

Without loss of generality, we assume that r1 6= 0. Let τ ∈ (0, 1
2
). Define a subset

of X

Xτ = { x | kxB − x̂Bk ≤ τr1, kxN − x̂Nk ≤ τr2}.
Then we have the following corollary.

Corollary 2.2 Under the assumptions of Theorem 2.1, inequality (2.4) implies that

c0B(x) is nonsingular for all x ∈ Xτ and the solution x
∗ of (1.1) with x∗N = x̂N is

unique in Xτ .

Proof. For any x ∈ Xτ (x 6= x̂), inequality (2.4) implies that

r1 ≥ kc0B(x̂)−1k1
2
K(r1 + r2)r1

≥ kc0B(x̂)−1k 1
2τ
Kkx− x̂kr1

> kc0B(x̂)−1kKkx− x̂kr1

≥ r1kc0B(x̂)−1kkc0B(x̂)− c0B(x)k
≥ r1kI − c0B(x̂)−1c0B(x)k.
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Dividing r1 in the both sides, we find

kI − c0B(x̂)−1c0B(x)k < 1.

Hence c0B(x) is nonsingular. By the implicit function theorem [16], the solution x
∗ of

(1.1) with x∗N = x̂N is unique in Xτ .

Remark 2.1 For the case m = n, we have x = xB, c0B(x) = c
0(x), and (2.4) reduces

to

kc0(x̂)−1c(x̂)k+ 1
2
Kkc0(x̂)−1kr2 ≤ r. (2.7)

This is a quadratic inequality in r. If

ρ := Kkc0(x̂)−1c(x̂)kkc0(x̂)−1k ≤ 1
2

(2.8)

then (2.7) holds for all r satisfying

1−√1− 2ρ
Kkc0(x̂)−1k ≤ r ≤

1 +
√
1− 2ρ

Kkc0(x̂)−1k .

By Theorem 2.1, there is a solution in X = {x ∈ Rn : kx− x̂k ≤ r}. Therefore,
Theorem 2.1 is a generalization of the Kantorovich Theorem [16] for the existence of

solution.

3 Spherical designs

In this section we describe a method of reformulating construction of spherical t-

designs as an underdetermined system of nonlinear equations.

For a given positive integer t, a set of points Y = {y1, . . . , ydt} ⊂ S2 is called a

fundamental system if the zero polynomial is the only member of Pt that vanishes
at each point yj, j = 1, 2, . . . , dt. The requirement

dt = (t+ 1)
2dim = Pt

ensures the basis matrix is square.

Y is called an extremal system if these points maximize the determinant of the

interpolation matrix with respect to an arbitrary basis of Pt. An extremal system is

obviously a fundamental system. Sloan and Womersley [20] showed that the extremal

fundamental systems have excellent geometrical properties and surprisingly good

performance for numerical integration. However, it is unknown that if there always

is a spherical t−design in a neighbourhood of an extremal fundamental system. Our
aim is to verify the existence.
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Let L` : [−1, 1] → R be the usual Legendre polynomial [1]. The Rodrigues

representation yields

L`(z) =
1

2`

[`/2]X
k=0

(−1)k(2`− 2k)!
k!(`− k)!(`− 2k)!z

`−2k, (3.1)

where [`/2] is the floor function. Let

Jt(z) =
1

4π

tX
`=0

(2`+ 1)L`(z), z ∈ [−1, 1],

which is a normalized Jacobi polynomial. The Gram matrix G ≡ G(Y ) is a symmet-
ric positive semidefinite dt × dt matrix with elements

Gi,j = Jt(y
T
i yj).

The functions

gi(y) = Jt(y
T
i y), i = 1, . . . , dt, y ∈ S2

belong to Pt. If G is nonsingular, {g1, . . . , gdt} is a basis for Pt. For a given arbitrary
function f ∈ C(S2), the unique polynomial interpolant Λf for the set Y is

(Λf)(y) =

dtX
i=1

vigi(y).

Here the vector of weights v = (v1, . . . , vdt) is the solution of the linear system of

equations

Gv = b, (3.2)

where bi = f(yi), i = 1, 2 . . . , dt.

The cubature rule

Qdt(f) =

dtX
i=1

wif(yi) ≈
Z
S2

f(y)dy

is exact for all polynomials p of degree ≤ t if w satisfies the system of linear equations:

Gw = e, (3.3)

where e = (1, 1, . . . , 1)T ∈ Rdt . In particular, the cubature rule is exact for the

constant polynomial 1 ∈ Pt. ThusZ
S2

1 dy = |S2| = 4π =
dtX
i=1

wi.
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Hence the average cubature weight is

wavg =
4π

dt
.

Numerical results given in [21] show that the weights defined by (3.3) with the

coefficient matrix G(Ȳ ), where

log det G(Ȳ ) = max
Y⊂S2

log det G(Y ), (3.4)

are all positive and the scaled weights wi/wavg lie in [1/2, 3/2].

The set of points Ȳ = {ȳ1, . . . , ȳdt} defined by (3.4) is an extremal fundamental
system. It is conjectured that there is a spherical t-design which is very close to an

extremal fundamental system, that is, there is a set of points Y ∗ = {y∗1, y∗2, . . . , y∗dt
}

in a neighbourhood of Ȳ = {ȳ1, . . . , ȳdt} such thatZ
S2

p(y)dy =

dtX
i=1

wip(y
∗
i ) ∀p ∈ Pt

and equal weights

wi =
4π

dt
, i = 1, 2, . . . , dt. (3.5)

To explore this conjecture, we reformulate the problem as an underdetermined

system of nonlinear equations. The matrix G is rotationally invariant, so the set of

points can be normalized so that the first point is at the north pole and the second is

on the prime meridian. Hence a spherical parametrization θj ∈ [0,π] and φj ∈ [0, 2π)
of the points yj, j = 1, 2, . . . , dt has φ1 = 0, θ1 = 0 and φ2 = 0 giving a total of 2dt−3
variables.

Let

n = 2dt − 3, m = dt − 1,

and let
xi−1 = θi i = 2, 3, . . . , dt

xdt+i−3 = φi i = 3, 4, . . . , dt.

The set of points Y = {y1, . . . , ydt} and the vector of variables x ∈ Rn are uniquely
related by

y1 =

⎡⎢⎣ 00
1

⎤⎥⎦ , y2 =

⎡⎢⎣ sinx1

0

cosx1

⎤⎥⎦ , yi =

⎡⎢⎣ sin θi cosφisin θi sinφi

cos θi

⎤⎥⎦ =
⎡⎢⎣ sin xi−1 cosxdt+i−3

sin xi−1 sin xdt+i−3

cosxi−1

⎤⎥⎦ .
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The simple bounds on θi and φi can be ignored due to the periodicity of the sin and

cos functions. Hence the matrix G can be regarded as a function of x whose elements

are defined by

Gi,j(x) = Jt(y
T
i yj).

Define the function c : Rn → Rm by

c(x) = EG(x)e, (3.6)

where E is the m× dt matrix

E =

⎛⎜⎜⎜⎜⎝
1 −1 0 . . . 0

1 0 −1 . . .
...

...
...
. . .

. . . 0

1 0 . . . 0 −1

⎞⎟⎟⎟⎟⎠ .

This is motivated by the simple, but critical, observation that any cubature rule

which is exact for constants has
Pdt

i=1wi = 4π, so one only requires that w1 = wi for

i = 2, . . . , dt to get (3.5). In fact the system of dt equations G(x)e − wavge = 0 has
a Jacobian with only rank dt − 1.
The following theorem states the relation between a spherical t-design and a zero

of the function c defined by (3.6).

Theorem 3.1 Suppose that G(x∗) is nonsingular. Then x∗ corresponds to a spher-

ical t-design with (t+ 1)2 points if and only if c(x∗) = 0.

Proof: Let x∗ be a solution of c(x) = 0, and let {y∗1, y∗2, . . . , y∗dt
} be the set of points

defined by x∗. First it is shown that {y∗1, y∗2, . . . , y∗dt
} is a spherical t-design.

Since G(x∗) is nonsingular, {y∗1, y∗2, . . . , y∗dt
} is a fundamental system and the

functions

gj(y) = G(y
∗
j
Ty), j = 1, 2, . . . , dt

form a basis of Pt. Hence for any p ∈ Pt there are scalars αj, j = 1, . . . , dt, such that

p(y) =

dtX
j=1

αjgj(y).

Note that (see [17] for example)Z
S2

gj(y)dy = 1 ∀ j = 1, . . . , dt. (3.7)
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Moreover, c(x∗) = 0 implies that all components of G(x∗)e are equal. Hence we can

write

G(x∗)e = µe,

where µ is a scalar. Because of the nonsingularity of G(x∗), µ 6= 0. This yieldsZ
S2

gj(y)dy = 1 =
1

µ

dtX
k=1

Gj,k(x
∗), j = 1, 2, . . . , dt.

We calculate the integralZ
S2

p(y)dy =

dtX
j=1

αj

Z
S2

gj(y)dy

=
1

µ

dtX
j=1

αj

dtX
k=1

Gj,k(x
∗)

=
1

µ

dtX
k=1

dtX
j=1

αjGj,k(x
∗)

=
1

µ

dtX
k=1

dtX
j=1

αjgj(y
∗
k)

=
1

µ

dtX
k=1

p(y∗k).

In particular, for p(y) ≡ 1, the area of the sphere is

|S2| = 4π =
Z
S2

p(y)dy =
1

µ

dtX
k=1

p(y∗k) =
dt
µ
.

Thus µ = dt/4π, so {y∗1, y∗2, . . . , y∗dt
} is a spherical t-design.

Now we prove that c(x∗) = 0 if x∗ corresponds to a spherical t-design with (t+1)2

points. By the definition of a spherical t-design, for any p ∈ Pt,Z
S2

p(y)dy =
4π

dt

dtX
k=1

p(y∗k).

In particular, as gj ∈ Pt,Z
S2

gj(y)dy =
4π

dt

dtX
k=1

gj(y
∗
k), j = 1, 2, . . . , dt.
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Hence, from the definition of gj and (3.7), we find

4π

dt

dtX
k=1

Gj,k(x
∗) =

4π

dt

dtX
k=1

gj(y
∗
k) = 1.

This implies

G(x∗)e =
dt
4π
e,

and thus

c(x∗) = EG(x∗)e =
dt
4π
Ee = 0.

Let x̂ ∈ Rn correspond to the set of points Ŷ = {ŷ1, . . . , ŷdt} on the sphere. The
condition for the cubature rule

Qdt(f) =

dtX
i=1

wif(ŷi)

to be exact for all polynomials in Pt is that w = (w1, . . . , wdt)
T is the solution of

G(x̂)w = e.

From Theorem 3.1, we know that w = G(x̂)−1e = (4π/dt)e if and only if c(x̂) = 0.

The following theorem gives a result of the weights for the case c(x̂) 6= 0.

Theorem 3.2 Suppose that G(x̂) is nonsingular. Let w = G(x̂)−1e. Then

max
1≤i≤dt

|w1 − wi| ≤
4

kG(x̂)ek∞
kG(x̂)−1k∞kc(x̂)k∞. (3.8)

Proof: Let k · k = k · k∞ and let |(G(x̂)e)i0| = kG(x̂)ek. Then µ := (G(x̂)e)i0 6= 0
and

kµe−G(x̂)ek ≤ kµe− (G(x̂)e)1ek+ k(G(x̂)e)1e−G(x̂)ek
≤ 2kc(x̂)k.

Now, by the definition of the matrix E, we have

max
1≤i≤dt

|w1 − wi| = kEG(x̂)−1ek

= kEG(x̂)−1e− 1
µ
Eek

=
1

|µ|kµEG(x̂)
−1e− EG(x̂)−1G(x̂)ek
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=
1

|µ|kEG(x̂)
−1(µe−G(x̂)e)k

≤ 2

|µ|kEkkG(x̂)
−1kkc(x̂)k

=
4

|µ|kG(x̂)
−1kkc(x̂)k.

4 Numerical verification of spherical t-designs

In this section, we use Theorem 2.1 and Theorem 3.1 to verify existence of spherical

t-designs. In particular, we use (2.4) to verify existence of solutions to the system

c(x) := EG(x)e = 0. (4.1)

Note that the highly nonlinear function c(·) is in C∞(Rn) as long as the points
are not at the south pole, which can easily be checked. (The first point is always

the north pole, and is not allowed to vary.) To save computational cost, let xB =

(x1, . . . , xdt−1)
T and set r2 = 0. Hence c

0
B(x) is the first (dt − 1) columns of c0(x) for

x ∈ X , where
X = {x | kxB − x̂Bk ≤ r1, xN = x̂N}.

The expansion (3.1) is used to calculate the derivatives of ci(x). Moreover, we

can give an upper bound for the second derivatives. Since for i, j = 1, . . . , dt, Gij(x)

are polynomials of degree t, the function

ci(x) = (G(x)e)1 − (G(x)e)i+1 =
1

4π

dtX
j=1

tX
`=0

(2`+ 1)(L`(y
T
1 yj)− L`(yTi+1yj))

is polynomial of degree ≤ t. The first derivatives of ci is

∂ci(x)

∂xk
=
1

4π

dtX
j=1

tX
`=0

(2`+ 1)(L0`(y
T
1 yj)

∂(yT1 yj)

∂xk
− L0`(yTi+1yj)

∂(yTi+1yj)

∂xk
)

and the second derivatives of ci is

∂2ci(x)

∂xk∂xν
=
1

4π

dtX
j=1

tX
`=0

(2`+ 1)(L00` (y
T
1 yj)

∂(yT1 yj)

∂xk

∂(yT1 yj)

∂xν
+ L0`(y

T
1 yj)

∂2(yT1 yj)

∂xk∂xν

−L00` (yTi+1yj)
∂(yTi+1yj)

∂xk

∂(yTi+1yj)

∂xν
− L0`(yTi+1yj)

∂2(yTi+1yj)

∂xk∂xν
).
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Note that we only consider the first (dt− 1) columns of c0(x) with respect to xB. Let

∇y2 =

⎡⎢⎣ cosx1

0

− sin x1

⎤⎥⎦ ∇yi =

⎡⎢⎣ cosxi−1 cosxdt+i−3

cosxi−1 sinxdt+i−3

− sinxi−1

⎤⎥⎦ .
For k, ν ≤ dt − 1, we have

∂(yT1 yj)

∂xk
=

(
yT1∇yj if k = j − 1
0 otherwise

∂2(yT1 yj)

∂xk∂xν
=

(
−yT1 yj if k = ν = j − 1
0 otherwise

and

∂(yTi+1yj)

∂xk
=

⎧⎪⎨⎪⎩
yTi+1∇yj if k = j − 1
yTj ∇yi+1 if k = i

0 otherwise

∂2(yTi+1yj)

∂xk∂xν
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−yTi+1yj if k = ν = j − 1
or k = ν = i

∇yTi ∇yj if k = j − 1, ν = i
or k = i, ν = j − 1

0 otherwise.

We use the relations |yTi yj| ≤ 1, and |∇yTi yj| ≤ 1 to give an upper bound K for the

second derivatives of c(·) respect to the first dt − 1 variables. This, together with
xN = x̂N , implies

kc0B(x)− c0B(x̂)k ≤ Kkx− x̂k.

The infinity norm was used in the numerical implementation, so in the rest of this

section k · k denotes k · k∞.
The procedure for verifying existence of a spherical t-designs is:

1. Find an approximate solution x̂ of c(x) = 0 starting from x̄ corresponding to

an extremal fundamental system Ȳ .

2. Calculate c0B(x̂) and K.

3. Calculate

ρ = Kkc0B(x̂)−1c(x̂)k kc0B(x̂)−1k. (4.2)

If ρ ≤ 1
2
, then there is a solution of (4.1) in the set

X = {x ∈ Rn : kxB − x̂Bk ≤ r1, xN = x̂N}

where

r1 =
1−√1− 2ρ
Kkc0B(x̂)−1k .

14



Table 1: Extremal points x̄, computed spherical designs x̂, exact spherical design x∗,

kx̂− x∗k ≤ r1, x ∈ R2(t+1)2−3

t dt kc(x̄)k kc(x̂)k log detG(x̄) log detG(x̂) r1 kx̄− x̂k ŵmax − ŵmin

2 9 0.0245 4.44e-16 -3.2134 -3.2157 1.01e-15 0.0255 1.55e-15

3 16 0.4299 2.66e-15 3.3867 2.5779 2.36e-15 0.2742 1.88e-15

4 25 0.3898 7.32e-15 16.1396 15.9337 1.80e-14 0.1002 3.33e-15

5 36 0.6318 7.54e-15 36.1736 35.4829 1.34e-14 0.2595 2.10e-14

6 49 1.1376 2.62e-14 64.0948 62.6443 3.45e-14 0.1918 3.88e-15

7 64 0.9189 6.03e-14 100.6942 100.4167 5.07e-14 0.1277 4.10e-15

8 81 1.3713 1.92e-13 146.1926 144.3611 1.15e-13 0.2974 8.54e-15

9 100 1.4023 4.52e-13 201.5589 186.2265 1.84e-13 0.2526 7.88e-13

10 121 3.7879 8.07e-13 266.3178 265.5019 6.14e-11 0.0358 2.40e-14

If ρ > 1
2
, then (4.1) has no solution in

X = {x ∈ Rn : kxB − x̂Bk ≤ γ1, xN = x̂N}

where

γ1 =

√
1 + 2ρ− 1

Kkc0B(x̂)−1k .

Note that the natural residual kc(x)k2 has many local minimizers. To find a

good approximate solution of c(x) = 0, we choose several starting points around the

extremal system and use the Gauss-Newton method with line search. The interest in

starting from an extremal system stems from Figure 2 in [20] and Theorem 3.1. The

cubature weights for the computed extremal system of [20] are very close to 4π/dt

and they maximize the determinant G(x). Extremal systems can be downloaded

from http://www.maths.unsw.edu.au/˜rsw/Sphere.

Numerical results are given in Table 1, where x̄ is the vector corresponding to an

extremal fundamental system Ȳ , x̂ is an approximate solution of c(x) = 0,

ŵ = G(x̂)−1e

is the weight for the cubature rule and Ŷ = {ŷ1, . . . , ŷdt} is the set of points corre-
sponding to x̂.

As the cubature rule is exact for the constant polynomial 1 ∈ Pt, the average
weight is ŵavg = 4π/dt. From the last column of Table 1, we see that all weighs are
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Table 2: Worst case for the equal-weight rule Et and generalized discrepancy for

computed spherical designs

t dt e(Et) D(Ŷ )

2 9 0.349478 0.027811

3 16 0.229009 0.018239

4 25 0.162440 0.012927

5 36 0.123579 0.009834

6 49 0.098188 0.007814

7 64 0.079817 0.006352

8 81 0.067223 0.005349

9 100 0.058809 0.004680

10 121 0.049576 0.003945

positive and

|ŵi −
4π

dt
| ≤ wmax − wmin ≈ 0.

Hence the set Ŷ can be considered as computed spherical t-designs. These designs

are new. Moreover, from Theorem 2.1 and kx̂ − x∗k ≤ r1, an error bound for the

computed spherical t-designs to an exact spherical design {y∗1, . . . , y∗dt
} corresponding

to the exact solution x∗ of c(x) = 0 is

max
1≤i≤dt

ky∗i − ŷik ≤ 2kx̂− x∗k ≤ 2r1,

where the first inequality uses the relation between x and y.

The numerical results also give an error bound for the extremal system

max
1≤i≤dt

ky∗i − ȳik ≤ 2kx∗ − x̄k
≤ 2(kx∗ − x̂k+ kx̂− x̄k)
≤ 2(r1 + kx̄− x̂k).

The interpolatory cubature rule

Et(f) =
4π

dt

dtX
j=1

f(ŷj)

associated with Ŷ provides high-order numerical integration on the sphere. In par-

ticular, by Theorem 4.1 in [20], the worst-case error in a particular Sobolev space
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is ¯̄̄̄Z
S2

f(y)d(y)− Et(f)
¯̄̄̄
= 4πD(Ŷ ) =: e(Et),

where D(Ŷ ) is the Cui-Freeden generalized discrepancy [4]

D(Ŷ ) =
1

2
√
πdt

"
dtX
j=1

dtX
i=1

µ
1− 2log(1 +

q
(1− ŷTi ŷj)/2)

¶#1/2

.

Table 2 gives the values D(Ŷ ) and e(Et). These values are better than the values

reported by Sloan and Womersley [20]. The values given in [20] use extremal points

and are better than the values reported by Cui and Freeden [4].

The computed spherical t-designs with (t+1)2 points are available from http://www.

st.hirosaki-u.ac.jp/∼chen/index.html. Computations for these low degrees were per-

formed by using Matlab 6.1 on a IBM PC with 128MB memory and 500 MHz.

Remark 4.1 This paper presents a new verification method for underdetermined

systems of equations, and uses this method to verify computed spherical t-designs.

In comparison the Krawczyk-type interval operator method (1.3) failed for these

underdetermined equations. This can be explained as follows.

Consider K(X) on an interval X which has an interior point x̂. For any x ∈ X,
c0(x) is singular, and there is an xb on the boundary of X such that c0(x)(xb− x̂) = 0.
This implies that

xb − c0(x̂)+c(x̂) = x̂− c0(x̂)+c(x̂) + (I − c0(x̂)+c0(x))(xb − x̂) ∈ K(X).

It is almost impossible to have xb − c0(x̂)+c(x̂) ∈ X for all such boundary points xb

of X with c0(x̂)+c(x̂) 6= 0. Hence K(X) ⊆ X always fails. On the other hand, the

new verification method has no problems with the null space of c0(x). The following

example shows the advantage of the new method. Let

c(x) = 1 + x1 + x2 + x1x2, X =
1

4

Ã
[−5,−1]

[1 + h, 3− h]

!
, x̂ =

1

4

Ã
−3
2

!
,

where h ∈ [0, 1]. Let B = {1} and N = {2}. Straightforward calculation gives

c(x̂) =
3

8
, c0(x) = (1 + x2, 1 + x1), c0(x̂) =

1

4
(6, 1), c0B(x̂)

−1c(x̂) =
1

4
.

It is easy to show that a Lipschitz constant for c0B(x) isK = 1, and that max
x∈N

kc0N (x)k = 3/4.
Hence statement (1) of Theorem 2.1 holds with

kc0B(x̂)−1c(x̂)k+ kc0B(x̂)−1k(1
2
K(r1 + r2)r1 +max

x∈N
kc0N (x)kr2) =

1

2
− h
6
≤ r1 =

1

2

17



for all h ∈ [0, 1]. Now we show that K(X) ⊆ X fails for all h ∈ [0, 1]. Interval
calculation gives

c0(x̂)+C 0(X) =
4

37

Ã
6

1

!µ
1 +

1

4
[1 + h, 3− h], 1 + 1

4
[−5,−1]

¶
,

(I − c0(x̂)+C 0(X))(X − x̂) = 1

37× 4

Ã
[−80 + 30h, 80− 30h]
[−52 + 40h, 52− 40h]

!
,

and the radii of X and K(X) satisfy

R(X)− R(K(X)) = 1

4

Ã
2

1− h

!
− 1

148

Ã
80− 30h
52− 40h

!
=

1

148

Ã
−6 + 30h
−15 + 3h

!
.

Since the second component of the radii R2(X)−R2(K(X)) < 0 for all h ∈ [0, 1], we
find that K(X) 6⊆ X for all h ∈ [0, 1].
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