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Abstract.  In this paper we describe DataJewel, a new architecture designed for 
temporal data mining. It tightly integrates a visualization component, an algo-
rithmic component and a database component. We introduce a new visualiza-
tion technique called CalendarView as an implementation of the visualization 
component. We show how algorithms can be tightly integrated with the visuali-
zation component and that most existing temporal data mining algorithms can 
be leveraged by embedding them into our architecture. This integration is 
achieved by an interface that is used by the user and the algorithm to assign 
colors to events. The user assigns colors to interactively incorporate domain 
knowledge or to formulate hypotheses. The algorithm assigns colors based on 
the discovered patterns. Using the same visualization technique for both data 
and patterns makes it more intuitive for the user to select useful patterns from 
those returned by the algorithm. We also present a data structure that supports 
temporal mining of very large databases. In the experiments, we apply our ap-
proach to several large datasets from the airplane maintenance domain and dis-
cuss its applicability to domains like homeland security, market basket analysis 
and web mining. 

1   Introduction 

In recent years, there has been a lot of interest in the KDD community in mining tem-
poral data. Temporal datasets have a dedicated attribute storing a time stamp for each 
record. This time stamp usually refers to the date an event has happened or some kind 
of data has been measured and collected. Examples for temporal datasets include 
stock market data, manufacturing or production data, maintenance data, web mining 
and point-of-sale records.  Due to the importance and complexity of the time attribute, 
a lot of different kind of patterns are of interest. An overview is provided in [2]. Typi-
cally, in different domains different kind of temporal patterns are of interest. This is 
one aspect motivating our architecture, which provides access to many temporal data 
mining algorithms and an easy way to add new ones.  
 
When dealing with temporal databases a second but very substantial aspect becomes 
an important challenge. In large enterprises, databases evolve as a consequence of an 



organizational need. They are designed to serve a specific (e.g. operational) purpose. 
Often databases from different organizations can be linked together to serve a new 
purpose, e.g. to provide a platform for data mining. However, the task of linking data-
bases together is far from trivial; the field of information integration deals with chal-
lenging and laborious problems of maintaining data integrity, schema mapping, and 
resolving duplication. Often, there is no common attribute at all except the timestamp. 
By linking tables together to explore a subset of the union of the attributes with re-
spect to time, a powerful view upon the data is obtained. E.g. intelligence agencies can 
link tables together that correspond to news, credit card histories, travel itineraries to 
detect suspicious activities. An enterprise can link together helpdesk data about com-
puter problems with a completely independent table from the procurement department 
and a labor database. The detected patterns might reveal insights into causes of com-
puter problems and might form a new purchasing strategy.  
 
In this paper, we address both aspects of temporal data mining. On the one hand, our 
approach is applicable to a variety of domains because it leverages existing algo-
rithms. On the other hand, it offers a means of linking tables together that have no 
primary key – foreign key relationship. All they are required to have is an attribute 
with a timestamp. 
 
In addition, our new architecture for temporal data mining also makes the following 
contribution. Traditionally, algorithmic approaches are introduced by one research 
community and some of them also focus on scalability aspects. However, for most of 
the papers, the visualization component is omitted, either because the authors do not 
feel comfortable in this area or because they think a graphical user interface alone 
should be sufficient and that is not a research task. On the other hand, the visualization 
community focuses most often just on the visualization aspect, i.e. how to represent 
data, but does not investigate algorithmic approaches [5]. With this paper, we would 
like to make a contribution towards a closer collaboration of these fields. We show 
that a system that is designed to tightly integrate components from various disciplines 
can substantially improve the functionality of loosely coupled components. 

 
The rest of the paper is organized as follows. In Section 2, we summarize related 
work. Section 3 describes a user-centric data mining process and the DataJewel archi-
tecture. Section 4 presents the visual component of our architecture and describes in 
detail our new visualization technique called CalendarView. Section 5 outlines how 
temporal data mining algorithms can be tightly integrated into DataJewel. Section 6 
reports how to handle large datasets. In section 7, we describe several experiments 
with large datasets. We conclude the paper with section 8 and discuss some future 
directions. 



2   Related Work 

Our main contribution is to tightly integrate a visual, an algorithmic and a database 
component for temporal data mining. To our knowledge no such architecture has been 
proposed so far. Most of the work in temporal data mining deals with either just an 
algorithmic approach, a way to visualize data over time or an approach to scale up to 
large datasets. We review these areas in the following paragraphs. 

 
Many approaches for visualizing data over time have been proposed. Typically, visu-
alization techniques represent temporal data either as a sequence along an axis, or as  
animations where data at different times is represented in different frames. A recent 
approach which treats data as a sequence is ThemeRiver [6]; it employs the metaphor 
of a current and maps histograms of document keywords to the height of a wave at a 
particular time. Mackinlay et. al. [11] uses a spiral for calendar visualization, how-
ever, calendar days are just used as reference points. Hierarchical pixel bar charts [8] 
are not aimed at visualizing temporal data but it can be used as an alternative pixel 
representation within a day. 

 
Several algorithms for mining temporal datasets have been proposed. According to a 
recent overview [2], contributions have been made in the areas of how to model a 
temporal sequence, how to define a suitable similarity measure for sequences and what 
kind of mining operations can be performed. We will show in section 5 that many of 
the existing algorithms can be leveraged by our architecture.   

 
Tightly integrated architectures have been proposed, but are only partially comparable 
to our approach. In [1], the authors describe an approach called cooperative classifica-
tion, where the visualization and the algorithmic component are tightly integrated. 
This approach however, was specifically designed for decision tree classification and 
does not elaborate on scalability issues. Similarly, HD-eye [8] and n23Tool [15] inte-
grate visualization with algorithms but are applicable just to clustering methods. [14] 
represents clusters of time series data which contain a pattern spanning one day and 
relating them to days with similar patterns. In contrast to our approach, it does not 
represent the data for each day nor does it cover scalability issues. Tightly integrating 
algorithms with databases or incorporating scalability considerations into data mining 
algorithms has been recognized and studied more extensively. A comprehensive sur-
vey is presented in [10]. Proposed ways to achieve scalability are falling in one of the 
three categories: design of a fast algorithm (e.g. by restricting the model space or 
parallelization), partitioning of the data (instance/feature selection methods) and rela-
tional representations (e.g. integration of data mining functionality in database sys-
tems). Recent approaches include the computation of sufficient statistics, like Rainfor-
est [4] does for decision trees. [12] describes an in-depth analysis of different level of 
integration of an association mining algorithm into database systems. CONTROL [7] 
aims at a database-centric interactive analysis of large datasets focusing on online 
query processing. All these approaches, however, are not directly applicable to tempo-
ral data. 



3   User-centric Data Mining 

One design goal of our user-centric architecture is its intuitive use by a domain ex-
pert as opposed to data mining experts. As a result, the user can steer the exploration 
of temporal data, invoke algorithms to automatically discover patterns, incorporate his 
domain knowledge, hypothesize on the fly and use his perception to detect patterns of 
interest. In figure 1, we outline the mining process with DataJewel.  

First, the user selects the tables and attributes for analysis. Then the data is loaded 
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 Figure 1. The mining process with DataJewe

e user has the option of invoking an algorithm and visualizing the result-

using the current settings. Alternatively, the user can interact with the 
to incorporate his domain knowledge or discover some patterns based on 
n. In either case, the user hopefully discovers some pattern of interest. 
ts a date range of interest and visualizes it with the same or another visu-
nique. Another visualization technique might be picked to represent the 
erent way or because it is more suitable due to the reduced size after the 
er the user has iterated this loop several times, he might be interested in 
n” to the raw data to see all attributes. The corresponding tables are 
 data is retrieved and presented. Note that this approach facilitates 
 incorporating new algorithms and visualizations. 

wing, we introduce some terminology and state assumptions for our ar-
t us assume, the data sources consist of a set of tables. Each table con-
s, with each record consisting of d attributes a1,…,ad. At least one attrib-
a timestamp for each record. We refer to the timestamp attribute as the 
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event date, all categorical1 attributes that should be incorporated in the analysis are 
event attributes and the attribute values of these event attributes are events. In this 
paper, we will focus on event attributes (categorical attributes only) for which the 
following assumptions hold: 

a) The number of event attributes is low. (< 10) 
b) The number of different events of one event attribute is moderate. (< 200) 
c) The smallest time unit of interest in the event dates is one day 

Assumption a) restricts the number of event attributes used during the analysis. As 
opposed to high-dimensional feature vectors for which some mining tasks are per-
formed, event attributes usually have a clear meaning. Often, in one given analysis, the 
analyst selects a small number of event attributes, which can be associated with each 
other in the particular domain. Using domain knowledge, the remaining attributes are 
omitted from the analysis because they would just add noise. 

Assumption b) limits the number of events of an event attribute to a moderate size. 
In case, where this is not true for the initial dataset, a concept hierarchy can be defined 
for the event attribute to reduce the total number of events. 

With assumption c) we focus on the most common time unit of interest in business 
domains. Note that days are just the smallest unit of interest and the discovery of 
weekly or monthly patterns is also supported. Obviously, for intrusion detection sys-
tems, our proposed unit of time would have to be refined to reflect finer grained time 
units. 

In figure 2, a simplified view of the DataJewel architecture is depicted consisting of 
three layer. Although the data flows from the data source to the visualization layer, we 
have designed our system from the opposite direction to better support a user-centric 
process. Corresponding to each one of these layers, we will describe the visualization, 
the algorithmic and the database component. We will present just one instance of the 
visualization and the algorithmic component, but new ones can be easily integrated. 

 

                                                           
1 Continuous attributes can be transformed into categorical attributes by discretization.  



4   The Visualization Component 

The visualization component contains visualization techniques suitable for repre-
senting temporal data. We present a new visualization technique, which represents 
temporal data on a daily basis. 

4.1   CalendarView 

Our architecture is primarily designed for domain experts not just for data mining 
experts. Thus the visualization component has to be intuitive as well as versatile. Cal-
endarView, our new visualization technique, is motivated by what the human is al-
ready very familiar with. First, the representation of event dates is designed following 
the visual metaphor of a calendar. Second, the structure of the data that is represented 
along the event dates is the frequency of events. Its representation is based on the 
familiarity of humans with histograms. 

In simpler linear representations, time is greatly simplified by modeling it as a se-
quence of dates. In contrast, we have selected the calendar metaphor because it re-
flects the rich temporal structure more effectively than typical simplified representa-
tions. From a calendar, the human preattentively extracts the notion of weekends, 
weekly repetitions, seasons, days with a special meaning in his domain, etc.  

Whereas the calendar metaphor is used to represent the event dates on a daily basis, 
an extended version of histograms reflects the distribution of events for a single day. 
To enable the user to compare different event attributes with each other, each event 
attribute is represented by a separate calendar. In the final visualization all calendars 
are drawn one above the other. 

 
Table 1. Example of a temporal dataset 
Event 
Date 

Event Attribute: 
Page hit 

Event Attribute: 
Browser 

Event 
Attribute: 
… 

1/1/2002 Index.html MS IE … 
1/1/2002 Dep1/contacts.htm Netscape … 

… … … … 
 
Table 1 depicts an example of a temporal dataset. Each event has an associated event 
date, so we can count the frequency of this event occurring on a single day. If we do 
that for each event of one event attribute we can display the distribution by a histo-
gram for this event attribute. We can initially assign a different color to each event of 
one event attribute. The default color map is the PBC color map [1] which has been 
developed to map distinct values to distinct colors. As illustrated2 in figure 3, for each 
day the frequency distribution of the events is represented within the corresponding 
day in the calendar. 

                                                           
2 Note that the color mapping in this paper is not the original color assignment. It has been 

changed to optimize for grayscale printing. 
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 using colored histograms where frequency is depicted by the height of 
events are represented pixel by pixel to account for more categories than 
epicted by a histogram. In particular each day is filled with pixels in the 
y: 
is represented by a constant size square of nn×  pixels. If the number of 
s event attribute on the corresponding day is less or equal to 2n , we can 
l per event. The pixel arrangement starts in the lower left corner of the 
t goes up (n-1) times, goes one pixel to the right, then goes (n-1) pixel 
xel to the right, and so forth. Following the illustration in figure 3, let us 
ave four events e1, e2, e3 and e4. The frequency of the occurrence of e1 on 
ay is denoted by f(e1, date). Then we draw the first f(e1,date) pixels with 
igned to e1. Following the described pixel arrangement, the next f(e2, 

are drawn in the color of event e2, and so forth. We can distinguish be-
lowing three cases: 
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 of the events can greatly contribute to perception of their distribution. By 
e events for each day preattentive processing can be improved. The rea-



son becomes clear with the following example. Let us assume the daily distribution of 
ten events over one year is very similar and even within each day the number of events 
does not differ largely. Let us further assume there is exactly one day where the least 
frequent event suddenly happens more often. At that day it is the second most frequent 
event. Then in addition to representing this event with more pixels than at other days, 
the reordering yields a better perception of this distribution change. Thus, the reorder-
ing improves the perception of distribution changes (cf. figure 4 where the 4th day is 
reordered). Note that the daily reordering is done in real time, since computation is 
negligible, due to our assumptions in section 3.  
Our default setting which we use throughout the paper is n = 10. The size of the day 
square 2n  is a tradeoff between representing each event by one pixel and the size of 
the (virtual) screen. 
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 in section 3, one essential feature of the visualization component is to 
et of dates. The user is enabled to interactively select a set of consecutive 
bset corresponding to the selected event dates can again be visualized 
 iterative process outlined in section 3.  
descending order 
 if the events should be ordered ascending or descending by frequency is 
t for the case where we have less pixels in a day square than events. If the 
stribution on a particular day is very skewed, some events might not be 
t all because the drawing algorithm with formula 1 might have already 
complete day square. We think, in most cases the user is either interested 
nts which happen very rarely as opposed to others or he is interested in 
istribution of the “main” events. Therefore we enable the user to switch 
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, the drawing of the pixels starts with the rarest events and thus uncovers 

e at the expense of cutting off the largest event at the end. If the descend-
elected, the most frequent events are drawn first. 

Figure 4. Ordering events daily by frequency 



- Interactive color assignment  
Initially, colors are assigned to events based on the PBC color map. Thus missing 
values can be elegantly treated as a distinct event and are assigned to a certain color 
(background by default).  A dialog window enables the user to interactively assign 
colors to events. With manual color assignment the user can specify his domain 
knowledge, can formulate and test an hypothesis on-the-fly or steer the exploration in 
a meaningful way. The notion of color assignment is implemented as follows: If the 
user changes several events to have the same color, he indicates a conceptual generali-
zation of the events. As a result, all events which are assigned to the same color are 
referred to as the same event when the visualization is redrawn. Thus, for each day, 
the events with the same color are grouped together before the drawing algorithm is 
invoked. For example, following the web mining dataset from table 1, let us assume 
we are recording web page hits on a particular day. These events can be generalized 
by the user by assigning color c1 to all pages of the main website which have been 
visited. Color c2 refers to the dep1/ subdirectory, c3 to the dep2/ subdirectory and 
color c4 is used for all other web pages. The interface is depicted in figure 5, also 
enabling the user to sort by event name or frequency. Each event attribute has a sepa-
rate color assignment.  
 

 
 

 
In figure 6, two event attributes from our example dataset are visualized from January 
1st, 2002 to February 18th, 2002. For the “page hits” event attribute, the user has as-
signed colors to four different groups of web pages as described above. We see page 
hits on January 1st but no more until Saturday, January 12th. Maybe the web server was 
down for 11 days? Also the event attribute “browser” has its first event on Sunday, 
January 20th. Maybe the web server did not recognize the browser type until that day? 
Just two different browsers have been recognized. One browser has being used more 
often throughout the whole time period. 
-Zooming 
The user can zoom in or zoom out. 

Figure 6.  
Calendarview with web mining dataset 

Figure 5.  
Interactive color assignment 



- Detail on Demand  
The event corresponding to the pixel of the current mouse pointer position is dis-
played. 

5   The Temporal Mining Component 

Building the visualization component, we have introduced a visualization technique 
called CalendarView, which maps different events to distinct colors. In the case there 
are just a few events the visualization itself is very powerful since human’s preatten-
tive perception is very efficient in looking for variety of patterns. If the number of 
different events is larger, the usefulness of the default color assignment decreases 
because colors are not perceived as being distinct any more.  

Nevertheless the visualization technique might reveal patterns since changes in the 
event distribution might still be perceived. With the interface for interactive color 
assignment, we have introduced one concept for handling a larger number of events. 
However, if focus is not on a certain known event, manually changing a random se-
quence of colors can quickly become tedious. This realization has led us to consider a 
tight integration of the temporal mining algorithms to the visualization. Coming from 
this perspective, we would like to have algorithms that discover patterns, determine 
the events involved in the patterns and use this information to automatically select 
colors based on the patterns that will be revealed. This automatic color selection can 
be used to compute a reasonable default color assignment or it can be invoked at any 
time during the exploration.  

In summary, two aspects of our architecture contribute to the intuitive cooperative 
exploration of the data by the user and the algorithms. First, CalendarView visualizes 
not just the data but also the patterns. Second, the same color assignment interface is 
used by both the user and the algorithm. We now will focus on how the following 
three classes of algorithms use color assignment:  

• Discover one single event of one event attribute that shows an interesting pattern 

• Discover multiple events of one event attribute that show an interesting pattern 

• Discover one event for each event attribute such that these events together show 
an interesting pattern (an extension is that the user selects one event and lets the al-
gorithm detects events of other event attributes which show some relation to the se-
lected event, e.g. similarity, correlation, etc.) 

Discover one event of one event attribute 
Many existing algorithms calculate one single event based on some measure of in-

terest [2]. These measures can range from basic statistical methods like highest vari-
ance to more computationally expensive ones like “most interesting trend”. No matter 
how the algorithms compute the single event of interest, our approach encapsulates it 
and changes the colors of the events accordingly. This means all colors but one are 
changed to one light color, whereas the event for which the pattern was found is 



changed to have a unique dark color. Thus the user can focus on the distribution of 
this single event in relation to the overall frequency of all events. 

We have included the following implementation of such an algorithm called 
LongestStreak, which is based upon the idea of stabilized p charts from the statistical 
field control charting [13]: 
1. For each event e, compute a sequence of relative frequencies as follows: For each 

day, compute the percentage of occurrences of event e based on all events occur-
ring on the same day. 

2. Compute the weighted mean and standard deviation of each sequence. Consider 
just the days that are event dates. 

3. Label each day where event e is significantly below or above its mean as signifi-
cant day with respect to event e. 

4. Return the event with the longest streak of consecutive significant days. Break ties by re-
turning the first one found. 

Alternatively, we could also modify step 4 to return the event with the most signifi-
cant days. After the visualization is updated based on the discovered event the user 
can continue the exploration process.  
Discover multiple events of one event attribute 

Again, many algorithms have been proposed which compute this class of patterns 
[2], e.g. discovery of similar events. The algorithm returns a set of events which to-
gether represent a pattern. Our architecture changes the color assignment such that 
each event that is part of the pattern is assigned a distinct color, and all other events 
are assigned to one color. 

Our implemented instance of this class of algorithms called MatchingEvents ex-
tends LongestStreak described above: 
1. For each event, compute significant days and record a bit sequence having a ‘1’ for 

each a significant day and a ‘0’ otherwise 
2. Take LongestStreak as the baseline event 
3. Compare the bit sequence of the LongestStreak event with all others to find the 

closest match. This is determined by a bit-wise comparison and each match of a ‘1’ 
in both sequences increments the match counter by one. The event whose bit se-
quence has the highest match counter is the correlated event. 

4. Return the LongestStreak event and the correlated event. 

Discover one event for each event attribute 
The two previous algorithms have looked for patterns in one single event attribute. 

In contrast, this class of algorithms looks for patterns relating event attributes to each 
other, instead of analyzing them separately. Many proposed algorithms fall into this 
class, e.g. finding similar events across different event attributes. The resulting pattern 
is visualized by updating the color assignments of each event attribute accordingly.  

We implemented an instance of this class very similar to MatchingEvents. But in-
stead of comparing the LongestStreak of the first event attribute to other events of the 
same attribute, it is compared to all events of the other event attributes. The algorithm 
returns the LongestStreak of the first event attribute and for each other event attribute 
the event that is correlated. In the experimental section, we refer to this algorithm as 
MatchingEvents2. 



6  The Database Component 

In this paper, we assume the datasets reside in tables from one or more relational 
databases. The integration of a database component should provide access to the data, 
a mechanism to scale up to large datasets and the capability to access the raw data of 
all attributes associated with the patterns found.  

The critical part of the database component is to scale up to large databases. For 
our architecture, scalability entails a visualization and a memory aspect. The first 
aspect, namely how to visualize large datasets is addressed by visualizing the relative 
frequency of events on a single day as described in section 4. In this section, we de-
scribe how large datasets are processed. The fundamental idea is to compute an ag-
gregated version of the dataset such that it fits in main memory. The aggregated data-
set contains sufficient statistics similar to e.g. [4] for decision trees, and we show the 
upper bound of the main memory requirements based on our assumptions stated in 
section 3. 

Let us pick up our example dataset from table 1. This dataset might consist of mil-
lions of rows since each occurrence of an event is typically stored as one record. If we 
use the aggregation capabilities of the database, the number of records that are loaded 
can be significantly reduced. Instead of storing each occurrence of an event, we count 
for each day the number of occurrences for each event. E.g. the sufficient statistics for 
event attribute “page hits” can be computed by submitting the following SQL query: 

 
SELECT Event_date, page_hits, count(*) as Frequency 
FROM example_table 
GROUP BY Event_date, page_hits 
ORDER BY Event_date, page_hits; 

 
The resulting table is sketched in table 2.  The amount of compression achieved by 
aggregation depends on the number of distinct event dates, the number of distinct 
events and how distinct events are distributed across the dates. 

Table 2. Sufficient statistics for event attribute "page_hits" 

Event date Event attribute  
(page_hits) Frequency 

1/1/2002 Index.html 1934 
1/1/2002 Dep1/contacts.html 36 

… … … 
 

The memory requirement for our initial dataset is proportional to the number of en-
tries in a relational table. For one event attribute, event dates and events of this attrib-
ute have the memory requirements initmem , with 

∝initmem number of days ⋅  average number of events per day 

In contrast, the memory requirements newmem for the computed sufficient statistics 
table (table 2) is 



∝newmem number of days ⋅  average of the number of distinct 
 events per day 

The difference in memory usage is the ratio between the average number of events 
per day and the average number of distinct events per day. This ratio will vary with 
the domain and the event attribute. For example, in the aircraft maintenance domain 
for one airline we had: 

Average number of events per day: 402 
Average number of distinct events per day: 32 

The ratio in this example is 12.5:1. Whereas the number of records grows linearly for 
the initial dataset with every new event, our new table typically just increments a 
counter. This is most useful in domains where the number of events per day is very 
high, like web page accesses, items in market baskets across departments, phone calls, 
etc. 

Given our assumptions from section 3, the worst case memory requirements 
worstmem for the sufficient statistics table of one event attribute can be computed for e.g. 

15 years: 
∝worstmem 15 ⋅  365 days ⋅  200 distinct events = 1,095,000 

In this case, every event happens every day at least once during a period of fifteen 
years. We can store each event with one byte (next to a small lookup table) and the 
days and frequency as integers with 4 bytes. The sufficient statistics table would re-
quire: 1,095,000 ⋅  (1 + 4 + 4) = about 9.8 Megabytes. Together with our assumption 
that the number of event attributes is low, we can conclude the sufficient statistics 
tables fit in main memory for many domains. 
 

To summarize, the database component is integrated in two ways: First, the rele-
vant event attributes of the original tables are compressed by computing the summary 
statistics offline. Second, database access is provided in a straight forward way: Since 
the user basically selects subsets of the initial time period during the exploration proc-
ess, he can decide to retrieve the records with all attributes corresponding to the se-
lected time period. Then a range query over the time period returns the raw data of 
interest. In our experiments, the computed summary statistics always fit in main mem-
ory and the computation of the proposed algorithms is efficient. Both, we believe is 
true for most datasets which fulfill our assumptions in section 3.  

However, if more attributes are involved in an algorithmic run, or the integrated al-
gorithms are more complex, then a tighter integration with the database component 
might be necessary. E.g. algorithms might be decomposed and leveraged by SQL 
extensions or user-defined functions could be used. If the algorithmic run is pushed 
back to the database, the user can continue to explore the data and get notified after 
the computation is finished. 

 
 



7  Experiments 

In our experiments, we investigate several real-world datasets from the airplane 
maintenance domain. We think the scenario we describe in this section is similarly 
applicable to many other domains like homeland security, web mining, market basket 
analysis or intrusion detection. The datasets are tables from a database containing 
maintenance events of different airlines for different airplane models3. Maintenance 
events range from negligible ones like coffee spills on the seat to major ones like 
problems with a landing gear. Each record has information about the date a mainte-
nance problem has occurred, the airport where it was recorded, who discovered it, the 
written complaint, the maintenance action taken, the system and subsystems affected 
by the problem, etc… We will focus on the affected systems, which will be our event 
attribute. A system is a set of related parts that work together to perform a function 
such as communication, engine, flight control, doors, etc. 

 
Table 3. Datasets 

Dataset Event dates Nr. of 
events 

Nr of records 
(originally) 

Nr. of 
records 
(suff stat) 

A 3/6/89- 
12/31/02 37 350,772   87,030 

B 5/12/90- 
12/31/02 39 1,165,881 117,441 

C 1/30/89- 
12/31/02 41 1,405,582 133,116 

D 3/6/89- 
12/31/02 28 350,772   78,802 

E 11/12/89
- 12/31/02 41 2,051,269 162,918 

F 1/12/89- 
12/31/02 182 2,051,269 574,071 

G 12/27/89
- 12/31/02 40 17,499 11,547 

 
Table 4. Runtime (in seconds) of algorithms 

Dataset LongestStreak MatchingEvents MatchingEvents2 
A 0.27 0.31 0.53 (with B) 
B 0.31 0.30 0.62 (with C) 
C 0.35 0.36 0.54 (with D) 
D 0.28 0.26 0.63 (with E) 
E 0.37 0.36 0.9 (with F) 
F 0.71 0.68 0.87 (with G) 
G 0.23 0.22 0.47 (with A) 

 
                                                           
3 An airplane model is e.g. 747, 767, etc. 



Metadata about the various datasets we explored is depicted in table 3. The re-
corded maintenance datasets span time periods between twelve and fourteen years.  
Table 4 shows the runtime of our implemented algorithms on the datasets. For the 
algorithm MatchingEvents2, we also indicate in brackets which other dataset has been 
the second event attribute. We ran all experiments on a PC with a Pentium III/ 800 
Mhz processor and 1 GB main memory. For all datasets, we achieve an acceptable 
runtime. 

7.1   Mining Airplane Maintenance Datasets 

We describe a typical scenario which shows how our approach can be used. We 
start our investigation by selecting a dataset from one airline and one model. The 
chosen event attribute which we analyze over time is the system of the airplanes. Since 
there are a lot of different systems, we select the algorithm LongestStreak to compute 
one interesting system (it found engine fuel) which updates the color assignment. 
Figure 7 top row shows a small range of the resulting visualization. Especially during 
the last five days of July 2000, we perceive many events, indicating problems with 
engine fuel. Next, we add several datasets to compare this finding with patterns for 
different airlines. For each airline and the same model, we manually change the color 
assignment of the systems. We color every system except engine fuel with one light 
color and assign a dark color to all engine fuel related events. When we compare these 
airlines (two more airlines are shown in figure 7), we see the other airlines do not 
show a specific pattern. Even though just a small time range is shown, it is the case for 
all event dates. So we might decide to further investigate the first airline. Now we add 
to the first dataset another dataset which aggregates individual airplane id’s of the 
same airline and model over time. The event attribute of the newly added dataset is the 
airplane id and we would like to find a correlation between the events we identified 
concerning engine fuel and maintenance events of individual airplanes. We run the 
algorithm MatchingEvents2 to single out one airplane. This airplane is shown in figure 
8 and we see e.g. that a lot of maintenance events for this single airplane have oc-
curred on December 3rd, 1997. Note that for brevity we have omitted a screenshot of 
the corresponding time range of figure 7.  

Finally, we select a dataset with maintenance events of just this airplane. The event 
attribute is again airplane systems. We run the algorithm MatchingEvents to see if two 
events frequently co-occur. A part of the resulting visualization is shown in figure 9. 
The two correlated events returned are fuel and communications indicated by the 
black and light gray color. E.g. on Monday 18th November, both events co-occur. 
With this knowledge we drill down to the raw data to further investigate the findings. 

 

 
 
 



 

 
Figure 7. Focusing on maintenance events with the same subsystem for three different airlines  

 
Figure 8. CalendarView focusing on maintenance events for one airplane 

 

 
Figure 9. CalendarView focusing on maintenance events with two subsystems for 

one airplane 



7.2 The DataJewel System 

We have implemented the DataJewel system based on the architecture proposed in 
this paper. It can quickly be adapted to new domains since it is designed to be extensi-
ble for new visualization techniques and new algorithms. In the figure 10 two useful 
features are shown. First, the raw data can be accessed, displayed, saved or printed. 
Whereas the temporal analysis is based on just a few event attributes from possibly 
different tables, the user typically is interested in other attributes of the records corre-
sponding the pattern found. As the data has been distilled and narrowed down during 
the exploration, the current range of event dates represents the dataset of interest. Thus 
just one range query is submitted against the database(s) to retrieve the attributes of 
interest. Second, an optional tree on the right side depicts the exploration process. The 
simplified temporal mining process presented in section 3, focuses on the iterative 
process of reducing the dataset. However, at some points the user may like to return to 
a previous stage, either because he found something of interest or not. Therefore, the 
tree on the right side shows a node for each subset of data explored so far. The user 
can either return to a node or annotate a node. 

The algorithmic component can be used in three ways. It can be used to determine 
the default color mapping, it can be invoked at any time during the exploration proc-
ess or it can run as a background process in parallel to the user’s exploration and no-
tify him upon discovery of some patterns. In addition to updating the color assignment 
after patterns have been found, the event dates not covering the patterns can be grayed 
out. Alternatively, the patterns can be displayed in a textual form. 

 
Figure 10. Screenshots of DataJewel 

7.3 Discussion 

We think the DataJewel architecture is also well adapted to areas like homeland se-
curity, market basket analysis or intrusion detection. Homeland security tasks like 
identifying suspicious behavior can be supported by our architecture in several power-
ful ways. For example, different event attributes can be associated with each other 
even though their events take place at different dates, months or possibly years. For 
intrusion detection, data may be aggregated hourly instead of daily, therefore an addi-
tional visualization technique would need to be added to the visualization component. 



In the context of market basket analysis, many algorithms have already been proposed 
and successfully used to find patterns. The discovered rules look like: If a customer 
buys bread and sugar then she is likely to buy beer as well. 

These algorithms look for items that are frequently bought together, however, they 
do not make use of the time that is associated with each transaction. Analyzing market 
basket databases over time can reveal a new set of patterns like: Customers are likely 
to buy cereal and fruits in the beginning of the week and alcohol and candies at the 
end of the week. 

Note that our approach would be suitable for these datasets even though the dimen-
sionality of market basket databases is typically very high (hundreds or thousands of 
items). Each item is usually modeled as one attribute and a record corresponds to all 
items purchased by one customer. Instead, for our approach we would map all items to 
different events of one attribute and store the frequency of the corresponding items 
bought per day. If the number of items is very large, a concept hierarchy could be used 
to generalize to fewer items, as outlined in section 3. 

8   Conclusions 

Visualization, mining algorithms and databases are main areas in the field of KDD. 
Most research concentrates in just one of these areas. Our work is based on an inte-
grated approach that we believe can significantly improve the discovery of useful and 
understandable patterns. We present a novel user-centric architecture for temporal 
data mining, tightly integrating a visualization, an algorithmic and a database compo-
nent. We introduce a new visualization technique called CalendarView for represent-
ing temporal data. One main contribution is the use of the same visualization for the 
data and for the computed patterns. In addition, we designed an interface of assigning 
colors to categories, which is used by both the user and the algorithms. On the one 
hand, the user can steer the exploration or incorporate his domain knowledge, on the 
other hand, the algorithm can suggest meaningful color mappings based on the pattern 
discovered. By precomputing sufficient statistics from the initial datasets, our ap-
proach scales up to very large databases.  

In our future work, we will apply DataJewel to different areas, using the extensible 
architecture to add new visualization and algorithmic components. We will investigate 
how our approach can be extended to fit different data types like text or multimedia 
data.  
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