
© 1999 William N. Robinson

Requirements Interaction Management

The analysis and management of dependencies among requirements has become a critical area of require-
ments engineering. This survey reviews this area, herein called Requirements Interaction Management.
Requirements interaction management is defined as the set of activities directed towards the discovery, man-
agement, and disposition of critical relationships among sets of requirements. Using this definition, an evo-
lution of supporting concepts and their related literature is presented. An issues-based framework for
reviewing processes and products is presented and applied in the review of the state-of-the-art in require-
ments interaction management. Finally, seven research projects exemplifying requirements interaction man-
agement are presented.

Categories and Subject Descriptors: C.0 [Computer Systems Organization]: General—System architec-
tures, Systems specification methodology; C.4 [Performance Of Systems]—Modeling techniques, Perfor-
mance attributes; D.2.1 [Requirements/Specifications]; D.2.2 [Tools and Techniques]—Computer-aided
software engineering (CASE); D.2.4 [Program Verification]; D.2.9 [Management]—Life cycle, Software
quality assurance (SQA); D.2.10 [Design]; H.1.1 [Models and Principles]: Systems and Information The-
ory; I.2.11 [Artificial Intelligence]

General Terms: Design, Management, Performance, Reliability, Security, Verification

Additional Key Words and Phrases: Requirements Engineering, system specification, system architecture,
Analysis and design, Dependency analysis, Interaction analysis, composite system, WinWin, Telos, distrib-
uted intentionality, Viewpoints, KAOS, deficiency driven design, KATE, Oz, Software Cost Reduction
(SCR).

GSU CIS Working Paper 99-7

August 30, 1999

WILLIAM N. ROBINSON
SUZANNE D. PAWLOWSKI
VECHESLAV VOLKOV
Department of Computer Information Systems, Georgia State University, Atlanta, GA 30302; wrobinson@gsu.edu

+1 404 651 3867
http://cis.gsu.edu/~wrobinso

ii

TABLE OF CONTENTS
Section Page No.

1 INTRODUCTION 1
1.1 Understanding Interactions 1
1.2 A History of Problems 2
1.3 Influencing Factors 3
1.4 Article Overview 4

2 REQUIREMENTS INTERACTION MANAGEMENT - DEFINITION AND SCOPE 5
2.1 Requirements 5

2.1.1 Requirement Satisfaction 6
2.2 Interaction 6

2.2.1 Basis of interaction 8
2.2.2 Degree of interaction 8
2.2.3 Probability of interaction 9

2.3 Requirements Interaction Management 9

3 A HISTORICAL PERSPECTIVE OF REQUIREMENTS INTERACTION MANAGEMENT 11
3.1 Evolution of Concepts Supporting Requirements Interaction Management 11
3.2 Disciplines Influencing Interaction Management Research 13

3.2.1 Software Development 14
3.2.2 Database Research 15
3.2.3 Knowledge Acquisition and Representation 15
3.2.4 Artificial Intelligence 15
3.2.5 Negotiation Support Systems 16
3.2.6 Social Conflict and Negotiation 16
3.2.7 Individual Decision Making 16

4 PROCESSES OF REQUIREMENT INTERACTION MANAGEMENT 16
4.1 Requirements Partitioning 17
4.2 Interaction Identification 18

4.2.1 Uses of the Term “Conflict” 18
4.2.2 Conflict Detection Methods 20

4.3 Interaction Focus 23
4.4 Resolution Generation 24

4.4.1 Conflict Resolution Methods 25
4.5 Resolution Selection 25
4.6 Requirements Interaction Management 27

5 PRODUCTS OF REQUIREMENT INTERACTION MANAGEMENT 28
5.1 Requirements for a Distributed Meeting Scheduler 28
5.2 A Simple Ontology for Requirement Interaction 29
5.3 Anatomy of an Interaction 31

5.3.1 Interaction and definition 32
5.3.2 Condition 32
5.3.3 Qualifications 32

5.4 Instantiating the Requirement Interaction Ontology 32
5.5 Summary 33

iii

6 PROJECTS ILLUSTRATIVE OF REQUIREMENTS INTERACTION MANAGEMENT 33
6.1 WinWin 35

6.1.1 Processes 36
6.1.2 Products 37
6.1.3 Case-Study Results 37

6.2 Non-Functional Agent Oriented Requirements 38
6.2.1 Products 38
6.2.2 Process 40

6.3 Viewpoints 41
6.3.1 Products 41
6.3.2 Process 42

6.4 KAOS 42
6.4.1 Products 42
6.4.2 Process 43

6.5 Deficiency-Driven Requirements Analysis 47
6.5.1 Products 48
6.5.2 Process 48

6.6 Software Cost Reduction 49
6.6.1 Products 50
6.6.2 Process 51

6.7 M-Telos 52
6.7.1 Products 52
6.7.2 Process 54

7 CONCLUSIONS 54

© 1999 William N. Robinson 1

Requirements Interaction Management GSU CIS 99-7

1 INTRODUCTION

An objective of requirements engineering (RE) has been to improve systems modeling and analy-
sis capabilities so that critical aspects of systems can be understood prior to system construction.
To that end, RE research spans a wide range of topics. One such topic, of increasing importance, is
requirements interaction management.

The purpose of this article is to present a survey of this evolving and important research—work
that focuses on the relationships, or interactions, among sets of requirements—an area that the
authors have labeled Requirements Interaction Management.1

Requirements Interaction Management is the set of activities directed towards the discovery, man-
agement, and disposition of critical relationships among sets of system or software requirements.

Although the term Requirements Interaction Management is new, the topics and issues it encom-
passes have long been recognized as crucial to achieving the objective of a requirements specifica-
tion that is complete, consistent, and correct.

1.1 Understanding Interactions

Analyzing the extent to which multiple requirements can be satisfied simultaneously has been a
challenge for requirements engineering. While single requirement methods have been devel-
oped—for example, to minimize network latency or maximize network throughput—such meth-
ods typically apply to one or few requirements.

Requirements can interact, often interfering with their achievement. For example, individually
two requirements may be achieved on a single processor, but simultaneously achieving both can
lead to processor thrashing and the achievement of neither. More generally, a requirement may: (1)
deplete a shared resource, (2) remove a pre-condition of another requirement, (3) remove the
achieved effect of another requirement, or (4) have other interfering actions.

Modern systems are composed of many components, each of which has many requirements.
Moreover, with the growth of object-oriented methods and networked system deployment, compo-
nent interactions will increase. Satisfactorily achieving all system requirements through compo-
nent composition is extremely difficult. Achieving certain requirements for one system component
can detract from the requirements of other system components. Discovering, tracking, and resolv-
ing requirement interactions among system components at requirements definition time remains
an open problem.

As Fred R. Brooks indicates, requirements definition is difficult.

The hardest single part of building a software system is deciding precisely what to build. No other
part of the conceptual work is as difficult as establishing the detailed technical requirements...No
other part of the work so cripples the resulting system if done wrong. No other part is as difficult to
rectify later. [25]

As Peter G. Neumann suggests, such difficulty is only increased when there are multiple interac-
tion requirements.

The satisfaction of a single requirement is difficult enough, but the simultaneous and continued satis-
faction of diverse and possibly conflicting requirements is typically much more difficult. [184]

Despite the importance of the problem, the current state of the art in suffers three major problems,
as noted by Axel van Lamsweerde[266].

1 This is not a survey on the field of requirements engineering. For a general discussion of RE, see [197].

Introduction 2

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

1) The specific kind of interaction being considered is not always clear.
2) There is a lack of systematic techniques for detecting conflicts among non-operational requirements.
3) There is a lack of systematic techniques for resolving negative interactions.
From this brief introduction, Requirements Interaction Management may seem quite similar to

the area of Feature Interaction. In fact, both areas are concerned with the detection and resolution
of negative interactions. However, the area of Feature Interaction has a narrower view of require-
ments. Feature Interaction is concerned with the composition and analysis of telephony features,
where a feature is “an optional unit or increment of functionality.”[285] (For example, Call Wait-
ing or Three Way Calling.) In the context of a whole system, features would be composed on mul-
tiple requirements. However, Feature Interaction has not considered non-functional requirements.
Rather, it has focused on the functional interference among features. As will be described,
Requirements Interaction Management includes all types of interactions analysis, as well as how
such analysis is managed as part of the overall development life-cycle.

1.2 A History of Problems

In general, requirements errors are: numerous, ranging from 25 percent to 70 percent of total soft-
ware errors—in US companies, averaging one per function point[120]; persistent, 2/3 of them are
detected after delivery; and expensive, fixing requirements errors can cost up to 1/3 of the total
production cost[20]. Moreover, many systems failures have been are attributed to poor analysis of
requirement interactions[119][155][184].

In general, failures of system interactions can be distinguished from simple component fail-
ures[196]. As Nancy G. Leveson observes,

Whereas in the past, component failure was cited as the major factor in accidents, today more acci-
dents result from dangerous design characteristics and interaction among components[94].—p. 9
[146]

Leveson documents several cases where safety requirements were given lesser priority than other
requirements. For example, for the Therac-25 computer controlled radiation therapy machine, sys-
tem efficiency was given a higher consideration than some safety features.

The software did not contain self-checks or other error-detection and error-handling features that
would have detected the inconsistencies and coding errors. Audit trails were eliminated because of a
lack of memory. —p. 550 [146]

The Therac-25 reused software from the prior Therac versions; however, the newer Therac-25 did
not have the same hardware characteristics. This, in part, lead to the overdosing of six people from
1985 to 1987[146]. Leveson reminders us that,

A naive assumption is often made that reusing software or using commercial off-the-self software will
increase safety because the software will have been exercised extensively. Reusing software mod-
ules does not guarantee safety in the new system to which they are transferred and sometimes leads
to awkward and dangerous designs.—p. 552 [146]

Unfortunately, a similar reuse of software led to the destruction of the Ariane 5
launcher[149][188]. Often, the rush to complete a system leads to the dropping of “lesser” non-
functional requirements, such as safety or reliability.

Sometimes, interactions between requirements are explicitly considered, yet failures still occur.
For example, consider the tradeoff between flight safety, where braking is not to be allowed, and
landing safety, where braking is a must. To ensure that pilots did not inadvertently engage the
A320’s braking system, the software required that the airplane’s weight be detected on the wheels.

Introduction 3

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

However, this failed when a pilot attempted to land on a wet, wind-blown runway where the full
weight of the plane was not detected[138][139].

[...] the spoilers, brakes and reverse thrust were disabled for up to 9 seconds after landing in a
storm on a waterlogged runway, and the airplane ran off the end of the runway and into a conve-
niently placed earth bank, with resulting injuries and loss of life.—[139]

System failures, such as the Therac-25, the Lufthansa A320 in Warsaw, and many others arose
from (often implicit) undesirable interactions among requirements. A goal of requirement interac-
tion management is to make such critical requirement interactions more obvious during the
requirements analysis phase.

1.3 Influencing Factors2

At first glance, it may appear simple to support requirement interaction analysis. One need simply
formalize the requirements, or at least structure them. Then a computer aided software engineering
tool can check the syntax and consistency of the requirements. While Computer Aided Software
Engineering (CASE) tools have been successful in providing support for modeling and code gen-
eration[33][143][185], they have been less successful in supporting requirements analysis[143].3

Moreover, requirements analysis is not just about checking the consistency of descriptions. In fact,
it is generally desirable to represent inconsistent requirements. This is because requirements repre-
sent the needs of system stakeholders—needs that are often inconsistent.

Inconsistency[187], conflict, break-down[278], cognitive dissonance[63]—these are terms that
characterize aspects of uncovering unexpected ideas during problem solving. These, and other
terms, have been used throughout the requirements engineering literature. (See section 4.2.1.) The
general concept of “conflict” has been characterized as a key driver of group communication and
productive work[212]. Conflict has been empirically shown to be a driver of systems develop-
ment[155][163][231] and, more specifically, requirements development[12][128][160][222].

Two basic forces give rise to requirements “conflicts”. First, the technical nature of constructing
a requirements document gives rise to inconsistency—“any situation in which two parts of a
[requirements] specification do not obey some relationship that should hold between them”[53].
Second, the social nature of constructing a requirements document gives rise to conflict—require-
ments held by two or more stakeholders that cause an inconsistency. Applying the general conven-
tion in RE, we use the term conflict to indicate all types of requirements inconsistencies and
conflicts unless the context calls for the use of a more specific term.

Technical and social forces give rise to conflicts that drive essential difficulties of requirements
engineering. By managing conflicts, one can manage a key aspect of requirements engineering.
Specific problem types will illustrate.

Consider three technical problems that lead to requirements conflicts.
• Voluminous requirements. The shear size of a requirements document can lead to conflicts,

such as varied used of terminology. This is especially true as requirements are modified.
• Changing requirements and analysts. As a requirements document is developed, new

requirements are added, older ones are updated. One change request can lead to a cascade of
other change requests until the requirements reach a more consistent state. As a result, the doc-
ument is typically in a transitory state where many semantic conflicts exist, of which most are

2 This subsection based on a subsection in [226].
3 In fact, the downstream life-cycle successes of these tools may be one of the reasons that systems analysts spend a

greater percent of the time on requirements analysis than ever before[89].

Introduction 4

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

expected to be resolved simply by bringing them to the current state as (implicitly) understood
by the analysts. Unfortunately, the implicit current state of requirements is lost when analysts
leave a long term project. Moreover, requirement concepts and their expressions vary with the
composition of team members. Such changes introduce conflicts.

• Complex requirements. The complexity of the domain or software specification can make it
difficult to understand exactly what has been specified or how components interact. Implicit
requirement dependencies often hide requirements conflicts.

Consider three social problems that lead to requirement conflicts:
• Conflicting stakeholder requirements. Different stakeholders often seek different require-

ments that cannot be mutually achieved. This problem is exacerbated by changing stakehold-
ers.

• Changing and unidentified stakeholders. In the attempt to understand system requirements,
analysts often seek new stakeholders for an ongoing project. Analysts report that they can
understand system requirements when interacting with actual users; however, such access can
be difficult to come by[153]. Moreover, one department of an organization may claim to be
“the” customer; however, when it comes to the final purchase decision, it may be another
department[153]. Such organizational interactions can lead to drastic changes in the require-
ments.

• Changing expectations. In addition to the technical problem of tracking changed require-
ments, there is the social problem of informing stakeholders of the consequences of changes, as
well as managing stakeholders’ requests and their expectations of change. Research shows that
user behavioral participation and psychological involvement have a positive effect on user sat-
isfaction of development products[10]. User participation is particularly effective during
requirements development[128][145][150][160][167].

Requirements interaction management attempts to address such technical and social problems as
part of a strategy to manage the conflicts that contribute to the essential difficulties of require-
ments engineering. Requirements interaction management can address many of the problems by
supporting requirements tractability in a dynamic, multi-stakeholder environment. For example,
by tracking the statements asserted by analysts and stakeholders as they enact a requirements dia-
log, one can manage voluminous requirements, and visualize the changes in requirements, the
analyst team, or system stakeholders. Problems that are more social can also be addressed. For
example, by tracking stakeholder statements, one can find trends (e.g., convergence or divergence)
of expectations. Requirements interaction management tools can even support the detection and
resolution of multi-stakeholder requirement conflicts (see section 6).

1.4 Article Overview

This survey is presented in three major themes. First, requirements interaction management is
defined based on its terms (§2) and history (§3). Second, basic research themes involving the pro-
cesses (§4) and products (§5) of requirements interaction management are presented. Third,
research projects illustrative of requirements interaction management are summarized (§6).
Finally, the article concludes (§7) that requirements interaction management has become a critical
area of requirements engineering. whose methods will lead to the development of systems with
higher stakeholder satisfaction and fewer failures.

Requirements Interaction Management - Definition and scope 5

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

2 REQUIREMENTS INTERACTION MANAGEMENT - DEFINITION AND SCOPE

Requirements are descriptions of needs. Components are implementations that can satisfy require-
ments. Requirement interactions can be understood through direct comparisons of requirements
descriptions, or analyses of their underlying components. Requirements interaction management
concerns the management of activities that uncover and resolve requirement interactions. In this
section we elaborate on the definition of requirements interaction management, beginning with
definitions used for the three words that compose this term.

2.1 Requirements

The term, requirement, has been defined a number of ways, each emphasizing different aspects of
requirements engineering[284]. Central to the definition is a user, or stakeholder, need. For exam-
ple, Davis states that a requirement is “a user need or a necessary feature, function, or attribute of
a system that can be sensed from a position external to that system”[45]. The IEEE standard 610
(1990) has a similar definition:

• A condition or capacity needed by a user to solve a problem or achieve an objective
• A condition or capacity that must be met or possessed by a system or systems component to

satisfy a contract, standard, specification or other formally imposed documents
• A documented representation of a condition or capability as in 1 or 2

Such a broad definition includes important specialized requirement types. Each specialized
requirement type distinguishes an important aspect of a requirement definition. Below, are com-
mon distinctions that can be used to categorize requirements. (For a more refined description, see
[197].)
• System. Requirements may be distinguished based on the type of system they describe. For

example, hardware requirements, software requirements, and requirements on system users.
There may even be development requirements concerning the development process (e.g., cost
effective, timely) or development aspects of the resulting product (e.g., reusable, maintainable,
portable).

• Functional. Requirements may be distinguished based on the form of computation that they
describe. Functional requirements describe a function (or process) as a relationship between
inputs and the resulting outputs.

• Non-functional. Requirements may also be distinguished in that they do not define a function,
but instead they describe attributes of the execution of a function, such a efficiency and reliabil-
ity. Non-functional requirements are sometimes referred to as system (or software) qualities.

• Informational. Requirements may be distinguished in that they define information, or data,
rather than how data is manipulated through functions.

• Abstraction. Requirements may be distinguished based on the abstraction level of their descrip-
tion. A requirement may be further defined by add new details defined in more specialized sub-
requirements. Through specialization of abstract requirements, or generalization of detailed
requirement, a requirement abstraction hierarchy can be defined.

• Development properties. Requirements may be distinguished based on their development prop-
erties. For example, a requirement may have just been proposed. Later, it may be accepted or
rejected.

• Representational properties. Requirements may be distinguished based on their representation.
A requirement may begin as an informal sketch, then become a natural language sentence (e.g.,
“The system shall ...”). Finally, more formal representations, such as UML, Z, or predicate cal-

Requirements Interaction Management - Definition and scope 6

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

culus, may be used to express a requirement.

2.1.1 Requirement Satisfaction
A requirement is satisfied by a component if the (implemented) component exhibits all the proper-
ties specified in the requirement—components operationalize requirements. Consider the follow-
ing simple requirement.4

Requirement UseMSWindowSystemPlatform with
InformalDef

id : "The system shall run on MS Windows 95."
End

Now, consider a component that satisfies the requirement.
Object NEC6260WindowsNotebook with
InformalDef

id : "The NEC 6260 Notebook running MS Windows 95."
End

The component is a concrete instantiation that satisfies the requirement; e.g.,
NEC6260WindowsNotebook satisfies UseMSWindowSystemPlatform.

Requirements can be partially satisfied. The degree of satisfaction that a requirement, R, derives
from a component, C, can be mapped onto a range:

SatR : C → [0,1]
The above characterization is a utility function for requirement R. Utility theory provides a means
to formalize the value a requirement obtains from a component[126]. In terms of requirement sat-
isfaction, a 100 percent utility means that a component, C, satisfies requirement R completely.

Fuzzy set theory provides a means to formalize requirement satisfaction into linguistic terms,
such as high, or low. Using fuzzy set theory, a mapping from component satisfaction to fuzzy sets
can be defined.

FuzzySatR : µB(C)
Above, the satisfaction that a requirement R obtains from component C is mapped onto the fuzzy
set B (e.g., B is the fuzzy set HighSatisfaction[150][151][282]). Both utility theory and fuzzy set the-
ory provide techniques to aggregate requirement satisfaction across a variety of attributes, such as
cost, or reliability.

2.2 Interaction

Two requirements, labeled R1 and R2, are said to interact if (and only if) the satisfaction of one
requirement affects the satisfaction of the other. As indicated above, a component is said to satisfy
a requirement if the component exhibits all the properties specified in the requirement. Thus, if
component C1 satisfies R1 and component C2 satisfies R2, and the run-time behavior of C1 affects
the run-time behavior of C2, then C1 interacts with C2, and indirectly, R1 interacts with R2.

As an illustrative example, consider the above UseMSWindowSystemPlatform requirement and the
following requirement:5

4 The syntax for requirements is a ConceptBase implementation of KAOS (see sections 5 and 6.4). The language allows
for both informal and formal descriptions. Formal aspects of the descriptions will not be considered until section 5.

5 While these requirements are “low-level” and concern system interface components, they are still requirements and
provide a widely accessible introduction to the ideas.

Requirements Interaction Management - Definition and scope 7

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

Requirement UseX11R6Libraries with
InformalDef

id : "The system shall have an interface that is built on the X11R6 windowing libraries."
End

Now, consider two components that individually satisfy each requirement, the above
NEC6260WindowsNotebook component and the following component.

Object GNUX11R6SunLibrary In X11R6Library with
InformalDef

id : "The GNU X11R6 library for Sun UltraSparc Solaris."
End

Each component is a concrete instantiation that satisfies its corresponding requirement; e.g.,
GNUX11R6SunLibrary satisfies UseX11R6Libraries. However, together, the system cannot run. The
GNU X11R6 Sun library for Sun UltraSparc Solaris consists of binary components that cannot be
executed on MS Windows 95—particularly, the NEC 6260 Notebook. Requirements UseMSWin-
dowSystemPlatform and UseX11R6Libraries interact because their corresponding components have a
(negative) interaction.

Interactions may be negative, as illustrative above. Requirement R1 negatively interacts, or con-
flicts, with requirement R2 if the satisfaction of R2 is reduced as the result of satisfying require-
ment R1. Conversely, interactions may be positive, in which case the satisfaction of one
requirement increases the satisfaction of another requirement.

Circumstances may determine how requirements interact. Reconsider the above two require-
ments in relation to the following new component, GNUX11R6WindowsLibrary, to replace
GNUX11R6SunLibrary.

Object GNUX11R6WindowsLibrary In X11R6Library with
InformalDef

id : "The Xserver X11R6 library for MS Windows 95."
End

The binary libraries provided with the Xserver X11R6 library for MS Windows 95 can be exe-
cuted on a MS Windows 95—in fact, that is its purpose. Since many requirements are non-opera-
tional abstractions to be satisfied through components, requirements themselves seldom directly
interact. Rather, requirements interact indirectly through the components that can satisfy them.
(Computer science terms this the intertwining between specification and design[258]. Decision
science terms this the means-ends interdependency[286]. Similarly, AI planning distinguishes
between goals and plans[276].)

Actual requirement interactions are always conditional. Consider two requirements, each a logi-
cal negation of the other: Rx ≡ X and Ry ≡ ¬X. While the two requirements appear to interact (nega-
tively), it may be possible to find component and a context, in which the components do not
interact. A simple solution is turn taking. First, satisfy Rx, then later satisfy Ry.

The above discussion of requirements interaction leads to a basic characterization of require-
ment interaction based on implied operational interactions:
• Perceived interaction. Requirements may be perceived to interact, as their descriptions (seem

to) imply conditions in which the satisfaction of one requirement affects the satisfaction of
another requirement.

• Operational interaction. Requirements do interact as components selected to satisfy them
affect one another.

Requirements Interaction Management - Definition and scope 8

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

Thus, while requirements may appear to interact, their actual interactions can only be determined
through the operational components used to satisfy them.

Interaction is not “all or nothing”. Just as requirement satisfaction can vary in degree, require-
ment interaction can vary in degree, under certain conditions. These other dimensions can further
characterize interaction, as described below.

2.2.1 Basis of interaction
Requirements interact, positively or negatively, through some common dependency. An interac-
tion may concern the requirements description; two requirements may share some common
description, but still have differences in meaning.6 For example, two requirements may assign dif-
ferent values to a common object (e.g., Rz1 ≡ “Z = 5” and Rz2 ≡ “Z = 6”). An interaction may also con-
cern operational dependencies among requirements. For example, two requirements may imply
the consumption of a common scare resource. Individually, each can be satisfied, but there may
not be enough of a resource to satisfy both requirements as the system runs. For example, consider
two requirements of a file server:

Requirement QuickServerResponse with
InformalDef

id : "The file server shall respond to requests within 0.05 seconds."
End

Requirement Serve200Connections with
InformalDef

id : "The file server shall serve up to 200 connections simultaneously."
End

The file server may be able to respond to an individual request quickly or it may be able to serve
200 connections simultaneously. However, the limited resource of CPU cycles may prevent both
requirements from being satisfied simultaneously.

The above interaction is an example of a non-functional performance interaction. That is, the
manner in which the file server responses to requests can become undesirable as the volume of
requests increase. Thus, the types of requirements (§2.1) involved in an interaction can help to
characterize the type of interaction. In general, discovering, categorizing, and resolving such
dependencies in an on-going research problem in requirements interaction management.

2.2.2 Degree of interaction
Some interactions are more problematic than others. For example, the above components
NEC6260WindowsNotebook and GNUX11R6SunLibrary, result in complete system failure. On the
other hand, if component GNUX11R6SunLibrary is replaced by SunSoftMSWindows95Emulator, then
the system can run, albeit somewhat slowly.

Object SunSoftMSWindows95Emulator with
InformalDef

id : "The SunSoft MS Windows 95 emulator."
End

To see this explicitly, add the non-functional requirement, QuickSystemResponse.

6 Conversely, they may not share a common description, but may be intended to describe the same concept[247].

Requirements Interaction Management - Definition and scope 9

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

Requirement QuickSystemResponse with
InformalDef

id : "The system shall have a quick response time."
End

All of the above requirements can be satisfied; however, the use of SunSoftMSWindows95Emulator
to satisfy UseX11R6Libraries implies that UseX11R6Libraries somewhat negatively interacts with
QuickSystemResponse. Thus, interactions have a range of affect, from total disabling of another
requirement, to a moderate reduction of requirement satisfaction. (The same can be said for posi-
tive requirement interaction.) To express such degrees of interaction, researchers have used quali-
tative and fuzzy values. (See section 4.2.1.)

2.2.3 Probability of interaction
The above interactions are static and do not vary with the execution of the system. Conversely,
some interactions will depend on the state of system or the system input. Reconsider the above
two file server requirements, QuickServerResponse and Serve200Connections. Now consider that,
most of the time, the file server can satisfy both requirements. However, if it receives many
requests for large files, it may not have the resources to simultaneously respond to all requests
within the specified time period. Alternatively, the server may have internal conditions that lead to
the failure of the requirements. For example, the server may also have to satisfy a requirement to
archive all files (e.g., to tape) at night. If many file requests occur during the archival process, then
again, the requirements QuickServerResponse and Serve200Connections may not be satisfied. To
express such conditions of interaction, researchers can use probabilities to express the likelihood
of interaction.

While the above dimensions of interaction were expressed in terms of a binary interaction
between two requirements, n-ary interaction can exist, where n is greater than two. As an example,
reconsider the above file server requirements, QuickServerResponse and Serve200Connections. It
may not be the case that QuickServerResponse and Serve200Connections fully consume the CPU
cycles; however, as more requirements are added, there may become a point at which the sum total
of a subset of requirements does fully consume the CPU cycles, after which any new requirement
may create a negative run-time interaction. Of course, expressing, detecting, and resolving n-ary
interaction becomes more difficult with the number of requirements.

2.3 Requirements Interaction Management

The management aspect of Requirements Interaction Management (RIM) concerns the strategic
application of activities for identifying, analyzing, monitoring, documenting, communicating, and
restructuring requirement interactions. The activities may be applied within an ad hoc or defined
process; they may involve the use of special tools and techniques; they may be conducted solely
by analysts or include other stakeholders. In any case, the overall goals of the activities include:
• Early detection and resolution of requirement conflicts.
• Increased system efficiency through resource sharing and utilization.
• Increased and varied stakeholder involvement.
Satisfying these goals leads to an overall reduction in system errors and costs, while increasing
system effectiveness and stakeholder satisfaction.

Requirements interaction management is still being defined. The major subtopics are: represen-
tation, processing, perspectives, and theoretical basis.
• Representation of requirements, interactions, resolutions, and other products. Researchers are

Requirements Interaction Management - Definition and scope 10

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

defining the set of terms, or ontology, that can be used to describe system products.
• Processes for discovery, management, and disposition of interactions. Researchers are defining

techniques, some automated, that can be used to manage interactions. A common goal is to
provide early life-cycle (a.k.a. design-time) analysis rather than address interactions at system
run-time.

• Perspectives, or views of the process and products. Researchers are providing varying views of
requirements and their interactions to different systems stakeholders. Additionally, they are
integrating their products and processes into the encompassing software development life-
cycle.

• Theoretic basis for representation, process, and perspectives. Researchers are augmenting tra-
ditional requirements engineering theories with theories from Database, Artificial Intelligence,
Knowledge Acquisition and Representation, and Social Conflict and Negotiation to establish-
ing a theoretical basis for the support and application of requirements interaction management.

These major areas are summarized in figure 1.
Figure 1 provides a means to classify, or frame, requirements interaction management research.

The framework is interpreted as follows. The theories provide a basis for developing new special-
ized techniques. They are drawn from a variety of disciplines. They include concepts that can be
adapted to requirements interaction management, such as database schema integration. Other con-
cepts include models, ontologies, and formalisms for requirement engineering.

The goals of figure 1 define the scope of the requirements interaction management. The perspec-
tives define the interface to the processes and products that define the technological component of
requirements interaction management. For example, an analyst typically has access to all the pro-
cesses and their products during development, while a system user may be provided with a more
limited view. The processes define the common activities applied to analyze and modify require-

Theories
Information

Systems
Development,

Requirements
Engineering

Operational
interactions

(DB, AI, RE)

Perceived
interactions

(Social conflict)

Goals
Early detection and resolution of

requirement conflicts
Increased system efficiency

through resource sharing and utili-
zation

Increased and varied stakeholder
involvement and satisfaction

Strategy
Resolve conflicts early or late Seek positive requirement interac-

tion prior to conflict resolution

Perspectives
Developer and Stakeholder roles Integration with Methodologies

Processes
Requirement
partitioning

Interaction
Identification

Interaction
Focus

Monitor
Interaction

Resolution
Generation

Resolution
Selection

Requirements
Update

Products
Requirements Interactions Resolutions Rationale

Figure 1. A descriptive framework of requirements interaction management research.

A Historical Perspective of Requirements Interaction Management 11

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

ments according to their interactions. The products include intermediate and final results used dur-
ing the processes.

Figure 2 illustrates the processes of requirements interaction management. It is derived from our
model of automated negotiation, which in turn was derived from a survey of tools and theo-
ries[230]. The description begins with unstructured requirements which may be divided into parti-
tions. Next, interaction identification may provide conflicts which must be resolved; however,
only a subset of interactions will be considered at a time through interaction focusing. Resolution
generation provides alternative ways in which each conflict can be resolved. Then, resolution
selection determines which will become a change request for the requirements document.

The following section 3 introduces common theories and terms of the related theoretical basis.
The details of how specific processes or products have be adapted are deferred until sections 4 - 5.
Section 6 reviews specific projects that illustrate common themes or techniques from requirements
interaction management. Finally, section 7 presents conclusions.

3 A HISTORICAL PERSPECTIVE OF REQUIREMENTS INTERACTION MANAGEMENT

Requirements interaction management has a narrow “systems” focus on interaction management.
However, many of its theories and techniques have been adapted from other disciplines. A
description of the evolution of the prominent concepts, and their related disciplines, is presented
next.

3.1 Evolution of Concepts Supporting Requirements Interaction Management

Table 1 provides a summary of prominent concepts and their evolution into the emerging disci-
pline of requirements interaction management. The concepts are divided into the five categories of
theory, strategy, perspectives, processes, and products.

Many of the theoretical concepts of requirements interaction management theory, such as prefer-
ence, conflict, negotiation, and resolution, are derived from human negotiation[203] and group
decision making[109]. A general overarching tenet of RIM is analogous to that of group decision-
making:

R

R

R

RRequirements Partitioning

Interaction Identification

Interaction Focus Resolution Generation

Resolution Selection

Requirements Update

Figure 2. An illustration of the activities which are managed as part of the requirements interaction management
life-cycle. Each number indicates the section where an activity is introduced.

4.1

4.1

4.2 4.3

4.4

A Historical Perspective of Requirements Interaction Management 12

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

Specifying stakeholder perspectives on system requirements, followed by their negotiated
integration, will result in systems that are both technically better, but are also more
accepted by system stakeholders.

In RIM, techniques from human negotiations have been adapted to assist in the detection and res-
olution of conflicts that arise among requirements. Those domain-specific automated techniques
of the 1980’s, including case-based and rule-base methods, have been generalized[228] and for-
malized[266].

A strategy makes the above tenet of group requirements description operational. For the most
part, current strategies of requirements interaction management consist of attempting to satisfy
system and developmental goals.

Early on, it was recognized that different software development goals: 1) often interact, even
conflict, with each other, and 2) developers can directly satisfy an individual goal, but satisfaction
of multiple goals is more difficult. In 1974, Weinberg and Schulman demonstrated this experimen-
tally[274]. Teams were given one goal to satisfy, including: minimize effort, minimize lines of
code, minimize memory usage, maximize program clarity, and maximize clarity of program out-
put. Each team did best on their given goal—second best in one case. Since then, many software
development goals, and their relationships, have been specified[8][9][20][35][125]. Most recently,
models and tool support have been created to aid in the analysis of software development goal
interactions[19].

Table 1. Evolution of Concepts for Requirements Interaction Management

Before 1970 1970’s 1980’s 1990’s
Theory Codified negotiation tech-

niques: “log rolling”, con-
dition restructuring[203]

Requirements
Negotiation Behavior[12][222]
Negotiation experts:
case-based[260],
rule-based [130]

Domain independent resolution
generation[228]

Strategy
(Goals)

Programming goals[274]
Software qualities[15]

Software development goal
structure[20]

Software quality attributes[8]

Management
by Objec-
tives[49]

Software metrics[86] Software quality interaction
experts[20]

MAUT[205] MCDM program-
ming[286]

MCDM for requirements[221] Software quality architecting[125]

QFD[95] QFD for requirements[108]
Non-functional framework[178]

Perspec-
tives

Multi-view specifica-
tion[174]

Method Engineering[137]
Parallel elaboration[58]

Requirement Viewpoints[187]

Process programming[195] Process compliance[56]
Interaction monitoring[69]

Products Requirements Modeling Lan-
guage[88]
Requirements traceability[198]

Goal oriented requirements[42]
Agent oriented requirements[177]

Processes Goal-based design[123] Goal-based requirements
negotiation[220]
Program slicing[106]

Goal regression for require-
ments[215][266]

Schema integration[11]
Inconsistency dialog[76]

Inconsistency reasoning[189]
Inconsistency framework[40]

Multi-agent planning[85] Agent negotiation[238]

A Historical Perspective of Requirements Interaction Management 13

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

Reasoning about requirements goals has evolved concurrent with the evolution of software
development goals. Multiple Attribute Utility Theory (MAUT)[205], and later Multiple Criteria
Decision Making (MCDM)[221] have provided general decision theoretic techniques that aid in
the elicitation of criteria (a.k.a. goals) and the tradeoffs among them during a decision process.
The more specialized decision technique of Quality Function Deployment[95] has been applied to
requirements analysis (e.g., [108]).

Perspectives, or views, on sets of related requirements have similarly evolved. Approaches, such
as CORE[174], ETHICS[173], and later MultiView[6] and Soft Systems[29] combined both social
and technical aspects of development in the representation of various views of system require-
ments. Algorithmic aspects of representing, comparing, and combining various system views have
been described in Feather’s parallel elaboration work[58], the ViewPoints project[187], and an
ever growing body of related research[73].

Requirements products have also evolved. To support reasoning about requirements interactions
among requirements views, requirements definition languages has evolved. For example, the
Requirements Modeling Language (RML)[88] has given rise to agent[177] and goal[42] oriented
requirements languages. Such languages allow for analyses concerning how actions of external
agents and system agents affect the satisfaction of system requirements.

Finally, requirements interaction analysis processes have also evolved. Many of the require-
ments interaction reasoning techniques have been borrowed from related fields. For example, goal
regression, an AI planning techniques, can be used to uncover certain requirements that are the
root cause of a conflict[266]. Similarly, database schema integration ideas[11] have been adapted
to combine requirement views[254]. Likewise, logics and frameworks for reasoning about logical
inconsistencies have been derived from non-monotonic reasoning[107].

Interaction analysis of Distributed Artificial Intelligence (DAI) agents share some similarity to
the analysis of multiple viewpoint requirements. In the context of a requirements management,
each DAI agent represents a requirement viewpoint and the agent knowledge-base represents the
requirement viewpoint description. Thus, when DAI agents interact to complete shared tasks, their
representation and reasoning is similar to that found in the integration of multiple requirement
viewpoints.

DAI agents can cooperative to complete shared plans[85]. If they reach an inconsistent state,
they may cooperatively negotiate to satisfy other plans[38]. To do so, they may use economic
models to guide their decision making in order to efficiently manage their resources[238]. Such
analysis can be applied to integrate multiple requirement viewpoints.

3.2 Disciplines Influencing Interaction Management Research

Researchers on interaction management can be found within a wide variety of disciplines. Most of
the research is concerned with identifying and managing negative interactions, or conflicts.

To characterize influences on requirements interaction management, we surveyed over 60 pub-
lished articles that were referenced by requirements interaction management articles. These refer-
enced works mainly described theories, techniques, and tools for the management of conflicts
from disciplines ranging from the computer and information sciences to the cognitive and social
sciences. From the articles, we identified seven distinct areas of influence, each of which is further
refined. The presentation of disciplines is based on the relative influence of the disciplines on
RIM, rather than the overall scope or maturity of the discipline. Thus, the relatively small area of
schema integration has as much, if not more, influence as the more established economic theory.

A Historical Perspective of Requirements Interaction Management 14

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

Table 2 summarizes disciplines of influence for research on interaction management. Each disci-
pline is described in the following subsections.

3.2.1 Software Development
Researchers in software development are addressing interaction management in a number of con-
texts, including:
• Requirement consistency. Detection and resolution of requirement inconsistency is a growing

theme of requirements engineering—this theme is further expanded throughout this article. As
exemplars of this type of research, consider the Viewpoints project (section 6.3) that provides a
framework in which rules detect logical inconsistencies among, and within, views of a system
requirements specification.

• Concurrent engineering. Detection and resolution of design differences among the designs of
multifunctional and multidisciplinary teams has been a concern of concurrent engineer-
ing[135]. Quality Function Deployment (QFD) is commonly used to identify interactions, from
those among system requirements, to those among lower level design or production require-
ments[135]. However, other methods, such as heuristic conflict classification and resolution,
have been used to identify and resolve undesirable design interactions[130].

• Feature interaction. Detection and resolution of undesirable functional (feature) interaction is

Table 2. Disciplines Influencing Requirements Interaction Management

Software Development
• Requirements engineering
• Concurrent engineering
• Quality architecting
• Feature interaction

Database Research
• Schema integration
• Schema re-engineering

Knowledge Acquisition and Representation
• Knowledge integration
• Information integration

Artificial Intelligence and Distributed Artificial Intelligence
• Reasoning with inconsistency and incompleteness
• Distributed problem solving, coordination, collaboration

Negotiation Support Systems
• Coordination
• Collaboration
• Group issues: dominance, anonymity

Social Conflict and Negotiation
• Negotiation theory and models
• Negotiation strategies and tactics
• Bargaining and arbitration
• Political negotiation
• Social economics

Individual Decision Making
• Cognitive dissonance theory
• Utility theory

A Historical Perspective of Requirements Interaction Management 15

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

an established part of telephony software development. For example, consider the conflict
between “Caller Number Identification” and “Unlisted Number”. Applying “Caller Number
Identification” provides the receiver of a telephone call with the originating telephone number.
Conversely, applying “Unlisted Number” prevents the originator from supplying the originat-
ing telephone number. Using an AI planning-based scheme of goal hierarchies, it is possible to
generate a resolution where the callee receives the caller’s name, but not their telephone num-
ber. This resolution resolves the conflict among the telephony features.[268]

• Quality architecting. Analysis of how different system architectures affects tradeoffs among
system qualities is a concern of software architects[125]. A method, such as ATAM[125], ana-
lyzes system qualities, such as performance, security, and reliability as a means to determine if
multiple interacting system qualities can be satisfied by a system architecture. If all quality
goals cannot be satisfied, the method helps select an architecture that satisfies most qualities.

3.2.2 Database Research
Researchers in database development are addressing interactions as they arise in schema consis-
tency. Traditionally, a relational database is designed first with multiple views of data, then the
view are combined into a global data schema. As part of the schema integration process, conflicts
among the views are identified[11]. Typically, differences in name or structure are recognized.
Generally, this process has been supported with a defined methodologies[11]; however, tool sup-
port is growing[82][117][118][206].

3.2.3 Knowledge Acquisition and Representation
Researchers in knowledge acquisition and representation are addressing interactions in a number
of contexts, including the following.
• Knowledge integration. Knowledge-bases, such as found in expert systems, should be consis-

tent if they are to support logical reasoning. In support of knowledge consistency, knowledge
gained from multiple experts must be combined and made consistent within the computerized
knowledge-base. Common knowledge integration techniques include the use of metaknowl-
edge, set theoretic analysis, consensus theory, repertory grid analysis, cluster analysis, and
decision theory[24]. For example, a tool have been developed based on repertory grid and per-
sonal construct theory aimed at supporting the derivation of terminological consistency among
experts[246][247].

• Information integration. A knowledge-base system, during its execution, may receive a variety
of inconsistent inputs. To solve its overall task, the system must appropriately deal with these
inconsistencies[96][140]. For example, in a meeting scheduling system, a single person may be
referenced in a number of schedule databases using slightly different names; an information
integration agent can reconcile this by recognizing naming differences[259].

3.2.4 Artificial Intelligence
Researchers in artificial intelligence (AI) and distributed artificial intelligence (DAI) are address-
ing interactions in a number of contexts, including the following.
• Planning. AI planners have had to deal with the conflict between goal satisfaction and the avail-

ability of resources to satisfy a goal. Traditionally, a plan for goal satisfaction has been con-
structed through goal decomposition—the refinement of abstract goals into disjunctions of
conjunctions of more specific subgoals. However, a planner may not be able to construct a plan
for a particular subgoal. To overcome such an obstacle, a planner would traditionally recon-
sider higher-level decompositions and then replace the failed goal decomposition with an alter-

Processes of Requirement Interaction Management 16

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

native goal decomposition[276].
• Distributed agent negotiation. Distributed artificial intelligence has expanded the role of plan-

ning. Multi-agent planning systems identify and resolve plan failures that occur among sets of
loosely coordinated agents (e.g., [38][50][85][134][270]). Again, the method of resolution is
typically subgoal replanning; however, the subgoal failure and replanning is complicated in the
absence of global information.

• Negotiating agents. Researchers in AI, and subsequently DAI, have defined negotiating agents.
Two complimentary research areas have arisen:

• Negotiation analysis knowledge. Case-based reasoning and rule-base programming,
have been used to codify and apply analyses for identifying and resolving conflicts that
arise in a variety of domains, including labor negotiation[261], design integration[130],
and specification integration[229].

• Negotiation protocol knowledge. Frameworks[39][250] and communication proto-
cols[133][141][165][191][238] have been defined for the purpose of coordinating the
sequences of messages among distributed negotiating agents.

3.2.5 Negotiation Support Systems
Researchers in negotiation support systems (NSS) are addressing interactions in the context of
advising a human negotiator or supporting humans gathered around a negotiation table[116][148].
Research ranges from developing a NSS “shell” aimed at supporting the construction of negotia-
tion systems[127][164], to specialized domain support such as airline buyout[243], product mar-
keting[210], or electronic marketplace[281]. Some negotiation support systems have the
intelligent reasoning features of artificial intelligence. Negotiation support systems often focus on
human aspects of negotiation including dominance and anonymity of participants.

3.2.6 Social Conflict and Negotiation
Much of the above research has been influenced by theories and studies of conflict and negotiation
among humans. Such knowledge provides a background in persuasion[79], negotiation[203][204],
and decision making[109][205] from which computerized models can be derived.

3.2.7 Individual Decision Making
The general discipline of individual decision making has influenced the basic theories of interac-
tion management research. Multi-attribute utility theory suggest how an individual can trade-off
various interacting goal to maximize their overall utility[205]. Some decision models consider the
dynamic aspects of this process. For example, as individual learns of the trade-offs among goals,
that individual may reconsider the value, or weight, they place on individual goals[286].

4 PROCESSES OF REQUIREMENT INTERACTION MANAGEMENT

The overall process of requirements interaction management may be subdivided into six activities,
as illustrated previously in figure 2. In the initial process, unstructured requirements may be
divided into partitions. Next, interaction identification may provide conflicts that must be
resolved; however, a subset of interactions will be considered at a time through interaction focus-
ing. Resolution generation provides alternative ways in which each conflict can be resolved, then
resolution selection determines which will become a change request for the requirements.
Research issues arising from each of these activities are presented in subsequent subsections (4.1
through 4.6).

Processes of Requirement Interaction Management 17

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

4.1 Requirements Partitioning

Given a document with a great many requirements, requirements partitioning seeks to focus inter-
action analysis on manageable requirement subsets. This is important, as analysis of all interac-
tions among all requirements can involve significant computation; for n requirements, there are
n(n-1)/2 binary comparisons. Partitioning seeks to divide this problem into a set (or tree) or
smaller problems. Requirement partitioning gives rise to the following issues.

I 1. By what measure should a requirements document be partitioned into subsets which enhance analy-
sis?

Problem partitioning, based on subgoals or function decomposition, has been considered by
most computer science communities (e.g., distributed artificial intelligence [83]). In composite
system design, the cross-product of function partitioning and agent responsibility has used to par-
tition requirements[58]. Similarly, one could apply the concept of the machine-environment
boundary for partitioning[284]. Other requirements attributes can be used. For example, analysts
can attribute requirements according to a predefined classification of common non-functional
attributes of software. Then, one can restrict comparisons to requirements with similar quality
attributes[19]. Partitioning based on stakeholder perspectives (or views) is a commonly used natu-
ral partitioning based on the originating source of the stated requirements[29][87]. Other partitions
been based on scenarios[201], and the use of requirement subsumption to derive root require-
ments[225]. Finally, partitions have been based on some a priori analysis (e.g., issues [279]). For
example, Easterbrook has defined partitions based on consistency—a type of truth maintenance
system for requirements; however, since it is based on requirements consistency (a type of interac-
tion), the partition is the result of interaction analysis and not the input to it[51].

I 2. How can an analyst select requirements with certain characteristics?

Given some characterization of each partition, database and keyword search technology has
been used to partition the requirements. For example, commercial tools can apply database tech-
nology to select subsets of requirements based on requirement attributes. Difficulties arise when
the requirements are not attributed a priori with necessary characteristics. In such cases, require-
ments can be partitioned based on keywords found in each requirement. However, the presence of
a keyword does not necessarily indicate that the key characteristic is present in the requirement.
Some of such limitations of keyword retrieval have been overcome by concept-based information
retrieval[30][31]. Sometimes requirement subsets are constructed with different terminology, that
can further confound partitioning; for example, where requirements are developed by different
people. In such cases, one can fall back on statistical measures of usage to generate mappings
among terms[247].

I 3. Given a partitioning of requirements, how can analysis of the partitions be ordered to enhance analy-
sis?

Strategies for analyzing a set of requirements partitions are rare. One can apply a general soft-
ware life-cycle strategy; for example, the Spiral Model would consider the riskiest partitions
first[21].

Processes of Requirement Interaction Management 18

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

4.2 Interaction Identification

Given a set of requirements, requirements interaction identification seeks to determine require-
ments which are mutually incompatible in that they imply systemic failures in the resulting opera-
tional system. A search for such interactions gives rise to the following issues.

I 4. What are the kinds of requirements interactions that occur?

A variety of fields have contributed to a growing ontology of interaction types. Artificial intelli-
gence planning concepts often serve as the basis, including types such as: goal/subgoal and goal
conflict. Goal conflict itself is explained in terms of conditions, or resources, of operators that
attempt to achieve a goal; for example, goals may conflict because operators, which satisfy the
goals individually, have interfering preconditions when their simultaneous achievement is sought.
Similarly, two requirements may conflict because they mutually deplete the available resources of
an operational system. Many of such planning terms have also been applied to characterize inter-
actions among requirements[202][220][228].

A simple ontology of supports/detracts (i.e., +/-), that simply summarizes the details on how
requirements interact, has been found to be a practical solution[19][35][42][207][279][225]. Such
work has been extended to incorporate fuzzy logic concerning the degree of conflict[282]. More
recently, fault-trees have been considered as the basis for an ontology of interactions types. A fault
tree, such as that concerning human-computer interaction requirements[157], can be considered an
a priori enumeration of common operational failures that occur among human-computer inter-
faces. In a similar fashion, a classification of common interactions among non-functional
attributes of software development has been used to annotate the ways in which requirements con-
flict[19]. Finally, relationships other than conflict have been considered, such as the cost/benefit of
requirements[124].

4.2.1 Uses of the Term “Conflict”
Table 3 summarizes the most general types of interactions found in the requirements engineering
related literature. As would be expected, they are divided into correlation types of positive, nega-
tive, unspecified, and independent.

A more refined analysis of the literature reveals the bases of most interaction relationships.
These include interactions over structure, resources, task, casualty, and time. Table 4 summarizes
these more refined interaction types.

Table 3. Types of Requirement Relationships

Type Description Example
Positive correlation Increasing the satisfaction of R1 increases the

satisfaction of R2.
Some, +, ++,[35]
Influence +[92]

Negative correlation Increasing the satisfaction of R1 decreases the
satisfaction of R2.

Hurts, -, --, [35]
Contradictory
Influence -[92]

Unspecified correlation Changing the satisfaction of R1 has an unspeci-
fied effect on the satisfaction of R2.

Impacts on
Interdependent

No correlation Increasing the satisfaction of R1 has no effect on
the satisfaction of R2.

Neutral

Processes of Requirement Interaction Management 19

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

The interaction types of tables 3 and 4 were derived from our survey of conflicts that are consid-
ered in related literature. A the total of 46 different conflict terms were encountered. These 46
terms were reduced to eighteen different conflict types. These eighteen types were from two broad
categories: syntactic conflicts and semantic conflicts. Syntactic conflicts are those caused by ter-
minology inaccuracies or improper grammar. Semantic conflicts concern the meaning of the con-
cepts; they were divided further into four subcategories. Each sub-category contains a set of
related conflicts that were found in the literature. Table 5 describes these interaction types.

I 5. What kinds of analyses can be applied to requirements to uncover requirements interactions?

Techniques for comparing requirements and classifying their interaction type have been auto-
mated. If one has operational requirements, then program slicing can be used to show semantic
differences in versions of a common root specification[106][280]. If the requirements are only
represented as non-operational systems goals, then one can apply planning techniques to derive a
plan for the conjunction of the requirements set: 1) if a plan can be found from a given operator
set, then the requirements can be achieved simultaneously, 2) if the planner fails to find a plan, one
can use goal regression to find the reason for the requirements conflict[4][215][263]. Finally, it
may be the case that a set of requirements can be achieved and can fail within the same environ-
ment. One can check for this by planning for the conjunction of some requirements with the nega-
tion of others; if such a plan succeeds, then the requirements can fail as demonstrated by the
plan[4]. Of course, such analysis is only possible if some portion of the system environment has
been formalized in terms of operations and other environmental resources[4]. Such a planning
approach to goal interaction has also been applied to scenario analysis: requirements become plan
goals and the operators of the plan becomes the actions of the scenario. Scenarios can be generated
by considering a variety of plan failures (e.g., precondition failure via resource depletion)[4][157].
Such interaction analysis has also been carried out in the distributed artificial intelligence[83]; for
example, [268][270].

It is not always feasible to rely on a formalized model of the environment to check plan-based
requirements interactions. Sometimes, one only has the semantics inherent in a structured require-
ments document. In such cases, one can use a priori knowledge of commonly occurring require-
ments elements, called an ontology. Such ontological information specifies commonly occurring
entities and their relationships[81][90][192][255]. Using such an ontology, interaction analysis has
two stages: 1) classify the requirements as instances of the ontology, 2) compare the classified
requirements. Such analysis has been automated[253].

Table 4. Basis of Requirement Relationships

Type Description Example
Structure R1 is similar to R2. Duplicate, Alternative.

Resource R1 and R2 depend on the same resource. Resource utilization/
contention

Task R1 describes a dependent task of R2. Subtask, Means/Ends,
Operationalized by, Pre/
Post condition

Causality R1 describes a consequence of R2. Results in

Temporal R1 has a temporal relation to R2. Coincident state, simul-
taneity constraint, pre/
post time relation

Processes of Requirement Interaction Management 20

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

Even with the manual attribution of a limited interaction ontology to requirements interactions,
significant benefits can be gained. For example, an efficient resolution strategy can be automated
based on analyses of a simple five term interaction ontology[225].

4.2.2 Conflict Detection Methods
As indicated above, requirements have been analyzed for their interactions using a variety meth-
ods. Table 6 summarizes five categories of methods. These methods are described in the next sub-
sections.

Table 5. Uses of the Term Conflict from the Literature

Interaction Type Description

Syntax
Conflicts

Synonyms Multiple terms refer to a single concept.

Homonyms A single term refers to multiple concepts.

Mistake Conflict caused by a syntax error which is readily recog-
nized as such.

Semantic
Conflicts

Perception goal High-level goals of agents conflict.

assumption Agents’ assumptions conflict.

domain boundary Agents perceive the boundary of the decision-making do-
main differently. This leads to missing essential concepts for
one agent, and irrelevant present concepts for another.

cognitive conflict Agents judge issues according to different criteria, or assign
different weights to the same criteria.

Communication abstraction level Agents positions cannot be compared or matched because of
different levels of abstraction.

accuracy Agent’s positions have different levels of precision.

circular
justification

Agent’s justification appears circular to another agent.

Resource quantity Resource limit is exceeded, or there is a mismatch between
the desired resource level and provided level.

quality Resource quality attributes are not met.

availability Resource is not available. Conflict varies with consumable/
non-consumable resources, as well as with divisible/indivis-
ible resource. Divisible resources can be shared, and non-
consumable resources can be re-used.

redundancy Multiple resources satisfy the same goal.

Behavior deadlock Conflict stalls a process.

deadline Deadline is violated or cannot be agreed on.

commitment Agents disagree on the commitment level (from breakable to
binding), or a commitment is violated.

normative conflict An agent does not behave in expected or prescribed way. For
example, court decisions should be predictable based on the
past judgments of similar cases.

Processes of Requirement Interaction Management 21

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

4.2.2.1 Domain Model of Binary Interactions
To identify interactions at the requirement level, a domain model of system requirement interac-
tions is necessary. The domain model captures commonly occurring requirement interactions,
such as Completeness Increases Effort; this is illustrated in figure 5 as a thick link between the Com-
pleteness and Effort classes.7 A hierarchy of such binary requirement interactions typically defines
the domain model. Most work on quality interactions uses such binary relationships to indicate
interactions (cf. [19][35][42][207][225]).

Using a domain model of requirement interactions, interaction analysis has two phases: 1) clas-
sify requirements as instances of the domain model, and 2) instantiate the model level interactions
to the requirements. For example, if the domain model indicates that Completeness Increases Effort,
and Completeness and Effort are qualities of two requirements, then there is an Increases interaction
between their Completeness and Effort. This process can be more formally described as follows:

The WinWin tool is probably the most well know requirements tool that uses a domain model of
binary interaction relationships to notify stakeholders of new requirement interactions[19][54].
(Section 6 summarizes the WinWin project, among others.)

4.2.2.2 Domain Model Interaction Patterns
A domain model of binary interactions can lead to inconsistent inferences about interactions.
Reconsider the impact of complete and accurate information (ScheduleInformationCompleteAccurate)
on participant scheduling effort (SchedulerMinimizesParticipantEffort). In general, it may be that Com-
pleteness Increases Effort. However, it may also be that Automation Decreases Effort. For example,
computerized selection and scheduling of a meeting room can both: 1) decrease the effort of meet-
ing participants, and 2) increase schedule information completeness. However, increased com-
pleteness implies increased participant effort, which is not consistent with the a priori interaction,

7 Such links in figure 5 on page 33 are interaction summaries; the complete ontology uses the Interaction class to model all interac-
tions, both at the quality class level and at the requirement instance level.

Table 6. Interaction Analysis Methods

Method Description Example
Domain Model Requirement interactions are found and classified by com-

paring requirements against an a prior model of require-
ment interactions.

WinWin[19],
CDE[130]

Theorem proving Requirement interactions are found by proving assertions
about requirements.

SCR[101],
RSML[147], PVS[256]

Scenario Analysis Requirement interactions are demonstrated by simulating
a sequence of events that represents a narrow aspect of a
system's required behavior.

SCR[101], Spin[104],
CREWS-
SAVRE[159][257]

Modeling checking Requirement interactions are found by exhaustively
searching a state-based model of requirements for speci-
fied properties.

Murphi[47], SMV[168],
Spin[104]

Executing monitoring Requirement interactions are found by monitoring a sys-
tem implementation for certain events that indicate speci-
fied requirement properties.

FLEA[57][62]

InferQualityInteractions (R1,R2) ≡
∀ R1,R2 : REQUIREMENT, ∃ QC1,QC2 : QUALITYCLASS, ∃ Q1,Q2 : QUALITY, ∃ INT1 : INTERACTION,
• (R1 QUALITY Q1) ∧ (Q1 ∈ QC1) ∧ (QC1 INT1 QC2) ∧ (Q2 ∈ QC2) ∧ (R2 QUALITY Q2)
⇒ ∃ INT2 : INTERACTION (Q1 INT2 Q2)

Processes of Requirement Interaction Management 22

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

Completeness Increases Effort. Thus, a domain model of binary interactions is simple to construct,
but its lack of precision can lead to inconsistencies.

A more precise domain model can be created by using interactions patterns. Such patterns pro-
vide context that can be used to augment more generic quality relationships. As an example, con-
sider the following (simplified) interaction pattern.

For all instances of ACTIVITY1, where POSITION1 has a role in ACTIVITY1
and AGENT1 fills POSITION1 and AGENT1 isA COMPUTER and ACTIVITY1 has a post-condition
of INFORMATION and
AGENT2 fills POSITION2 and AGENT2 isA HUMAN and POSITION2 has a role in ACTIVITY2
and ACTIVITY2 has a pre-condition of INFORMATION
POSITION1's ACTIVITY1 decreases POSITION2 ACTIVITY2’s Effort.

Informally, the pattern indicates that an activity performed by a computer agent that produces
information used by a human agent decreases the human agent’s effort. Of course, a multiplicity of
patterns leads to the same problem of inconsistency as found in domain models of binary interac-
tions. However, the precision of the patterns reduces the problem.

The specification tool, Critic[71], and the concurrent requirements analysis tool, CDE[130],
used interactions patterns to detect conflicts. (Section 6.2 summarizes a project that uses domain
independent patterns to classify requirement interactions.)

4.2.2.3 Proof Checking
Correctness and completeness can be verified in requirement specifications described as determin-
istic state machines. Two popular tools, SCR[101] and RSML[147], demonstrate how analytic
techniques can proof safety and liveness properties for such specifications. For example, SCR
(§6.6) has been used to uncover inconsistencies between requirements[13]. Heitmeyer and Man-
droili present an overview of the current state-of-the-art in formal modeling and analysis tools for
software specifications[98].

4.2.2.4 Scenario Analysis
As defined in[267]

A scenario is ... a temporal sequence of interaction events among different agents in the restricted
context of achieving some implicit purpose(s). ... A scenario captures just one particular, fragmentary
instance of behavior of a system.

Since scenarios are representative execution fragments of a system, their outcome may be evalu-
ated relative to requirements. Positive scenarios satisfy requirements, while negative scenarios
illustrate the violation of requirements. A scenario that is both positive and negative can illustrate
a negative interaction among requirements.

Scenario analysis can be used to detect requirements interactions. The user may select a subset
of requirements to be analyzed. Then, a particular scenario can be executed to determine if the
selected requirements are satisfied. If the requirements are not satisfied, then a undesirable interac-
tion has been discovered. For temporal logic requirements and state-based scenarios, such analysis
can be automated using model checking (e.g., Spin[104]). Alternatively, a knowledge-based
approach can suggest scenarios that are likely to generate requirement interactions[159].

4.2.2.5 Model Checking
Model checking provides an intermediate level of analysis between monitoring an actual system
execution and proving general system properties. Model checking is an operational exploration of
state-based models. Thus, it is amenable to the analysis of state-based requirements[161]. Such

Processes of Requirement Interaction Management 23

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

analyses can prove that specified logic conditions will, or will not, occur in a modeled state of a
system satisfying the requirements.

Modeling checking of requirements is typically applied as follows: 1) a portion of the require-
ments specification is translated into a formal automata-based model, 2) important requirements
properties, such as liveness, are defined as logical properties of the model, 3) a model checker
(e.g., Spin[104]) is used to exhaustively check all states of the model for violations of the specified
properties.

Model checking has been used to verify functional requirements; specifically safety, precedence,
or liveness requirements. It has found missing, ambiguous, and erroneous require-
ments[13][97][251]. Moreover, this work can be applied to analysis of implementations. By
instrumenting an implementation to log interesting state changes, a model checker can check the
resulting log files to verify properties of the implementation[28].

4.2.2.6 Execution Monitoring
Requirement level descriptions can be directly analyzed for static properties; however, to analyze
some dynamic properties, the described system behavior can be execute or simulated.

Execution monitoring of requirements is a technique that tracks the run-time behavior of a sys-
tem and notes when it deviates from its design-time specification. Requirements monitoring is
useful when it is too difficult to prove system properties. To aid analysis, assumptions are made as
part of the requirements definition process. These assumptions are monitored at run-time. Should
the assumptions fail, a predefined procedure is invoked (e.g., notification to the designer). Note,
such monitoring is different from exception handling in that it: (1) considers the combined behav-
ior of events occurring in multiple threads or processes, (2) links run-time behavior with the actual
design-time requirements, and (3) provides sufficient information to allow for the run-time recon-
figuration of software or software components.

Fickas and Feather proposed requirements monitoring to track the achievement of requirements
during system execution as part of an architecture to allow the dynamic reconfiguration of compo-
nent software[69]. Feather has produced a working system, called FLEA, that allows one to moni-
tor events defined in a requirements monitoring language[57][62]. FLEA captures interesting
events as assertions in a database. (An external system inserts the assertions into the AP5 data-
base.) When a monitored condition occurs, its defined action is executed. Thus, monitoring mainly
consists of the translation of requirements monitoring descriptions to database triggered actions.

Fickas and Feather illustrate the execution monitoring of requirements in the context of monitor-
ing the requirements of a software license server. When the license server fails to satisfy its
requirements (e.g., a user shall be granted a license in 90% of their requests), due to a change in
the system environment, the system notifies an administrator. Emmerich et. al. (and others [226])
have since illustrated how the technique may be used to monitor process compliance[56]; for
example, organizational compliance to ISO 9000 or IEEE process descriptions[166].

4.3 Interaction Focus

I 6. Given a number of requirements interactions, how can the interactions be partitioned to enhance the
analysis?

Some requirements interactions depend on other requirements interactions. For example, the res-
olution of one conflict may introduce new conflicts into the requirements set; conversely, one res-
olution may remove multiple conflicts.

Processes of Requirement Interaction Management 24

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

Efficient resolution seeks to focus on key interactions. There are a number of measures by which
interactions can be partitioned or ordered for consideration by the resolution generation process.
In general, one seeks to decrease the overall conflict and to minimize rework. To satisfy these
goals, Robinson has ordered requirements by their degree of contentiousness—the percentage of
conflicting interactions that a particular requirement has among all requirements[225]. Next, one
always focuses resolution generation on conflicts which involve requirements with the greatest
total contention. Robinson has shown this to be a strategy that monotonically decreases the overall
conflict in a small requirements document[225]. However, this strategy only considers conflict
dependencies. Other factors, such as requirements importance, are not considered. It may be the
case that a less contentious requirement should be considered first because it must be achieved
exactly as stated (i.e., there is no room for negotiation). Such a case would lead to the strategy of
always considering conflicts that involve requirements with the greatest total importance. How-
ever, the conflict context of low contention requirements is small—there are only a few other
requirements to be considered. Thus, resolutions of low contention requirements may be myopic,
and result in the introduction of new requirements which further exacerbate other conflicts. For
example, in a limited resource environment, assigning all resources to important requirements
solves a few important conflicts, but can introduce many other conflicts. Thus, one may need to
reconsider the importance of a requirement in the face of trade-offs among many other require-
ments. Research into cost-value trade-offs of requirements can assist this process[124].

Requirements interaction can also be partitioned using the same means to partition a large set of
requirements. (See section 4.1.) Thus, one could consider all interactions found in a partition of a:
stakeholder, scenario, requirement subsumption hierarchy, etc. In fact, decision science suggests
that individuals can maximize their own benefit by first understanding and specifying their own
preferences prior to negotiating with others[286]. This suggests that one use stakeholder partition-
ing to resolves intra-partition conflicts prior to inter-partition conflicts. Moreover, negotiation lit-
erature suggests that, in social contexts, the simplest conflicts be resolved first, thereby building
trust among the negotiating participants[203].

4.4 Resolution Generation

I 7. Given requirements interactions, how can resolutions be generated?

Techniques for conflict resolution have been automated[230]. Conflict resolution can be charac-
terized as multiple goal planning problem: given goal sets G1 and G2 held by agents A1 and A2,
respectively, the resolution process attempts to find a combined goal set similar to {G1, G2} that
can be achieved without conflict. Resolution is commonly characterized as a three-tuple: (agents,
goals, environment), where multiple agents seek to achieve goals within an environment—the
environment specifies available operators, resources, and other constraints of the domain. A clas-
sic value-oriented approach to conflict resolution considers alternative goals in order to find a non-
conflicting substitute goal set. If the substitute goals are ordered, then the process of considering
lesser desired goals is called lexicographical ordering[286]. This approach characterizes resolu-
tion generation as a constraint relaxation problem[39][275]. If the goals are arranged in an AND/
OR hierarchy, one can apply replanning to generate alternative goal values[2][268][270].

In addition to altering goal values, one can consider the environment—specifically, the opera-
tors, resources, and other constraints of the domain. Using such a structure-oriented approach,
leads to the consideration of new operators and resources, as well as distributing resource usage
over time (i.e., sharing), and other interesting resolutions. This approach, sometimes referred to as

Processes of Requirement Interaction Management 25

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

“lateral thinking” or “out of the box thinking”[79], is considered more likely to lead to an optimal
resolution, than the value-oriented approach[127][203]. Thus, it is not surprising that a number of
knowledge-based agents use some form of problem restructuring to generate resolu-
tions[127][130][164][260][261]. 8

The structure-oriented approach has be implemented by matching new conflicts with a domain-
dependent case-base containing associations of previous conflicts and their resolu-
tions[130][260][261]. New resolutions can be derived from previous resolutions of similar cases.
Another implementation approach encodes structure-oriented resolution knowledge into a
domain-dependent rule-based system[127][164]. Such restructuring transformations can be gener-
alized using basic negotiation principles. A theory-based, rather than domain-based, approach
overcomes problems attributed to the narrow expertise of expert systems[27]. Negotiation theory-
based domain-independent transformations apply across application domains and still apply when
faced with new, unforeseen circumstances. This is the approach has been recently
explored[218][228][266]. (For example, see section 6.4.)

4.4.1 Conflict Resolution Methods
Table 7 summarizes conflict resolution methods found in the requirements engineering related lit-
erature. The six categories were derived from approximately 29 methods mentioned in the litera-
ture, of which approximately 11 unique methods were identified. (Section 6 summarizes projects
that use these methods; see table 9 in section 6.)

4.5 Resolution Selection

Resolution generation can present a great many ways to remove a requirements conflict. Resolu-
tion selection seeks to determine how one can select an appropriate resolution, as well as incorpo-
rate the selection measures into an efficient resolution generation technique.

I 8. Given requirements resolutions, how can one select the “best” resolutions?

Decision science theories suggest how one can select the best alternative from a set of alterna-
tives. The classic approach is based on utility—the benefit one derives from an alternative[205].
An overall utility can be decomposed into multiple criteria, to form a multiple criteria utility func-
tion[286].9 If requirements are attributed with scaled non-functional attributes, then stakeholders
can use the attributes to specify that they seek to maximize, minimize, or reach specific attribute
values. Such stakeholder multiple criteria utility functions can be used to derive a preference
ordering among requirements or conflict resolutions. Robinson has demonstrated the value of such
an approach in two different research projects[215][221][218]. (A specialization of this general
approach, based the House of Quality methodology, has also been demonstrated[108].) In addi-
tion, Robinson has demonstrated the value of Zeleny’s Interactive Decision Evolution Aid
(IDEA[286])—an interactive decision procedure which provides feedback on criteria trade-offs
among decision alternatives[215][221][218]. Using the procedure, an analyst does not explicitly

8 Many distributed artificial intelligence projects use the term “negotiation” to describe their work. Typically, the aspect
of negotiation explored concerns explicit[38][39][50][133][165][235][237][242][250] or implicit[232][233][234] com-
munication protocols. Such communication often involves the collaborative sharing of local aspects of a global problem.
However, strategic communication in competitive environments has been explored[191][235]. Nevertheless, the genera-
tion of resolutions to conflict typically involves some form of compromise, goal relaxation, or goal drop-
ping[1][122][136][172][240][275]. (The type of resolution outcome can be characterized independently of the bargaining
architecture which produces it[211].) In general, the main focus of these projects is not on defining new resolution gener-
ation techniques, but on incorporating resolution into a distributed artificial intelligence architecture.

9 An attribute of a requirement is called a criteria in decision science.

Processes of Requirement Interaction Management 26

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

specify trade-offs between criteria. Instead, the analyst simply seeks to improve values of the cur-
rent solution along specific criteria. As part of the search for a good resolution, resolution genera-
tion is invoked to create new alternatives. As this process continues, the analyst will focuses on a
succeedingly narrower solution set. As such, solution optimally is subjectively determined by the
analyst[63][109]. The result can be interpreted as a settlement of trade-offs among stakeholder
positions[221][286].

I 9. Can resolution selection be integrated into resolution generation?

Given knowledge of which resolutions are preferred, it would be efficient to include such infor-
mation into the resolution generation process so that resolution search is limited to the most prom-
ising resolutions. A match-based approach provides for such narrowed search. For example, a
case-base approach can select resolutions based on similar conflict contexts which include similar
preferences[130][260][261]. Similarly, a neural network can learn strategies for generating good
resolutions[191]. However, explanation of the reasoning that lead to a specific resolution can be
difficult under these match-based approaches. Alternatively, the transformations in a transforma-
tion-based approach can provide textual explanations of the reasoning[183] and formal analyses of
the transformations applied (e.g., refinement[43]). Moreover, given selection preferences, one can
incorporate those preferences into preconditions of transformation to make generation more effi-
cient[172].

Table 7. Conflict Resolution Methods

Method Description

Relaxation
generalization
value-range extension

Conflicting requirements are relaxed to expand the range of mutually-satisfactory
options beyond what the original requirements specify.
Generalization involves replacing the conflicting concept with a more general con-
cept. Value-range extension changes the reservation values (prices) of the stake-
holders.

Refinement
specialization

Conflicting requirements are partially satisfied. Assumes that the requirements
can be decomposed (refined) into specialized sub-requirements, some of which
can be satisfied.

Compromise Given a conflict over a value that exists within a domain of values, compromise
finds another substitute value from that domain.

Restructuring
related resource
related requirement
distribution

Restructuring refers to a set of methods that attempt to change the conflict con-
text; they may alter contextual objects in addition to the conflicting requirements.
Restructuring (modifying) resources or requirements that affect the conflicting
requirements can reduce constraining relationships and allow a wider range of
resolution options.
Distribution predicates requirement satisfaction on time, duration, or other contex-
tual resources to allow contextual requirement satisfaction.

Failure Recovery
re-enforcement
re-planning

Failure recovery attempts to restructure the context and to avoid the conflict
entirely.
Re-enforcement refers to restructuring the precondition of the conflict. For exam-
ple, a non-response conflict can be avoided by sending multiple notifications to
the agent. Re-planing refers to choosing an alternative set of requirements in
order to achieve a subordinate requirement (a.k.a., goal).

Other
postponement
abandonment

Conflict resolution can be postponed. In complex interactions, many conflicts and
requirements are interrelated. By resolving postponing a conflict and resolving
other conflicts, the postponed conflict might cease to exist. Alternatively, conflict-
ing requirements can be abandoned.

Processes of Requirement Interaction Management 27

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

4.6 Requirements Interaction Management

The above five subsections are activities that are part of the identification and resolution of
requirements conflicts. These activities themselves raise methodological issues concerning the
context of their use.

I 10.When should the activities (requirements selection through resolution selection) take place?

Methodological guidance as to when and why one should engage in requirements management
activities is rare. Traditional approaches, such as the classic software life-cycle, suggest that inter-
actions should be checked and resolved after any substantial change to a document—especially,
after each phase in the software life-cycle[23]. However, some methodologies explicitly seek
independent, and possibly inconsistent, partitions [29][174][187][228][241]. Nuseibeh summa-
rizes ways in which various software methodologies address conflicts in descriptions, including:
ignoring, circumventing, removing, and ameliorating [186]. He goes on to suggest metrics which
should be tracked as part of inconsistency management, including: likelihood of failures due to
unresolved conflict, and dependent decisions which may be effected by the status of a conflict.
Additionally, it is suggested that non-intrusive “reminders” aid in tracking the status of conflicts.
Unfortunately, if one is to tolerate conflicts for a period of time, the circumstances as to when con-
flict detection and resolution should be applied remains largely unexplored.

I 11.How can automated support for multiple analysts, engaged in the interaction management activities, be
provided?

A number of projects address the management of requirements interactions within a multiple
analyst environment. Chen and Nunamaker have proposed a collaborative CASE environment,
tailoring GroupSystems decision room software, to facilitate requirements development[32].
Using C-CASE, one can track and develop requirements consensus. Potts et. al., have defined the
Inquiry Cycle Model of development to instill some order into analyst dialogs concerning require-
ments interactions—specifically, interactions that arise as part of scenario analysis[201]. Require-
ments are developed in response to discussions consisting of questions, answers, and assumptions.
By tracking these types of dialog elements (and their refinements), dialog is maintained, but
inconsistency, ambiguity, and incompleteness are kept in check through specific development
operations and requirements analysis (e.g., scenario analysis). The ViewPoints project has stimu-
lated substantial research into the management of multiple requirements representa-
tions[73][77][52][174]. At its core, is the representation of multiple development documents
which can use different languages (e.g., dataflow diagrams, petri nets), as well as different stake-
holder perspectives (e.g., Manger, Employee). The WinWin tool provides groupware support for
tracking team development of requirements, including conflict detection and resolution[19][54].
In addition to issue tracking, the tool aids conflict characterization with its hierarchy of common
requirements conflict criteria. There are still other collaborative CASE efforts which use meta-
models to aid analysis across stakeholder perspectives[181][207][93].

In addition to direct support of the analysis of the requirements, a number of projects are indi-
rectly supporting such analysis by giving analyst tools to aid their dialogs about the requirements.
Basic problems of collaborative CASE include: information control, sharing, and monitor-
ing[269]. Collaboration problems include supporting: task, team, and group level analysis[269].
Collaborative tools, such as electronic white-boards and video conferences can capture the dialog
surrounding analysis. Such rationale can be linked to the requirements dialog in a manner similar

Products of Requirement Interaction Management 28

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

to linking source documents to specific requirements[34]. Such collaborative tools can be adapted
to facilitate conflict resolution, as well as capture rationale for selected resolutions.

I 12.How can the status of the activities be monitored: through development? through system operation?

Most collaborative case tools support the tracking of annotations associated with documents. As
such, one can update a document’s annotated status as it passes from one activity to another. Fewer
tools support the explicit specification, achievement, and tracking of methodology goals. For
example, consider the goal of having all requirements have a defined user priority.

(This could be used to support standard PSS05, which specifies that under incremental develop-
ment, all requirements will have a user defined priority[166].) It is desirable to support analysts in
their specification, achievement and tracking of such goals. Emmerich et. al. has illustrated how a
tool can monitor the violation of such methodology goals as part of a process compliance checking
technique[56]. Their work, is built upon Fickas and Feather’s requirements monitoring con-
cept[69]. (See section 4.2.2.6.)

Outside of requirements engineering, workflow and process modeling provide some solutions
for the management of requirements development[248]. It is possible, for example, to generate a
work environment from a hierarchical multi-agent process specification[170]. There has been
some attempt to incorporate such process models into CASE tools[169]. However, these tools
generally aid process enactment, through constraint enforcement. As Leo Osterweil notes:

Experience in studying actual processes, and in attempting to define them, has convinced us that
much of the sequencing of tasks in processes consists of reactions to contingencies, both foreseen
and unexpected.[194]

In response, new research tends to downplay process enforcement and supports the expression and
monitoring of process goals[56][226].

5 PRODUCTS OF REQUIREMENT INTERACTION MANAGEMENT

The products of requirements interaction management are largely descriptions of requirements
and their interactions. Defining a language for such descriptions is a major research effort. In this
section, we present a single requirement ontology that represents an amalgamation of ideas from
projects aimed at addressing requirement interaction management through language. (Section 6
summarizes projects that define such ontologies; see for example, KAOS or i* .)

An ontology is needed to formally define requirements. To support the interaction analyses, the
ontology should allow for the description of functional and non-functional requirements, as well
as other aspects introduced in section 2.1. In addition to the descriptions of requirements, it is
important to capture domain definitions. For example, it may be known a priori that satisfaction of
a particular requirement increases network bandwidth. An important aspect of interaction analysis
involves the application of such a priori domain knowledge to uncover requirement interactions.
(See section 4.2.2.1.)

5.1 Requirements for a Distributed Meeting Scheduler

We introduce an sketch of Requirements for a Distributed Meeting Scheduler as a means by which
to illustrate a requirement ontology and requirement interaction analysis. The meeting scheduler
requirements were chosen because of: (1) the complex multi-stakeholder interactions (e.g., pri-

HavePriority ≡ ∀ R ∈ Requirement, ∃ P ∈ UserPriority • (HasPriority R P)

Products of Requirement Interaction Management 29

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

vacy, responsibility, efficiency), (2) the availability of a widely circulated compact, yet rich,
requirements document[265], and (3) the publication of prior analyses of the case[201][264].

The general problem of the meeting scheduler can be summarized by the introduction to the
requirements[265]

The purpose of a meeting scheduler is to support the organization of meetings—that is, to deter-
mine, for each meeting request, a meeting date and location so that most of the intended participants
will effectively participate. The meeting date and location should thus be as convenient as possible to
all participants. Information about the meeting should also be made available as early as possible to
all potential participants. ...

The remaining requirements of the four-page baseline description refine the roles of the meeting
scheduler and participants. However, this introduction will be sufficient to understand the exam-
ples that follow.

5.2 A Simple Ontology for Requirement Interaction

Figure 3 illustrates a simple requirement ontology that provides for the expression of requirements
and their interactions.10 Most objects are classified as resources. Resource subclasses include
agent, position, and activity; other subclasses, such as organization and information are not shown.
An activity is carried out by an agent who fills a position within an organization. A position may
have associated roles in which an agent does activities. Resources may be defined through their
attributes, constraints, and qualities. We call such a requirement ontology, a agent-based require-
ment ontology because it expresses requirements as goal states to be achieved by system agents. It
is derived from a synthesis of agent-based requirements ontologies, including the widely applied
ontologies of REMAP[207], KAOS[42] and i* (“distributed intentionality”)[177].

The requirement ontology can be used to express requirements of the distributed meeting sched-
uler. Requirements are expressed in terms of constraints on resources. For example, consider the
following requirement.

Requirement InitiatorKnowsConstraints with
Mode

m : Achieve
InformalDef

id : "A meeting initiator shall know the schedules of the various participants invited to the meeting within
2 days after the meeting initiation."
FormalDef

fd : $ forall m/Meeting, p/Participant, mi/Role, t1/TimePoint
((mi Initiator m) (p Invitee m) (m CreationDate t1)) ==> (Eventually[(mi Knows p!Schedule)/prop,t1+2/

lastDay]) $
End

The requirement InitiatorKnowsConstraints has both an informal definition and a formal definition.
The formal definition. is a set of constraining relationships over the requirement ontology.11 For-
mula types, variables, and attributes become classes, class instances, and class attributes in the
requirement ontology. For example, in the InitiatorKnowsConstraints requirement, a meeting initia-

10 The ontology is illustrated using the Unified Modeling Language (UML) notation.
11 The language defining the formal definitions of these requirements is that of ConceptBase[111]. It is a deductive da-

tabase that provides techniques, such as such arbitrary relationships between objects, recursive processing of objects, and
parameterized query classes. The requirement, InitiatorKnowsConstraints, references the QueryClass Eventually—it imple-
ments the temporal logical operator ◊. A QueryClass is itself an instance of one or more classes. Through its constraint
and isA specification, a QueryClass defines necessary and sufficient conditions for objects that are instances of it. Such
conditions are used to compute the objects that answer the query.

Products of Requirement Interaction Management 30

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

tor, mi, is an instance of the Role class, while a participant instance, p, is an instance of a Participant
class, which in turn, is a subclass of the Role class.

A requirement is formally define through the propositions of its formal definition. As shown in
figure 3, a requirement can be instantiated from a requirement pattern. Moreover, requirements
can be specialized (IsA) and decomposed (and/or).

The requirement ontology can be used to express agent-oriented qualitative requirement goals,
as illustrated in the following requirement.

Requirement MinimizeParticipantSchedulingEffort with
InformalDef

id : "The scheduler shall minimize participant scheduling effort.
End

The above informal requirement can be formalized using a requirement pattern, PositionOptimize-
sAnotherPositionActivityQuality. As shown below, the semantics of such patterns can be expressed in
terms of logical propositions over the requirement ontology.

Figure 3. An illustrative agent-oriented requirement ontology.

RequirementPattern

Resource

Stakeholder

Interaction

Requirement

Role ActivityAgent Position

Quality

1

1..*

and/or

0..*

0..*
post

0..*

0..*

pre

1

0..*

quality

1

0..*

quality

0..*

0..*

responsible

0..*

0..*

satisfy

0..*

0..*operator

0..*

0..*

pre-condition

0..*

0..*

post-condition

1

0..*

fills 1

0..*

fills

0..*

0..*

pre

0..*

0..*

post

Products of Requirement Interaction Management 31

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

RequirementPattern PositionOptimizesAnotherPositionActivityQuality with
parameter

position1, position2 : Role;
activity1 : Activity;
quality1 : Quality

InformalDef
id : "For all instances of POSITION1 and POSITION2, where POSITION2 has a role in ACTIVITY,

POSITION1 should operate another activity (ACTIVITY2) that is part of an interaction that supports
POSITION2's ACTIVITY's QUALITY in reaching its optimum."
FormalDef

fd : $ forall position1,position2/Role
 ((activity1 Operator position2))
 ==> (exist activity2/Activity interaction1/Interaction

 (activity2 Operator position1)
 and (interaction1 PreCondition activity2) and (interaction1 PostCondition activity1)

 (interaction1 quality quality1) and (interaction1 deltaQuality Optimum)) $
end

As shown above, parameters are used to apply the pattern to specific requirements. For example,
the following instantiates the parameters to define a formal requirement for MinimizePartici-
pantSchedulingEffort.

PositionOptimizesAnotherPositionActivityQuality SchedulerOptimizesParticipantSchedulingEffort
[Scheduler/position1,Participant/position2,MeetingScheduling/activity1,Effort/quality1]

End

The above parameterized requirements can be interpreted as follows.
For all instances of SCHEDULER and PARTICIPANT, where PARTICPANT has a role in
MEETINGSCHEDULING, the SCHEDULER should operate another activity that is part of an interaction
that supports
PARTICPANT's MEETINGSCHEDULING EFFORT in reaching its optimum.

Requirements formalized using the ontology can be directly analyzed, as illustrated in section
4.2.2. To describe the resulting requirement interactions, an ontology for requirement interactions
can be used. Next, we present a simple requirement interaction ontology.

5.3 Anatomy of an Interaction

As introduced in section 2.2, a requirement interaction describes a certain type of relationship
between requirements. In part (a) of figure 4, the elements of a requirement interaction are illus-
trated. In part (b) of figure 4, an example requirement interaction is shown. It specifies that how a
requirement on complete information increases participant scheduling effort. That is,
SchedulerOptimizesParticipantSchedulingEffort interacts with the following requirement.

InformationGoal CompleteScheduleInformation with
Mode

m : Optimize
InformalDef

id : "A scheduling decision shall be based on complete information."
FormalDef
fd : $ forall s/Scheduler m/Meeting d/Decision i/Information completeness/CompletenessQuality

((s Scheduling m) and (s Decision d) and (PreCondition d i) and (i Quality completeness))
==> (Maximum[completeness/prop])$

End

Each element of a requirement interaction is described below.

Products of Requirement Interaction Management 32

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

5.3.1 Interaction and definition
Two requirements may be associated in a relationship. As illustrated in figure 4, interaction is sim-
ply the relationship name (e.g., Increases satisfaction). The definition specifies exactly how the two
requirements are related. In the case of Increases satisfaction, the definition may be a function relat-
ing the values of one requirement to another. As illustrated in figure 4, the definition may relate
the two requirements informally or qualitatively (e.g., somewhat of section 4.2.1). However, the
interaction may be defined more precisely as illustrated below.

Increases satisfaction (R1, R2) ≡ U(R1.value) = R2.value

Here, Increases satisfaction is defined with a utility function. Such a representation assumes that the
satisfaction of a requirement can be quantified over a range of values (§2.1.1). Then, the degree of
satisfaction of one requirement can be related to another through a function.

5.3.2 Condition
An interaction may not always be applicable. The condition specifies the circumstances under
which the interaction holds. As the example illustrates in part (b) of figure 4, SchedulerOptimiz-
esParticipantSchedulingEffort is only increased if participant input is required to increase Complete-
ScheduleInformation.

5.3.3 Qualifications
Probabilities, belief values, importance and other qualities may be assigned to an interaction. Fig-
ure 4 illustrates this as interaction qualities. For example, if SchedulerOptimizesPartici-
pantSchedulingEffort increases CompleteScheduleInformation 80 percent of the time, then it could be
represented with a probability of 0.8.

5.4 Instantiating the Requirement Interaction Ontology

Figure 5 illustrates the interaction of figure 4 (part b) as represented in the requirement ontology of
figure 3. The interaction in figure 5 makes the qualities (completeness and effort) more explicit,
while leaving out the conditional aspect of the interaction.12 Given the two requirements, Com-
pleteScheduleInformation and SchedulerOptimizesParticipantSchedulingEffort, and the a prior model
that indicates Completeness increases Effort (described in 4.2.2.1, illustrated in figure 5), an infer-
ence can be made that increased satisfaction of CompleteScheduleInformation will increase the effort
in SchedulerOptimizesParticipantSchedulingEffort.

12 The ontology of figure 3 does not show the details of an interaction. Figure 5 illustrates a limited extension of that
ontology. The figure clarifies qualities, such as completeness and effort, by explicitly representing qualities as attributes
of requirements. Each quality of the interaction has a separate function (in the Quality class) that defines how changes in
scheduling information effect each quality.

Figure 4. Illustrated anatomy of an interaction.

R1 R2

[participant input required] {(belief, 0.9) (importance, 0.7)} Increases satisfaction
CompleteScheduleInformation SchedulerOptimizesParticipantSchedulingEffort

(a)

(b)
[condition] {qualifications} interaction (definition)

Projects Illustrative of Requirements Interaction Management 33

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

5.5 Summary

A requirement interaction ontology provides for the description of how one or more requirements
affect other requirements. Typically, certain properties of a requirement are distinguished as hav-
ing an affect other requirements. For example, satisfaction of security for one requirement may
affect the efficiency of another requirement. Researchers are developing ontologies that include a
useful set of requirement properties and their relationships. Additionally, they are developing a
prior models and algorithms to aid interaction analysis of requirements.

6 PROJECTS ILLUSTRATIVE OF REQUIREMENTS INTERACTION MANAGEMENT

This section summarizes seven projects that illustrate some aspect of requirements interaction
management13 The summaries are not comprehensive. Moreover, the projects are not directly
comparable, as they seek to achieve different research goals. Nevertheless, each project does pro-
vide 1) representations of interactions among requirements, 2) reasoning about interactions, and
the removal of conflicts through requirement modifications, and 3) some computer support for
analysis. Together, the seven project provide an overview of the variety of support that can be pro-
vided for requirements interaction management.

Below, tables 8 and 9, provide a comparative overview of the conflict detection and resolution
support provided the projects. (See sections 4.2.1 and 4.4.1 for a description of the issues.) For
each issue considered, a value of A+, A, M, or N is provided. These values indicate (decreasing)
levels of automated support. For example, deficiency drive design requirements analysis (DDRA)
directly addresses semantic conflicts of assumptions through the Critic tool[71], so it is marked

13 Summaries are current as of 8/1/99.

Figure 5. An illustration of a requirement level interaction.

DeltaQualityInteraction

Requirement

Interaction

Quality

Effort

Accuracy

Completeness

Delta

R13 Completeness

The scheduler shall minimize
participant scheduling effort.

R8

R3 Effort

I1

A scheduling decision shall be based on
complete and accurate information

R13

R13 Accuracy

(Increases)

DQI1

0..*

1

quality

1

0..*

deltaQualityInteraction

1

0..*
quality

0..*

0..*

pre
0..*

0..*

post

F
F

pre

F

Fpost

FF

deltaQualityInteraction

F

F

r8QualityE

F

F

r13QualityC

F

F

r13QualityA

FF FF
Increases -> +

F

F

F

F Increases -> +

F

F

quality

Projects Illustrative of Requirements Interaction Management 34

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

with a “A+”. In contrast, SCR lacks a domain model by which to analyze goal assumptions, so it is
marked with an “N”. Unfortunately, the projects do not directly indicate their support for all
issues. So, some of the values had to be (subjectively) inferred. Thus, the tables should be consid-
ered as the authors opinion. As such, the tables can be used as an index into the literature for read-
ers who seek more detailed information.

Next, in each of the following subsections, a project is summarized in terms of the process and
products of sections 4 and 5, respectively.

a.Key:: M = some support manual, A = some computer automation, A+ = computer automation
specifically designed to solve the problem, N = no support described.
b.KAOS automation is described rather than implemented.

Table 8. Conflict Detection Methods by Projecta

Interaction Type Win-
Win

NFRs View-
Points

KAOSb DDRA SCR M
Telos

Syntax
Conflicts

Synonyms N N M M N A N

Homonyms N N M M N N N

Mistake N N M N N N N

Semantic
Conflicts

Perception goal A+ A+ A+ A+ A+ A A

assumption N M N M A+ N N

domain boundary A+ N A+ N A+ N A+

cognitive conflict A A N N A N N

Communication abstraction level A A N N A N A

accuracy A A N N A N A

circular
justification

N N N N N N N

Resource quantity A A N A A A N

quality A+ A+ N A A N N

availability A A+ N A A A N

redundancy A A+ N A N N N

Behavior deadlock N N N A+ A+ A+ N

deadline N N N A A A+ N

commitment N N N N N N N

normative conflict A A N N A N N

Projects Illustrative of Requirements Interaction Management 35

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

6.1 WinWin

The WinWin project supports collaboration among a wide set of system stakeholders as a means to
improve software development outcomes. Too often, software development solutions satisfy only
a subset of all stakeholders, the “winners”. Table 10 illustrates the distribution of winners and los-
ers for some typical software development solutions.

As a means to have a winning outcome for all stakeholders, the WinWin project is developing
software support for multi-stakeholder requirements analysis and is integrating such analysis into
the larger software development life-cycle.

In WinWin, development of winning stakeholder requirements is a process. Figure 6 illustrates
the overall WinWin process. The process model combines the risk reduction strategy of the spiral
model[21] with the negotiation-oriented philosophy of Theory-W[22]. On each cycle through the
processes in figure 6:
• Stakeholders are identified
• Requirements of each individual stakeholder are identified, called win-conditions.

a.Key:: M = some support manual, A = some computer automation, A+ =
computer automation specifically designed to solve the problem, N = no
support described.
b.KAOS automation is described rather than implemented.

a.Table reproduced from [15].

Table 9. Conflict Resolution Methods By Projecta

Method Win-
Win

NFRs View-
Points

KAOSb DDRA SCR M
Telos

Relaxation
generalization
value-range extension

M N N A+ A+ N N

Refinement
specialization

M N N A+ A+ N N

Compromise M N N A+ A+ N N

Restructuring
related resource
related requirement
distribution

M N N A+ A+ N N

Failure Recovery
re-enforcement
re-planning

M N N A+ A+ N N

Other
postponement
abandonment

M N N A+ A+ N N

Table 10. Frequent Software Development Win-Lose Patternsa

Proposed Solution “Winning” stakeholders “Loosing” Stakeholders
Quick, cheap, sloppy product Developer, Customer User
Lots of features (a.k.a., “bells & whistles”) Developer, User Customer
Driving too hard a bargain Customer, User Developer

Projects Illustrative of Requirements Interaction Management 36

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

• Requirements interactions are identified, called Conflict/Risk/Uncertainty Specifications
(CRU’s), and their resolutions are captured as Point of Agreements (POA’s).

• The product and process descriptions are elaborated according to the new requirements. Alter-
native means of satisfying the new collaborative requirements are considered and selected
based on risk reduction.

• The next cycle of the project is planned, validated, and reviewed.
Three major milestones have been defined for the overall WinWin spiral process model: Life-
Cycle Objectives (LCO), Life-Cycle Architecture (LCA), and Initial Operational Capability
(IOC). Requirements are among the six attributes that characterize each milestone. Stakeholders
must commit to milestones between project inception, elaboration, and construction[16].

6.1.1 Processes
The WinWin project has developed the WinWin tool which provides computer support for collab-
orative stakeholder requirements analysis. Its support can be considered in terms of the processes
described in section 4, as shown below.
• Partitioning. WinWin allows for the partitioning of according to attributes attached to require-

ments. These include, stakeholder ownership and attribute types from a project-defined taxon-
omy of requirement attribute types. Figure 7, presents a summary of one such taxonomy (from
[17]). Each attribute type is also linked to 1) stakeholder roles, 2) inter-attribute relationships,
and 3) strategies for reducing conflict.

Figure 6. The WinWin spiral process model.

1. Identify next level stakeholders

2. Identify stakeholders’ win conditions

3. Reconcile Win conditions.
Establish next level objectives,
constraints, alternatives.

4. Evaluate product and
process alternatives.
Resolve risks.

5. Define next level product and
process - including partitions.

6. Validate product
and process definitions.

7. Review, commitment.

Figure 7. A WinWin project-specific taxonomy of attribute types.

1 Media operations
1.1 Query/Search/Browse
1.2 Access Control
1.3 Audio/Video Operation
1.4 Update/Input
1.9 Others
2 Interface
2.1 COTS (SIRSI, etc.)

2.2 Database (File Access)
2.3 User/Admin. Interface
2.9 Others
3 Administration
3.1 User Management
3.2 Usage Monitoring
3.9 Others
4 Quality

4.1 Response Time
4.2 Reliability
4.3 Security
4.4 Usability
4.5 Interoperability
4.6 Workload
4.7 Cost
4.8 Schedule
4.9 Others

Projects Illustrative of Requirements Interaction Management 37

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

• Stakeholders vary in the importance they place on attribute types. QARCC, a component
of WinWin, pre-defines an association of stakeholder roles to attribute types. For exam-
ple, the User stakeholder role cares about Usability and Performance, while the Devel-
oper stakeholder role cares more about Cost and Schedule[19].

• It may be known a priori that certain attribute types conflict with other attribute types.
(See section 4.2, especially figure 4.) In QARCC, each attribute type has an associated
set of supportive and detracting attribute types. These sets are used in identifying poten-
tial requirement conflicts.

• It may be known a priori that certain attribute types, when in conflict, can have their
conflict reduced through a set of general strategies. In QARCC, each attribute type has
an associated set of textual process and product strategies that stakeholders may consider
when confronted with a conflict.

• Identification. When a requirement (a.k.a. win-condition) is entered into the QARCC compo-
nent of WinWin, a list of potentially conflicting requirements is presented. This list is gener-
ated by: 1) retrieving the attribute types associated with the new requirement, 2) retrieving the
associated set of potentially conflicting attribute types, and 3) finding the set of other require-
ments that have those types[19]. For each such conflict, a Conflict Advisor Note message is
sent to stakeholders who have indicated concern about the attribute type.

• Focus. WinWin artifacts, such as requirements and resolutions, can be sorted by artifact
attributes, such as owner, status, priority, revision date, etc.

• Resolution. When a potential conflict is identified, QARCC can present users with a list of pre-
defined (text) strategies that may apply to the given attribute type conflict. A user may use this
information to define a resolution Option.

• Selection. An resolution Option can be selected from the set of Options (defined by users of
WinWin).

6.1.2 Products
In the WinWin project, the major requirement artifacts include: requirements, conflicts, resolu-
tions, and agreements. Figure 8 illustrates the relationship among them. These classes are also
reflected in the simple requirement ontology of figure 3, section 5.14 In contrast, WinWin has a
limited a priori requirement ontology. For example, in figure 3, classes are used to define the ele-
ments of a requirement (e.g., Activity, Position, Resource) independent of a project. Software
tools can rely on the instantiation of such classes to reason about requirements. (See for example,
the i* project in section 6.2.) In WinWin, such terms are defined in the taxonomy on a project-spe-
cific basis. However, QARCC does have an attribute type taxonomy that includes an a priori
model of requirement interactions and resolution strategies. (These elements are also reflected in
the requirement interaction of figure 5, section 5.) This model enables QARCC to provide lists of
potential requirement conflicts and suggestions on how one might resolve them.

6.1.3 Case-Study Results
Since 1995, the WinWin project has published articles describing case-studies of software analysis
using WinWin. Several results of those case-studies are particularly noteworthy for requirements
interaction management. They include the following observations.

14 In figure 3, a WinWin requirement or resolution is a Requirement, a WinWin conflict is an Interaction, and a WinWin
agreement is a link from a Requirement to a Resolution (not illustrated in figure 3). For a reference on rationale models,
see [208].

Projects Illustrative of Requirements Interaction Management 38

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

• Between 40% and 60% of requirements involve conflicts. In a two year comparison of projects
involving 37 student teams, a significant number of requirements raised conflict[55].

• Most conflicts are simple to resolve. This result seems to depend on the complexity of the
project, domain experience of the stakeholders, and the resource constraints placed on develop-
ment. Moreover, the time to create even a single resolution can be significant. Nevertheless, in
37 WinWin projects, between 45% and 69% of conflicts only required one resolution option
before an agreement was reached[55].

• Developers contribute the most to identifying and resolving conflicts. The stakeholder roles of
User, Customer, and Developer contribute varying ways to the project. Users and Customers
contribute more to requirement identification, while Developers contributed more to conflict
and resolution identification[55].

• System qualities (non-functional requirements) involved the greatest conflict. The next most
controversial attribute type of the taxonomy in figure 7, operations, had nearly half as many
conflicts as did the system qualities[17].

6.2 Non-Functional Agent Oriented Requirements

Since 1992 researchers at (and from) the University of Toronto have published papers on the mod-
eling and analysis of non-functional requirements (NFRs) and agent-oriented requirements
(i*)[178]. Generally, these two topics are presented separately; however, here both are presented
in relation to the overall topic of requirements interaction management.

Formal modeling of high-level business requirements has been the mainstay of this work. With
the Requirements Modeling Language (RML)[88] as a precursor, the Toronto group has devel-
oped and formalized semantics of non-functional requirements, methods for elaborating require-
ments, correlations among requirements, as well as link that analysis into an agent-oriented view
of business requirements.

6.2.1 Products
Figure 9 illustrates functional and non-functional requirements in relation to an i* model of actor-
dependences. Functional requirements, such as ScheduleMeeting, are represented as an AND/OR
hierarchy[179]. Thus, figure 9 illustrates that to achieve ScheduleMeeting, both schedules must be
obtained and a scheduled match must be found.

Figure 8. WinWin artifacts. (Adapted from [17].)

Conflict

Resolution

(issue)

(option)

Agreement
(selected resolution)

Requirement
(win-condition)

covers

involves

adopts

addresses

Taxonomy

Projects Illustrative of Requirements Interaction Management 39

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

Non-functional requirements are illustrated in the middle part of figure 9. Such requirements are
also represented as an AND/OR hierarchy. Non-functional requirements describe qualities of the
functional requirements. Thus, the non-functional requirements of figure 9 are parameterized by
functional requirements.15 For example, the Effort of ScheduleMeeting is determined by the Effort to
obtain calenderInput and the Effort to FindMatching schedules.

Non-functional requirements are linked to the functional requirements via supports (+) or
detracts (-) relationships. For example, Update[calendar] supports the non-functional requirement of
(minimizing) Effort. This can be useful in determining if a non-functional requirement has been
achieved. For example, in the figure, Update[calendar] has been satisfied (indicated with a “4”). If
all AND subrequirements have similarly been satisfied, then the overall requirement is said to be
satisfied. Of course, the satisfaction of other requirements may interfere. From figure 9, it can be
seen that ManuallyObtain[participant,schedule] detracts from the satisfaction of Effort. However, the
figure does not show that ManuallyObtain[participant,schedule] (or its descendents) has been satisfied.
So Effort[calenderInput] is indeed satisfied.

In general, determining the satisfaction of a non-functional requirement can be quite difficult.
Some functional requirements can detract from a NFR while others support it. Moreover, the satis-
faction of one NFR can detract from another NFR. This is illustrated in figure 9 with the negative
link from Effort to Maintainability. It means that satisfying Effort (via minimizing) will detract from
the satisfaction of Maintainability. Despite such complexity, a qualitative label propagation algo-

15 More specifically, non-functional requirements are parameterized by topic. A topic is a class that may be used in, or
constrained by, a requirement. In figure 9, requirement names are used, rather than the more indirect topic names to rein-
force the relationship between non-functional requirements and functional requirements.

Figure 9. An illustration of functional, non-functional requirements, and the i* model.

ScheduleMeeting
[participant]

Obtain
[participant,schedule]

ManuallyObtain
[participant,schedule]

AutomaticallyObtain
[participant,schedule]

FindMatch
[participants,time]

ObtainByEmail Update 4
[calendar]

Effort
[ScheduleMeeting]

Effort
[calendarInput]

Effort
[FindMatch]

+-

Maintainability
[ScheduleMeeting]-

Functional Requirements

Non-Functional Requirements
Participant

ScheduleMeeting

Schedule

Scheduler

has[schedule]

[Participant]

Minimize Effort
[ScheduleMeeting]

i* Dependency Model

Projects Illustrative of Requirements Interaction Management 40

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

rithm has been developed that can determine if a non-functional requirement has been satisfied,
denied, or undetermined[178].

Catalogues of non-functional requirements interactions have been specified[35][37]. The cata-
logues indicate how the satisfaction of one NFR can detract from the satisfaction of another. (See
section 4.2, especially figure 4.) Like most research projects, the catalogues have been project spe-
cific descriptions. However, since the NFR interactions are arranged in a hierarchy of NFR
abstraction parameterized by topic, one may reuse the more abstract NFR descriptions across
projects.

The top of figure 9 illustrates an i* actor-dependency model for the requirements[177]. The
model “views an organization as a network of intentional dependencies among actors in a social
environment.”[283].16 The circles of Participant and Scheduler indicate actors in the model.17 The
four links between the actors indicate their dependencies:
• Goal dependency. The Participant depends on the Scheduler to have the goal has[schedule]. It is

unspecified how the Scheduler may satisfy this goal, but simply that the Participant relies on the
Scheduler to do so.

• Task dependency. The Participant depends on the Scheduler to carry out the task ScheduleMeeting.
One may infer that ScheduleMeeting is a task that implements the functional requirement Sched-
uleMeeting[participant] that satisfies the goal has[schedule]; however, such inter-model relation-
ships have not been defined as of yet.

• Softgoal dependency. The Participant depends on the Scheduler to perform some task that satis-
fies the softgoal Effort[ScheduleMeeting]. Like the goal dependency, the softgoal dependency
does not indicate which task the Scheduler should do in order to satisfy Effort[ScheduleMeeting].

• Resource dependency. The Scheduler depends on the Participant to make the resource Sched-
ule[participant] available.

The dependencies of the i* model provide a context in which functional and non-functional
requirement interactions can be understood in relation to organizational intentions.

6.2.2 Process
The University of Toronto projects have resulted in a number of software prototypes. The collec-
tive support that they could provide can be considered in terms of the processes described in sec-
tion 4, as shown below.
• Partitioning. The NFR framework allows for the partitioning of requirements into functional

and non-functional type hierarchies parameterized by topic classes. Moreover, requirements
can be stored in an object-oriented database[111], so other attributes can be used to partition
requirements. Finally, the interrelationship of the requirements and the i* model can be used to
partition requirements.

• Identification. When a requirement is entered into a NFR support system and associated with
existing NFRs, it can be determined, via the a prior supports and detracts links, which other
requirements are affected. Moreover, these effects can be understood within the overall i* orga-
nizational model. Additionally, label propagation from selected requirements can determine the
cumulative effect of requirements on non-functional requirement satisfaction.

• Focus. NFR framework requirements can be sorted by their attributes and relationships. Inter-

16 i* denotes the “distributed intentionality” of the model.
17 The i* model is intended to show the intentional relationships of organizational actors. Thus, a computerized compo-

nent, such as the Scheduler, is rarely shown as it is awkward (although not incorrect) to indicate its intentions. However,
showing the Scheduler in figure 9 completes the illustration of the example.

Projects Illustrative of Requirements Interaction Management 41

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

actions are represented as unattributed relationships, thus interactions can be sorted by the
interaction type and the associated requirements of the interaction.

• Resolution. When a potential conflict is identified within the NFR framework, alternative reso-
lutions can be generated by an analyst and added to the requirements as an OR node.

• Selection. A requirement may be selected as a resolution by marking it as selected (indicated
with a “4”). There is support for recording and analyzing claims, in support or against, a par-
ticular requirement decomposition. Such argumentation may be used to select a require-
ment[36].

6.3 Viewpoints

Since 1992 researchers at (and from) Imperial College have published papers on modeling and
analysis of system descriptions from multiple viewpoints[75]. Their ViewPoint framework pro-
vides a means to partition requirements and analyze relationships between partitions[187].

6.3.1 Products
The ViewPoint framework supports multiple perspectives, or views, of requirements. A view typi-
cally captures only a portion of the overall system description (i.e., a partial specification). More-
over, views of a system can vary in scope, representation, stakeholder ownership, or other
dimensions. Easterbrook and Nuseibeh summarize ViewPoints, as follows[53]:

ViewPoints are loosely coupled, locally managed, distributable objects which encapsulate partial
knowledge about a system and its domain, specified in a particular, suitable representation scheme,
and partial knowledge of the process of development.

Each ViewPoint has the following slots:

• a representation style, the scheme and notation by which the ViewPoint expresses what it can
see;

• a domain, which defines the area of concern addressed by the ViewPoint;
• a specification, the statements expressed in the ViewPoint’s style describing the domain;
• a work plan, which comprises the set of actions by which the specification can be built, and a

process model [74] to guide application of these actions;
• a work record, which contains an annotated history of actions performed on the ViewPoint.

Relationships among ViewPoints can be determined by the application of consistency rules.
These rules are used to detect inconsistencies between ViewPoints. The rules typically apply to
ViewPoints using a common representation, such as data flow diagrams[187] or state transition
diagrams[74]. Each rule has the following form (see [52]):

In words, it can be used to determine if there exists a ViewPoint in the destination, VPD, whose
type is t and domain is d, such that a partial specification of a source ViewPoint, VPS, is related to
VPD by relation ℜ. As an example, the following rule expresses that “Process names must be
unique across all DFDs”[52]:

Complex rules, and interrule relationships, can be expressed within the ViewPoints framework.

∃ VPD(t,d) • {VPS :ps1ℜ VPD ps2}

∃ VPD(DFD,Da) • {VPS :Process.Name ≠ VPD :Process.Name}

Projects Illustrative of Requirements Interaction Management 42

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

6.3.2 Process
As part of the ViewPoints project, a variety of computerized support has been specified in addition
to the software prototype, called the √iewer[190]. The collective support that ViewPoints could
provide can be considered in terms of the processes described in section 4, as shown below.
• Partitioning. The ViewPoints framework allows for the partitioning of requirements into any

subsets an analyst chooses. The framework itself does not provide any categories; rather, it pro-
vides the views into which one can place requirements.

• Identification. Once requirements are represented in ViewPoints, an analyst can apply the con-
sistency rules to determine inconsistencies between ViewPoints.

• Focus. Inconsistencies are associated as postconditions with the rule that generated them. Thus,
inconsistencies are referenced by their consistency rule. It has not been demonstrated how the
framework could prioritize the further analysis or the resolution process. However, interrule
relationships can be used to specify dependencies in the ordered application of consistency
rules [52].

• Resolution. An analyst may generate a resolution by applying a resolution rule that is associ-
ated with the corresponding consistency rule that was violated[52]. Alternatives may be consid-
ered in the scope of a hierarchy of consistent ViewPoints[51]; however, in general, resolution
alternatives are not explicitly represented.

• Selection. A resolution is implicitly selected by the application of resolution rule.

6.4 KAOS

Since 1991 researchers at Université catholique de Louvain have published papers on the KAOS
project (Knowledge Acquisition in autOmated Specification of software) for modeling and analy-
sis system requirements[262]. The project is broad in its scope, and includes: meta-modeling,
specification methodology, learning, and reuse. Here, we summarize the KAOS meta-model
(ontology) and the KAOS paradigm of support for requirements interaction management.

6.4.1 Products
The KAOS language provides two basic levels of descriptions: “an outer semantic net layer for
declaring a concept, its attributes and its various links to other concepts; an inner formal assertion
layer for formally defining the concept.”[43] At the semantic layer, KAOS provides an ontology
similar to that introduced in section 5.2. The KAOS classes are summarized below (cf.,
[42][266]).
• Object. An object is a thing whose instances may evolve from state to state. (An object is simi-

lar to a UML class, in that it has instances whose attributes values can vary over time.) An
object can be specialized to be an entity, relationship, or event depending if the object is auton-
omous, subordinate, or instantaneous, respectively.

• Operation. An operation is an input-output relation over objects; it defines state transitions.
• Agent. An agent is an autonomous object that can perform the operations assigned to it.
• Goal. A goal represents state that a system should meet; sometimes called an objective. Goals

can be refined into an AND/OR directed acyclic graph.
• Requisite, requirement, assumption. A requisite is a goal that can be formulated in terms of

states controllable by an agent. In other words, a requisite is a goal that can be assigned to
agent with the expectation that the agent can satisfy the goal through performing operations. A
requirement is a requisite that has been assigned to a system agent, while an assumption is a
requisite that has been assigned to an environmental agent.

Projects Illustrative of Requirements Interaction Management 43

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

• Scenario. Typically, scenarios show how goals can be achieved. A scenario is a composition of
operation applications. The composition of scenario operations must satisfy the pre- and post-
condition constraints of operations. Additionally, objects can have associated domain invariants
that must be satisfied.

6.4.2 Process
As part of the KAOS project, a variety of computerized support has been specified in addition to
the construction of the software prototype, called the GRAIL[44]. The collective support that
KAOS could provide can be considered in terms of the processes described in section 4, as shown
below.
• Partitioning. All KAOS objects, including requirements, are store in an object-oriented data-

base, so object type and associated attributes can be used to partition requirements[44].
• Identification. A variety of requirements interactions types can be identified within the KAOS

framework. Table 11 summarizes the KAOS inconsistency types. (These are the formalized and
specialized counter parts of the conflict types found in table 5, of section 4.2.1.) In the table,
conflict is defined as a logical inconsistency among assertions. In KAOS, assertions are the log-
ical formulas that formally defined objects, including requirements. Divergence is perhaps the
most interesting of the inconsistency types. As an example, consider a requirement divergence
in resource management requirements (from [266]). A user requirement might state that “if a

Projects Illustrative of Requirements Interaction Management 44

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

user is using a resource, then they will continue to use the resource until is no longer needed”.18

In contrast, library staff might state a requirement that “if a user is using a resource, then she

18 KAOS formal definitions use temporal logic operators[161]. Here, o means in the next state. Other operators are in-
cluded for the previous state (•), some time in the future (◊), some time in the past (u), always in the future (o), always
in the past (n).

Table 11. KAOS Inconsistency Types

Inconsistency Illustration Description
Process-level
deviation

aProcesRule ≡ ∀ r:Requirement, Prop(r)
and in requirements definition:
∃r:Requirement ¬ Prop(r)

A state transition in the RE process that results
in an inconsistency between a RE process rule
and a state of the RE process.

Instance-level
deviation

aRequirement ≡ ∀ x::X, Prop(r)
and in running system:
∃xi:X ¬ Prop(xi)

A state transition in the running system that
results in an inconsistency between a product
level requirement and a state of the running sys-
tem.

Terminology
Clash

Attends(participant, meeting) ∈ SRS1, ∧
Participates(participant, meeting) ∈ SRS1

A single real-world concept is given different
syntactic names in the requirements.

Designation
Clash

Attends ≡ “attending meeting m until the
end” ∈ SRS1, ∧
Attends ≡ “attending part of meeting m” ∈
SRS1,

A single syntactic name in the requirements
specification designates different real-world con-
cepts[284].

Structure
Clash

ExcludedDates ≡ SetOf[TimePoint] ∈ SRS1,
∧
ExcludedDates ≡ SetOf[TimeInterval] ∈
SRS1,

A single real-world concept is represented with
different structures in the requirements specifi-
cation.

Conflict (1) {DomainTheory, ∧1≤n Ai} |– false

(2) ∀i {DomainTheory, ∧j≠i Aj} |–/ false

A conflict among assertions (elements of formal-
ized requirements) occurs within a domain the-
ory when: (1) the set of assertions are logically
inconsistent within the domain, (2) removing any
one of the assertions removes the inconsistency.

Divergence (1) {DomainTheory, B, ∧1≤n Ai} |– false

(2) ∀i {DomainTheory,B, ∧j≠i Aj} |–/ false

(3) ∃ S:Scenario S |= B

A divergence among assertions (elements of for-
malized requirements) occurs within a domain
theory iff there exists a boundary condition B,
such that: (1) the set of assertions are logically
inconsistent within the domain including B, (2)
removing any one of the assertions removes the
inconsistency, and (3) there exists a feasible
scenario S that satisfies B.

Competition aRequirement ≡ ∀ (x:X) A[x]
(1) {DomainTheory, B, ∧i∈I A[xi]} |– false,

for some I (i.e., require instance)
(2) ∀i {DomainTheory,B, ∧i∈J A[xi]} |–/ false,
for any J ⊂ I
(3) ∃ S:Scenario S |= B

Competition is a particular type of divergence
that occurs when different instances A[xi] of the
same universally quantified requirement ∀ x:
A[x] are divergent.

Obstruction (1) {DomainTheory, B, A} |– false
(2) ∀i {DomainTheory,B} |–/ false
(3) ∃ S:Scenario S |= B

An obstruction is a borderline case of diver-
gence in that is only involves one assertion. It
amounts to an obstacle to the satisfaction of a
requirement[200].

∀ u:User, r:Resource
Using(u,r) ⇒ o [Needs(u,r) → Using(u,r)]

Projects Illustrative of Requirements Interaction Management 45

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

will return the resource after some d days.”

While the two requirements are not logically inconsistent, a problem does arise when a user
needs (and uses) a resource for more than d days.

The expression of this problem is a boundary condition—an expression that makes the require-
ments logically inconsistent. Boundary conditions are also be expressed where two instantia-
tions of a requirement compete or where a requirement competes with the environment (i.e., an
obstacle[200]).

Identification techniques. The KAOS framework defines several means of identifying inconsis-
tencies; table 12 summarizes those techniques. In KAOS, detection is a manual procedure;
however, other projects have automated some of the detection techniques[266].
Assertion regression (a.k.a., goal regression[271]) is a particularly interesting divergence detec-
tion technique. It is used to identify a boundary condition, B, that leads to the divergence. Given
rules of the form X ⇒ Y, regression determines what must be true if the rule is to be applied to
satisfy a specific assertion A. Regression is essentially a backward application of a rule. It is
only useful when the right-hand side of the rule, Y, unifies with the assertion, A. That is, the rule
can satisfy A. For example, consider the following rule and goal:

Above, regression amounts to replacing the part of the goal that unifies with the right-hand side
of the rule with the left-hand side of the rule. In general, unifying Y with part of an assertion
¬Ai produces a match µ that can be substituted into ¬Ai to produce a description B that if
applied to X ⇒ Y, will result in ¬Ai. That is, it produces a boundary condition. Thus, given a set
of requirements, R, one can apply assertion regression to R to find various boundary conditions
that lead to divergence.19 One critical difficulty is knowing which subsets of R to consider, as
not all subset of R will have a divergence.
Other identification techniques include detection patterns and detection heuristics.

19 Different boundary conditions can be had by: (1) selecting different assertions ¬ Ai, (2) selecting different rules X ⇒
Y, (3) backchaining through the rules (e.g., X ⇒ Y, W ⇒ X) and (4) selecting different unifications in the case that there is
more than one maximally general unification.

∀ u:User, r:Resource
Using(u,r) ⇒ ◊≤d ¬ Using(u,r)

◊ (∃ u´:User, r´:Resource) [Using(u´,r´) ∧ o≤d Needs(u´,r´)]

Rule: o Needs(u,r) → o Using(u,r)]
Goal: ◊ ∃ u:User, r:Resource Using(u,r) ∧ o≤d o Using(u,r)]
Goal regressed through rule: ◊ ∃ u:User, r:Resource Using(u,r) ∧ o≤d o Needs(u,r)

Projects Illustrative of Requirements Interaction Management 46

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

Consider the following two goals (from [266]).

The two goals match the Achieve-Avoid pattern of table 12, as follows: P: Requesting(u,r), Q:
Using(u,r), R: ¬ Reliable(r), and S: Using(u,r). Applying the Achieve-Avoid pattern correctly gener-
ates the boundary condition.

Finally, KAOS has a number of heuristic rules that suggest where to look for boundary condi-
tions given certain types of goals. For example, given a SatisfactionGoal and a SafetyGoal involv-
ing the same object (e.g., RequestSatisfied and UnReliableResourceUsed involve r:Resource), then
consider a boundary condition for the object.

• Focus. Inconsistencies are not explicitly represented as a KAOS object. Thus, focusing on a
subset of inconsistencies is outside the scope of the framework.

• Resolution. The KAOS framework defines several means of resolving inconsistencies; table 13
summarizes those techniques. (These are the formalized and specialized counter-parts of the
resolution methods found in table 7, of section 4.4.1.) In KAOS, resolution is a manual proce-
dure; however, other projects have automated some of the techniques[266]
As an example, table 13 describes the Avoiding Boundary Conditions technique. It suggests that a
divergence can be preventing by ensure that the boundary condition is not satisfied. Applying

Table 12. KAOS Techniques for Inconsistency Detection

Method Illustration Description
Assertion
Regressing

(1) Consider {DomainTheory,B, ∧j≠i Aj} |– ¬ Ai

(2) Construct B by starting with ¬ Ai

(3) Select a definition of the form X ⇒ Y
(4) Let µ be the MostGeneralUnification (f,Y)

where f is some subformula in ¬ Ai

(5) Construct B by substituting X.µ for f in ¬Ai:
Let B := ¬Ai[f / X.µ]

Given a divergence that involves assertions
∧1≤n Ai and a domain theory of assertions,
one can derive a boundary condition B by
regressing the negation of an assertion ¬ Ai
through rules of the form X ⇒ Y.

Detection
Patterns

Given assertions of the Achieve-Avoid pattern:
(P ⇒ ◊Q) ∧ (R ⇒ ¬ o S) ∧ (Q ⇒ S)

Consider the boundary condition:
◊ (P ∧ R)

Apply divergence patterns that have been
proven to generate boundary conditions
given certain patterns of assertions.

Detection
Heuristics

If there is a SatisfactionGoal and a SafefyGoal con-
cerning the same object (like Achieve-Avoid above),
then consider a divergence between the two goals.

Apply informal divergence heuristics that
can suggest boundary conditions given cer-
tain types of goals.

Goal Achieve[RequestSatisfied]
FormalDef
∀ u:User, r:Resource
Requesting(u,r) ⇒ ◊ Using(u,r)

Goal Avoid[UnReliableResourceUsed]
FormalDef
∀ u:User, r:Resource
¬ Reliable(r) ⇒ o ¬ Using(u,r)

◊ ∃ u:User, r:Resource Requesting(u,r) ∧ ¬ Reliable(r)

Projects Illustrative of Requirements Interaction Management 47

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

this technique to the resource boundary condition above yields the new goal.

In words, all requested resources must be reliable. The other techniques of table 13 similarly
modify the requirements. For example, Goal Restoration allows that a goal will fail; however, at
sometime later, the conditions of the goal should be restored.

• Selection. Resolutions are not explicitly represented in the KAOS framework, thus the selec-
tion process is outside the scope of the framework.

6.5 Deficiency-Driven Requirements Analysis

Since 1985 researchers at (and from) the University of Oregon have published papers on require-
ments and specification analysis[72]. The group has relied on a variety of techniques from artifi-

Table 13. KAOS Techniques for Resolution Generation

Method Illustration Description
Avoiding
boundary
conditions

P ⇒ o ¬ B Given that a boundary condition B leads to a
divergence, always avoid B.

Goal
restoration

B ⇒ ◊≤d ∧1≤n Ai If a boundary condition B cannot be avoided,
then when it occurs restore the assertions of the
divergence sometime thereafter.

Conflict
anticipation

Where C ∧ o≤d P ⇔ ◊≤d ¬∧1≤n Ai

Introduce C ∧ P ⇒ ◊≤d ¬P
Where a persistent condition P can eventually
lead to conflict, anticipate the time period d that
leads to conflict and introduce a new goal to
negate the condition ¬P before the time period
elapses.

Goal
weakening

Given
Divergence[DomainTheory,B, ∧1≤nAi]

Introduce R ≡ ∧1≤m Ai ∧ ¬B, where m ≤ n

Weaken the goal (requirement) so that a bound-
ary condition is not met, thereby a divergence is
removed. This can be done by “adding a dis-
junct, removing a conjunct, or adding a conjunct
in the antecedent of an implication.”[266]

Resolution
patterns

Temporal relaxation:
weaken ◊≤d A
to ◊≤c A where c > d

Apply resolution patterns that have been proven
to generate remove boundary conditions given
certain patterns of assertions. For example,
given that A must occur before d time units,
extend the time to c, where c is greater than d.

Alternative
goal
refinement

Given goal G refined to assertions ∧1≤n Ai that
involve a divergence,
Consider a new refinement of G such that the
new assertions ∧1≤n Aj are not involved in a

divergence.

Given a top-most goal G and its refinement hier-
archy H in which the leaf goals of H lead to diver-
gence, consider alternative refinements of G that
lead to different refinement hierarchies.

Resolution
heuristics

If there is a Competition divergence among
agent instances,
Then consider the introduction of a reservation
policy.

Apply informal resolution heuristics that can sug-
gest how to remove boundary conditions given
certain types of goals.

Object
refinement

Where R1 ≡ ∧1 ≤ n Ai, R2 ≡ ∧n+1 ≤ m Aj

and Divergence[DomainTheory,B, ∧1≤mAk]
Given O in B, specialize O to S1..h and
Introduce ∨1 ≤ p S ⇒ R1 ∧ ∨p+1 ≤ h S ⇒ R2

Given a domain theory, assertions ∧1≤n Ai, and a
boundary condition B leads to a divergence, spe-
cialize an object into disjoint subtypes and
restrict (via a conditional) the applicability of the
divergent assertions into disjoint conditions (cf.,
[229])

∀ u:User, r:Resource
Requesting(u,r) ⇒ Reliable(r)

Projects Illustrative of Requirements Interaction Management 48

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

cial intelligence to construct automated assistants that critique requirements as part of a
deficiency-driven design process. The original overarching project was named KATE, denoting
Knowledge-Based Acquisition of Specifications[72]. Since, then various prototypes have been
constructed (e.g., Critic[71], OPIE[4], OZ[215][221], SC[48]), the latest of which is Critter[66].

6.5.1 Products
The KATE project did not seek to define a requirements language. Rather, the project has adapted
existing models (e.g., Numerical Petri Nets[66], Qualitative Physics[48], STRIPS predicates[4])
in order to meet the representation and reasoning needs of the automated assistant being con-
structed.

6.5.2 Process
As part of the KATE project, a variety of computerized support has been specified and con-
structed. The collective support that those prototypes could provide can be considered in terms of
the processes described in section 4, as shown below. But first, the ovearching process of KATE
prototypes, deficiency-driven design, is summarized.

In deficiency-driven design, violations of system requirements or environmental constraints
drive the state-based search that generates alternative designs through the applications of design
operators. In KATE prototypes, a design is a detailed representation in which the interaction
among selected system requirements and environmental constraints can be analyzed through some
form of design simulation. The failure of a design to satisfy a system requirement or an environ-
mental constraint is characterized as a deficiency. Deficiencies are remedied by the application of
operators. A operator may: 1) add new agents, 2) reassign the responsibility for activities to differ-
ent agents, 3) alter the communication among agents, or 4) weaken system requirement or envi-
ronmental constraints. Operator application leads to a new design state, which can then be
analyzed for deficiencies. The process stops when all requirements and environmental constraints
are satisfied in a design.
• Partitioning. For the most part, KATE prototypes do not address the partitioning of require-

ments prior to analysis. As part of deficiency-driven design, Critter does form a decomposition
of requirements through agent assignment (cf., [59]). Such a decomposition does aid analysis,
but it has not been used to reduced the scope of analysis.

• Identification. Requirement interactions, specifically conflicts, are identified by simulating
designs and relating deficiencies to requirements. For example, using the abstract planner
OPIE, one can find a scenario of agent and environmental actions that lead to the satisfaction of
a requirement. Conversely, one can find a failure scenario. (To do the analysis, a requirement is
negated and specified as a OPIE goal). The conjunction of requirements can also be analyzed.
In Oz, the conjunction of requirements held by different stakeholders was analyzed for stake-
holder requirement interaction (using OPIE). Once it has been established that requirements
conflict, Oz regressed the requirements through the scenario to identify the specific predicates
that led to the conflict. The KATE project also demonstrated how qualitative requirement inter-
actions can be discovered using qualitative physics envisonment (in SC). Finally, a case-based
approach to interaction identification was demonstrated in Critic.

• Focus. For the most part, conflicts are not explicitly represented in KATE prototypes. Oz is the
exception, with its interference structure. While Oz interferences could be sorted by its
attributes (e.g., stakeholders, requirements, relations, objects), it has not been used to automati-
cally focus on a subset of conflicts. (Oz does use multi-criteria analysis to focus the resolution

Projects Illustrative of Requirements Interaction Management 49

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

generation process.)
• Resolution. Oz and Critic provide resolution generation. Critter provides the Brinkmanship

heuristic that applies to a specific type of “brink” constraint that is to be maintained.

In words, it says that (in all system behaviors) it should be the case that in the state that results
from system transition T given a predicate (P) there exists no two domain values (x, y) that can
be simultaneous found for the range value (z). A brink conflict occurs as the system transitions
to a state in which the brink constraint fails. Below, is an instantiation of the brink conflict for a
train control system.

Given the (uncontrolled) StartTrain transition, it is possible to place two trains on the same track
“block”, possibly leading to a wreck. To resolve this conflict, the transition is replaced with a
controlled transition: StartTrain-Controlled. In the controlled transition, if the brink condition can
occur, then the controlled transition cannot execute; to ensure this, a design fragment is intro-
duced. Generalizing this resolution technique, we have the following:

In words, if a transition can lead to a constraint failure in the next state, then incorporate the
constraint as a condition of the transition.
Oz automates such conflict resolutions methods (as characterized in section 6.4.2) including
object refinement, goal weakening via object generalization, compromise, and alternative goal
refinement. Requirements DealMaker[228], a decedent of Oz, applies these same methods and
adds avoid boundary condition, which is essentially AvoidBrinkTransition—as characterized in
section 6.4.2
Finally, Critic recognizes certain requirements patterns as bad (i.e., should be absent), while
others as good (i.e., should be present). Thus, when it recognizes a design fragment it suggests
elements that should be removed or added in order to satisfy the specified requirements, and
remove the recognized conflicts.

• Selection. Oz (and DealMaker[218]) provides an interactive search procedure that iteratively
shows a multi-criteria evaluation of resolution alternatives and then allows for the application
of new resolution methods. Initially, an analyst is presented with conflicts. Next, the analyst
directs the application of a resolution generation method. In a multi-criteria graphic display,
each alternative is linked under the conflict it resolves. (The display shows the satisfaction of
various criteria in bar graphs.) Next, the analyst can choose one or more resolutions to replace a
conflict, or he can continue applying generation methods. Each method can be applied to either
the original conflict or any of the generated resolutions. The analyst stops search by asking Oz
to substitute resolutions for each conflict, and then executing the Oz command CreatePerspective
which forms the integrated stakeholder perspective.

6.6 Software Cost Reduction

Since 1978 researchers at (and from) the Naval Research Laboratory have published papers on
software requirements and specification[102]. Originally introduced to help specify the A-7E soft-
ware package, the Software Cost Reduction (SCR) project has been successful in specifying and
analyzing large, real-time, embedded systems. In SCR, a system and its environment are formally

Τ ⇒ ο ¬ ∃ (x, y, z) • P(x, z) ∧ P(y, z) ∧ x ≠ y

StartTrain ⇒ ο ¬ ∃ x, y: Train, z: Location • Location(x, z) ∧ Location(y, z) ∧ x ≠ y

AvoidBrinkTransition (a.k.a., AvoidBoundaryCondition)
Given Τ, such that Τ ⇒ ο ¬ ∃ (x, y, z) • P(x, z) ∧ P(y, z) ∧ x ≠ y
Replace Τ with Τ´ ≡ If P(x, z) ∧ P(y, z) ∧ x ≠ y Then Τ Else nil

Projects Illustrative of Requirements Interaction Management 50

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

modeled. Then, using the SCR toolset, one can analyze requirements for inconsistencies as well as
check that specified properties hold (e.g., safety requirements).

SCR assumes a four variable model, as illustrated in figure 10[97]. In this model, input devices
watch monitored variables of the environment and produce values, called input data items, that
are processed by the software. The software then produces output data items that are processed by
output devices that affect controlled variables of the environment. The IN, SOFT, and OUT relations
specify the mapping of monitored values to input values, input values to output values, and output
values to controlled values, respectively. The REQ relation specifies the relationship of monitored
variables to controlled variables. Finally, NAT describes natural laws, or constraints, of the envi-
ronment.

An SCR requirements specification consists of: 1) definitions for monitored, controlled, and
intermediate term variables, 2) tables of transformations, T, that describe the software behavior
(SOFT) by computing new variable values given changes to variables, and 3) properties of the sys-
tem (REQ) and its environment (NAT). From such a description, the SCR toolset is able to check
consistency within the requirements, as well as ascertain if specified properties (REQ) hold during
the systems execution[97].

6.6.1 Products
The SCR language supports the four variable model. Thus, it provides constructs to define vari-
ables, transformations, and properties. In SCR,

a system Σ is represented as a 4-tuple, Σ = (S, S0 , Em , T), where S is the set of states, S0 ⊆ S is the

initial state set, Em is the set of input events, and T is the transform describing the allowed state tran-
sitions. In the initial version of the SCR formal model, the transform T is deterministic, i.e., a function
that maps an input event and the current state to a (unique) new state. Each transition from one state
to the next state is called a state transition or, alternately, a step. To compute the next state, the
transform T composes smaller functions, called table functions, [...] These tables describe the values
of the dependent variables—the controlled variables, the mode classes, and the terms. Our formal
model requires the information in each table to satisfy certain properties. These properties guaran-
tee that each table describes a total function.—[97]

In SCR, transforms are defined tabular form. Each table defines how an event will change a vari-
ables value. An “event is a predicate defined on two consecutive system states that indicates a
change in system state.”[100] It is denoted @T(c) ≡ ¬ c ∧ c´, where c is a condition that is false and
then becomes true in the next state, denoted as c´.

Figure 10.An illustration of SCR’s four variable model.

Input
Devices

Output
DevicesSoftware

System Input
Data
Items

Output
Data
Items

Controlled
Variables

Monitored
Variables

Environment

IN SOFT OUT

REQ and NAT

Projects Illustrative of Requirements Interaction Management 51

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

As an example, consider a transition table for the variable InjectionPressure[14]. This table can be
used to define when coolant can be injected into a pressurized container according to the water
pressure in the container.

The first row of table 14 indicates that the mode of InjectionPressure changes from TooLow to Per-
mitted when WaterPressure ≥ Low becomes true. A set of such tables concerning typed variables
provides the basis for an SCR requirements specification.

Behavioral descriptions, such as that of table 14, can be enhanced with property requirements,
such as SoundAlarm ≡ @T(WaterPressure ≥ High) ⇒ AlarmSounding. In words, it indicates that Alarm-
Sounding shall be true when WaterPressure ≥ High is true.20 Such a requirement property does not
specify the behavior of the software, rather it specifies a property that should always be true in the
software (REQ). Thus, the property should be true in all states of the model defined in the 4-tuple,
Σ = (S, S0 , Em , T). The SCR toolset can check the validity of such properties.

6.6.2 Process
As part of the SCR project, the SCR toolset has been constructed. It can be considered in terms of
the processes described in section 4, as shown below.
• Partitioning. Given a requirement property (e.g., SoundAlarm), the SCR toolset can use a “pro-

gram slicing” technique to define only the relevant subset model of variables and transforma-
tions. Analysis on the reduced model can be much more efficient[97].

• Identification. The SCR toolset identifies two types of requirement interactions[97]. First, a
number of inconsistencies among requirements can be found through static analysis of the
requirement definitions. In addition to the more common syntactic and type checking analysis,
the SCR toolset can check that transformations are properly defined. This includes: 1) disjoint
definitions among table rows for a transformation (i.e., ∧1 ≤ row Conditionrow ⇒ false)21, 2) com-

plete coverage of a transformation by its table rows (i.e., ∨1 ≤ row Conditionrow ⇒ true)22, and 3)
reachability of all of a variable’s modes from its initial mode23. The SCR toolset can also iden-
tify a second type of interaction that exists between a requirement property (e.g., SoundAlarm)
and the software specification. It translates the SCR specification into the Spin model checker.
Spin can then exhaustively explore all states in an attempt to show where the requirement prop-
erty can fail[104]. The resulting Spin trace describes a scenario by which the failure can occur.
This trace can be stepped through within the SCR toolset simulator; requirement properties that
fail during such simulation are highlighted in the SCR specification.

20 Notice that SCR semantics allow for the descriptions of properties on states or between two states. However, it does
not have the full power of temporal logic, which also includes properties over sets of states (e.g., P ⇒ ◊Q).

21 For example, if the third row of table 14 was defined as @T(WaterPressure ≤ Low), then rows one and three would be
non-disjoint.

22 For example, if the first row of table 14 was not included, then transition from the mode TooLow would not be defined..
23 For example, if the third row of table 14 was not included, then transition to the mode TooLow would not be defined.

Table 14. A SCR Transition Table for InjectionPressure

Old Mode Event New Mode
TooLow @T(WaterPressure ≥ Low) Permitted

Permitted @T(WaterPressure ≥ Permit) High

Permitted @T(WaterPressure < Low) TooLow

High @T(WaterPressure < Permit) Permitted

Projects Illustrative of Requirements Interaction Management 52

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

• Focus. Inconsistencies are not explicitly represented in SCR. Thus, focusing on a subset of
inconsistencies is outside the scope of the framework.

• Resolution. Resolutions or resolution generation are outside the scope of SCR.
• Selection. Selection among resolutions is outside the scope of SCR.

6.7 M-Telos

Two consecutive large European (ESPRIT) projects have focused on requirements engineering.
From 1992 to 1995, the NATURE project (Novel Approaches to Theories Underlying Require-
ments Engineering) produced theories and tools for knowledge representation, domain engineer-
ing, and process engineering[112][113]. The success of NATURE led to the CREWS project, from
1996 to 1999. The CREWS (Cooperative Requirements Engineering with Scenarios) project
developed, evaluated, and demonstrated the applicability of, methods and tools for cooperative
scenario-based requirements elicitation and validation[115]. The results of both projects are too
numerous to summarize here. Instead, we focus on one project, M-Telos, that defines a technique
to manage requirements inconsistencies.

6.7.1 Products
As part of the CREWS project, M-Telos has been defined as a means to support multiple require-
ments perspectives (a.k.a. modules) and goal-oriented inter-perspective inconsistency manage-
ment[182]. It is a formal framework and implementation supporting requirements development
with a variety of notations, stakeholders views, or other requirements perspectives. As a means to
support inter-perspective (and intra-perspective) analysis, the framework supports the following
techniques.
• Separation of multiple partial models
• Dynamic definition and customization of notations
• Tolerance of conflicts
• Goal-orientation inter-perspective analysis
• Dynamic definition and customization of analysis goals
The M-Telos framework has been implemented in the ConceptBase, a deductive database that sup-
ports meta-modeling[111].

Figure 11 illustrates the M-Telos approach to perspective management. In the approach, require-
ment notations are instantiated from a central meta meta model. Requirement perspectives (in var-
ious notations) are encapsulated in modules. The characterization of requirement inconsistencies
among modules is presented in “resolution” modules.

In figure 11, the module depicted in the top of the figure illustrates the centralized meta meta
model for a requirements analysis project. For this example, it is important to note that it repre-
sents the following analysis goal (as constraints on the meta meta model).

Analysis Goal: “Each exchanged MEDIUM must contain DATA”

This is an analysis goal derived through stakeholder dialogs. In a business context, it means that
documents exchanged should have information (i.e., they should not be content-free). The goal
reflects the abstract classes from which the two requirement notation perspectives were devel-
oped. For example, the lower right module of figure 11 indicates the notation of requirement state-
ments in that perspective; it contains statements structured as, “A FORM must include ITEMs.”
Moreover, a FORM is an instance of MEDIUM and ITEM is an instance of DATA.24 Similarly,

24 Actual requirements that refer to instances of forms or items from the problem domain are not shown.

Projects Illustrative of Requirements Interaction Management 53

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

the lower left module of figure 11 instantiates the meta meta model with its requirement notation,
“An ORGANIZATIONAL-UNIT sends PACKAGEs to other ORGANIZATIONAL-UNITs.”

In figure 11, the resolution module is used to characterize inconsistencies that can occur between
requirements in the two requirement modules. From the meta meta model and the notation
descriptions in the two requirements modules, M-Telos automatically specializes the above analy-
sis goal to be the following refined analysis goal.

Refined Analysis Goal: “For each sent PACKAGE the corresponding FORM must contain ITEMs."

Using the refined analysis goal, the resolution module is able to monitor the other two modules.
Every time a requirement instance is defined using the notation of either module, the resolution
module can check for violation of the refined analysis goal.

Inconsistency checking in M-Telos can be conceptualized in terms of a stream of transactions
that add or delete requirements. After a new requirement is added (or deleted) an analysis goal
may become violated. In M-Telos, this is called primary inconsistency with respect to the goal. In
the case of adding objects, those M-Telos objects that were added and caused the inconsistency are
considered provisionally inserted objects; deleting objects is analogous. As the result of a transac-
tion, a goal’s status may change from violated to satisfied. If the goal’s satisfaction depends on
objects have been provisionally inserted (or deleted), then it is called a secondary inconsistency
with respect to that goal.

At the lowest level, inconsistency management becomes the task of computing goal satisfaction
with respect to provisional objects. At a higher level, the user can specify the types of inconsis-
tency that will be allowed: primary inconsistency (Allow/Not Allowed) and secondary inconsis-
tency (Allow/Not Allowed). The combination provides for four levels of goal satisfaction.
Grouping the two levels where some inconsistency is allowed gives us: goal satisfaction, qualified

Figure 11.An example illustrating perspective management in M-Telos.

Agent Medium

DataActivity

with

needs

generates

supplies

performed_by

gives

takes
contains

input

ouputfollows

enters

writes

“Each exchanged Medium
must contain Data”

Form

Item

includes

Org. Unit Package

sends a

Information Exchange
perspective

Document Structure
perspective“For each sent package

the corresponding form
must contain items.”

coordinatescoordinates

instantiates instantiatesgeneration

Resolution Module

Conclusions 54

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

goal satisfaction, and goal violation. Thus, the user of M-Telos can control what types inconsis-
tency will be tolerated in requirement analysis goals, from no inconsistency to goal violations.

6.7.2 Process
Below, the M-Telos support is presented in terms of the processes described in section 4, with

some references to related projects.
• Partitioning. The M-Telos framework allows for the partitioning of requirements into any sub-

sets an analyst chooses. The framework itself does not provide any categories; rather, it pro-
vides the views into which one can place requirements. However, in related work, a subject’s
situation parameters (agent, focus, notation, and time) are proposed as means to systematically
defined bounded requirement sets[171].

• Identification. Once requirements and analysis goals are represented in M-Telos, the auto-
mated system can derive the inconsistencies incrementally or on-demand. In related work,
inconsistencies can be determined by comparing requirements against domain-independent
analysis goals[253][254], or domain-dependent analysis goals[158], rather than M-Telos’s
project specific meta meta model and goals.

• Focus. In M-Telos, inconsistencies are associated as goal violations. It has not been demon-
strated how the framework could prioritize the further analysis or the resolution process. How-
ever, intergoal analysis goals could be developed to specify the ordered application of
consistency rules

• Resolution. There is no resolution generation technique in M-Telos. Rather, analysis goals are
used to identify inconsistencies, which are then represented in a “resolution” module. An inter-
esting extension may be to show users provisional objects for qualified or violated analysis
goals. This is similar to finding the causes of conflict through goal regression in operator-ori-
ented requirements (cf. section 6.4). With such a inconsistency context, users could generate
alternative resolutions; for example, avoiding a boundary condition found among the provi-
sional objects (cf. section 6.4).

• Selection. Selection among resolutions is outside the scope of M-Telos.

7 CONCLUSIONS

This article has presented an introduction to requirements interaction management. An evolution
of supporting concepts and their related literature were presented. Process and product issues were
summarized. Using the issues, seven research projects exemplifying requirements interaction
management were presented.

As this article has shown, requirements interaction management has become a critical area of
requirements engineering. Research in this area is growing. Many current research efforts are
focused on automated techniques that support the identification and focus on undesirable require-
ment interactions. Other lesser explored areas include requirement partitioning, automated resolu-
tion generation, resolution selection, and the integration of requirements interaction management
into the larger development life-cycle. As these problems are solved, requirements interaction
management will become a more integral part of development. As a result, we expect to observe
the development of systems with higher stakeholder satisfaction and fewer failures.

Conclusions 55

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

ACKNOWLEDGMENTS

This article has been improved through the generous support of the following people who have
commented on earlier drafts: Martin Feather ...

REFERENCES

[1] AAAI, Workshop on Models of Conflict Management in Cooperative Problem Solving, AAAI, Seattle, Wa,
August 4, 1994.

[2] Adler, M., Davis, A., Weihmayer, R., and Worrest, R., Conflict-resolution strategies for nonhierarchical dis-
tributed agents, Morgan Kaufmann Publishers Inc.(1989).

[3] Anderson, J. S. and Farley, A. M. Plan Abstraction Based on Operator Generalization. AAAI, Proceedings of
the 1988 AAAI National Conference on Artificial Intelligence, Morgan Kaufmann, St.Paul, Minnesota, 1988,
100-104.

[4] Anderson, J., Fickas, S., Viewing Specification Design as a Planning Problem: A Proposed Perspective Shift,
In 5th International Workshop on Software Specification and Design, Pittsburgh, 1989 (Also in Artificial
Intelligence and Software Engineering, D. Partridge (ed), Ablex, 1991.)

[5] Atzeni, P., and R. Torlone. “A Metamodel Approach For The Management of Multiple Models and The Trans-
lation of Schemes,” Information Systems, Vol. 18, No. 6, 349-362, 1993.

[6] Avison, D.E., Wood-Harper, A.T., Multiview: An Exploration in Information Systems Development, Blackwell
Scientific Publications, 1990.

[7] R. Balzer, Tolerating Inconsistency, Proc. of 13th Int. Conf. on Software Engineering (ICSE-13), IEEE CS
Press., Austin, Texas, USA, 13-17th May 1991, 158-165.

[8] Barbacci, M., Longstaff, T.H., Klein, M.H., Weinstock, C.B., Quality Attributes, Software Engineering Insti-
tute, CMU/SEI-96-TR-036, March, 1997.

[9] Barbacci, M., Klein, M.H., Weinstock, C.B., Principles for Evaluating Quality Attributes of Software Architec-
ture, Software Engineering Institute, CMU/SEI-95-TR-021, December, 1995.

[10] Barki, H., Hartwick, J., Rethinking the Concept of User Involvement, MIS Quarterly, 13 (1), 1989, pp. 53-61.
[11] Batini, C., Lenzerini, M., Navathe, S.B., A Comparative Analysis of Methodologies for Database Schemea

Integration, ACM, Computing Surveys, 18 (4), December, 1986 pp. 323- 364.
[12] Bendifallah, S., and Scacchi, W., Work structures and shifts: An empirical analysis of software specification

teamwork. IEEE, Proceedings of the 11th International Conference on Software Engineering, 1989, pp. 260-
270.

[13] Bharadwaj, Ramesh and Heitmeyer, C.L., "Model Checking Complete Requirements Specifications Using
Abstraction," NRL Memorandum Report NRL/MR/5540--97-7999, November 10, 1997.

[14] Bharadwaj, Ramesh and Constance L. Heitmeyer. "Model Checking Complete Requirements Specifications
Using Abstraction," NRL Memorandum Report NRL/MR/5540--97-7999, November 10, 1997

[15] Boehm, B.W., Brown, J.R., Kaspar, H., Lipow, M., MaCleod, G.J., Merritt, M.J., Characteristics of Software
Quality, North-Holland, New York, 1978.

[16] Barry Boehm, Alexander Egyed, Julie Kwan, Dan Port, and Archita Shah , Ray Madachy, Using the WinWin
Spiral Model: A Case Study, IEEE, Computer, July 1998.

[17] Barry Boehm and Alexander Egyed, WinWin Requirements Negotiation Processes: A Multi-Project Analysis,
Proceedings of the 5th International Conference on Software Processes, 1998

[18] Boehm, P. Bose, E. Horowitz and M. J. Lee, Software Requirements as Negotiated Win Conditions, First Inter-
national Conference on Requirements Engineering, IEEE, (April 18-22 1994).

[19] Boehm, B., In, H., Identifying Quality-Requirement Conflicts, IEEE, Software, March, 1996, 25-36.
[20] Boehm, B., Software Engineering Economics, Printice-Hall, Englewood Cliffs, N.J., 1981.
[21] Boehm, Barry, W., A Spiral Model of Software Development and Enhancement, in Computer, Vol. 21, No. 5,

1988., pp. 61-72.
[22] Boehm, B.W. and Ross, R. “Theory W Software Project Management: Principles and Examples,” IEEE Trans-

actions on Software Engineering, July 1989, pp.902-916
[23] Boehm, Barry W., Seven Basic Principles of Software Engineering, Journal of Systems & Software, 3(1) |

March 1983, pp. 3-24.
[24] Botten, N., Kusiak, A., Raz, T., Knowledge Bases: Integration, Verification, and Partitioning, European Journal

of Operational Research, 42, (2) Sep 25, 1989, pp. 111-128.
[25] F.P., Jr. Brooks, No silver bullet: essence and accidents of software engineering IEEE, Computer, April 1987,

10-19, (20) 4.

Conclusions 56

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

[26] Buchheit, M., Jeusfeld, M.A., Nutt, W., Staudt, M., Subsumption between queries to object-oriented databases.
Information Systems, 19, 1, March 1994

[27] Buchanan, B.G., Shortliffe, E.H., (Eds.), Rule-Based Expert Systems: The MYCIN experiments of the Stanford
heuristic programming project, Addison-Wesley, 1984.

[28] Callahan, J.R., Montgomery, T.L., An Approach to Verification and Validation of a Reliable Multicasting Pro-
tocol, International Symposium on Software Testing and Analysis (ISSTA’96), San Diego, CA, 8-10 January,
1996, pp. 187-194.

[29] Checkland, P., Systems Thinking, Systems Practice, John Wiley & Sons, 1981.
[30] Chen H., Lynch, K. J., Automatic construction of networks of concepts characterizing document atabases.

IEEE Transactions on Systems, Man and Cybernetics, 22(5):885-902, September/October 1992.
[31] Chen H., Lynch, K. J., Basu, K., and Ng, T., Generating, integrating, and activating thesauri for concept-based

document retrieval. IEEE EXPERT, Special Series on Artificial Intelligence in Text-Based Information Sys-
tems, 8(2):25-34, April 1993.

[32] Chen, M. and Nunamaker, J., The architecture and design of a collaborative environment for systems defini-
tion, Data Base, Winter/Spring 1991, 22-28.

[33] Chikofsky, E.J., Rubenstein, B.L., CASE: Reliability Engineering for Information Systems, in Computer Aided
Software Engineering (CASE), Ed. Chikofsky,E., IEEE, 1993, pp. 147-153.

[34] Christel, M.G., Wood, D.P., Stevens, S.M., AMORE: The Advanced Multimedia Organizer for Requirements
Elicitation, Software Engineering Institute, CMU/SEI-93-TR-12, June 1993.

[35] Chung, L., Nixon, B., Yu, E., Using Non-Functional Requirements to Systematically Support Change, IEEE,
Second International Symposium on Requirements Engineering, March 27-29, 1995, pp. 132-139.

[36] Chung, L., Nixon, B., Yu, E., Dealing with Change: An Approach Using Non-Functional Requirements,
Springer-Verlag, Requirements Engineering Journal, (1), 1996, pp. 238-260.

[37] Chung, L., Nixon, B., Yu, E., Using Quality Requirements to Systematically Develop Quality Software, Fourth
Conference on Software Quality, October 3-5, McLean, VA, 1994.

[38] Conry, S.E., Kuwabara K., Lesser, V.R., Meyer, R.A., and , Multistage negotiation for distributed satisfaction,
IEEE, Transactions on systems, man, and cybernetics, Vol. 21, No. 6, November/December 1991, 1462-
1477.

[39] Conry, S., Meyer, R., and Lesser, V., Multi-stage negotiation in distributed planning, Eds. A.H. Bond, L.
Gasser, Readings in distributed artificial intelligence, Morgan Kaufmann , San Meteo, California (1988)
367-384.

[40] Cugola, G., Di Nitto, E., Guggetta, A., Ghezzi, C., A Framework for Formalizing Inconsistencies and Devia-
tions in Human-Centered Systems, ACM, Transactions on Software Engineering and Methodology, 5 (3),
1996, pp. 191-230.

[41] Curtis, B., Krasner, H., and Iscoe, N., A field study of the software design process for large systems, Communi-
cations of the ACM, Vol. 31, No. 11 (November 1988), 1268-1287.

[42] Dardenne, A., van Lamsweerde, A., Fickas, S., Goal-Directed Requirements Acquisition, Science of Computer
Programing, 20 1993, 3-50.

[43] Darimont, R, van Lamsweerde, A., Formal Refinement Patterns for Goal-Driven Requirements Elaboration,
ACM SIGSOFT, Fourth Symposium on the Foundations of Software Engineering, San Francisco, CA, Octo-
ber 16-18, 1996.

[44] Darimont, R, Delor, E., Massonet, P., van Lamsweerde, A.,GRAIL/KAOS: An Environment for Goal-Driven
Requirements Engineering, IEEE, Proceedings of the 20th Interactional Conference on Software Engineer-
ing, Kyoto, April 1998, Vol 2, pp. 58-62.

[45] Davis, A., Software Requirements: Objects, functions, and states, Prentice Hall, 1993.
[46] Davis, R., Meta-Rules: Reasoning About Control, North-Holland, Artificial Intelligence, 15, 1980, 179-222.
[47] Dill, D.L., Drexler, A.J., Hu, A.J., Yang, C.H., Protocol Verification as a Hardware Design Aid, IEEE Interna-

tional Conference on Computer Design: VLSI in Computers and Processors, IEEE Computer Society, 1992,
pp. 522-525

[48] Downing, K., Fickas, S., A Qualitative Modeling Tool for Specification Criticism, Conceptual Modelling, Data-
bases, and CASE: An Integrated View of Information Systems Development, Peri Loucopoulos (ed), Ablex,
1991

[49] Drucker, P.F., The Practice of Management, Harper & Row, New York, 1954.
[50] Durfee, E.H., Coordination of distributed problem solvers, Kluwer Academic Publishers, Boston, 1988.
[51] Easterbrook, S., “Domain Modeling with Hierchies of Alternative Viewpoints, IEEE, International Symposium

on Requirement Engineering, San Diego, CA, January 4-6, 1993, 65-72.
[52] Easterbrook S., Co-ordinating distributed ViewPoints: the anatomy of a consistency check, Concurrent Engi-

neering: Research & Applications, CERA Institute, (2), 1994.

Conclusions 57

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

[53] S. Easterbrook and B. Nuseibeh, Using ViewPoints for Inconsistency Management, Software Engineering
Journal, 11(1): 31-43, BCS/IEE Press, January 1996.

[54] Egyed, A., Boehm, B., USC, Analysis of Software Requirements Negotiation Behavior Patterns, USC-CSE-96-
504, 1996.

[55] Alexander Egyed and Barry Boehm, A Comparison Study in Software Requirements Negotiation, Proceedings
of the 8th Annual International Symposium on Systems Engineering (INCOSE'98), 1998.

[56] Emmerich, W., Finkelstein, A., Montangero, C. & Stevens, R. "Standards Compliant Software Development"
in Proc. International Conference on Software Engineering Workshop on Living with Inconsistency, (IEEE
CS Press), 1997

[57] Feather, M.S., FLEA : Formal Language for Expressing Assumptions Language Description, June 25, 1997.
[58] Feather, M., Constructing specifications by combining parallel elaborations, IEEE Transactions on Software

Engineering Vol. 15 (February 1989)
[59] Feather, M., Language Support for the Specification and Development of Composite Systems, ACM Trans. on

Programming Languages and Systems, 9 (2) , April 1987, pp. 198-234.
[60] Feather, M., Fickas, F., Robinson W., Design as Elaboration and Compromise, Workshop Notes from the Sixth

National Conference on Artificial Intelligence, Automating Software Design, Kestrel Institute, AAAI, St.
Paul, MN, August 25, 21-22, 1988.

[61] Feather, M.S., Fickas, S., van Lamsweerde, A., Requirements and Specification Exemplars, Automated Soft-
ware Engineering, Kluwer, 4 (4), 1997.

[62] Feather, M.S., Fickas, S., van Lamsweerde, A., Ponsard, C., Reconciling System Requirements and Runtime
Behavior, Proceedings of the International Workshop on Software Specification and Design (IWSSD’98),
Isobe, IEEE CS Press, April, 1998.

[63] Festinger, L., Conflict, Decision, and Dissonance, Tavistock Publications, Ltd., London, 1964.
[64] Fickas, S., Automating the Transformational Development of Software, IEE, Transactions on Software Engi-

neering, 11 (11), November, 1985, pp. 1268-1277.
[65] Fickas S., Supporting the programmer of a rule based language, Expert Systems, 4(2), May 1987.
[66] Fickas, S., Helm, R., Knowledge representation and reasoning in the design of composite systems, IEEE,

Transactions on Software Engineering, Special issue on knowledge representation and reasoning, June, 1992.
[67] Fickas, S., Anderson, J., Robinson, W.N., Formalizing and automating requirements engineering, CIS-TR-90-

03, University of Oregon, April 6, 1990.
[68] Fickas, S., Downing, K., Novick, D., Robinson, B., The Specification, Design, and Implementation of Large

Knowledge-Based Systems, IEEE, Artificial Intelligence in the Northwest, Northcon/85, Portland, OR,
October 22-24, 1985, 8/2.

[69] Fickas, S., Feather, M.S., Requirements Monitoring in Dynamic Environments, Proceedings of the 2nd Inter-
national Symposium on Requirements Engineering, IEEE Computer Society Press, York, England (March
1995) 140-147.

[70] Fickas, S., Robinson, W., Feather, M., Conflict and compromise in specification design, In Proceedings of the
AAAI-88 Automated Software Development Workshop, Minneapolis, 1988

[71] Fickas, S., Nagarajan, P., Being suspicious: critiquing problem specifications, Morgan Kaufmann Publishers
Inc., Proceedings of the 7th National Conference on Artificial Intelligence, August 1988, pp. 19-24.

[72] Fickas, S., A knowledge-based approach to specification acquisition and construction, CIS-TR-85-13, Univer-
sity of Oregon, November 1985.

[73] Finkelstien, A. (Ed), Viewpoints 96: An International Workshop on Multiple Perspectives in Software Devel-
opment, ACM Symposium on Foundations of Software Engineering, San Francisco, USA, October 14th &
15th, 1996.

[74] Finkelstein, A., Kramer, J., & Nuseibeh, B. (Eds.). (1994b). Software Process Modelling and Technology.
Somerset, UK: Research Studies Press Ltd. (Wiley).

[75] A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein and M. Goedicke, Viewpoints: A Framework for Multi-
ple Perspectives in System Development, International Journal of Software Engineering and Knowledge
Engineering, Special issue on 'Trends and Future Research Directions in SEE', World Scientific Publishing
Company Ltd., 2(1): 31-57, March 1992.

[76] Finkelstein, A., Fuks, H., Multi-party specification, 5th International workshop on software specification and
design, (1989) 185-195.

[77] Finkelstein, A., Gabbay, D., Hunter, A., Kramer, J., & Nuseibeh, B., “Inconsistency Handling In Multi-Per-
spective Specifications” IEEE Transactions on Software Engineering, 20, 8, (1994), 569-578.

[78] Fuks, H., Negotiation using commitment and dialogue, Imperial College of Science Technology and Medicine,
London(February,1991)

[79] Fisher, R., William, U., with Bruce Patton, editor. Getting to Yes: Negotiating Agreement Without Giving In,
Penguin Books, New York, 1991.

Conclusions 58

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

[80] Fox, M.S., Gruninger, M., (1997), "On Ontologies and Enterprise Modelling", International Conference on
Enterprise Integration Modelling Technology 97, Springer-Verlag, to appear.

[81] Fox, M.S., Barbuceanu, M., and Gruninger, M., (1996), "An Organisation Ontology for Enterprise Modelling:
Preliminary Concepts for Linking Structure and Behaviour", Computers in Industry, Vol. 29, pp. 123-134.

[82] Francalanci, C., Fuggetta, A., Integrating Conflicting Requirements in Process Modeling: A Survey and
Research Directions, Information and Software Technology, Elsevier, 39 (3) 1997 pp. 205-216.

[83] Gasser, L., Huhns, M.N., (Eds), Distributed Artificial Intelligence, Morgan Kaufmann Publishers Inc, San
Mateo, 1989.

[84] Gasser, L., Huhns, M.N., (Eds), Distributed Artificial Intelligence Vol II, Morgan Kaufmann Publishers Inc,
San Mateo, 1989.

[85] Georgeff, M.P., A theory of action for multiagent planning, Proceedings of 1984 conference of the AAAI, Mor-
gan Kaufmann Publishers, 1984, pp. 121-125.

[86] Gilb, T., Software Metrics, Winthrop Publishers, Cambridge, MA 1977.
[87] Gotel, O. & Finkelstein, A.; "Contribution Structures" in Proc. 2nd International Symposium on Requirements

Engineering RE95, (IEEE CS Press) 1995, 100-107
[88] Greenspan, G. Mylopoulos, J., Borgida A., : On formal requirements modeling languages: RML revisited. In

Proc. 16th International Conference on Software Engineering, 1994, pp. 135-148
[89] Graf, D.K., Misic, M.M., The Changing Roles of the Systems Analyst, Information Resources Management

Journal, 7 (2), Spring 1994, pp. 15-23.
[90] Gruninger, M., and Fox, M.S. (1995), "Methodology for the Design and Evaluation of Ontologies", Workshop

on Basic Ontological Issues in Knowledge Sharing, IJCAI-95, Montreal.
[91] Guarino, N., The Ontological Level, Eds., R. Casati, B. Smith and G. White, Philosophy and the Cognitive Sci-

ences, Vienna: Hölder-Pichler- Tempsky, 1994.
[92] R. Gustas, On Related Pragmatic Categories and Dependencies within Enterprise modelling, Second Scandina-

vian Research Seminar on Information and Decision Networks, Vaxjo University, Sweden, May 1995. (Also
available as NATURE-95-13 from RWTH Aachen, Informatik V - Information Systems.)

[93] U. Hahn, M. Jarke, and T. Rose. Teamwork support in a knowledge-based information systems environment.
IEEE Transactions on Software Engineering, 17(5):467-482, May 1991.

[94] Willie Hammer, Product Safety Management and Engineering, Printice-Hall, Inc., Englewood Cliffs, N.J.,
1980.

[95] Hauser, J.R. & Clausing, D., "The House of Quality", Harvard Business Review, May-June, 1988, pp. 63-73.
[96] Hearst, M., Information integration, IEEE Intelligent Systems, Vol. 13, No. 5, September/October 1998 pp. 12-

24.
[97] Heitmeyer C.L., Jeffords, R.D., and Labaw, B.G., "Automated Consistency Checking of Requirements Specifi-

cations," ACM Trans. on Software Eng. and Methodology 5, 3, July 1996, 231-261.
[98] Heitmeyer, C., Mandrioli, D., Formal Methods for Real-time Computing: An Overview, in Formal Methods for

Real-time Computing, Heitmeyer, C., Mandrioli, D., Eds., Chichester, UK, J. Wiley, 1996, pp. 1-32.
[99] Heitmeyer, Constance L., Kirby, James Jr., Labaw, Bruce, Archer, Myla, Bharadwaj, Ramesh, "Using Abstrac-

tion and Model Checking to Detect Safety Violations in Requirements Specifications," IEEE, Transactions
on Software Engineering, vol. 24, no. 11, November 1998.

[100] Heitmeyer, Constance, Kirby, James, and Labaw, Bruce. "Applying the SCR Requirements Method to a Weap-
ons Control Panel: An Experience Report.", Formal Methods in Software Practice '98, Clearwater Beach, FL,
March 4-5, 1998

[101] Heninger, K.L., Specifying Software Requirements for Complex Systems: New Techniques and their Applica-
tion, IEEE, Transactions on Software Engineering, 6, pp. 2-13, 1980.

[102] Heninger, K., Parnas, D. L., Shore, J. E., and Kallander, J. W. Software requirements for the A-7E aircraft.
Tech. Rep. 3876, Naval Research Lab., Wash., DC, 1978.

[103] Heym, M., and H. Osterle. “Computer-aided Methodology Engineering,” Information and Software Technol-
ogy, Vo. 35, no. 6/7, 345-353, June/July 1993.

[104] Holzmann, G.J., The Model Checker Spin, IEEE, Transactions on Software Engineering, 23, 1997, pp. 279-
295.

[105] Høydalsvik,G.M., Sindre, G., On the Purpose of Object-Oriented Analysis. Proc OOPSLA’93, 1993, pp. 240-
255.

[106] Horwitz, S., Prins, J., and Reps, T., Integrating non-interfering versions of programs. ACM Transactions on
Programming Languages and Systems 11, 3 (July 1989), 345-387

[107] A. Hunter and B. Nuseibeh, Managing Inconsistent Specifications: Reasoning, Analysis and Action, ACM
Transactions on Software Engineering and Methodology, October 1998

Conclusions 59

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

[108] Jacobs, S., Kethers, S., Improving Communication and Decision Making within Quality Function Deployment,
First International Conference on Concurrent Engineering, Research, and Application, Pittsburgh, USA,
August, 1994.

[109] Janis, I., Mann, L., Decision Making : a Psychological Analysis of Conflict, Choice, and Commitment, The
Free Press, New York, 1979.

[110] Jantsch, Technological Forecasting in Perspective, Organization for Economic Co-operation and Development,
Paris, 1967.

[111] Jarke, M., Gallersdorfer, R., Jeusfeld, M.A., Staudt, M., Eherer, S., ConceptBase - a Deductive Object Manager
for Meta Data Management, Journal of Intelligent Information Systems, 4 (2), March 1995, 167-192.

[112] M. Jarke, J. Bubenko, C. Rolland, A. Sutcliffe, Y. Vassiliou, Theories Underlying Requirements Engineering:
An Overview of NATURE at Genesis, First Intl. Symp. on Requirements Engineering, San Diego, USA,
1993, pp. 19-31.

[113] M. Jarke, K. Pohl, R. Dömges, S. Jacobs, H.W. Nissen, Requirements Information Management: The NATURE
Approach, Ingenerie des Systemes d'Informations (Special Issue on Requirements Engineering), Vol.2, No.
6, 1994.

[114] Jarke, M., Pohl, K., Requirements engineering in 2001: (Virtually) managing a changing reality, Software Engi-
neering, November 1994, pp. 257-266.

[115] Jarke, M., CREWS: Towards Systematic Usage of Scenarios, Use Cases and Scenes, Matthias Jarke, WI
(Wirtschaftsinformatik) 99, Saarbrücken, 3.-5. März 1999, Springer Aktuell, (Also, available as CREWS-99-
02 from RWTH Aachen, Informatik V - Information Systems.)

[116] Jelassi, M.T., Foroughi, A., Negotiation Support Systems: An Overview of Design Issues and Existing Software,
North-Holland, Decision Support Systems, (5), 1989, 167-181.

[117] Jeusfeld, M.A., Johnen, U.A. : An executable meta model for re-engineering of database schemas. Proc. 13th
International Conference on Conceptual Modeling (ER'94), Manchester, UK, Dec. 1994

[118] P. Johannesson, M. Hasan Jamil, Semantic Interoperability - Context, Issues, and Research Directions, Second
Intl. Conf. on Cooperating Information Systems, Toronto, Canada, May 1994.

[119] Jones, C. Patterns of Software Systems Failure and Success, International Thomson Computer Press, 1996.
[120] Jones, C., Software Challenges, Computer, Vol. 28, No. 10, October 1995.
[121] Jourdan, J., Dent, D., McDermott, J., Mitchell, T., and Zabowski, D., Interfaces that learn: a learning apprentice

for calendar management," CMU-CS-91-135, Carnegie Mellon University (May 7, 1991).
[122] Kannapan, S.M., Marskek, K.M., “An Approach to Parametric Machine Design and Negotiation in Concurrent

Engineering”, Concurrent Engineering: Automation, Tools, and Techniques, Edited by A. Kusiak, John
Wiley & Sons, 1993, 509-534.

[123] Kant, E., Barstow, D., The refinement paradigm: The interaction of coding and efficiency knowledge in pro-
gram synthesis, IEEE, Transactions on Software Engineering, SE-7 (5) September 1981.

[124] Karlsson, J., Ryan, K., A Cost-Value Approach for Prioritizing Requirements, IEEE, Software, September,
1997.

[125] Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson, H., Carriere, J., The Architecture Tradeoff Analy-
sis Method ICSE-98, 1998.

[126] Keeney, R., Raiffa, H., Decisions with multiple objectives, John Wiley and Sons, New York(1976).
[127] Kersten, G.E., Szpakowicz, S., Negotiation in Distributed Artificial Intelligence: Drawing from Human Experi-

ence, IEEE, Proceedings of the 27th Annual Hawaii International Conference on Systems Sciences, 1994,
258-270.

[128] Kim, E., Lee, J., An Exploratory Contingency Model of User Participation and MIS Use, Information and Man-
agement, 11 (2), 1986, pp. 87-97.

[129] Kimbrough, S., Lee, R.M., On Formal Aspects of Electronic (or Digital) Commerce: Examples of Research
Issues and Challenges, IEEE, Proceedings of the 29th Annual Hawaii International Conference on Systems
Sciences, 1996, 319-328.

[130] Klein, M., Supporting Conflict Resolution in Cooperative Design Systems, IEEE, Transactions on Systems,
Man, and Cybernetics, 21 (6), November 1991, 1379-1390.

[131] Krasner, Herb, Curtis, Bill, and Iscoe, Neil, Communication breakdowns and boundary spanning activities on
large programming projects, from Empirical Studies of Programmers: Second Workshop (edited by Gary M.
Olson, Sylvia Sheppard, and Elliot Soloway), Ablex Publishing Corporation, Norwood, NJ, 47-64. (Confer-
ence held in Washing, D.C. on 12/7-8, 1987)

[132] Krasner, H., Requirements dynamics in large software projects, A perspective on new directionsin the software
engineering process, Proc. IFIP, Elsevier, New York, pp. 211-216.

[133] Kraus, S., Wilkenfeld, J., The function of time in cooperative negotiations, AAAI, Proceedings of Ninth
National Conference on Aritficial Intelligence, July 14-19, Vol 1, pp. 179-184.

Conclusions 60

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

[134] Kraus, S., Lehmann, D., Designing and Building a Negotiating Automated Agent, Computational Intelligence,
11(1):132-171, 1995

[135] Kusiak, A., (ed), Concurrent engineering: automation, tools, and techniques, John Wiley & Sons, 1993.
[136] Kwa, J., Tolerant planning and negotiation ingenerating coordinated movement plans in an automated factory,"

Proceedings of the first international conference on industrial and engineering applications of artificial
intelligence, (1988)

[137] Kumar, K., and R. J. Welke. “Methodology Engineering: A Proposal for Situation-Specific Methodology Con-
struction,” in Challenges and Strategies for Research in systems Development (eds. W. W. Cotterman and J.
A. Senn), John Wiley and Sons Ltd., 257-269, 1992

[138] Ladkin, P., In The Risks Digest, Neumann, P.G. (Ed.), ACM, 15.13, October, 1995.
[139] Ladkin, P., In The Risks Digest, Neumann, P.G. (Ed.), ACM, 15.30, December, 1995.
[140] Lander, S., Lesser, V., A framework for the integration of cooperative knowlege-based systems, Workshop on

integrated architectures for manufacturing, IJCAI , Detroit, Michigan (August 24, 1989)
[141] Lander, S.E., Lesser, V.R., Understanding the Role of Negotiation in Distributed Search Among Heterogeneous

Agents, IJCAI, Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence,
Chambéry, France, August, 1993, 438-444.

[142] Leite, Julio Cesar Sampaio do Prado, Freeman, P., : Requirements Validation Through Viewpoint Resolution.
IEEE, Transactions on Software Engineering, 1253-1269.

[143] Lempp, P., Rudolf, L., What Productivity Increases to Expect from a CASE Environment: Results of a User
Survey, in Computer Aided Software Engineering (CASE), Ed. Chikofsky, IEEE, 1993, pp. 147-153.

[144] Lenat, D.B., Brown, J.S., Why AM and Eurisko Appear to Work, Proceedings of the Third National Confer-
ence on Artificial Intelligence, August 22-26, 1983, Washington, D.C., AAAI, pp. 236-240.

[145] Leventhal, N., Using Groupware to Automate Joint Application Development, Journal of Systems Manage-
ment, 45 (5), September/October 1995, pp. 16-22.

[146] Leveson, N. G., Safeware: System Safety and Computers, Addison-Wesley Pub. Co. Inc., 1995.
[147] Leveson, N. G., Heimdahl, M.P.E., Hildreth, H., Reese, J.D., Requirement Specification for Process Control

Systems, IEEE, Transactions on Softare Engineering, 20, 1984.
[148] Lim, L., Benbasat, I., A Theoretical Perspective of Negotiation Support Systems, Journal of Management of

Information Systems, Winter, 9 (3) 1992-1993, 27-44.
[149] Lions, J.L., ARIANE 5: Flight 501 Failure, Report by the Inquiry Board, European Space Agency, Paris, July

19, 1996.
[150] Liou, Y.I., Chen, M., Using Group Support Systems and Joint Application Development for Requirements

Specification, Journal of Management Information Systems, 10(3), Winter 1993-1994, pp. 25-41.
[151] F. X. Liu and J. Yen, An Analytic Framework for Specifying and Analyzing Imprecise Requirements, in Pro-

ceedings of 18th International Conference on Software Engineering (ICSE-18) , Berlin, Germany, pp 60-69,
March 25-30, 1996.

[152] London, P.E., Feather, M.S., Implementing Specification Freedoms, North-Holland, Science of Computer Pro-
gramming, 2, 1982, 91-131.

[153] Lubars, M., Potts, C., Richter, C., A review of th state of practice in requirements modeling, First International
Symposium on Requirements Engineering, IEEE, January 4-6 1993.

[154] Lutz, R.R., Analyzing Software Requirements Errors in Safety-Critical, Embedded Systems, First Interna-
tional Symposium on Requirements Engineering, IEEE, January 4-6 1993, pp. 126-133.

[155] Lyytinen, K., Hirschheim, R., Information systems failures—a survey and classification of the emperical litera-
ture, Oxford Surveys in Information Technology, Vol. 4, Oxford University Press, 1987, pp. 257-309.

[156] MacCrimmon, K. R. & Taylor, R. N., Decision making and problem solving. In M.D. Dunnette (Ed.), Hand-
book of Industrial and Organizational Psychology Chicago, Il: Rand McNally College Publishing Company,
1976, pp. 1397-1453.

[157] Maiden, N. Minocha, S. Ryan, M., Hutchings, K., Manning, K., A Co-operative Scenario-based Approach to
the Acquisition and Validation of Systems Requirements, in Proceedings of Human Error and Systems
Development, Glasgow University, Scotland, March 19-22, 1997.

[158] N.A.M. Maiden, A.G. Sutcliffe Requirements Critiquing Using Domain Abstractions, Intl. Conf. on Require-
ments Engineering, Colorado-Springs, USA, April 1994

[159] N.A.M. Maiden, CREWS-SAVRE: Scenarios for Acquiring and Validating Requirements, Kluwer, Journal of
Automated Software Engineering, 1998.

[160] Magal, S., Snead, K., The Role of Causal Attributions in Explaining the Link Between User Participation and
Information System Success, Information Resources Management Journal, 6 (3), Summer 1993, pp. 19-29.

[161] Manna, Z., Prueli, A., The Temporal Logic of Reactive and Concurrent Systems, Springer-Verlag 1992.
[162] Manna, Z., Prueli, A., Tools and rules for the practicing verifier, Department of Computer Science, Stanford

University, Technical Report, CS-TR-90-1321. 1990.

Conclusions 61

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

[163] Markus, L., Keil, M., If We Build It, They Will Come: Designing Information Systems That People Want to
Use, Sloan Management Review, Summer, 1994, pp. 11-25.

[164] Matwin, S., Szpakowicz, S., Koperczak, Z., Kersten, G.E., Michalowski, W., Negoplan: An Expert System
Shell for Negotiation Support, IEEE, Expert, 4(4) 50-62.

[165] Mazer, M., A knowledge-theoretic account of negotiated commitement," CSRI-237, Univerity of Toronto
(November 1989).

[166] Mazza, C., Fairclough, J., Melton, B., De Pablo, D., Scheffer, A., Stevens, R., Software Engineering Standards,
Prentice Hall, 1994.

[167] McKeen, J., Guimaraes, T., Successful Strategies for User Participation in Systems Development, JMIS, 14 (2),
Fall 1997, pp. 133-150.

[168] McMillan, K.L., Symbolic Model Checking - an Approach to the State Explosion Problem, TR, Computer Sci-
ence, Carnegie-Mellon University, Pittsburgh, PA, 1992.

[169] Mi, P, Scacchi, W, Process Integration for CASE Environments, IEEE Software, Vol. 9(2), 45-53, (March
1992). Reprinted in Computer-Aided Software Engineering (Second Edition), E. Chikovsky (ed.), IEEE
Computer Society (1993).

[170] Miller, J., Palaniswami, D., Sheth, A., Kochut, K., Singh, H., WebWork: METEOR's Web-based Workflow
Management System, Technical Report #UGA-CS-TR-97-002, Department of Computer Science, University
of Georgia, March 1997.

[171] R. Motschnig-Pitrig, H.W. Nissen, M. Jarke, Proc. of the 9th Intl. Conf. On Software Engineering and Knowl-
edge Engineering (SEKE ’97), Madrid, Spain, June 17-20, 1997.

[172] Mostow, J., Voigt, K., Explicit integration of goals in heuristic algorithm design, IJCAI87 (January 1987).
[173] Mumford, E., Wier, M., Computer systems in work design—the ETHICS method, London, Associated Business

Press, 1979.
[174] Mullery, G., CORE - a Method for controlled requirements expression, in Proceedings of the Fourth Interna-

tional Conference on Software Engineering, IEEE, CS Press, 1979, pp. 126-135.
[175] Mumford, E., Wier, M., Computer systems in work design—the ETHICS method, London, Associated Business

Press, 1979.
[176] Mylopoulos, J., Borgida, A., Jarke, M., Koubarakis, M. (1990). Telos: a language for representing knowledge

about information systems. ACM Trans. Information Systems 8, 4.
[177] Mylopoulos, J., Borgida, A., Yu, E., Representing Software Engineering Knowledge, Automated Software

Engineering, Kluwer, 4, 1997, pp. 291-317.
[178] Mylopoulos, J., Chung, L., Nixon, B., Representing and Using Non-Functional Requirements: A Process-Ori-

ented Approach, IEEE, Transactions on Software Engineering, 18 (6), June 1992, pp. 483-497.
[179] Mylopoulos, J., Chung, L., Yu, E., From Object-Oriented to Goal-Oriented Requirements Analysis, ACM,

Communications of the ACM, 42(1), January, 1999, pp. 31-37.
[180] Naiman, C. F., and A. M. Ouksel. “A Classification of Semantic Conflicts in Heterogeneous Database Sys-

tems,” Journal of Organizational Computing, 5(2), 167-193, 1995
[181] Nissen, H., Jeusfeld, A., Jarke, M., Zemanek, G., Huber, H., Technology to Manage Multiple Requirements

Perspectives, IEEE, Software, March 1996, pp. 37-48.
[182] Hans W. Nissen, Matthias Jarke, Repository support for multi-perspective requirements engineering. Lyytinen/

Welke (eds.): Special Issue on Meta Modeling and Method Engineering, Information Systems 24, 2 (1999).
[183] Neches, R., Swartout, W., Moore J.D., Enhanced maintenance and explanation of expert systems through

explicit models of their development, IEEE, Transactions on Software Engineering, SE-11 (11), November
1985, pp. 1337-1351.

[184] Neumann, P.G., Computer Related Risks, Addison-Wesley, 1995.
[185] Norman, R.J., Nunamaker, J.F., Jr., CASE Productivity Perceptions of Software Engineering Professionals,

Communications of the ACM, 32 (9), September 1989, pp. 1102-1108.
[186] B. Nuseibeh, To Be And Not To Be: On Managing Inconsistency in Software Development, Proceedings of 8th

International Workshop on Software Specification and Design (IWSSD-8), pp164-169, Scloss Velen, Ger-
many, 22-23 March 1996, IEEE CS Press

[187] Nuseibeh, B., Kramer, J., Finkelstein, A., A Framework for Expressing the Relationship between Multiple
Views in Requirements Specification, IEEE, Transactions on Software Engineering, October, 1994, 760-773.

[188] B. Nuseibeh, Ariane 5: Who Dunnit?, IEEE Software, May 1997.
[189] A. Hunter and B. Nuseibeh, Managing Inconsistent Specifications: Reasoning, Analysis and Action, (to appear

in) ACM Transactions on Software Engineering and Methodology, 1998
[190] B. Nuseibeh and A. Finkelstein, ViewPoints: A Vehicle for Method and Tool Integration, Proceedings of the

5th International Workshop on Computer-Aided Software Engineering (CASE '92), 50-60, Montreal, Can-
ada, 6-10th July 1992, IEEE CS Press.

Conclusions 62

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

[191] Oliver, J.R., On Artificial Agents for Negotiation in Electronic Commerce, IEEE, Proceedings of the 29th
Annual Hawaii International Conference on Systems Sciences, 1996, 337-346.

[192] Olsen, G.R., Mark Cutkosky, Jay M. Tenenbaum, & Thomas R. Gruber. Collaborative Engineering based on
Knowledge Sharing Agreements Procedings of the 1994 ASME Database Symposium, September 11-14,
1994, Minneapolis, MN.

[193] Osborne, M., Rubinstein. A., A Course in Game Theory, The MIT Press, Cambridge, MA, 1994.
[194] Osterweil, L., Sutton, S., Using Software Technology to Define Workflow Processes, NSF Workshop on Work-

flow & Process Automation, Athens, GA 1996.
[195] Osterweil, L.J., Software Processes are Software Too, Proceedings of the Ninth International Conference of

Software Engineering, Monterey CA, March 1987, pp. 2-13.
[196] Charles Perrow, Normal Accidents: Living with HIgh-Risk Technology, Basic Books, Inc., New York, 1984.
[197] Klaus Pohl, Requirements Engineering: An Overview, Encyclopedia of Computer Science and Technology, A.

Kent, J. Williams (editors), Volume 36, Supplement 21, Marcel Dekker, Inc., New York, 1997 (Also avail-
able as CREWS-96-02 from RWTH Aachen, Informatik V - Information Systems.)

[198] Potts C., Bruns G. "Recording the Reasons for Design decisions", Proceedings of the 20th International Con-
fernece on Software Engineering, 1988 pp 418-427

[199] C. Potts, “Using Schematic Scenarios to Understand User Needs”, Proc. DIS’95 - ACM Symposium on Design-
ing interactive Systems: Processes, Practices and Techniques, University of Michigan, August 1995.

[200] Potts, C., Using Schematic Scenarios to Understand User needs, ACM, Proceedings of the Symposium on
Designing Interactive Systems: Processes, Practices, and Techniques (DIS’95), University of Michigan,
August, 1995.

[201] Potts, C., Takahashi, K., Anton, A., Inquiry-Based Require ments, Analysis, IEEE, Software, pp. 21-32.
[202] Potts, C., Requiements Completeness, Enterprise Goals and Scenarios, Georgia Institute of Technology, Col-

lege of Computing, August, 1994.
[203] Pruitt, D., Negotiation Behavior, Academic Press Inc.(1981).
[204] Raiffa, H., The art and science of negotiation, Harvard University Press(1982).
[205] Raiffa, H., Decision Analysis, Addison-Wesley, Reading, Mass., 1968
[206] Ram, S., Ramesh, V., A Blackboard-Based Cooperative System for Schema Integration, IEEE Expert/Intelli-

gent Systems & Their Applications Vol. 10, No. 3, June 1995
[207] Ramesh, B., Dhar, V., Supporting systems development by capturing deliberations during requirements engi-

neerng, IEEE, Transactions on Software Engineering, 1992, pp. 498-510.
[208] Ramesh, B., Jarke, M., Towards Reference Models for Requirements Traceability, IEEE, Transactions on Soft-

wre Engineering, to appear.
[209] Brian.Randell, "London Ambulance Service Inquiry Report (long)," Forum On Risks to the Public in Comput-

ers and Related Systems, http://catless.ncl.ac.uk/risks, Vol. 14, Issue 48, March 24, 1993.
[210] Rangaswamy, A., Eliashberg, J., Burke, R.R., Wind, J., Developing Marketing Expert Systems: An Application

to International Negotiations, Journal of Marketing, 53, October, 1989, 24-39.
[211] Rasmusen, E., A Model of Negotiation, Not Bargaining, Indiana University, Indiana University Working Paper

in Economics No. 94-007, May 9, 1995.
[212] Robbins, S., Organizational behavior: concepts, controversies, and applications, Prentice Hall, NJ(1983).
[213] Robinson, W., Towards formalization of specification design, Masters thesis, University of Oregon (June

1987).
[214] Robinson, W.N., Automating the Parallel Elaboration Of Specifications: Preliminary Findings, CIS-TR-89-02,

University of Oregon, February 1989.
[215] Robinson, W., Automating Negotiated Design Integration: Formal Representations and Algorithms for Collab-

orative Design, Doctoral Dissertation, University of Oregon, March 1993. (Also available as CIS-TR-93-10
from the University of Oregon.)

[216] Robinson, W.N., Automated Assistance for Conflict Resolution in Multiple Perspective Systems Analysis and
Operation, ACM Workshop on Viewpoints in Software Development, In Association with the ACM Sympo-
sium on Foundations of Software Engineering, San Francisco, USA, October 14th & 15th, 1996.

[217] Robinson, W.N., A Decision Theoretic Perspective of Multiagent Requirements Negotiation, In Automating
software design: interactive design, Workshop Notes from the Ninth National Conference on Artificial Intel-
ligence, AAAI, July 15, 1991, 154-161. (Also available as RS-91-287 from ISI/USC.)

[218] W.N. Robinson, Electronic Brokering for Assisted Contracting of Software Applets, IEEE, Proceedings of the
30th Annual Hawaii International Conference on Systems Sciences, January 7-10 1997, To appear.

[219] Robinson, W.N., Goal-Oriented Workflow Analysis and Infrastructure, National Science Foundation, Work-
shop on Workflow & Process Automation Workshop, Athens, GA, 1996. (Also, available as Georgia State
University, Working Paper CIS-96-07, May 1996.)

Conclusions 63

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

[220] Robinson, W.N., Integrating Multiple Specifications Using Domain Goals, 5th International Workshop on Soft-
ware Specification and Design, (1989) 219-226

[221] Robinson, W.N., Interactive Decision Support for Requirements Negotiation, Concurrent Engineering:
Research & Applications, Special Issue on Conflict Management in Concurrent Engineering, The Institute of
Concurrent Engineering, 1994 (2) 237-252.

[222] Robinson, W.N., Negotiation Behavior During Requirement Specification, Proceedings of the 12th Interna-
tional Conference on Software Engineering, IEEE Computer Society Press, Nice, France (March 26-30
1990) 268-276

[223] Robinson, W.N., Preference and Function Modeling in Requirements Mediation, In Model-based reasoning,
Workshop Notes from the Ninth National Conference on Artificial Intelligence, AAAI, July 14, 1991.

[224] Robinson, W.N., Fickas, S. Supporting Multi-Perspective Requirements Engineering, First International Con-
ference on Requirements Engineering, IEEE, (April 18-22 1994) 206-215.

[225] W.N. Robinson, S. Pawlowski, Surfacing Root Requirements Interactions from Inquiry Cycle Requirements,
International Conference on Requirements Engineering, IEEE, (April 1998) To appear.

[226] W.N. Robinson, S. Pawlowski, Managing Requirements Inconsistency with Development Goal Monitors,
IEEE, Transaction on Software Engineering, in submission.

[227] Robinson, W.N., Fickas, S., Negotiation freedoms for requirements engineering, CIS-TR-90-04, University of
Oregon, April 6, 1990.

[228] Robinson, W.N., Volkov, S., Conflict-Oriented Requirements Restructuring, GSU CIS Working Paper 96-15,
Georgia State University, Atlanta, GA, September, 1996. (In submission to IEEE Transactions on Software
Engineering.)

[229] Robinson, W.N., Volkov, S., A Meta-Model for Restructuring Stakeholder Requirements, Proceedings of the
19th International Conference on Software Engineering, IEEE Computer Society Press, Boston, USA (May
17-24 1997), pp 140-149.

[230] Robinson, W.N., Volkov, S., Supporting the Negotiation Life-Cycle, ACM, Communications of the ACM, to
appear.

[231] Robey, D., Farrow, D.L., Franz, C.R., Group Process and Conflict in Systems Development, The Institute of
Management Sciences, Management Science, 35(10), October, 1989, pp. 1172-1191.

[232] Rosenschein, J., Genesereth, M., Deals among rational agents, Proceedings of the 1985 IJCAI, (August 1985)
91-99.

[233] Rosenschein, J., Ginsberg, M., Genesereth, M., Cooperation without communication, Proceedings of AAAI-86,
Morgan Kaufmann Publishers, Inc. (1986) 51-57.

[234] Rosenschein, J. Breese, J., Communication-free interactions among rational agents: a probabilistic approach,"
in: Eds. L. Gasser, M.N. Huhns, Distributed artificial intelligence, Morgan Kaufmann Publishers Inc. (1989)

[235] Rosenschein, J., Zlotkin, G., Rules of Encounter, The MIT Press, 1994.
[236] Ross, D.T.,Structured Analysis (SA): A language for communicating ideas, IEEE, Transactions on Software

Engineering, 3 (1) January 1977, 16-34.
[237] Rumbaugh, J., Designing Bugs and Dueling Methodologies. Journal of Object-Oriented Programming, Jan

1992.
[238] Sandholm, T. and Lesser, V., Issues in Automated Negotiation and Electronic Commerce: Extending the Con-

tract Net Framework. First International Conference on Multiagent Systems (ICMAS-95), San Francisco,
1995, 328-335.

[239] Sathi, A., Fox, M., Constraint-directed negotiation of resource reallocations, Eds. L. Gasser, M.N. Huhns, Dis-
tributed Artificial Intelligence, Morgan Kaufmann Publishers Inc., San Mateo (1989) 163-193.

[240] Sathi, A., Morton, T., Roth, S., Callisto: an intelligent project management system, AI Magazine, (Winter 1986)
34-52.

[241] Schuler, D. Namioka, A., Participatory design, Lawrence Erlbaum Assoc., Hillsdale, New Jersey, 1993.
[242] Sen, S., Durfee, E., A formal study of distributed meeting scheduling: preliminary results, Department of Elec-

tircal Engineering and Computer Science, University of Michigan, 1991
[243] Shakun, M.F., Airline Buyout: Evolutionary Systems Design and Problem Restructuring in Group Decision and

Negotiation, The Institute of Management Sciences, Management Science, 37(10), (October 1991), 1291-
1303.

[244] Schelling, T.C., The Strategy of Conflict, Cambridge, Massachusetts: Havard Univ. Press, 1960.
[245] Shepard, R., On subjectively optimum selections among multi-attribute alternatives," Eds. W. Edwards, A.

Tversky, Decision making, (1967) 257-283.
[246] Shaw, M., Gaines, B., Comparing Conceptual Structures: Consensus, Conflict, Correspondence and Contrast,

Knowledge Acquisition 1(4), 341-363, 1989

Conclusions 64

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

[247] Shaw, M., Gaines, B., A methdology for recognizing consensus, correspondence, conflict and contrast in a
knowledge acquisition system, Workshop on knowledge acquisition for knowledge based systems, Banff
(November 7-11, 1988)

[248] Sheth A., (Ed.), Workshop on Workflow & Process Automation, National Science Founation, Athens, GA 1996.
[249] Smith, D.R., Kotik, B., Westfold, S.J., Research on Knowledge-Based Software Environments at Kestrel Insti-

tute, IEEE, Transactions on Software Engineering, 11 (11), November, 1985, 1278-1295.
[250] Smith, R. G., “The Contract Net Protocol: High-level Communication and Control in a Distributed Problem

Solver”, IEEE, Transactions on Computers, C-29, Vol. 12, December 1980, 1104-1113.
[251] F. Schneider, S. M. Easterbrook, J. R. Callahan and G. J. Holzmann, "Validating Requirements for Fault Toler-

ant Systems using Model Checking," Third IEEE Conference on Requirements Engineering, Colorado
Springs, CO, April 6 - 10, 1998.

[252] Spacappietra, S., and C. Parent. “View Integration: A Step Forward in Solving Structural Conflicts,” IEEE
Transactions on Knowledge and Data Engineering, 6(2), 258-274, April 1994

[253] Spanoudakis G., Constantopoulos P., Analogical Reuse of Requirements Specifications: A Computational
Model, Applied Artificial Intelligence: An International Journal, Vol. 10, No. 4, pp.281-306,1996

[254] Spanoudakis, G. & Finkelstein, A. "Reconciling Requirements: a method for managing interference, inconsis-
tency and conflict"; Annals of Software Engineering, (1997)

[255] Storey, V.C., Goldstein, R.C., Chiang, R.H.L., Dey, D., and Sundaresan, S., “Database Design with Common
Sense Business Reasoning and Learning.” ACM Transactions on Database Systems, forthcomming.

[256] Stringer-Calvert, D., Rushby, J., A Less Elementary Tutorial for the PVS Specification and Verification Sys-
tem, CSL Technical Report CSL-95-10, Stanford University, 1995.

[257] A.G. Sutcliffe, N.A.M. Maiden, S. Minocha, D. Manuel, Supporting Scenario-based Requirements Engineer-
ing, IEEE, Transaction of Software Engineering: Special Issue on Scenario Management, 1998.

[258] Swartout, W., Balzer, R., On the inevitable intertwining of specification and implementation, CACM Vol. 25
(1982) 438-440.

[259] Sycara, K., Decker, K., Pannu, A., Williamson, M., and Zeng, D., Distributed Intelligent Agents, IEEE Expert/
Intelligent Systems & Their Applications Vol. 11, No. 6, December 1996, pp. 36-46.

[260] Sycara, K., Problem Restructuring in Negotiation, The Institute of Management Sciences, Management Sci-
ence, 37(10), (October 1991), 1248-1267.

[261] Sycara, K., Resolving goal conflicts via negotiation, Proceedings of the AAAI-88, (1988) 245-250.
[262] A. van Lamsweerde, A. Dardenne, B. Delcourt and F. Dubisy, The KAOS Project: Knowledge Acquisition in

Automated Specification of Software. Proceedings AAAI Spring Symposium Series, Stanford University,
American Association for Artificial Intelligence, March 1991, pp. 59-62.

[263] A. van Lamsweerde, E. Letier, Integrating Obstacles in Goal-Driven Requirements Engineering, Proceedings
ICSE'98 - 20th International Conference on Software Engineering, IEEE-ACM (Kyoto, April 98)

[264] van Lamsweerde, A., Darimont, R., Massonet, P., Goal-Directed Elaboration of Requirements for a Meeting
Scheduler: Problems and Lessons Learnt, IEEE, Second International Symposium on Requirements Engi-
neering, March 27-29, 1995, pp. 194-203.

[265] van Lamsweerde, Darimont, R., Massonet, P., The Meeting Scheduler System—Preliminary Definition, Inter-
nal Report, University of Louvain, 1993.

[266] van Lamsweerde, Darimont, R., Letier, E., Managing Conflicts in Goal-Driven Requirements Engineering,
IEEE, Transactions on Software Engineering, 24 (11) November 1998, pp. 908-926.

[267] A. van Lamsweerde, L. Willemet, Inferring Declarative Requirements Specifications from Operational Scenar-
ios, IEEE Transactions on Software Engineering, Special Issue on Scenario Management, IEEE (December
1998)

[268] Velthuijsen, H., Distributed artificial intelligence for runtime feature-interaction resolution, IEEE, Computer,
Vol. 26, No. 8, August 1993, 48-55.

[269] Vessey, I., Sravanapudi, A.P., CASE tools as collaborative support technologies, Communications of the ACM,
38(1) Jan 1995, pp. 83-95.

[270] von Martial, F., Coordinating plans of autonomous agents, Springer-Verlag, 1992
[271] Waldinger, W., Achieving Several Goals Simultaneously, in Machine Intelligence, Vol. 8, E. Elcock, D. Michie

(Eds.), Ellis Horwood, 1977.
[272] Walz, D.B., Elam, J.J., and Curtis, Bill, Inside a software design team: Knowledge acquisition, sharing, and

integration, Communications of the ACM, Vol. 36, No. 10 (October 1993), 63-77.
[273] Walz, D.B, Elam, J.J., Krasner, H., A methodology for studying software design teams: An investigation of

conflict behaviors in the requirements definition phase, from Empirical Studies of Programmers: Second
Workshop (edited by Gary M. Olson, Sylvia Sheppard, and Elliot Soloway), Ablex Publishing Corporation,
Norwood, NJ, 83-99. (Conference held in Washington, D.C. on 12/7-8, 1987)

Conclusions 65

© 1999 William N. Robinson Requirements Interaction Management GSU CIS 99-7

[274] Weinberg, B.M., Schulman, E.L., Goals and Performance in Computer Programming, Human Factors, 16 (1),
1974, pp. 70-77.

[275] Werkman, K., Knowledge-based model of using shareable perspectives, Proceedings tenth international con-
ference on distributed artificial intelligence, (October 1990) 1-23.

[276] Wilensky R., Planning and understanding, Addison-Wesley, 1983.
[277] Wing, J. A Study of 12 Specifications of the Library Problem. IEEE Software, July 1988, pp. 66-76.
[278] Winograd, T., Flores, F., Understanding Computers and Cognition, Addison-Wesley, 1987.
[279] Yakemovic, K., Conklin, J., Experience with the gIBIS model in a corporate setting, Proceedings of CSCW 90,

Los Angeles, 1990.
[280] Yang, W., Horwitz, S., and Reps, T., A program integration algorithm that accommodates semantics-preserving

transformations. ACM Transactions on Software Engineering and Methodology 1, 3 (July 1992), 310-354.
[281] Yen, J., Lee, H.G., Bui, T., Intelligent Clearinghouse: Electronic Marketplace with Computer-Mediated Negoti-

ation Supports, IEEE, Proceedings of the 29th Annual Hawaii International Conference on Systems Sciences,
1996, 219-227.

[282] J. Yen and W. Tiao, A Systematic Tradeoff Analysis for Conflicting Imprecise Requirements, in Proceedings of
the Third IEEE International Symposium on Requirements Engineering (RE'97), January 5-8, 1997.

[283] Yu, E.S.K., Mylopoulos, J., An Actor Dependency Model of Organizational Work - With Application to Busi-
ness Process Reengineering, Proceedings of Conference on Organizational Computing Systems
(COOCS’93), Milpitas, CA, November 1-4, 1993.

[284] Zave, P., Jackson, M., Four Dark Corners of Requirements Engineering, Transactions on Software Engineering
and Methodology, ACM, 6 (1) January 1997, pp. 1-30.

[285] Zave, P., FAQ Sheet on Feature Interaction, http://akpublic.research.att.com/info/pamela/faq.html AT&T,
1999.

[286] Zeleny, M., Multiple criteria decision making, McGraw-Hill(1982).

