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Detection of runways in aerial images is part of a project to automatically map complex 
cultural areas such as a major commercial airport complex. This task is much more difficult 
than appears at first. Runways are not merely homogeneous strips in the image due to several 
markings on the surface, changes in the surface material and presence of other objects such 
as taxiways and aircraft. We use some generic sources of knowledge to help with these 
problems in a hypothesize and test paradigm. Hypotheses are formed by looking for instances 
of long rectangular shapes, possibly interrupted by other long rectangles. Runway markings, 
mandated by standards for runway construction, are used to verify our hypotheses. Our 
system gives good performance on a variety of complex scenes and does not rely on location 
specific knowledge. Q 1990 Academic press, hc. 

1. INTRODUCTION 

In this paper, we describe techniques for detection of runways in aerial images 
of large, commercial airport complexes. This work is part of a larger project to 
develop automated techniques for mapping complex, cultural features from aerial 
photographs. The domain of major commercial airport complexes is one we have 
chosen because of its richness and availability of image data. Airports contain a 
variety of objects, such as the transportation network (runways, taxiways, and 
roads), building structures (hangars, terminals, storage warehouses), and mobile 
objects (automobiles, aircraft, humans), shown schematically in Fig. 1. The images 
themselves are rather complex due to the large number of objects present in them. 

Our motivation for this work is twofold. First, the specific tasks are of great 
practical significance for a variety of applications. Second, we believe that the 
problem domain provides a rich testbed for experiments in building high-perfor- 
mance visual “expert” systems. We do not necessarily imply that the exact 
algorithms developed for this task will also be useful for all other tasks, but merely 
the hope that the approach will carry over for similar tasks. We also believe that 
experience with specific domains is essential to development of more generic vision 
systems. Mapping requires dealing with a multiplicity and variety of objects in a 
natural environment that contains texture and markings. The solution requires use 
of powerful “bottom-up” descriptive techniques as well as the use of domain 
knowledge. Such capabilities are obviously going to be needed by vision systems in 
other domains also. 

*This research was supported by the Defense Advanced Research Projects Agency, monitored by the 
Air Force Wright Aeronautical Laboratories under Contracts F3361584-K-1404 and F33615-87-C-1436. 
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FIG. 1. Objects in scenes of airport complexes. 

FIG. 2. Logan International Airport image (LOGANI). 

Our goal is to map all of the interesting objects in the scene and also to devise 
integrated descriptions that include the functional relationships of the objects in 
the scene. We concentrate on the mapping of runways (we are pursuing mapping 
of buildings in a separate work which has been presented elsewhere [l, 21). Even 
though runways are perhaps an easier component of the scene, their detection is 
much more complex than may appear at first sight. We believe that the techniques 
we present will apply to detection of other complex, linear features also and that 
they constitute an interesting case study in developing a specific vision module. 

The complexity of the task is shown by two images in Figs. 2 and 3. Figure 2 
shows a portion (LOGAN1:800 x 2200 resolution) of Logan International Airport 
in Boston, and Fig. 3, a portion (JFK2740 x 2440 resolution) of John F. Kennedy 
International Airport in New York. The runways and taxiways may appear to be 
modeled easily-namely as long, thin, rectangular strips of uniform brightness. 
However, this model fails for real images and the task of detecting runways is 
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FIG. 3. John F. Kennedy International Airport image (JFK). 

much more complicated due to the following factors: 

l Su$uce markings. Runways have a variety of markings; these markings are 
applied to the paved areas of runways and taxiways to identify clearly the functions 
of these areas and to delimit the physical areas for safe operation and aid pilots. In 
many cases there are visible signs of heavy use, such as tire tread marks, oil spots, 
and exhaust fume smears. Also, runways have shoulders of various widths. 

l Surface composition. Runways may not be of uniform material (see JFK 
image in Fig. 3). The landing surface and the shoulders may be of the same or 
different material for different runways in the same airport. Runways may be 
extended using different surface materials. In certain geographical locations, the 
runway surfaces develop defects that need to be repaired; the repair work, usually 
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FIG. 4. Line segments from LOGAN1 image. 

in the form of patches, is not necessarily homogeneous with the original surface 
material and can have random shapes. 

l Presence of other objects. Runway surfaces may be occluded by trucks and 
aircraft. Runways have access taxiways and service roads in a variety of positions 
with respect to the runway. Runways can intersect with other runways. Also, old 
runways or portions of them may be now used for other purposes. 

We assume that the images are of fairly good quality and of adequate resolution. 
However, one of the major causes of difficulties in detecting runways and other 
objects in real aerial scenes is that the low level segmentation rarely gives complete 
and accurate results. In our work we have chosen to work primarily with the line 
segments computed from the intensity edges in the image. These lines may be 
fragmented, due in part to inadequacies in the line detection process, and in part 
due to actual structures in the image. Figure 4 shows the 8262 line segments 
detected from the Logan image of Fig. 2 using the Nevatia-Babu line finder [3]. 
This figure shows the complexity of the task of detecting the desired structures. 
Human observers, looking at output such as in Fig. 4, are still able to perceive 
dominant structures readily. We believe that this ability of perceptual groupings 
derives from our skill at perceiving non-accidental geometrical relationships among 
the lower level elements [2, 4, 51. We attempt to emulate such abilities by forming 
groups based on dominant orientations and parallel and collinear relationships. 

Our technique basically consists of forming hypotheses for runways based 
primarily on geometrical information. These hypotheses are then tested by looking 
for some specific characteristics, in this case the expected markings on a runway 
surface. In work reported here, our verification step consists of finding the various 
markings we expect. 

Our techniques can and do generalize to detection of other features such as 
taxiways. However, note that the system does not confuse taxiways with runways. 
Our more recent work (not included in this paper) on taxiway detection also shows 
that no confusion arises. In some cases (not typical) where runways and taxiways 
have very similar widths or, in those where old runways are now used as taxiways 
(as appears to be the case in JFK), taxiway features can be hypothesized as 
runways or portions of runways. This can be expected because the hypotheses only 
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represent instances of the shape or portion of shape of the objects we are looking 
for. Characterization of these as one or the other comes only after the verification 
(or test) step is applied in terms of the attributes, that is, the surface markings, that 
are particular to each. The surface markings are very different (for safety) for 
runways and taxiways; they allow us to correctly disambiguate them if sufficient 
evidence of markings is found. Finding evidence or markings, depends mostly on 
image quality and resolution. Also, for these same reasons, the system will not 
confuse runways and nearby highways. 

Further validation of the runway hypotheses should, ideally, take place in the 
context of the larger system that is also reasoning about other objects in the scene, 
such as the remainder of the transportation network, buildings, and the mobile 
objects. Location of these objects will mutually affect the confidence levels of the 
descriptions of other objects. Many interesting questions arise in the implementa- 
tion of such interactions, such as the nature of the interaction and the order in 
which it takes place (i.e., the control structure). We are investigating alternative 
techniques for this in our current work. The techniques described here should be 
viewed as a module for the larger system to operate on. Regardless of the fine 
structure of the larger system, it is our belief that the system needs modules which 
are fairly competent at finding the major, individual structures without the global 
context. The global context is useful to refme or confirm the initial hypotheses and 
in some cases to initiate new hypotheses but can not be a substitute for high 
quality description modules. 

Other work related to the mapping of runways, airport complexes and aerial 
images in general has been reported extensively by McKeown at CMU (see, for 
example, [6, 71). His approach is based on region features and uses rule based 
systems in his work. Our work differs from McKeown’s work mostly in our use of 
generic knowledge rather than specific knowledge of the particular scene. 

2. AN OVERVIEW AND ASSUMPTIONS 

To deal with the fragmented segmentation and the complexities of the task 
outlined above, we use higher level perceptual organization techniques and some 
knowledge of the scene domain and the task. Our approach is to use generic 
modules wherever possible in preference to highly specific modules of a particular 
scene, as used in [6, 71 for example. Our method uses a “hypothesize and test” 
paradigm; our processes generate some hypotheses for the desired structures using 
generic techniques which are then validated or rejected by using more specific 
models of a runway. Our methods use the following sources of knowledge: 

l Geometry and Shape. We know that we are looking for instances of objects 
whose outlines represent a rectangular shape having a large aspect ratio of length 
to width. We know that runways have ends as opposed to nearby straight stretches 
of highways and roads. 

l Specific knowledge of airport design. We know the features that make a 
visible long strip in the image an airport runway: The standard markings applied to 
the surfaces, according to FAA specifications. From airport engineering we also 
know the range of angles between runways, typical distances between parallel 
runways, range of widths and so on. 
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FIG. 5. Standard runway markings. 

l Photometric Knowledge. Intensity data may be of some help in verifying 
runway hypotheses when runway markings are non existent or not available due to 
lack of contrast or lack of resolution. Our current implementation applies finer 
feature extraction techniques to selected portions of the image to try to locate 
missing evidence. Also we use image resolution information throughout the pro- 
cess. 

As previously mentioned, we have chosen to work primarily with line segments 
extracted from the image. Geometric knowledge of the desired structures indicate 
that they should be characterized by parallel lines of opposite contrast. We call 
such pairs of lines “anti-parallel,” and abbreviate them as upurs. Apars form the 
basic unit of our further analysis. 

In a complex scene like a major airport not all apars correspond to a runway or 
even to segments of the transportation network. Conversely, not all of the runway 
is likely to be included in one apar or even in a set of apars. Thus, an important 
aspect of our hypotheses formation process is that it is as non-committal as 
possible: if a line segment contributes to many apars, as is the case along runway 
features where there may be a large number of linear features parallel to the 
runway, such as runway shoulders, taxiways, and service roads, possibly having 
markings of their own, we allow the apar computation process to generate all the 
possible combinations. This leads to a large search space that must be focused on 
(reduced) in order to facilitate the detection of the desired structures. 

The search space is reduced by computing estimates of the directions and widths 
of the runways, from the apars. We use these estimates to extract from the original 
set of apars those having a dominant orientation. The selected apars, for each 
dominant orientation, are then grouped according to their width. The apars in the 
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FIG. 6. Block diagram of runway detection system. 

“runway” group thus, presumably represent fragments of runways. Reduction of 
the search space is equivalent to a “focus of attention” mechanism; it does not 
imply a reduction of the information space. 

Verification of runways is accomplished primarily by detection and identification 
of runway markings. Figure 5 shows the set of markings that we look for to verify 
commercial runways. They also help classify the runways into three basic cate- 
gories: precision in+stnunent runways, non-precision instrument runways, and visual 
runways. These in turn, tell us something about the aircraft we can expect to see; 
large-wing span aircraft require precision instrument runways, for example. For a 
complete discussion on runway and taxiway markings; see the ICAO Annex 14 and 
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181. Our description relates to the FAA specifications, which are generally similar 
in function and form to the international standards; where differences occur, they 
are not sufficiently great to cause confusion [9]. 

The diagram depicted in Fig. 6 summarizes our technique: 

A. Hypotheses formation. Finds all the instances of the desired shapes in the 
image, i.e., long thin rectangles. 

1. Detect line segments and anti-parallelism. The line segments extracted ap- 
proximate the intensity edges in the image. The anti-paralZels represent the parallel 
relationships among pairs of segments of opposing contrast. 

2. Estimate runway directions and widths. Apars are classified according to 
their orientation and width to obtain the dominant orientations and width groups 
of the linear features in the image. 

3. Join apars based on continuity. Apars are combined into larger structures 
based on the continuity relationships of the underlying segments. 

4. Remove apars with low aspect ratio. Unreliable small apars (with an aspect 
ratio of less than 0.25) are discarded. 

5. Remove contained apars. Redundant information is discarded. 
6. Join collinear apars. Apars are combined to form larger rectangular struc- 

tures based on their parallel and collinear relationships. 

B. Hypotheses verification. Finds evidence to support or reject hypotheses, i.e., 
runway markings. We look for thin bright apars representing: 

1. Runway centerlines. Near the center of the hypothesized runway. 
2. Side str@e markings. Along the sides of the hypothesized runways. These 

delineate the runway landing surface. 
3. Threshold markings. At the begin and end points of the hypothesized 

runway, even though the paved surface may extend beyond these marks. 
4. Touchdown markings. Near the threshold markings. 
5. Large distance markings. Beyond the touchdown markings. 
6. Small distance markings. Distributed along the landing surface. 
7. Blast pad markings. At the end of the runways and beyond the threshold 

markings. They are characterized by their arrangement into a “herringbone 
pattern.” 

C. Re-segmentation. Recomputes segments and apars in small neighborhoods. 
We perform a local search to look for further evidence of missing markings as 
follows: 

1. Recompute apars using lower edge magnitude thresholds in small windows 
along runway hypotheses, and look for additional markings. 

2. Using knowledge of the position of detected centerlines and blastpad 
marks, estimate of the location of missing markings, recompute apars in small 
windows at these locations, and look for additional centerlines and blastpad marks. 
If necessary, repeat the process using the same windows at higher resolution 
(double in our current system). 
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D. Scene description and hypotheses evaluation. Generates a description of the 
runways in the scene. 

For each runway we give its position, length, width, orientation, and associated 
markings. At this stage we could also assign a confidence level to each hypothesis 
based on how many of the expected markings are found. The information to do 
this is available to our system. However, we have chosen not to arbitrarily assign 
weights to the markings. Instead, our approach is to pass the whole description to 
the higher level which can use global context to make further judgements. The 
global context may consist of where the hypothesized runways lead to, for example. 

3. DETAILS OF THE METHOD 

We now give details of our method and its implementation. 

3.1. Formation of Runway Hypotheses 

3.1.1. Detection of Line Segments and Anti-parallels 

We use the USC “LINEAR” line detection system to obtain line segments. This 
system allows for the use of a variety of edge detectors at the low level, for 
example, the Nevatia-Babu [3], Marr-Hildreth [lo, 111, and Canny [12]. In this 
work, we have used the Nevatia-Babu detector (for an initial segmentation) and 
the Canny detector (for subsequent partial segmentations of portions of the 
image). Edges are thinned and linked to form continuous curves, which are in turn, 
approximated by piecewise linear segments. Each linear segment is described by its 
length, orientation, contrast, and position of its end points. Additionally, we also 
know if a segment connects to another segment at either end. Figure 4 shows the 
8262 line segments computed from the image of LOGAN Airport in Fig. 2. The 
9489 apars (anti-parallels) shown in Fig. 7 are computed from these segments by 
specifying the minimum (in our examples, 1 pixel) and maximum (60 pixels) 
distance between the anti-parallel pairs of segments. The range will be known in 
practice if the altitude of the aircraft and image resolution are known. The apars 
are described by their length, orientation, end points, width, and “color” (brighter 
or darker than surround). 

FIG. 7. Anti-parallels from segments in LOGAN1 image. 
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FIG. 8. Length weighted histogram of apar orientations. 

3.1.2. Estimating Runway Orientations and Widths 
In this step we attempt to estimate the direction and width of the runways in the 

image. We first estimate the direction of the runways by computing a length- 
weighted histogram of the orientation of the detected apars. The resulting his- 

I 

FIG. 9. Length weighted histogram of apar widths. 
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FIG. 10. Apars representing initial set of runway fragments. 

togram for the LOGAN1 image is shown in Fig. 8. The three peaks detected 
denote the dominant orientations, even when the runways are only partially visible. 
In our example, the peaks are at 43”, 63”, and 123”, with 0” pointing down. 

To obtain an estimate of the runway widths in the image we compute a length 
weighted histogram of the apar widths for those apars oriented in the estimated 
runway directions. The resulting histogram, shown in Fig. 9, shows three groups of 
apars. Typically the group of wider apars (between 30 and 40 pixels in our 
example) contains runway and shoulder fragments. The middle group (between 10 
and 25 pixels) contain taxiways and service roads, and in some cases, narrow 
shoulders. The third group (between 1 and 8 pixels), contains the surface markings. 

3.1.3. Constructing a Set of Runway Fragments 

In this step we reduce the search space for runway fragments using our 
estimates of runway direction and width. We extract from the set of apars those in 
the selected directions and belonging to the width group for runways. In our 
LOGAN1 example, we construct three sets of runway fragments, grouped accord- 
ing to the three selected runway orientations (43”, 63”, and 123”) allowing for a 
tolerance of 5” on both sides of the histogram peaks. The groups contain the apars 
in the runway width group (in our example, between 25 and 55 pixels). The 
resulting three groups for the LOGAN1 example are shown in Fig. 10. The apars 
are shown as rectangles to show their width. These apars represent a strong set of 
evidence of the presence of airport runways (and other long linear structures) in 
the image. Compare the original set of apars (Fig. 7) to those shown in Fig. 10; the 
search space was reduced, in this example, by 94%, from 9498 in the entire set to 
518 apars. 

3.1.4. Joining Apars on the Basis of Continuity 

Apars representing linear structures are usually broken due to a variety of 
factors, such as oil spots and markings, noise in the image, and inadequacies in the 
low-level processes. Additionally, some of the breaks are due to real structures in 
the image. Consider for example where taxiways join runways. One of the bound- 
aries of the runway is seen as a continuous linear structure while the other 
boundary is broken at the junctions. Typically the segments representing the 
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FIG. 11. Apars joined on the basis of boundary continuity. 

continuous boundary will form apars with several segments corresponding to the 
broken boundary, leading to a sequence of collinear apars having the same width. 
Typically these fragments will also have the same color. 

In this step we join the apars that share segments, are collinear, and have the 
same color. In our examples we have allowed a 5” tolerance in collinearity and 5 
pixels tolerance in width. The resulting longer apar must have an orientation that 
is compatible with the estimated direction of the runway within a small tolerance 
(So). This process is implemented by constructing lists of collinear apars that share 
segments. These lists are ordered spatially along the estimated runway orienta- 
tions. From each list we select the longest apar and form two sublists containing 
the apars on both sides of the longest apar. We proceed recursively until the lists 
contain only two apars to be joined. The result of joining apars in this manner is 
shown in Fig. 11. 

3.1.5. Removing Redundant Anti-parallels 

In some cases, as in our LOGAN1 example, there is sufficient resolution and 
contrast in the image for the edge detector to be able to resolve the boundaries of 
many of the thin white markings applied to the runway surfaces. Figure 12 shows 
schematically a section of a runway and three anti-parallels in the runway group. 
The axes of these apars overlap due to the symmetric configuration. The three 
apars also have very similar widths, increasing the ambiguity when joining frag- 
ments of runways. 

Outside dark apar 

Middle bright apar 

Inside dark apar 

FIG. 12. Redundant apars. 
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FIG. 13. Apars filtered on containment. 

We use object knowledge to reduce the ambiguity. The markings applied to the 
runways are known to be white thus, the inside dark apar in Fig. 12 can be 
discarded if the middle bright apar is present and the dark apar is properly 
contained in the extent of the bright apar. In some cases the outside dark apar is 
present also but bright apars contained in dark apars are not removed (the white 
sidestripes denote the boundaries of the landing surface). 

Figure 13 shows the effect of this step. The motivation for this step is as follows: 
The apars in the set represent potential runway fragments, selected on the basis 
similarity of their orientation and width. These apars are to be joined to other 
collinear apars in a subsequent step. The removal of properly contained apars thus 
prevents the formation of multiple hypotheses, which otherwise would increase the 
complexity of the disambiguation process to be applied later. 

Note that it may appear that apars formed by the boundaries of the shoulders 
would contain apars formed by the runway boundaries and therefore may be 
removed from the set, but we have found this not to be the case. In general the 
shoulder boundaries are not as homogeneous as the runway boundaries and tend 
to be quite broken. Once runway apars have been joined on continuity alone, 
although thinner than shoulder apars, they tend to be considerably longer, and 

FIG. 14. Apars filtered on aspect ratio. 
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FIG. 15. Apars joined on collinearity and gap analysis. 

therefore, not contained in wider shoulder apars. Also in some cases, due to their 
width, the shoulder apars would not be part of the runway group. 

In this step we also remove apars having an aspect ratio of width to length 
smaller than 0.25, as they are considered unreliable. The effect of this step is 
shown in Fig. 14. 

3.1.6. Joining Apars on the basis of Collinearity and Gap Analysis 

At this stage of the process, a runway is still likely to consist of unconnected 
apars, due to noise, crossing of runways and taxiways, aircraft on the runways and 
other causes. Next we consider joining apars that are collinear and that have 
similar widths. The decision is based on the analysis of the image in the gap 
between the two apars to be joined. In general, this process is quite liberal in the 
analysis of the information in the gaps. For instance, if the gap contains mostly 
segments that are oriented in the direction of the apars, we join them. If the gap 
contains mostly segments oriented at an angle consistent with the angles allowed 
between crossing runways then we join them. However, as in our JFK example 
shown in Fig. 3, repair work, changes in surface material, signs of heavy use, oil 
spots, and tire tread marks, can result in basically random arrangements of 
segments (texture) in the gaps. Thus, to allow for these, we determine our decision 

FIG. 16. Runway hypotheses. 



RUNWAY DETECTION 121 

FIG. 17. Thin anti-parallels in LOGANl. 

to accept or reject the information in the gap to join two candidate apars as a 
function of the lengths of the apar candidates and the size of the gap: Texture in 
the gap is less important for small gaps than for large gaps; angle tolerances are 
tighter for short candidates than for long candidates. A more precise way to 
implement these decisions would be to use 3D information to determine if the 
surface is smooth and flat in 3D. Such information would be available from stereo. 

The joining process is implemented as follows: 
First, we order the sets (one for each selected runway direction) by apar length. 

We then try to join the apars in each set, beginning with the longest apar and 
cycling through the apars in decreasing order of length. For each of these apars, 
we look for candidate apars off both ends of this apar for a set of candidate apars 
to extend the original apar to. The candidate apars are sorted by distance from the 
end of the apar we are seeking to extend. We consider each candidate apar 
individually. The decision to join a given apar to a candidate apar is subject to the 
following criteria: 

1. width: The apars to be joined must have the same width (within five pixels). 
2. Parallelism. The candidate apars must be parallel. The determinant of 

coefficients of the line equations of the candidate apars must be near zero. 

FIG. 18. Centerlines detected in LOGANl. 
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FIG. 19. Side stripe markings in LOGANI. 

3. Collinearity. The candidate apars must be collinear. The allowed distance 
between parallel apars is computed as a function of the lengths of the candidate 
apars and the length of the gap between them. 

4. Orientation consistency. If joined, the orientation of the resulting apar must 
be consistent (within 5”) with the estimated runway orientation (from the length 
weighted orientation histogram). 

5. Inter-apargap. The length of the gap must be smaller than the sum of the 
lengths of the candidate apars. 

6. Segment tex&re check. If most of the segments contained in the gap 
between the two apars are oriented in the direction of the apars, then the apars 
are joined. To determine this, we compute a length weighted histogram of the 
segments in the gap and select the peak orientation. This orientation must be 
consistent with the direction of the hypothetical runway. 

If most of the segments in the gap have a dominant orientation, but different 
from the orientation of the apar candidates, the angle difference is compared to 
the allowed angles between crossing runways. 

In general, if the gap is very small (twice the hypothetical runway width), we 
ignore the texture check and join the apars. 

FIG. 20. Threshold marks in LOGANl. 
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FIG. 21. Touchdown marks detected in LOGANl. 

This joining process is continued until the process has stabilized and no further 
joins are possible. For our LOGAN1 example, the result of this process is shown in 
Fig. 15. 

3.1.7. Final Runway Hypotheses 

At the end of the joining process, short apars are removed from the sets if they 
have an aspect ratio smaller than 20 : 1. This will preserve those apars possibly 
representing partially visible runways. The resulting apars constitute the instances 
of the shapes found in the image that match our geometric model for airport 
runways. These are shown in Fig. 16 for our LOGAN1 example. 

3.2. Runway Verification 

Hypotheses disambiguation and verification of runways is accomplished primar- 
ily by detection and identification of runway markings. Most of these are shown in 
Fig. 5 (from [9]). We have specific knowledge of their dimensions and position [8]. 

We map this knowledge onto the image’s coordinate system for the available 
image resolution. Fractions of pixels indicate lack of resolution and, instead of 
looking for, say two close markings, we look for one wider marking, equivalent to 
the fusion of the individual non-resolved markings. 

FIG. 22. Large fixed distance markings in LOGANl. 
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FIG. 23. Distance markings in LOGANl. 

To find the markings we first look for thin bright apars. If necessary we also look 
at the segments. The 1817 thin apars in our LOGAN1 example are shown in Fig. 
17. Detection of markings is described in detail below. These are: 

l Standard markings: 
-R~nwuy centerlines. Detected independently. 
--Side stripes. Detected independently. 
--Threshold marks. Detected independently. 
--Touchdown marks. Detected independently. 
-Distance marks. Detected with respect to touchdown marks. 

l Optional markings: 
-Blast pad marks. Detected with respect to threshold marks. 

The visibility of runway markings is primarily determined by the following 
factors: 

l Image resolution. Determines if the markings can be resolved. 
l Surface material. The contrast between markings and background depends 

on the underlying surface. White markings on a dark asphalt surface are quite 

FIG. 24. Blast pad markings in LOGANI. 
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FIG. 25. Runway markings detected in LOGANl. 

visible. Concrete runways are brighter and perhaps make it more difficult to detect 
the markings. In some cases contrast depends also on the material in the runway 
shoulders. 

l Usage and upkeep. Tire tread marks, oil spots, and exhaust fumes obscure 
the markings along and at the ends of runways. On the other hand, tire tread 
marks form quite visible and high contrasting dark regions in the center of 
concrete runways and can be used for verification purposes. Our current technique 
relies on markings detected elsewhere to predict the presence of obscured mark- 
ings. 

The size and position of each runway hypothesis determines the window where 
we search for the markings. To find them we first look for thin bright apars in the 
window. If necessary we also look at the line segments. 

3.2.1. Detection of Runway Centerlines 

According to runway marking standards, the centerlines are supposed to be 3 ft 
wide and 120 ft long, spaced every 80 ft along the landing surface of the runway. 
To detect centerlines we look in the middle of the hypothesized runway for bright 
apars which are less than 5 ft wide and between 40 and 140 ft long. These also 
must be oriented in the direction of the hypothesized runway. 

FIG. 26. Original segments and selected windows for reprocessing. 
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FIG. 27. Recomputed edges in selected windows. 

In our search we only look for apars of appropriate length along the middle of 
the hypothesized runways, regardless of the 80 ft separation constraint. This allows 
detection of broken or incomplete individual markings due to crossings, exhaust 
burns, tread marks, etc. For the same reason we also look for individual segments 
(that do not form thin apars) down the middle of the runway. This however may 
result in detection of some “stray” segments corresponding to repair work and 
other features on the landing surface. The centerlines located for our LOGAN1 
example are shown in Fig. 18. 

312.2. Detection of Side Stripe Markings 

Side stripes bound the sides of the landing surface of runways. Side stripes are 
at least 3 ft wide. If sufficient resolution and contrast are available, we are able to 
detect side stripes as thin bright apars (see Fig. 171, at or near the boundaries of 
our runway hypotheses. Also, these must be oriented parallel to the estimated 
runway direction. These thin apars are often broken mostly due to lack of 
resolution and contrast, and we do not attempt to join them. We, however, require 
that they be bright, collinear, and have a consistent width. 

The estimates for runway orientation may be off a few degrees from the actual 
runway direction in the image. This is due to minor angular adjustments made to 
the apars resulting from the joining processes when the hypotheses are formed. To 
allow for these variations, we look for side stripe apars in a window equivalent to 

FIG. 28. Runway markings in LOGAN1 with additional centerlines and blast pad marks. 
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FIG. 29. 2300 x 1200 pixel LOGAN2 image. 

the length of the hypothesized runway, and having a width equivalent to 15 ft. That 
is, we allow an total error margin of 6 ft on both sides of the hypothesized runway 
boundary. The apars corresponding to side stripes in our LOGAN1 example are 
shown in Fig. 19. 

3.2.3. Threshold Mark Detection 

In our model, all runways are assumed to have a pair of threshold marks at each 
end of the runway (see Fig. 5). These are probably the most important set of 
markings that can be used to verify a hypotheses as a runway; they give pilots the 
position of the start and end of the runway. Often, these marks are partially worn 

FIG. 30. Line segments from LOGAN2 image. 
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FIG. 31. Anti-parallels from line segments in LOGAN2. 

away by exhaust fumes due to their position so we expect our search to look for 
partial markings. 

The threshold marks consist of a pair of four closely painted 12 ft white lines, 3 
ft apart, and 150 ft long, separated by a dark rectangular zone 16 ft wide. The 
distance between these markings and the side stripes is a dark zone 7 ft wide. 

At the resolution in our examples it is difficult to resolve the individual lines, 
and the threshold marks appear as white rectangles 150 ft long and 57 ft wide, 
separated by a dark zone 16 ft wide. This results in two bright 25 ft wide apars for 
each mark and a 16 ft wide dark apar between them. In our search first look for 
the bright apars. These apars must be oriented in the direction of the runway 
(within a 5” tolerance). 

FIG. 32. Initial set of runway fragments in LOGAN2. 
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FIG. 33. Apars in LOGAN2 after joining on continuity. 

We expect to find a pair of apars which fit this description; however, often there 
is only one apar found. In this case, we can hypothesize the position of the missing 
mark. The missing mark will have the width and length of a threshold mark in the 
FAA model with position and orientation of the mark determined by the position 
and orientation of the apar which was found. From the position of the found apar 
and the knowledge that the threshold marks have 16 ft between them, we can 
accurately determine the position of the mark. Using this information, we can now 
go back to the line segment information and look for line segments to support our 
hypothesis. 

In some cases neither of the bright apars may be visible or detected. The next 
available and reliable feature is a dark apar in the middle of the runway (collinear 

FIG. 34. Apars in LOGAN2 after removal of contained apars. 
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FIG. 35. Apars in LOGAN2 after removal of short apars. 

with the centerlines). The dark apar must meet the length and orientation 
constraints for the dark zone between the threshold marks; it must be 16 ft wide 
and no longer than 150 ft, allowing a few feet of tolerance (between 10 and 19 ft 
wide). From the position and orientation of this dark apar, we can make accurate 
predictions as to the position and orientation of the two threshold marks. We also 
search for evidence of fragments of line segments to support this hypothesis. In our 
examples this has been sufficient. 

Threshold marks are located at the end of the runways and thus we first look for 
them near the end of the hypotheses we have formed. These hypotheses however 
may not extend to the ends of the underlying runways in some cases. In other cases 

FIG. 36. Apars in LOGAN2 after joining on collinearity and gap analysis. 
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FIG. 37. Final runway hypotheses for LOGAN2 image. 

the side stripes are extended beyond the threshold marks, causing the threshold 
marks to be located somewhat “inside” the hypothesized runway. Our search 
window therefore collects evidence within a window that extends from inside the 
hypothesized runway and in the direction of the runway, beyond the hypothesized 
end of the runway. The search window is also wider than the width of the 
hypothesized runway. 

We may find more than one configuration of apars and/or line segments that 
potentially represent the threshold marks. Since runway markings are constrained 
by position and size, we test all potential pairs of threshold marks against other 
markings to select the pair that assures consistency. Figure 20 shows the threshold 

FIG. 38. Runway markings detected in LOGAN2. 
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marks for our LOGAN1 example. Once a set of markings is found the runway 
hypothesis can then be updated. 

3.2.4. Touchdown Mark Detection 

The touchdown marks consist of three 75 ft long, 6 ft wide stripes, 5 ft apart. At 
the resolution in our examples, the individual stripes cannot be resolved and are 
detected having a width of 28 ft. They are located on each side of the runway, with 
72 ft between them. They are located 340 ft down the runway from the threshold 
marks. In our implementation we look for two bright apars and/or a dark apar in 
the approximate position predicted for the touchdown marks and subject to the 
orientation constraint. If neither of these are found we can also look for line 
segments, although this additional search has not been implemented yet. The 
detected touchdown marks for our example are shown in Fig. 21. 

3.2.5. Distance Marking Detection 

Runways have a series of distance markings extending from the touchdown 
marks, starting at 500 ft from the touchdown marks, and located 500 ft apart. The 
first pair (large fixed distance markings, in Fig. 5) consists of two 150 ft by 30 ft 
stripes, separated by 72 ft. The rest of the distance markings are similar to the 
touchdown markings, except that the first two (after the large first pair) consist of 
two 75 ft by 6 ft stripes and the subsequent ones consist of only one 75 ft by 6 ft 
stripe. The distance between the two marks in each pair is the same, 72 ft. At the 
resolution in our examples, the first two stripes in each mark cannot be resolved by 
the low level segmentation technique used and are detected as a single bright apar 
17 ft wide. 

We look for the first (large) pair of distance marks first. For this we rely on the 
position of the threshold marks to predict the approximate positions for these 
large distance markings. We look for a bright apar oriented in the direction of the 
runway which is at least 100 ft long and 20 ft wide, subject to the particular size 

FIG. 39. Runway markings in LOGAN2 with additional centerlines and sidestripes. 
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constraints (it cannot be more than 150 ft long or 30 ft wide + 5 ft). We also allow 
a 5” tolerance in angles. As before, we choose among several candidates, if 
necessary, based on proximity to the predicted position. 

Once we find large distance marks, we further refine our estimate of image 
resolution. Recall that the initial estimate of image resolution is based on a-phi 
knowledge of the widths of commercial runways compared to the hypothesized 
runway widths. However, it is possible that narrow shoulders be included in our 
initial runway hypotheses. These refinements are important to locate small and 
more difficult to detect markings. 

Locating the other small distance markings proceeds in a similar manner. We 
estimate their position from the large distance marks (if these are available, 
otherwise we use the position of the threshold marks) and do a search in the area 

FIG. 40. Line segments computed from JFK image. 
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for an apar of the desired characteristics. The distance markings found for our 
LOGAN1 example are shown in Figs. 22 and 23. 

3.2.6. Blast Pad Mark Detection 

Blast pad markings are optionally located at the ends of runways. They consist of 
pairs of white lines oriented at 45” angles with respect to the runways and meet at 
the runway central axis. Also they do not extend beyond the width of the runway 
landing surface. The separation between these pairs of lines varies, thus we detect 
them by looking for thin bright apars in the proper configuration. The blast pad 
markings detected for LOGAN1 are shown in Fig. 24. 

3.2.7. Summaly 

Most markings are detected by independent processes and, thus, are applied in 
arbitrary order. We chose to look for centerlines first, as these help disambiguate 

FIG. 41. Anti-parallels from the segments in JFK image. 
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multiple and possibly overlapping hypotheses early. The distance markings, how- 
ever, are located with respect to the threshold marks, and the blast pad marks are 
located at the ends of the runways. The resulting set of markings for our LOGAN1 
example is shown in Fig. 25. 

3.3. Additional Verification Mechanism 

In some cases the reduced, or lack of evidence of, markings is due to the 
parameters associated with the low level segmentation technique applied to the 
image initially. For instance, we filter out weak edges arbitrarily to reduce the size 
of the input to the system. We know however that markings in certain positions of 
the runway become obscured and have reduced contrast. We prefer to proceed in 
a hierarchical manner, allowing the use of arbitrary thresholds during edge 

FIG. 42. Initial set of runway fragments in JFK. 



136 HUERTAS, COLE, AND NEVATIA 

detection plus a feedback mechanism to look for additional information. However, 
if the input to the system consists of segmentations which include aZl the edge 
information that can be computed from the image, then additional verification 
steps are not necessary. 

In our system, we re-segment only small portions of the image along the runway 
hypotheses to obtain non-thresholded edges, segments, and thin apars. We can 
then apply the verification step using these apars. Some markings, such as the 
centerlines and the blastpad marks, appear with more regularity. In these cases the 
process uses the markings previously detected to guide the re-segmentation of only 
specific portions of the image where we determine that markings are missing as 
follows: 

To look for additional centerlines, we compute a histogram of the separation 
between the centerlines found to compute and estimate of the distance between 

FIG. 43. Apars in JFK after joining on continuity. 
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detected centerlines. Next we locate the longest among the detected centerlines. 
From this centerline, in both directions along the runway, we re-segment small 
image windows centered at the locations of missing centerlines. The process for 
blastpad marks is similar. Figure 26 shows some of these windows containing the 
original edges. The re-segmented edges at single (top) and double resolution 
(bottom) for the same windows are shown in Fig. 27. Note that some of these edges 
correspond to previously undetected centerlines. At double resolution some of the 
edges correspond to missing sidestripes as well. The newly detected centerlines 
and blastpad marks for our LOGAN1 example are shown in Fig. 28. The feedback 
mechanism uses the technique described in [12] to compute the edges and the 
technique described in [3] to compute line segments and apars. 

FIG. 44. Apars in JFK after removal of short apars. 
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3.4. More Results 

We have tested our method on several images of major commercial airports. In 
our discussion we showed results on a portion (LOGANl) of Logan International 
Airport in Boston. In this section we present additional results for another portion 
(LOGAN21 of the same airport, and the large portion of JFK International shown 
earlier in Fig. 3. The runways at Logan Airport consist of dark asphalt, well 
maintained surfaces and markings, while JFK presents a wide variety of problems. 
The level of complexity of most major commercial airports lies between our two 
examples. 

Figure 29 shows another portion (LOGAN2) of Logan International Airport 
(2300 X 1200 resolution). The 12,515 line segments computed from this image are 
shown in Fig. 30. 22,691 apars are computed from the segments and shown in Fig. 

FIG. 45. Apars in JFK after removal of contained apars. 
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31. Note the complexity and size of the original search space. In this example we 
used a lower threshold on edge magnitude than the one we used for LOGAN1 
example to show that arbitrary thresholds can be applied initially, that a much 
larger input results in more initial runway fragments and competing hypotheses, 
and that we obtain more markings in the verification step. 

The estimates for runway directions are chosen to be three peaks form the 
length weighted histogram of the orientation of the apars, and the runway width 
estimates are obtained from the length weighted width histogram of the apars in 
the selected directions. The initial search space is reduced by 90% to 2162 apars. 
The reduced search space and apars representing the initial set of runway 
fragments is shown in Fig. 32. 

FIG. 46. Apars after joining on collinearity and gap analysis. 
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Figure 33 shows runway apar fragments joined on boundary continuity. Figure 
34 shows the apars remaining after removal of contained apars. Figure 35 shows 
the apars remaining after removal of apars with an aspect ratio (length to width) 
smaller than 0.25. The apars are then joined on the analysis of the gaps and shown 
in Fig. 36. The apars thresholded on aspect ratio (20: 1) to give the runway 
hypotheses are shown in Fig. 37. Note the overlapping hypotheses due to runway 
shoulders. These are disambiguated in the verification step that follows. In fact the 
first step in the verification process (detection of centerlines) readily accomplishes 
this. Figure 38 shows the results of the verification process. Figure 39 shows the 
results of additional verification of centerlines, blastpad marks, and sidestripes. 
Evaluation of these results is given in the next section. 

FIG. 47. Final runway hypotheses for JFK image. 
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Figure 3 shown earlier, is a portion (JFK: 2740 X 2440 resolution) of a scene 
from John F. Kennedy International Airport in New York. This airport scene 
poses numerous difficult problems. The changes in surface material due to repairs 
and expansion occurs randomly. Some of the expansion work consists of strips 
having different widths as the original runway, in addition to being of different 
material. The center strip, presumably an old runway now used as a taxiway, is as 
wide as other runways but has no discernible runway markings applied to it. It is 
also wider than the new runway on the left, which in addition, has nonstandard 
markings applied to it. 

The 57,333 line segments computed from the JFK image are shown in Fig. 40. 
The 80,736 apars computed from these segments are shown in Fig. 41. The 
estimates for runway directions are chosen to be four peaks from the length 

FIG. 48. Runway markings detected in JFK. 
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weighted histogram of the orientation of the apars, and the runway width estimates 
are obtained from the length weighted width histogram of the apars in the selected 
directions. The initial search space is reduced by 97% to 2547 apars. The reduced 
search space and apars representing the initial set of runway fragments is shown in 
Fig. 42. 

Figure 43 shows runway apar fragments joined on boundary continuity. Figure 
44 shows the apars remaining after removal of the apars with an aspect ratio of 
smaller than 0.25. Figure 45 shows the apars remaining after removal of contained 
apars. The apars are then joined on the basis of analysis of the gaps between 
fragments. These are shown in Fig. 46. The thresholded apars on aspect ratio 
(20 : 1) give the runway hypotheses shown in Fig. 47. Note the multiple hypotheses 

F'IG. 49. Runway markings in JFK with additional centerlines and sidestripes. 
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LOGAN& 
Runway #l 
Rmway #2 
Runway #3 

Runway #4 
JFK: 
Runway #l 
Runway #2 
Runway #3 
Runway #4 
Runway #5 

2,194 162’ (197,115) (2293,762) 
1,787 162” (104,440) (1808,979) 
1,563 47” (1628&i) (562,1158) 

773 105O (1768,5) (1962,753) 

2,098 151° (454374) (2317.1038) 
2,816 151° (187,788) (2691,2076) 
2,384 122O (167,231) (1457,2236) 
1,280 63’ (598,389) (12,1532) 
1,445 63’ (2107,1147) (1440,2429) 

FIG. 50. Description of runways. 

resulting from grouping collinear fragments corresponding to mostly runway shoul- 
ders, thus emphasizing the need for a verification step. 

Figure 48 shows the results of the verification process. An interesting case is that 
which appears to be a runway running vertically near the middle of the scene; it 
contains no runway evidence in spite of its width. A close look at the original 
photograph indicates that this hypothesis probably corresponds to an old runway 
currently used as a taxiway, as we can see portions of a faint continuous centerline. 
Finally, the re-segmentation step finds some additional centerlines and sidestripes; 
these are shown in Fig. 49. Evaluation of these results is given next. 

3.5. Description and Evaluation 
Our implementation describes the scene in terms of runways and their markings. 

Description and performance results are given in tabular form in Figs. 50 and 51. 
For each scene, we manually counted the number of markings of every type and 
compared them to the markings detected by the verification step. We also com- 
pared the number of centerlines, blastpad marks, and extent of sidestripes de- 
tected by re-segmentation. In one case (JFK) runways do not appear to have long 
distance markings (denoted n.v. in the table of Fig. 50). 

We do not attempt to specifically assign a confidence value to each detected 
runway. Further validation of the runway hypotheses should, ideally, take place in 
the context of the larger system that is also reasoning about other objects in the 
scene, such as the remainder of the transportation network, buildings, and the 
mobile objects. Location of these objects will mutually affect the confidence levels 
of the descriptions of other objects. The techniques described here should be 
viewed as a module for the larger system to operate on. Regardless of the fine 
structure of the larger system, it is our belief that the system needs modules which 
are fairly competent at finding the major, individual structures without the global 
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Image LOGAN1 LOGAN2 JFK 
(sise in pixels) (800 x 2200) (2300 x 1200) (2740 x 2440) 
Hypotheses formation: 
# of runways in scene 4 4 5 
# of runway hypotheses 4 6 12 
# of runways not hypothesized 0 0 0 
Hypotheses veriflcat ion: 
- centerIiues 70% 85% 35% 
- Sidestripes 65% 25% 9% 
- Threshold marks 100% 100% 60% 
- Touchdown marks 100% 42% 0% 
- Long distance marks 75% 80% 
- Short distance marks 66% 79% % 
- Blast pad marks 66% 100% 85% 
n.v. = not visible in image 
IbSegxnentation: 
- Centerlines 93% 91% 69% 
- Sidestripes 65% 55% 15% 
- Blast pad marks 99% 100% 85% 
Summary: 
# of runways detected 4 (100%) 4 (100%) 5 (100%) 

FIG. 51. Performance results. 

context, The global context is useful to further refine or confirm the initial 
hypothesis and in some cases to initiate new hypotheses but cannot be a substitute 
for high quality description modules. 

4. CONCLUSION 

The modeling of runways in major commercial airports is not as straightforward 
as it may seem at first. From the examples shown, we can infer that runways can be 
very complex objects to detect, analyze, and describe in a useful manner for 
automated mapping, guidance, and photointerpretation tasks. 

We have described a technique, based on geometry and shape as the sources of 
knowledge suitable to form and test hypotheses representing instances of a known 
object shape, airport runways, using the line segments and anti-parallel pairs of 
line segments computed from the images. 

We have shown results on two examples that represent the two extremes of 
complexity we have encountered in major commercial airports (the smaller air- 
ports are much easier to analyze). The examples represent a wide spectrum of 
runway types and conditions; different runway surface materials, homogeneous and 
non-homogeneous surfaces; runways with shoulders of same and different materi- 
als and of various widths, and so on. The performance of the technique shows a 
high degree of reliability if good image quality and adequate resolution are 
available. 

We believe that the results shown indicate very good performance and indicate 
that the method will work well on other examples. However, as in other vision 
research projects, it has not been possible for us to test the method on hundreds of 
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images, at least in part because of the difficulty in obtaining the images themselves. 
Also, it must be realized that it is not our contention that the runways can be 
analyzed in isolation. Their detection and description is dependent on the other 
objects in the scene such as the remainder of the transportation network, build- 
ings, and the mobile objects. Interaction among such objects is part of our current 
research. We do believe that the results presented indicate that our method will 
provide very high quality input to the larger system. 

We also believe that our approach will apply to other linear features such as 
taxiways and major highways; our initial experiments are highly promising but not 
complete enough for presentation here. Of course, the verification procedure 
would require properties specific to these features. Taxiways have typically only 
very simple markings (or none at all) and further verification is likely to have to 
make more use of the context, such as whether they connect runways and buildings 
(either directly or through other taxiways). The hypotheses formation step may also 
need to be guided by context when the features are not very distinct. For taxiways, 
an excellent start may be with fragments that are parallel to the detected runways. 
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