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Abstract

In this paper, we address the challenging problem of recovering the defocus

map from a single image. We present a simple yet effective approach to

estimate the amount of spatially varying defocus blur at edge locations. The

input defocused image is re-blurred using a Gaussian kernel and the defocus

blur amount can be obtained from the ratio between the gradients of input

and re-blurred images. By propagating the blur amount at edge locations to

the entire image, a full defocus map can be obtained. Experimental results

on synthetic and real images demonstrate the effectiveness of our method in

providing a reliable estimation of the defocus map.

Keywords: Image processing, defocus map, defocus blur, Gaussian

gradient, defocus magnification

1. Introduction

Defocus estimation plays an important role in many computer vision and

computer graphics applications including depth estimation, image quality

assessment, image deblurring and refocusing. Conventional methods for de-

focus estimation have relied on multiple images [1, 2, 3, 4]. A set of images of

the same scene are captured using multiple focus settings. Then the defocus
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Input Defocus map

Figure 1: The depth recovery result of our method. The larger intensity means larger

depth in all depth maps presented in this paper.

is measured during a implicit or explicit deblurring process. Recently, image

pairs captured using coded aperture cameras [5] are used for better defocus

blur measure and all-focused image recovery. However, these methods suffer

from the occlusion problem and require the scene to be static, which limits

their applications in practice.

In very specific settings, several methods have been proposed to recover

defocus map from a single image. Active illumination methods [6] project

sparse grid dots onto the scene and the defocus blur of those dots is measured

by comparing them with calibrated images. Then the defocus measure can be

used to estimate the depth of a scene. The coded aperture method [7] changes

the shape of camera aperture to make defocus deblurring more reliable. A

defocus map and an all-focused image can be obtained after deconvolution

using calibrated blur kernels. These methods require additional illumination

or camera modification to obtain a defocus map from a single image.

In this paper, we focus on a more challenging problem of recovering the
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defocus map from a single image captured by an uncalibrated conventional

camera. Elder and Zucker [8] used the first and second order derivatives of

the input image to find the locations and the blur amount of edges. The

defocus map obtained is sparse. Bae et al. [9] extend this work and obtain a

full defocus map from the sparse map using a interpolation method. Zhang

and Cham [10] estimate the defocus map by fitting a well-paramerterized

model to edges and use the defocus map to perform single image refocusing.

The inverse diffusion method [11] models the defocus blur as a heat diffusion

process and uses the inhomogeneous inversion heat diffusion to estimate de-

focus blur at edge locations. Tai and Brown [12] use local contrast prior to

measure the defocus at each pixel and then apply MRF propagation to refine

the defocus map. In contrast, we estimate the defocus map in a different

but effective way. The input image is re-blurred using a known Gaussian

blur kernel and the ratio between the gradients of input and re-blurred im-

ages is calculated. We show that the blur amount at edge locations can be

derived from the ratio. We then formulate the blur propagation as a opti-

mization problem. By solving the optimization problem, we finally obtain a

full defocus map.

We propose an efficient blur estimation method based on the Gaussian

gradient ratio, and show that it is robust to noise, inaccurate edge loca-

tion and interference from neighboring edges. Without any modification to

cameras or using additional illumination, our method is able to obtain the

defocus map of a single image captured by conventional camera. As shown

in Fig. 1, our method can estimate the defocus map of the scene with fairly

good extent of accuracy.
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Figure 2: Thin lens model. (a) Focus and defocus for thin lens model. (b) The diameter

of CoC c as a function of the object distance d and f-stop number N given df = 500mm,

f0 = 80mm.

2. Defocus Model

We estimate the defocus blur at edge locations. As step edge is the main

edge type in natural images, we consider only step edges in this paper. An

ideal step edge can be modeled as:

f(x) = Au(x) +B, (1)

where u(x) is the step function. A and B are the amplitude and offset of the

edge respectively. Note that the edge is located at x = 0.

We assume that focus and defocus obey the thin lens model [13]. When

an object is placed at the focus distance df , all the rays from a point of

the object will converge to a single sensor point and the image will appear

sharp. Rays from a point of another object at distance d will reach multiple

sensor points and result in a blurred image. The blurred pattern depends on

the shape of aperture and is called the circle of confusion (CoC) [13]. The
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Figure 3: The overview of our blur estimation approach: here, ⊗ and∇ are the convolution

and gradient operators respectively. The black dash line denotes the edge location.

diameter of CoC characterizes the amount of defocus and can be written as

c =
|d− df |

d

f 2
0

N (df − f0)
, (2)

where f0 and N are the focal length and the stop number of the camera

respectively. Fig. 2 illustrate focus and defocus for thin lens model and how

the diameter of circle of confusion changes with d and N , given fixed f0 and

df . As we can see, the diameter of the CoC c is a non-linear monotonically

increasing function of the object distance d.

The defocus blur can be modeled as a convolution of a sharp image with

the point spread function (PSF). The PSF is usually approximated by a

Gaussian function g(x, σ), where the standard deviation σ = kc measures

the defocus blur amount and is proportional to the diameter of the CoC c.

A blurred edge i(x) is then given by,

i(x) = f(x)⊗ g(x, σ). (3)

3. Defocus Blur Estimation

Fig. 3 shows the overview of our blur estimation method. An edge is re-

blurred using a known Gaussian kernel. Then the ratio between the gradient
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magnitude of the step edge and its re-blurred version is calculated. The

ratio is maximum at the edge location. Using the maximum value, we can

compute the amount of the defocus blur at the edge location.

For convenience, we describe our blur estimation method for 1D case first

and then extend it to 2D image. The gradient of the re-blurred edge is:

∇i1(x) = ∇ (i(x)⊗ g(x, σ0))

= ∇ ((Au(x) +B)⊗ g(x, σ)⊗ g(x, σ0))

=
A√

2π(σ2 + σ2
0)

exp

(
− x2

2(σ2 + σ2
0)

)
,

(4)

where σ0 is the standard deviation of the re-blur Gaussian kernel. We call

it the re-blur scale. The gradient magnitude ratio between the original and

re-blurred edges is

|∇i(x)|
|∇i1(x)| =

√
σ2 + σ2

0

σ2
exp

(
−
(
x2

2σ2
− x2

2(σ2 + σ2
0)

))
. (5)

It can be proved that the ratio is maximum at the edge location (x = 0) and

the maximum value is given by:

R =
|∇i(0)|
|∇i1(0)| =

√
σ2 + σ2

0

σ2
. (6)

Giving an insight on (4) and (6), we notice that the edge gradient depends

on both the edge amplitude A and blur amount σ, while the maximum of the

gradient magnitude ratio R eliminates the effect of edge amplitude A and

depends only on σ and σ0. Thus, given the maximum value R at the edge

locations, the unknown blur amount σ can be calculated using

σ =
1√

R2 − 1
σ0. (7)
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For 2D images, the blur estimation is similar. We use 2D isotropic Gaus-

sian kernel for re-blurring and the gradient magnitude can be computed as

follows:

‖∇i(x, y)‖ =
√
∇i2x +∇i2y (8)

where ∇ix and ∇iy are the gradients along x and y directions respectively.

In our implementation, We set the re-blurring σ0 = 1 and use Canny edge

detector [14] to perform the edge detection. In this work, we also assume the

camera response curve is linear.

The blur scales are estimated at each edge location, forming a sparse

depth map denoted by d̂(x). However, quantization error at weak edges,

noise or soft shadows may cause inaccurate blur estimates at some edge

locations. To solve this problem, we apply joint bilateral filtering (JBF) [15]

on the sparse depth map d̂(x) to refine those inaccurate blur estimates. By

using the original input image I as the reference, the filtered sparse defocus

map can be defined as:

BF (d̂(x)) =
1

W (x)

∑
y∈N (x)

Gσs(‖x− y‖)Gσr(‖I(x)− I(j)‖)d̂(y) (9)

where W (x) is the normalization factor and N (x) is the neighborhood of x

given by the size of spatial Gaussian filter Gσs . σs controls the size of the

spatial neighborhood and σr controls the influence of intensity difference.

We set them to be 10% of the image size and 10% of the intensity range,

respectively. Note that the filtering is only performed on the edge locations.

As we can see from Fig. 4, the joint bilateral filtering corrects some errors

in the sparse defocus map, and thus avoids the propagation of the errors in

defocus map interpolation described in the next section.
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Figure 4: Defocus map refinement using joint bilateral filtering. The joint bilateral filtering

correct defocus estimation errors caused by noise or soft shadows.

4. Defocus Map Interpolation

Our defocus blur estimation method describe in previous step produces a

sparse defocus map d̂(x). In this section, we provided a way to propagate the

defocus blur estimates from edge locations to the entire image and obtain

a full depth map d(x). To achieve this, we want to seek a defocus map

d(x) which is close to the sparse defocus map d̂(x) at each edge location.

Furthermore, we prefer the defocus blur discontinuities to be aligned with

image edges. Edge-aware interpolation methods [16, 17] are usually used

for these tasks. Here, we apply the matting Laplacian [18] to perform the

defocus map interpolation. Formally, the depth interpolation problem can

be formulated as minimizing the following cost function:

E(d) = dTLd+ λ(d− d̂)TD(d− d̂), (10)

where d̂ and d are the vector forms of the sparse defocus map d̂(x) and the

full defocus map d(x) respectively. L is the matting Laplacian matrix and D
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is a diagonal matrix whose element Dii is 1 if pixel i is at the edge location,

and 0 otherwise. The scalar λ balance between fidelity to the sparse depth

map and smoothness of interpolation. The (i, j) element of L is defined as:∑
k|(i,j)∈ωk

(
δij −

1

|ωk|

(
1 + (Ii − µk)T (Σk −

ε

|ωk|U3

−1
(Ij − µK)

))
, (11)

where δij is the Kronecker delta, U3 is a 3× 3 identity matrix, µk and σk are

the mean and covariance matrix of the colors in window ωk. Ii and Ij are the

colors of the input image I at pixel i and j respectively. ε is a regularization

parameter and |ωk| is the size the window ωk. For the detailed derivation of

Eq. 11, readers can refer to [18].

The optimal d can be obtained by solving the following sparse linear

system:

(L+ λD)d = λDd̂. (12)

In our implementation, we use a fixed λ values 0.005, so that a soft

constraints is put on d to further refine small errors in our blur estimation.

Such a soft matting method are also applied in [19, 20] to deal with dehazing

and spatially variant white balance problems.

5. Experiments

We first test the robustness of our method on synthetic images. We

synthesize a set of bar images, one of which is shown in Fig. 5(a). The blur

amount of the edge increases linearly from 0 to 5. Under noise conditions,

as show in Fig.5(d), our method can achieve a reliable estimation. And we

also find that our blur estimation result of edges with smaller blur amounts

are less affected by noise compared with those with larger blur amounts.
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Figure 5: Performance of our blur estimation method on synthetic images. (a) The syn-

thetic image with noise (var = 0.01). (b) The synthesis image with edge distance of 20

pixels. (c) The synthesis image and edge detection with edge shifted by 2 pixels. (d) Esti-

mation errors under noise condition. (e) Estimation errors with difference edge distances.

(f) Estimation errors with edge mis-localization. The x and y axes are the blur amount

and corresponding estimation error respectively.

We also test our blur estimation on bar images with different edge dis-

tances. Fig. 5(e) shows that our blur estimation result is affected by neigh-

boring edges, especially when the edge distance is small and the blur amount

is large, but the estimation errors are controlled in a low level if the blur

amount is not large (< 3).

In Fig. 5(c), we shift the detected edges to simulate edge mis-localization.

The result is shown in Fig. 5(f). Our edge estimation is robust to edge mis-

localization for edge with large blur amount, while it may cause large errors

for the blur estimation of sharp edges. However, in practice, the sharp edges
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Figure 6: Defocus map estimation on real images. Our method can work on different

types of scenes with continuous depth (the pumpkin image) and layered depth (the building

image and the flower image), resulting in defocus maps with fairly good extend of accuracy.
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Input image Inverse diffusion method Our result

Figure 7: Comparison of our method with the inverse diffusion method. Our result is able

to recover a visually more plausible and more accurate defocus map. For example, the

flower layer in the image is better separated from the background layer in our result.

usually can be located very accurately by edge detection methods, which

greatly reduces the estimation error.

As show in Fig. 6, we test our method on some real images. In the pump-

kin image, the depth of the scene changes continuously from the bottom to

the top of the image. The estimated defocus map captures the continuous

change of the depth. In the building image, the scene mainly contains three

layers: the wall, house and sky layers. Our method is able to produce de-

focus maps corresponding to those layers. The flow image gives the similar

result. One more example is shown in Fig. 1. The defocus map capture the

foreground boy layer and the continuous change of the background. As we

can see from these results, our method is able to recover a reasonably good

defocus map from a single image.

In Fig. 7, we compare our method with the inverse diffusion method [11].

The inverse diffusion method produces coarse defocus map. the flower layer is

not well separated with background layers and contains some error estimates.

In contrast, our method is able to produce a more accurate and continuous
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Input image Bae et al.’s method Our method

Figure 8: Comparison of our method with Bae et al.’s method. Our method contains less

noise and better captures the depth change of the scene.

defocus map. In our defocus map, the flower is well separated with the

background.

A comparison of our method with Bae et al.’s method [9] is shown in

Fig. 8. While both method use joint bilateral filtering to refine sparse defo-

cus maps, the result of Bae et al.’s method still contains some visible defocus

estimation errors (the white noisy points) in the final full defocus map. How-

ever, our result is more accurate and the depth change of the scene are well

captured by the defocus map.

Our method can be used to extract focused regions from defocued images.

After defocus map interpolation, a pixel is assigned to be focused if its defocus

value is smaller than a threshold tf (typically, tf = 1). As shown in Fig. 9(c),

our approach is successful in segmenting the focused regions from the image.

Our method is especially useful if the foreground and background contains

similar colors, in which the segmentation or matting methods may fail to

extract the region of interest. As illustrated in Eq. 2, the size of defocus blur

is proportional to aperture size. Thus, we can linearly increase the defocus

map values to simulate a larger aperture effect. Fig. 9(d) shows the defocus
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(a) Input Image (b) Defocus map

(c)Focused regions (d) Defocus magnification result

Figure 9: Applications of our method. Our method can be use to extract focused regions in

the image and perform defocus magnification to emphasis the main subject in the image.

magnification result. We can see that the bird in the image remains sharp

while the background is blurred more. The defocus magnification is able to

avoid distracting background and emphasis the main subjects in the image.

6. Limitations and Discussions

Blur Texture Ambiguity. One limitation of our blur estimation is

that it can not tell whether a blur edge is caused by defocus or blur texture

(soft shadows or blur patterns) of the input image. For the later case, the

defocus value we obtained is a measurement of the sharpness of the edge.
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(a) Input image (b) Depth map

(c) User markup image (d) Refined depth map

Figure 10: The blur texture ambiguity. This ambiguity can cause some errors in our

defocus map. The error region is shown in the white rectangle. These errors can be

corrected by providing a user markup image to exclude the blur estimates in that region.

It is not the actual defocus value of the edge. This ambiguity may cause

some artifacts in our result. One example is shown in Fig. 10. The region

indicated by the white rectangle is actually blur texture of the flower, but our

method treats it as defocus blur, which results in error defocus estimation

in that region. Additional images [1, 5] are usually used to remove the blur

texture ambiguity. Here, we introduce the user interaction to handle this

problem. A user can mark the blur texture region to exclude the estimated

defocus values in those regions, so that the defocus values are propagated
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from reliable neighboring regions. As shown in Fig. 10(d), the blur texture

ambiguity can be properly handled by using the user interaction.

Defocus map and Depth. If the camera settings are provided, the

defocus map can be converted to depth map. However, there is a focal plane

ambiguity in defocus blur and depth mapping. When an object appears blur

in the image, it can be on either side of the focal plane. To remove this

ambiguity, most depth from defocus methods assume all objects of interest

are located on one side of the focal plane and put the focus point on the

nearest/farthest point in the scene.

7. Conclusion

In this paper, we show that the defocus map can be recovered from a

single image. A new method is presented to estimate the blur amount at

edge locations based on the Gaussian gradient ratio. A full defocus map is

then produced using the matting interpolation. We show that our method

is robust to noise, inaccurate edge location and interferences of neighboring

edges and is able to generate more accurate defocus maps compared with

existing methods. We also discuss the blur texture ambiguity arising in

recovering defocus map from a single image and the focal plane ambiguity

when converting defocus map to depth map. We also propose some possible

ways to remove those ambiguities. In the future, we would like to extend our

method to work on more edge types and apply it on other problems such as

motion blur estimation.
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