Journal of Process Control 19 (2009) 1725-1736

journal homepage: www.elsevier.com/locate/jprocont

Contents lists available at ScienceDirect

Journal of Process Control

On-line economic optimization of energy systems using weather

forecast information

Victor M. Zavala®*, Emil M. Constantinescu?, Theodore Krause ?, Mihai Anitescu

a

2 Mathematics and Computer Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, United States
b Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, United States

ARTICLE INFO ABSTRACT

Article history:

Received 4 March 2009

Received in revised form 22 June 2009
Accepted 7 July 2009

We establish an on-line optimization framework to exploit weather forecast information in the operation
of energy systems. We argue that anticipating the weather conditions can lead to more proactive and
cost-effective operations. The framework is based on the solution of a stochastic dynamic real-time opti-
mization (D-RTO) problem incorporating forecasts generated from a state-of-the-art weather prediction
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developments.

approach. The accuracy of the forecast trends and uncertainty bounds are validated using real meteoro-
logical data. We present a numerical simulation study in a building system to demonstrate the
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1. Introduction

The economic performance of industrial systems is strongly
affected by dynamic disturbances evolving at different time
scales. These include input flows, product demands, energy prices,
weather conditions, among others. In order to manage these dis-
turbances, the operational decisions are decomposed in a hierar-
chical manner. The top decision-making level is the supervisory
or economic optimization layer which adjusts the set-points as
low-frequency disturbances evolve in time. The lower decision-
making level is the control level that rejects high-frequency
disturbances in order to keep the process close to economic
optimal set-points. A widely-used supervisory operation strategy
is real-time optimization (RTO) [34]. RTO makes use of a steady-
state rigorous process model to determine the optimal set-points
that maximize the system profit under the current disturbance
information. An advantage of this strategy is that it can be seen
as a closed-loop optimizer that rejects disturbances affecting profit
[45]. Nevertheless, an important limitation of RTO is that it is en-
tirely reactive, in the sense that only current disturbances are taken
into account. In other words, RTO neglects the fact that distur-
bances follow trends that can be exploited to obtain more efficient
operating policies. An alternative to overcome this limitation is to
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incorporate disturbance forecast information in a dynamic real-
time optimization (D-RTO) formulation [28]. The exploitation of
disturbance trends can add proactiveness to the operational deci-
sions which can be beneficial both from an economic and a control
perspective. In particular, we claim that the capabilities of D-RTO
can be greatly expanded through the incorporation of weather fore-
cast information. This can be particularly critical in the operation
of energy production systems since their performance is strongly
affected by the evolution of the weather conditions. Polygeneration
energy systems [11], power plants [24], wind farms [23], photovol-
taic systems [50,54], and building climate control [7,39] represent
some important applications in the energy sector. Some other po-
tential industrial applications are the optimization of utility sys-
tems in chemical complexes and the optimization of wastewater
treatment plants [9].

Weather forecast information has been used in diverse opera-
tional studies. In particular, it has been widely used for planning,
scheduling, and unit commitment tasks in power grid operations
[53,18]. At these higher decision-making levels, weather informa-
tion is exploited indirectly by mapping it to economic variables
such as user power demands (e.g., electricity and heating/cooling
needs). However, at lower economic optimization and control lev-
els, trends of ambient temperature, wind speed, solar radiation,
and humidity can be exploited directly through the rigorous pro-
cess model.

The evolution of the weather conditions is affected by complex
physico-chemical phenomena that are difficult predict. This be-
comes relevant if the economic performance is dictated by the
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weather conditions (e.g., wind farm) or if the system is subject to
tight operational constraints (e.g., comfort zone in building sys-
tems). In such cases, incorporating forecast uncertainty in the D-
RTO formulation is important. This can be done through suitable
stochastic or robust optimization formulations, however, some
important obstacles arise. First, obtaining detailed uncertainty
information validated with real data (i.e., probability distributions)
is often difficult. For instance, covariance information and high-
resolution (i.e., minutes, hours) weather trends might be required.
This detailed information can be expensive or impractical to obtain
from commercial weather prediction companies. Second, stochas-
tic optimization problems are infinite-dimensional and special
techniques are needed for their solution. Alternatives to solve sto-
chastic dynamic optimization problems include, among others, dy-
namic programming [4], Taylor series expansions [3,36], and
polynomial chaos expansions [1]. Certain restricted classes of
chance-constrained [38,39] and minmax [33,17] formulations can
also be reformulated and solved using standard optimization tech-
niques. A detailed review of available formulations and solution
methods is beyond the scope of this paper. However, we empha-
size that a practical obstacle commonly encountered with the
aforementioned approaches is that they can only handle restricted
problem classes.

In this work, we establish an on-line optimization framework
able to exploit detailed weather forecast information. In particular,
we extend the capabilities of a numerical weather prediction model
to provide detailed uncertainty information and derive a stochastic
D-RTO formulation able to exploit this information. The uncertainty
of the weather prediction model is quantified using an ensemble
approach. We propose to use a sample-average approximation
(SAA) approach to solve the associated stochastic optimization
problems. We claim that the SAA approach is attractive from an
industrial perspective because it can be implemented quite easily,
it can accommodate large-scale models, and can handle general sto-
chastic formulations with restricted uncertainty information. We
contrast the forecast capabilities of the detailed weather prediction
model against those of empirical autoregressive models. Both fore-
cast models are validated using real meteorological data. We dem-
onstrate that the use of efficient uncertainty quantification
techniques is critical to obtain consistent uncertainty bounds and
appropriate performance of the stochastic optimizer. We present
simulation studies on a building system to illustrate the develop-
ments. To the best of our knowledge, this is the first report propos-
ing to integrate stochastic optimization formulations and
uncertainty quantification techniques for weather forecasting in or-
der to optimize the economic performance of energy systems.

The paper is organized as follows. In the next section, we estab-
lish the stochastic D-RTO formulation. In Section 3, we present
techniques to quantify the uncertainty of weather forecasts. A sim-
ulation case study is presented in Section 4 and the paper closes
with general conclusions and directions for future work.

2. Stochastic optimization

In this section, we derive a general D-RTO formulation and dis-
cuss extensions to consider stochastic disturbance information. We
begin by considering a differential-algebraic equation (DAE) model
of the form

&  fe(o).yt0)u(0), 1(0) (1a)
0= g1a(1), (1) u(1), £(7) (1b)
2(0) = x. (19

where 7 is the model time dimension and ¢, is the current time in
the real system. Variables z(t) are differential states, y(t) are alge-
braic states, u(t) are the controls or manipulated variables, and

%(7) are the exogenous disturbances. In this context, the term exog-
enous refers to the fact that the disturbances are not affected by the
system variables. The differential equations 1a represent conserva-
tion equations (energy, mass, and momentum), while the algebraic
equations (1b) represent consistency conditions and expressions to
calculate physico-chemical properties. The initial conditions at time
t, are given by the current state of the system x,.

The disturbance trajectory y(t),t € [ty, tx + T] is random with
unknown probability distribution #,. However, we assume that
this distribution can be approximated using a stochastic forecast
model (see Section 3). For instance, we can assume that the fore-
cast model provides a predictive mean y(t) and that the associated
forecast errors follow a Gaussian distribution. With this, we can
approximate 2, using .4"(}(t),V(t)), where V(7) is the covariance
matrix. In this case, a fixed probability level of 2, defines an ellip-
soidal region Q; of the form,

Q= {zl(z - 7(0))'V ' (0)(z - 1(1)) < o, (2)

This region is sketched in Fig. 1. Under the Gaussian assumption
for the forecast errors, all that is needed to represent the 2, is the
predictive mean and the covariance matrix. However, we empha-
size that the proposed structure of the probability distribution is
a modeling assumption and hence might not be accurate. Never-
theless, from a practical point of view, what we seek is that the as-
sumed probability distribution is able to encapsulate the true
disturbance realizations and that it has a physically meaningful
structure. To exploit the statistical information at hand, we formu-
late a stochastic dynamic optimization problem of the form

u(t)

min B, [ [ oe@.y@.u), 1) (33

st %= 1f(z(1),y(7),u(t), 1(1))

d

0= g(z(1).9(1).u(x). £(1)) ¢ TE e te+T), Vx(1)  (3b)
0 > h(z(1),y(1), u(t), (1))

Z(ty) = Xy, 39

where symbol E[-] denotes the expectation operator with associated
distribution 2. From the solution of this problem, we obtain the
state and control trajectories z*(7),y*(7),u*(7),T € [tx, tx + T] that
can be sent to a lower-level controller as set-points. At the next
time step t,;, we obtain the updated state of the system x,,; and
the updated forecast distribution 2, that we use to solve the next
stochastic problem (3).

Note that the weather trends are treated as parameters in the
stochastic optimization formulation. In other words, the stochastic
differential equations representing the weather dynamics are not
considered here. This is justified by the fact that the weather con-
ditions act as exogenous disturbances. The weather dynamics will
be presented in Section 3. In problem (3) we have assumed that the
expectation of the objective function distribution is an adequate
measure of the performance of the system. However, this need
not be the case. For instance, we could also choose the mean-risk
approach of Markowitz where we seek to minimize simultaneously
the mean and the variance of the cost distribution. In an stochastic
optimization framework, the structure of the cost function be-
comes a design task and it is entirely problem dependent. Note also
that the proposed stochastic formulation assumes that no recourse
exists in the future, as in a dynamic programming approach [4] or
in closed-loop MPC approaches [39]. It is well-known that intro-
ducing future recourse can reduce the conservativeness of the
solution. Finally, we do not consider uncertainty on the system
state x, and model errors. Here, we use a rather simple stochastic
optimization formulation in order to illustrate the main benefits
of the proposed strategy.
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Fig. 1. Schematic representation of ellipsoidal uncertainty region.

The stochastic formulation presented in (3) is computationally
demanding since it is infinite-dimensional in y(t). In addition,
the number of disturbances is expected to be large as well. To solve
the stochastic optimization problem, we use a sample-average
approximation (SAA) approach. The idea is to use Monte Carlo
sampling to obtain N; independent samples from the distribution
2. This gives the set of disturbance realizations {y,(7), x»(7),.-.,
Zn. (T)}. With this, the approximate stochastic problem becomes,

1 & t+T
min 3 [ [ ey g (4a)
st B =1f(z(1),y;(0),u(1), 1(7))
0= g(zf(‘[)vyj(r)’ U(T), X](T)) Te [tk‘r tx + T]v ] = 17 cee sNS
0 > h(z(1),y,(1), u(1), 1(7))
(4b)
Zj(tk) = Xk. (4C)

In this formulation, all the variables become a function of the
particular disturbance realization except the controls, which are
decision variables. One of the key advantages of the SAA approach
is that it is straightforward to implement. Moreover, it is particu-
larly suitable for large-scale systems because it gives rise to highly
structured problems [32,27]. In addition, it allows the solution of
general stochastic formulations be described in a unified manner.
The theoretical properties of the SAA approach have been studied
in the context of nonlinear programming. For instance, it has been
shown that solutions of the SAA problem converge at an exponen-
tial rate with the number of samples to the solution of the stochas-
tic counterpart [47,2]. In addition, the number of scenarios N5 used
in the SAA problem can be related to the probability of satisfying
the constraints. With this, equivalence with chance-constrained
formulations can be established [38]. Although no formal conver-
gence results exist in the context of dynamic optimization prob-
lems, we can expect that the available convergence guarantees
can be used under mild assumptions. For instance, if we discretize
problem (3) in time, we can argue that as long as we have a conver-
gent and well-posed time-discretization scheme, the SAA approach
will converge to the stochastic counterpart under standard regular-
ity assumptions [47,2]. This is an important theoretical question
and will not be pursued here. Another crucial advantage of the
SAA approach is that disturbance realizations can be incorporated
in the optimization formulation without even knowing their distri-
bution. This permits to handle random variables with non-Gauss-
ian distributions and to accommodate disturbance realizations
directly in the formulations (i.e., the covariance matrix is not
needed). As we will see in the next section, this is important if a
detailed weather prediction model is used since the amounts of
data to be handled in the optimization framework can become ex-
tremely large. The prototypical closed-loop D-RTO strategy based
on SAA is as follows:

1. Obtain current state and forecast: At time t;, obtain current
state x;, and disturbance realizations {y;(7), %, (), ..., X, (D)},
T € [ty, ty + T] from forecast capability.

2. Compute set-points: Solve stochastic optimization problem
(4). Send optimal set-points z*(t),y*(t),u* (), T € [ty tk + T] to
low-level control layer.

3. Update: At t; + A, set k — k + 1, and repeat process.

Here, A is the set-point update period. If 2, is approximated using
a Gaussian distribution, the forecasting capability can also commu-
nicate the mean y(t) and covariance matrix V(7),T € [ty, ty + T]
instead of the disturbance realizations.

3. Uncertainty quantification

From the previous section, it is clear that different techniques
can be used to solve stochastic dynamic optimization problems.
However, we emphasize that regardless of the solution approach
used, a perhaps more important (and often overlooked) issue in
stochastic optimization studies is the need of consistent uncer-
tainty information. For instance, constraint satisfaction cannot be
enforced appropriately with any solution approach if the bounds
of the uncertainty region do not encapsulate the actual realiza-
tions. In addition, the conservativeness of the solution is directly
related to the uncertainty bounds. Consequently, several questions
arise: Can we get accurate and consistent forecast information?
What techniques can be used to quantify uncertainty? How does
the accuracy of the uncertainty information manifest in the solu-
tion of the stochastic optimization problem? In this section, we
present two techniques to generate forecasts and uncertainty
information that can be exploited by stochastic optimization
formulations.

3.1. Numerical weather prediction model

We first derive an ensemble data assimilation approach based
on a detailed numerical weather prediction (NWP) model. In par-
ticular, we discuss how to capture the uncertainty of the tempera-
ture field.

Major weather prediction centers, such as the European Centre
for Medium-Range Weather Forecasts (ECMWF) and the US Na-
tional Centers for Environmental Prediction (NCEP), are capable
of producing high-precision weather forecasts several times a
day. Advances in this area are due to improved models of the
atmosphere, greater availability of atmospheric data, increased
computational power, and the continued improvement of state
estimation algorithms. If the state of the atmosphere (tempera-
tures, pressures, humidities, wind speeds and directions) were
known exactly at a given time, a forecast could be obtained by
integrating the atmospheric model equations forward in time. In
practice, however, the state of the atmosphere is known only
indirectly through observations that are distributed non-uniformly
in space and time and subject to error [21]. Therefore, the model
must be first reconciled to the most recent observations. This state
estimation problem is called in the weather forecast literature as
the data assimilation problem. Traditional assimilation techniques
such as Kalman filtering [20,8] and 4D-Var (moving horizon
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estimation) [16] are used internally in the models for this [13-
15,40,25,26]. The objective function is derived from Bayesian or
maximum likelihood principles (e.g., weighted least-squares) and
includes a term that penalizes deviation from a prior state (e.g., ini-
tial conditions). Once the current state is obtained from the solu-
tion of the assimilation problem, it is possible to integrate the
atmospheric model equations forward in time to produce a
forecast.

The forecast uncertainty can be constructed from the posterior
distribution of the current state obtained from the data assimila-
tion step. This distribution can then be sampled and evolved
through the NWP model dynamics. The resulting trajectories can
then be assembled to obtain an approximation of the forecast
covariance matrix. This procedure is explained in Section 3.1. In
Section 3.1.2, we present a procedure to approximate the posterior
covariance of the spatial temperature field using the assimilated
state of the NWP model.

The Weather Research and Forecasting (WRF) model is a state-
of-the-art mesoscale numerical weather prediction system de-
signed to serve both operational forecasting and atmospheric re-
search needs [49]. We use the current version of this model, WRF
3.1, with the default settings for the forecast and uncertainty esti-
mation on temperature fields. The data used in the WRF model in
this work corresponds to North American Regional Reanalysis data
set that covers 160W-20W, 10N-80N, with a resolution of 10 min-
utes of a degree. There are 29 pressure levels (1000-100 hPa,
excluding the surface) and a three-hour output frequency. The
time period under consideration ranges from August 1 to August
30, 2006, [http://sdss.ucar.edu/pub/narr]. This data set includes
meteorological fields such as temperature, wind, and humidity.

3.1.1. Ensemble approach to uncertainty quantification

The dimensions of the state vector in the weather model with a
coarse spatial discretization are ©(10°) — ©(10%). Therefore, the
state covariance matrices are extremely large (grow with the
square of the number of states). Hence, in practice, these matrices
need to be approximated with a reduced model [12-14] or with an
ensemble of realizations [42,30,46]. In this work, we prefer to use
the ensemble approach because it can be implemented by using
the WRF model as a black box. If the dimension of a random vari-
able x is defined as n, a given covariance matrix V € R™" can be
approximated by an ensemble of m realizations x;,1 <i < m as,

1 m
Vim = > i - 0 - X) = Ex-®)(x - X)'],
i
1 m
X::—inzli[x]. (5a)
m3
One also has that,
ii i, 2,
V = DiCD?, G Vi _Vi_ % qcjicn

B VDiiy/Djj 00 0i0}

where C is the correlation matrix and D is a diagonal matrix holding
the local variances (D;; = ¢?). In the context of the stochastic opti-
mization framework of Section 2, x represents the future trajectory
of exogenous states or disturbances y(t) with mean X := ¥(7) and
covariance V := V(7). Note that the disturbance at a particular point
in time t; represents a three-dimensional spatial field y(ty,x,y,z). In
the following, we simplify the notation by eliminating the explicit
dependence on the space dimensions. Using this representation,
we now discuss how to approximate the forecast covariance.

At current time t;, the exact state of the atmosphere is not
known exactly and therefore the state of the weather model is de-
scribed through random variables. The errors in atmospheric mod-
els are assumed to stem from many independent sources, and thus

it is common, realistic, due to the central limit theorem [43], and
convenient to consider them as having a normal distribution
[29,25,35,19]. The mean of this posterior distribution is the assim-
ilated state of the WRF model, which has been reconciled to past
measurement data. We denote the true state of the weather model
at time ty as ., (tx). Since the weather model is not perfect, the
true state at t,; is given by the stochastic discrete-time model
of the form,

erue(tkﬂ) = '/{(Xtrue(tk)) + ”(tk)v (6)

where ./ is the WRF model and 7(-) represents the model errors
that are assumed to be unbiased with covariance Q,n € ./°(0,Q).
Since the current state is not known exactly, the numerical predic-
tion at time ty 1, ¥(tx.1), is obtained from the model evolution of the
believed state (true solution perturbed with errors). This is repre-
sented by a set of unbiased random variables ¢&(t;) with Gaussian
distribution .4°(0,V(t,)). With this, we can express the future be-

lieved state as

A1) = A (Lo (te) + &(Ek))- (7)

Since y(ty.1) becomes a random variable, we define its covariance
matrix as V(tx,1). The matrix is given by,

V(te1) = E|
_E

7true(tk+1 )( (tkH) Xtrue(tkﬂ))q

A1) — )
)) = (A (e (1))
(

//(Xtrue(tk) + g(t,(
+1(t))) - (A (Lirue () + &(tk))
— (M (Yoo () + 1(8)))T]. (8)

Note that this formula reduces to the Kalman filter covariance
update under certain special conditions. To illustrate this, we first
assume that the initial condition errors &(t;) and model errors 7(ty)
are uncorrelated. Consequently,

" T
E[(A (Yrue (L) + €(t)))N(te) ] =0

Moreover, if we assume that the error growth is well approxi-
mated by a linearized model, then

M (Yere (E) + (1)) — M (Y (tr)) = M - &(Lr).

where M =

(
(

= ddj/ It follows that (8) becomes

V(tiir) ~ E[(M- &(ti) + 1(t)) (M - &(ti) + 1(te))']
= E[Me(t)e(te) M) + E[M - e(t)n(te)'] + E[n(t)e(te) M']
+E[n(t)n(t)']
=MV(t,)M" +Q.
9)

Equation (9) represents a linear approximation of the exact er-
ror covariance. It is well-known that such an approximation can
deviate significantly in highly nonlinear models. The ensemble ap-
proach proposed in this work propagates the uncertainties in the
current state field through the nonlinear WRF model according to
(7). The covariance matrix is approximated by using an ensemble
of realizations generated by sampling the posterior distribution
A°(0,V(ty)). We obtain multi-step trajectories by recursive model
propagation of each realization

Yii = Yibkij) = A (A (. M (Lo (B1) + €i(Ex)))),
%/_/
j times

j:17"'7NF7i:17"'7m7 (10)

where Nr is the total number of forecast steps and t,.; — t; = A.
These trajectories can be sent directly to the stochastic optimizer.
Alternatively, we can compute the multi-step forecast mean Y’
and covariance matrix V° using the ensemble approximations
(5a). Note that the ensemble approach is able to capture the strong
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model nonlinearities more accurately. To obtain the ensembles,
however, we need to specify the posterior covariance V(t;). Because
of the extremely large state dimensionality, the posterior matrix
cannot be computed using traditional methods such as the Kalman
filter propagation. We next introduce a method to obtain an
approximation of this matrix.

Remark. In weather modeling, the most successful state estima-
tion approaches have been EnKF and 4D-Var. In both of these
approaches, the Gaussian assumption of the posterior and mea-
surement and model errors is required to define the maximum
likelihood function [29,25,35,19]. This is justifiable by the additive
nature of many of error components and the central limit theorem
as well as the convenience of normal distributions [29]. With this,
the distribution of the current estimated state (posterior) is also
implicitly assumed to be Gaussian. However, the forecast ensem-
bles do not need to be Gaussian since the samples of the posterior
are propagated through the nonlinear WRF model.

3.1.2. The NCEP method for covariance estimation

The National Centers for Environmental Prediction (NCEP)
method [42,22,30] has been used to estimate the spatial uncer-
tainty information and estimate the posterior distribution
A7(0,V(ty)). The idea is to estimate characteristic correlation dis-
tances to construct an empirical covariance matrix. The inferred
characteristic horizontal correlation distance for this case is
approximated by Ly = 2 degrees and by Ly, = 500 meters in the
vertical direction. The spatial correlation function between two
spatial points y(ty,X;,;,zi) and y(ty,X;,¥;,;) is defined as
Cy— exp <_ =X+ -9 (g Zi)z).

Li Ly

(11)

The correlation function (11) is used to construct the empirical
covariance matrix from which the ensemble for the initial state
field is drawn. Here, we focus on the temperature field
T(t,x,y,z). The true initial temperature field is not known exactly,
but we assume that it is correctly represented by an unbiased ran-
dom vector ér(t;). With this, the temperature field T(t;) is charac-
terized by a random vector T?(t) with the following properties:

T () = T(te) + er(ti), Eler(t)er(te)] = Vrr(te), E[er(ti)] = 0
= T5(ty) € ¥ (T(t), Vi (te)).

The initial temperature field is approximated by an m-member
ensemble drawn from

T} (tx) = T(te) + GCG'¢;, 1 <j <m, &€ 47(0,1),

where GCGT ~ Vrr(ty). Here, matrix G transforms the unbalanced
variables into full quantities for temperature and is defined as
Gj :==0¢6(z)1,j=1,...,nz and G = diag(Gyy, . . ., Gy ), Where

0¢(z) = E[T(t,X,y.2)]/ miax(E[T(tk,x,y,z,-)]).

This covariance can then be used to compute the disturbance real-
izations (10).

3.2. Gaussian process modeling

A straightforward disturbance forecast alternative is to use his-
torical measurement data to construct regression models. Conse-
quently, an important question is if it is worth considering a
highly sophisticated weather model to obtain forecast information.
In this section, we present a regression modeling technique in or-
der to establish a basis for comparison.

Several empirical modeling techniques can be used to generate
weather forecast trends. An approach that has recently received

attention is Gaussian process (GP) modeling [44,48,31,41]. The idea
is to construct an autoregressive model by specifying the structure
of the covariance matrix rather than the structure of the dynamic
model itself as in traditional system identification techniques such
as the Box-Jenkins approach [5]. We have found that this feature
makes the GP approach more flexible. Consequently, this is the ap-
proach considered in this work. To illustrate the use of this tech-
nique, we construct a forecast model for the ambient
temperature by regressing the future temperature (output) y, ,
to the current and previous temperature values (inputs)
Yks---» Xkn that can be obtained from weather information
databases. In this case, N is selected long enough to capture the
periodic trends of the ambient temperature. We define the model
inputs as Xj = [X n.j»---» Xk and the outputs as Yy =y,
and we collect a number of training setsj = 0, ..., Nyq,. We assume
that the inputs are correlated through an exponential covariance
function of the form

1
V(X Xjg, 1) := o + 1y - €Xp <—%|Ixm - X[ql\z),
i:07---7Ntrain~, j:07---7Nrrain7 (12}

where #,,1,, and n, are hyperparameters estimated by maximizing
the log likelihood function

1 _ 1

Once the optimal hyperparameters 7* are obtained, we can com-
pute mean predictions Y’ with associated covariance V’ at a set
of test points X’. In our context, these are the evolving temperature
trends. The resulting GP posterior distribution is

Y’ = VXX,V (X XY
vP = V(xpv XP7 11*) - V(XP7 X7 7]")"71 (X7 X7 nx)v(xv XP7 1/’*)

(14a)
(14b)

The inverse of the input covariance Vx := V' (X, X, ") (e.g., its fac-
torization) needs to be computed only during the training phase.
With this, we can define a conceptual GP model of the form

Y" = GP(X", 11", Vx). (15)

Note that at current time t;, we have measurements to compute
only the single-step forecast ),.;. To obtain multi-step forecasts,
we must propagate the GP predictions recursively. We use the fol-
lowing algorithm,

1. Forecast mean computation: Forj=1,...,Nr do,
(a)  Set XI[;] = Dl Xiewaa -+ K-
(b)  Compute Y, = GP(X{, 7", Vx).
(c) Drop last measurement, set y,, — Y'G]. and update
k—k-+1.

2. Forecast covariance computation: Compute self-covariance
V(X?,X" ") and cross-covariance V(X’,X, ). Compute fore-
cast covariance V” from (14b).

This recursion generates the forecast mean Y = [¥i1,....,
Zk+ng) and associated covariance matrix V’. Note that this distur-
bance trends are local (single point in space), as opposed to those
obtained with the weather prediction model.

3.3. Validation of uncertainty models

We next validate the forecast information obtained from the
NWP and GP models. An ambient temperature data set at position
40 30'N/80 13'W in the Pittsburgh, PA area for year 2006 was used
in this study. The data were obtained from the National Weather
Service Office [37]. The temperature trends are presented in
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Fig. 3. Temperature forecasts with single-step (top) and multi-step GP model (bottom). Forecast mean is solid line, samples are in light gray, and markers are actual

realizations.

Fig. 2. Note that strong temperature variations arise at different
time scales (daily and seasonal). The variability is particularly
strong during the winter.

To illustrate the forecasting capabilities of the GP modeling
technique, we used a total of 120 training sets and we set
N = 24. We consider a single-step strategy Nr = 1 and a multi-step
strategy with Nr = 20. In Fig. 3, we present the forecast mean and
100 samples drawn from the corresponding normal distributions
A7 (YP,VP). The forecast window corresponds to Aug. 1-6, 2006.
In the top graph, we can see that the single-step strategy provides
reasonable forecasts and the uncertainty bounds encapsulate the
true temperature realizations. In the bottom graph, we can see that
the multi-step GP model is able to capture the periodicity of the
trends. However, the mean drifts away from the true temperature
realizations and, more importantly, the uncertainty bounds are not
able to encapsulate the actual realizations. This limits the applica-

tion of this approach from an stochastic optimization point of view.
Note that the ambient temperature follows strong variations as a
result of spatial interactions and long-term metereological phe-
nomena that cannot be taken into account through empirical mod-
eling techniques. Nevertheless, we emphasize that GP is quite
effective for short-term forecasts. This suggests that the empirical
modeling techniques could be useful for high-frequency control
(on the other of seconds, minutes). Similar observations have been
made in the context of short-term wind and solar radiation fore-
casting [23,54].

We next validate the forecast and uncertainty information of the
NWP model. In the left graph of Fig. 4, we show a multi-step ensem-
ble of 30 ensemble members for temperature realizations, the ex-
pected temperature value, and measurements for five days
(August 1-6, 2006). This corresponds to a total of N = 120 forecast
steps with A = 1 hr. In the right graph we present the reconstructed
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Fig. 6. Correlation field for the temperature errors in the Pittsburgh area at 10 a.m. on consecutive days.

forecast distribution (mean +3¢) obtained from the ensembles.
Note that the forecast errors are small (+5 °C) and the uncertainty
envelope encloses the true (measured) solution. In addition, the
model can capture long-term temperature trends except at the
third day, where an unusual temperature drop is observed. In
Fig. 5a, we present the hourly evolution of the standard scores of
the actual realizations for the multi-step GP model and for the
weather model. In Fig. 5b, we present the cumulative standard error
of the actual realizations for the multi-step GP model, for the
weather model and for the standard normal. For example, a stan-
dard error less than 2 is obtained 65% of the time by the weather

model but only 25% by the GP model. We conclude that the NWP
uncertainty model is far more accurate and consistent.

The ensemble forecast also provides information of the spatial
forecast error distribution. In Fig. 6, we illustrate the horizontal
correlation field for the temperature error in the Pittsburgh area
corresponding to 10 a.m. August 1 and August 2, 2006 [37]. Note
that the error field widens in time as the uncertainty of the forecast
increases. Note also that strong temperature variations can arise in
relatively narrow regions. Therefore, we emphasize that account-
ing for spatial effects is critical for accurate and consistent

forecasts.
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4. Integrative study for building system

In this section, we present a D-RTO simulation study on the cli-
mate control of a building system. Our objective is to illustrate how
the use of forecast information can translate into lower operating
costs. Finally, we analyze the performance of the proposed uncer-
tainty quantification techniques when coupled to the stochastic
optimization formulation.

4.1. Economic impact of forecasting

Commercial buildings are energy-intensive facilities where con-
siderable cost savings can be realized through optimal operating
strategies. As an example, researchers have found that the thermal
mass of a building can be used for temporal energy storage [6].
With this, one can optimize the temperature set-points trajectories
during the day to shift the heating and cooling electricity demands
to off-peak hours and thus reduce costs. For instance, a cooling
strategy that has been used in commercial facilities consists in
cooling down the building as much as possible at night when elec-
tricity is cheaper so as to reduce the amount of cooling needed dur-
ing the day when electricity is more expensive [7]. Since the
thermal response of the building can be slow (order of hours), this
can be exploited to reduce the on-peak electricity demand the next
day. However, we point out that the optimal timing at which it is
decided to start the cooling at night directly depends on the ambi-
ent temperature expected the next day. In addition, because of
governmental regulations, special care needs to be taken to stay
within the thermal comfort zone at all times. Consequently, incor-
porating weather forecast information in the optimization/control
formulation can be beneficial.

The building system under consideration is sketched in Fig. 7.
We assume a total volume of 10,000 m® and a total surface area
of 3500 m?. The building is equipped with a gas furnace, an elec-
tric heater, and an electric cooling system. The ambient tempera-
ture information used in this study is presented in Fig. 2. The
dynamic response of the building internal temperature is mod-
eled by an ordinary differential equation; the building wall is
modeled by a second-order PDE that accounts for conductive ef-
fects along the wall. The ambient temperature enters the model
through a Robin boundary condition at the wall external face.
The basic heat-transfer model structure has been obtained from
[10]. To analyze the effect of adding forecast information of the
ambient temperature we first solve an open-loop dynamic opti-
mization problem with perfect forecast information and a predic-
tion horizon of one-year. The optimization problem has the
following form:

t+T
min [ Cael )02 (0)+ Ca ()01 (1) + G (D)
) Jt

P (1) 05" (7).t

aT as elec elec !
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/ 8TW
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p aTw
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Fig. 7. Schematic representation of building integration with heating, ventilation,
and air-conditioning (HVAC) system.

where T4(7) is the ambient temperature, T;(7) is the internal tem-
perature, and Tw(t,x) is the wall temperature (all of them in °C).
The controls are the gas heating power ¢*(7), the electric heating
power ¢¢ct(T), and the electric cooling power @& (t) (all of them in
kcal/hr). The model parameters are summarized in Table 1. The base
wall thickness is assumed to be 0.20 m. We assume an on-peak
electricity price of 0.12 $/kWh available from 9 a.m. to 10 p.m.
The off-peak price is 0.04 $/kWh. A demand rate of 16 $/kW is
charged for the monthly peak electricity demand. The natural gas
price is fixed at 0.10 $/kWh. Average prices were obtained from
[51]. The thermal comfort zone is assumed to be 69-77 °F. The
above PDE-constrained optimization problem is discretized by
using a central difference scheme in the axial dimension and an im-
plicit Euler scheme in time. The resulting LP was implemented in
AMPL and solved with IPOPT [52].

From the solution of the open-loop dynamic optimization prob-
lem, we obtain the optimal cost and use it as a reference for the
best economic performance of the system. The resulting minimum
annual cost is $28,672 (demand cost is approximately 60% of total
cost). The one-year forecast problem contains 96,613 constraints
and 26,349 degrees of freedom and can be solved in 25 iterations
and 30 CPU-seconds with IPOPT. All numerical calculations are
performed on a personal computer with 4 GB of memory and a
Duo-Core Intel processor running at 2.1 GHz. We then solve
closed-loop D-RTO problems over the entire year with prediction
horizons of 1, 3, 6, 9, 12, 16, and 24 hr. An update period A of
1 hr is used. The 24-hr forecast problem contains 253 constraints
and 70 degrees of freedom and can be solved, in warm-start mode,
in 10 iterations and 0.1 CPU-seconds. The relative costs (excluding
demand costs) are presented in Fig. 8a. As can be seen, for a purely
reactive strategy, the relative costs can go as high as 24% as a result
of lack of proactiveness. In addition, we observe that a horizon of
24 hr is sufficient to achieve the minimum potential costs. The rea-
son is that the thermal mass of the building cannot be used for a
very long time because energy is lost through the wall. In fact,
we found that as the building insulation is enhanced, the costs
can be further reduced. To illustrate this situation, in Fig. 8b we
present the relative costs with an increased wall thickness of
0.3 m. As can be seen, using a forecast of 24 hr can reduce costs
by 45%. On the other hand, when the building is poorly insulated,
increasing the forecast horizon does not reduce the costs. In other
words, the economic potential of adding forecast information is
tightly related to the ability to store energy in the system, which
is in turn influenced by the building characteristics. The predicted
cost savings agree with the results of a previous economic study on
a photovoltaic-hydrogen hybrid system [54]. In that study, we
found that the operating costs can be reduced by as much as 75%
by incorporating forecast information of the solar radiation.
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Table 1
Building model parameters.
Parameter Value Units Meaning
B 0.001 % Thermal diffusivity of wall
C 8325 k% Internal heat capacity
k 1.16 x 1074 Ly Conductivity of wall
S 3500 m? Wall total surface area
A 1000 m?2 Usable total surface area
"% 10,000 m3 Building total volume
o 464 x 1073 mkzw Convective heat-transfer coefficient (wall inner side)
o 1.16 x 1072 me_W Convective heat-transfer coefficient (wall outer side)
L 0.20 m Wall thickness
(Caitae 0.12 ﬁ On-peak electricity cost
Celec 0.04 e Off-peak electricity cost
Caas 0.10 ﬁ Natural gas cost
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Fig. 8. Impact of forecast horizon on economic performance of building system.
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Fig. 9. Optimal temperature set-points of closed-loop D-RTO with 1-hr and 24-hr forecasts. Comfort zone is highlighted in gray.

In Fig. 9 we present the temperature set-points for the 24-hr and
1-hr forecast cases during 10 days in the winter season. As can be
seen, the 24-hr forecast strategy determines the optimal timing at
which electric heating needs to be turned on at night. Note that
the optimum timing and the peak temperature depend on the ex-
pected ambient temperature. On the other hand, the reactive strat-
egy is not able to foresee the structure of the electricity prices. This
strategy suggests that the optimal policy is to keep the temperature
set-point always at the lowest possible value in order to reduce the
overall heating costs. Although this strategy seems intuitive, it is
clearly not optimal if the structure of the electricity rates and the
thermal mass of the building can be exploited. From Fig. 10, we ob-
serve that the optimal cooling policy during the summer follows a
peak-shifting strategy. The resulting policy recommends letting the

building cool down at night until the temperature gets close to the
lower limit of the comfort zone. During the day, the building is al-
lowed to heat up progressively until it reaches the highest limit of
the comfort zone. Similar results have been obtained by Braun
and coworkers [7]. The proposed D-RTO framework can account
for time variations and correct the policy automatically on-line. In
this simplified study the cooling requirements are negligible be-
cause we account only for heat gains and losses through the wall.
In addition, the day-night temperature difference at this location
is large during summer, as seen in Fig. 10. A more detailed study
should also account for internal heat gains, radiation heating, air
recycling, and humidity factors. Nevertheless, these preliminary re-
sults indicate that the performance of operating strategies can ben-
efit from anticipating the weather conditions.
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Fig. 10. Internal temperature set-point and ambient temperature during 10 days in summer. Closed-loop D-RTO with a forecast of 24 hr was used. Comfort zone is

highlighted in gray.
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Fig. 11. Performance of weather forecast-based operating strategies. Thermal comfort zone is highlighted by thick solid lines, predicted temperatures are gray lines, and

actual realizations are dashed lines.

4.2. Stochastic optimization results

The previous study assumes that the weather information is
perfectly known. We now consider the case in which the temper-
ature trends are obtained from the forecast models. We solve the
SAA approximation of the stochastic counterpart of problem
(16a) over a horizon of 5 days. The SAA problem is given in equa-
tion (17h). We use 100 samples drawn from the forecast distribu-
tions of the multi-step GP model and of the weather model shown
in Figs. 3 and 4, respectively. After discretization, the resulting NLP
contains 130,900 constraints and 357 degrees of freedom. The
problem can be solved, in warm-start mode, in 20 iterations and
68 CPU-seconds with IPOPT. The resulting open-loop profiles for
the building internal temperature are presented in Fig. 11. In the
top graph, we present the temperature profile for the ideal strategy
where perfect forecast information is assumed. Since there is no
uncertainty, the predicted temperature profile matches the actual
realization. Note that the optimal set-point policy hits continu-

ously the bounds of the comfort zone, as it tries to take advantage
of the on-peak and off-peak electricity rates to minimize costs. In
the middle graph, we present the optimal temperature profiles ob-
tained using forecast information from the GP model. The gray
lines are the predicted realizations of the dynamic model in the
SAA formulation. This is an outcome of the solution of the SAA
problem. Note that, since the uncertainty structure provided by
GP is not able to capture the ambient temperature, the actual real-
ization of the internal building temperature goes outside the com-
fort zone. In the bottom graph, we see that the use of weather
model forecast results in an temperature trajectory that stays
within the comfort zone at all times. Note that the variance of
the predicted temperature realizations increases with time. In
addition, since the comfort zone is very narrow (= 5 °C), high-pre-
cision forecast information is needed to realize economic benefits.

The cost penalty sustained by the NCEP weather uncertainty ap-
proach from Sections 3.1 and 3.1.2 when compared to the GP mod-
el uncertainty approach is about 10-20% of the ideal cost. One
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should bear in mind, however, that the GP model cost turns out to
be infeasible for the actual realizations (the building temperature
significantly exits the comfort level), so using only cost as a perfor-
mance is misleading in this case. We could easily imagine some
financial measure of the violation and report it to balance the per-
ceived cost drop. Nevertheless, given the complex regulatory nat-
ure of the comfort level limits, their violation cost may easily be
understated. For example, the 10CFR434 federal regulations for
new federal, commercial and multi-family high-rise residential
buildings is the United States require compliance with the comfort
zone at least 98% of the time the building is occupied. Therefore,
using the GP model would result in the control system being in vio-
lation of the federal law (the constraint violation in Fig. 11 would
be out of compliance more than 30% of the period stated), the cost
of which is difficult to fully assess. Given the difficulty of pricing
the violation, it is more beneficial to regard the situation from
the constrained optimization perspective and state that feasibility
takes precedence over low cost. We conclude that the weather
uncertainty model is the only one that has a sufficiently accurate
description of the uncertainty to result in a feasible policy at a cost
that is still substantially lower than the reactive policy cost. Finally,
we should emphasize that the above results neglect the presence
of a back-up controller that could potentially bring back the tem-
perature within the thermal comfort zone. While this is certainly
the case in practice, an economic penalty will have to be consid-
ered for the back-up controller as well. This would require a more
detailed closed-loop case study.
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5. Conclusions and future work

In this work, we demonstrate that significant costs reductions
can be achieved by using on-line optimization strategies that can
anticipate the weather conditions. In particular, we show that add-
ing forecast information provides a mechanism to compute proac-
tive operating policies that can lead to enhanced performance.

We present different strategies to obtain weather forecast infor-
mation. We emphasize that empirical models provide quick esti-
mates of the weather trends but they are limited to short
horizons and can lead to inconsistent uncertainty bounds. Moti-
vated by these facts, we discuss the potential of using detailed
weather models to obtain forecasts. We demonstrate that these
models are capable of providing more accurate forecasts and are
able to capture temporal and spatial correlations of the state fields.
We extend a weather model to provide forecast covariance infor-
mation through the ensemble approach.

As future work, we are interested in establishing a full connec-
tion between the weather model forecasts and the stochastic dy-
namic optimization framework. To do so, we first must
implement the ensemble-based approach in a closed-loop manner.
Since the weather model is extremely computationally expensive,
a dedicated, centralized parallel computing architecture is needed.
In addition, since the amount of data to be handled is huge, strat-
egies must be established to communicate only the essential fore-
cast statistical information. Another important issue is the fact that
the weather model provides information over relatively coarse
fields that need to be mapped to the specific location of the system
under consideration. To this end, we are interested in using a
Gaussian process modeling framework to interpolate the spatio-
temporal fields. We are also interested in addressing the complex-
ity of large-scale stochastic programming problems through
adaptive sampling and variance reduction techniques. Finally,
establishing potential economic benefits in different applications
such as polygeneration systems is an important research area.
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